[go: up one dir, main page]

JP2002286318A - Air conditioner and condenser used therefor - Google Patents

Air conditioner and condenser used therefor

Info

Publication number
JP2002286318A
JP2002286318A JP2001133400A JP2001133400A JP2002286318A JP 2002286318 A JP2002286318 A JP 2002286318A JP 2001133400 A JP2001133400 A JP 2001133400A JP 2001133400 A JP2001133400 A JP 2001133400A JP 2002286318 A JP2002286318 A JP 2002286318A
Authority
JP
Japan
Prior art keywords
condenser
stage
refrigerant
heating
stage condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001133400A
Other languages
Japanese (ja)
Inventor
Noriyuki Yamauchi
典之 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001133400A priority Critical patent/JP2002286318A/en
Publication of JP2002286318A publication Critical patent/JP2002286318A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the evaporating function of a condenser in a heating operation for meeting low temperature in the winter season and a cold place so as to realize a comfortable heating, by avoiding the deterioration of a heating capacity resulting from the deterioration of the function of the condenser due to the fall of atmospheric air temperature, or the stop of the heating operation resulting from the adherence of frost to the condenser when the heating operation is carried out with an air conditioner. SOLUTION: A heat generating member for heating the condenser is provided in a refrigerant passage or inside/outside of the condenser. In a cooling operation, a refrigerant does not pass the refrigerant passage in which the heat generating member is provided, or the heat generating member is not used. A second-stage condenser is provided in the upstream of the condenser (first-stage condenser). The second-stage condenser and the first-stage condenser are arranged in parallel in the direction where a heat exchanging material passes, and arranged in such a manner that the heat exchanging material firstly passes the second-stage condenser and then passes the first-stage condenser. Heat taken by the heat exchanging material during a process in which the heat exchanging material passes the second-stage condenser is effectively transferred to the first-stage condenser.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空調装置の凝縮器
に関するものであり、特に、環境に優しくなるように改
良された空調装置の凝縮器であり、また、その凝縮器を
用いる空調装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a condenser for an air conditioner, and more particularly to a condenser for an air conditioner improved to be environmentally friendly, and an air conditioner using the condenser. .

【0002】[0002]

【従来の技術】空調装置で暖房運転時に大気温度が低下
すると、凝縮器の熱交換能力、すなわち、大気よりの吸
熱作用の能力が低下し、暖房能力が低下する。それを補
うために、通常、室内機に電熱器・電熱線を設けて、吹
き出し空気を加熱して暖房能力の低下を補っている。更
に大気温度が低下して0℃前後になると、凝縮器の表面
に霜が付着して熱交換の能力は激減して、凝縮器を通過
する冷媒と大気との熱交換による冷媒への吸熱機能は停
止状態になる。冷媒の蒸発作用が行われないので、冷媒
は液相状態で圧縮機に入り、圧縮機を損傷する不具合を
生じるので暖房運転を停止する。凝縮器に付着した霜を
除去するため、通常、冷媒の流れ方向を逆にして圧縮機
から高温・高圧ガスの冷媒を凝縮器に送る、霜取り運転
を行うことになるので、暖房は停止する。また、暖房運
転が再開しても、何時、霜付きが再発するか予測がつか
ない。その結果、低温時または寒冷地では空調装置の暖
房は信頼を失い、暖房は化石燃料の燃焼により発生する
熱に依存することになる。最近、外気の温度低下による
上記の不具合を解消するために、凝縮器を外部から灯油
を使用した燃焼機で加熱して、凝縮器内の冷媒を外部か
ら加熱する方式が商品化されている。一応、暖房能力の
向上および暖房運転継続の目的は果たしているが、外部
からの凝縮器の加熱は効率が悪く、また、灯油の燃焼は
CO2を発生して環境汚染を招く。
2. Description of the Related Art When the air temperature decreases during a heating operation in an air conditioner, the heat exchange capability of the condenser, that is, the capability of absorbing heat from the atmosphere decreases, and the heating capability decreases. In order to compensate for this, usually, an electric heater and a heating wire are provided in the indoor unit, and the blown air is heated to compensate for a decrease in the heating capacity. Further, when the atmospheric temperature drops to about 0 ° C., frost adheres to the surface of the condenser, and the heat exchange ability is drastically reduced, and the heat absorption function of the refrigerant through heat exchange between the refrigerant passing through the condenser and the atmosphere. Is stopped. Since the refrigerant does not evaporate, the refrigerant enters the compressor in a liquid phase state, causing a problem of damaging the compressor, so that the heating operation is stopped. In order to remove the frost adhering to the condenser, usually, a defrosting operation is performed in which the flow direction of the refrigerant is reversed and the refrigerant of the high-temperature and high-pressure gas is sent from the compressor to the condenser, so that the heating is stopped. Further, even when the heating operation is restarted, it is impossible to predict when frost will recur. As a result, the heating of the air conditioner loses reliability at low temperatures or in cold regions, and the heating depends on the heat generated by the combustion of fossil fuels. Recently, in order to solve the above-mentioned problem caused by a decrease in the temperature of the outside air, a system in which a condenser is externally heated by a combustor using kerosene to externally heat a refrigerant in the condenser has been commercialized. For the time being, the purpose of improving the heating capacity and continuing the heating operation is fulfilled, but the efficiency of heating the condenser from the outside is low, and the burning of kerosene generates CO2, causing environmental pollution.

【0003】[0003]

【発明が解決しょうとする課題】したがって、この発明
の課題は、空調装置の暖房で、大気温度の低下による暖
房能力の低下および凝縮器の霜付きによる暖房運転停止
が発生しないように、凝縮器の外部表面温度を保持し、
かつ大気汚染を発生させないように、風力、太陽光発
電、燃料電池および原子力発電などのエネルギーを使用
する、凝縮器および空調装置を提供することにある。ま
た、従来、寒冷地、例えば山陰、北陸、東北地方など、
更に、ヨーロッパ、北・南米などで、冬季の最低温度が
摂氏零下10度程度の地域でも空調装置による暖房を可
能にし、環境に優しく、かつ、経済的な装置を提供する
ことにある。更に、この発明の課題は、従来の空調装置
を大幅に改造することなく、凝縮器に発熱体を追設し
て、暖房能力の低下および暖房運転の停止を防止するこ
とができる、凝縮器を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to prevent a decrease in the heating capacity due to a decrease in the atmospheric temperature and a stoppage of the heating operation due to frost on the condenser in the heating of the air conditioner. Keep the external surface temperature of the
Another object of the present invention is to provide a condenser and an air conditioner that use energy such as wind power, solar power, fuel cell, and nuclear power so as not to cause air pollution. Also, conventionally, cold regions, such as Sanin, Hokuriku, Tohoku region,
It is another object of the present invention to provide an environment-friendly and economical device that enables heating by an air conditioner even in an area where the minimum temperature in winter is about 10 degrees below zero degrees Celsius in Europe, North and South America, and the like. Further, an object of the present invention is to provide a condenser capable of preventing a decrease in heating capacity and stopping a heating operation by adding a heating element to the condenser without significantly modifying a conventional air conditioner. To provide.

【0004】[0004]

【課題を解決するための手段】暖房運転では、室内機に
設ける蒸発器で、圧縮機から来る高温・高圧ガスの冷媒
の保有熱と、室内の大気と熱交換を行い、室内の大気温
度を上昇させる。蒸発器を出た冷媒は常温・高圧の液に
なる。次に、蒸発器の下流にあるキャピラリを経て膨脹
した冷媒は低温・低圧の湿り蒸気となり凝縮器に入り、
大気の有する熱を吸収し蒸発して低温・低圧過熱蒸気と
なって、冷媒アキュムレータに送られる。冷媒アキュム
レータでは液相の冷媒が下部に溜まり、上部には気相の
冷媒が存在する。次に、気相状態の冷媒は圧縮機に入
り、断熱圧縮されて高温・高圧ガスの冷媒となり蒸発器
に送られる。このような冷凍サイクルで暖房運転は行わ
れる。
[Means for Solving the Problems] In the heating operation, an evaporator provided in the indoor unit exchanges heat with the refrigerant of the high-temperature and high-pressure gas coming from the compressor with the indoor air to reduce the indoor air temperature. To raise. The refrigerant leaving the evaporator becomes a liquid at room temperature and high pressure. Next, the refrigerant expanded through the capillary downstream of the evaporator becomes low-temperature, low-pressure wet steam and enters the condenser.
It absorbs the heat of the atmosphere and evaporates into low-temperature, low-pressure superheated steam, which is sent to the refrigerant accumulator. In the refrigerant accumulator, a liquid-phase refrigerant accumulates in a lower portion, and a gas-phase refrigerant exists in an upper portion. Next, the refrigerant in a gaseous state enters the compressor, is adiabatically compressed, becomes a high-temperature high-pressure gas refrigerant, and is sent to the evaporator. The heating operation is performed in such a refrigeration cycle.

【0005】それゆえに、大気温度の低下により、凝縮
器における大気の保有熱の吸収能力が低下したり、凝縮
器の表面に霜が付着した場合には、何らかの方法で凝縮
器を加熱して能力低下を補い、最悪の場合でも、凝縮器
の霜付きによる圧縮機の停止を招かないように、凝縮器
の表面の温度を保持することが必要となる。大気温度が
低く、凝縮器から冷媒アキュムレータへ入る冷媒の液相
分が多くなり冷媒アキュムレータから圧縮機に液相の冷
媒が入ると、液体の冷媒は非圧縮性流体のため、圧縮機
は過負荷、または圧縮機の種類によっては圧縮機を損傷
することになり、圧縮機は停止することになる。
[0005] Therefore, if the capacity of the condenser to absorb the retained heat of the atmosphere decreases due to the decrease in the atmospheric temperature or if frost adheres to the surface of the condenser, the condenser is heated by some method to increase the capacity. It is necessary to maintain the surface temperature of the condenser so as to compensate for the drop and, at worst, not to cause the compressor to stop due to frost on the condenser. When the ambient temperature is low and the liquid phase of the refrigerant entering the refrigerant accumulator from the condenser increases and liquid phase refrigerant enters the compressor from the refrigerant accumulator, the compressor is overloaded because the liquid refrigerant is an incompressible fluid. Or, depending on the type of compressor, the compressor will be damaged and the compressor will stop.

【0006】上記の問題を解決するための第1の手段
は、凝縮器の冷媒通路内、または/および外側に発熱体
を設けて、発熱体の発生熱を凝縮器に伝達し、その表面
温度を保持または上昇することである。
A first means for solving the above-mentioned problem is to provide a heating element inside or / and outside the refrigerant passage of the condenser, to transfer generated heat of the heating element to the condenser, and to increase the surface temperature of the condenser. Is to hold or rise.

【0007】具体的には、発熱体を冷媒通路内に設ける
場合は、冷媒の流れ方向に向かって入り口近傍、また
は、入り口と出口の中間に発熱体を複数設けて、凝縮器
を通過する冷媒に与える熱量を加減し、冷媒の熱を凝縮
器に伝達する。また、発熱体を凝縮器の冷媒通路内、ま
たは/および外側に冷媒通路に沿って配置して、発熱体
の発生熱を凝縮器に伝達する。なお、冷媒は暖房運転時
に発熱体を設けている冷媒通路を通過し、冷房運転時に
は、発熱体を設けている冷媒通路を通過しないように考
慮される。また、発熱体を冷媒通路に沿って配置する場
合は、暖房運転で使用し、冷房運転では使用しないよう
にする。
Specifically, when a heating element is provided in the refrigerant passage, a plurality of heating elements are provided near the entrance or in the middle between the entrance and the exit in the flow direction of the refrigerant, and the refrigerant passing through the condenser is provided. To transfer the heat of the refrigerant to the condenser. In addition, the heating element is arranged inside and / or outside the refrigerant passage of the condenser along the refrigerant passage, and transfers generated heat of the heating element to the condenser. It should be noted that the refrigerant passes through the refrigerant passage provided with the heating element during the heating operation, and does not pass through the refrigerant passage provided with the heating element during the cooling operation. When the heating element is arranged along the refrigerant passage, the heating element is used in the heating operation and is not used in the cooling operation.

【0008】第2の手段として、更に、凝縮器を効率良
く加熱するために、上記凝縮器(以下第1段凝縮器)の
上流に第2段凝縮器を設け、該第2段凝縮器に第1段凝
縮器と同様な発熱体を設けて、第2段および第1段凝縮
器を通過する熱交換物(以下大気)が、先ず第2段凝縮
器を通過し、次に第1段凝縮器を通過するように配置す
る。これにより、大気が第2段凝縮器を通過する過程
で、第2段凝縮器より奪った熱を、第1段凝縮器に与
え、第1段凝縮器の表面温度を保持、または、上昇させ
ることができる。上記第2段凝縮器の冷媒通路は、第2
段凝縮器の上流側および下流側の断面積より縮小された
断面積減少通路で形成され、また、第2段凝縮器の冷媒
通路を複数の通路に分岐して熱交換の能力を向上させて
いるので、第2段凝縮器の凝縮作用で発生した熱を、効
率よく第1段凝縮器に伝達することができる。
[0008] As a second means, in order to heat the condenser efficiently, a second-stage condenser is provided upstream of the condenser (hereinafter referred to as a first-stage condenser). By providing a heating element similar to that of the first-stage condenser, heat exchange products (hereinafter, “atmosphere”) passing through the second-stage and first-stage condensers first pass through the second-stage condenser, and then pass through the first-stage condenser. Arrange so as to pass through the condenser. Thereby, in the process of passing the air through the second-stage condenser, heat taken from the second-stage condenser is given to the first-stage condenser, and the surface temperature of the first-stage condenser is maintained or increased. be able to. The refrigerant passage of the second stage condenser is a second passage.
It is formed by a cross-sectional area reducing passage smaller than the cross-sectional area on the upstream side and the downstream side of the stage condenser, and the refrigerant passage of the second stage condenser is branched into a plurality of passages to improve the heat exchange ability. Therefore, the heat generated by the condensation operation of the second-stage condenser can be efficiently transmitted to the first-stage condenser.

【0009】第3の手段として、上記第1段および第2
段凝縮器に設けた発熱体を、使用しないか、各々単独で
使用するか、両方同時に組み合わせて使用するか、また
は、手動操作するか自動制御するかは、冷媒の種類、大
気温度、暖房負荷などを総合的に判断して効率良く凝縮
器の加熱を行うように選定する。また、上記第1段凝縮
器と第2段凝縮器の表面温度・湿度および前後の大気の
温度・湿度を測定する温度計・湿度計を設けて、それら
の計測値を使用し、あらかじめ作成した最適暖房運転プ
ログラムにより、第1段凝縮器および第2段凝縮器の発
熱体の発生熱量を増減する自動制御を行い、最適暖房の
運転を行うようにする。
As a third means, the first stage and the second stage
Whether the heating element provided in the stage condenser is not used, is used independently, is used in combination of both, or is manually operated or automatically controlled depends on the type of refrigerant, the atmospheric temperature, and the heating load. Judgment is made comprehensively and the selection is made to heat the condenser efficiently. In addition, a thermometer / hygrometer for measuring the surface temperature / humidity of the first-stage condenser and the second-stage condenser and the temperature / humidity of the atmosphere before and after was provided, and the measured values were used to prepare in advance. According to the optimal heating operation program, automatic control for increasing or decreasing the amount of heat generated by the heating elements of the first-stage condenser and the second-stage condenser is performed, so that the optimal heating operation is performed.

【0010】第4の手段として、第1段凝縮器および第
2段凝縮器との熱交換を行う大気の風量を大気の状態、
冷媒の種類などと関連して増減させて、熱交換の能力の
向上を計るようにする。
[0010] As a fourth means, the air volume of the atmosphere for performing heat exchange with the first-stage condenser and the second-stage condenser is changed to the state of the atmosphere,
Increase or decrease in relation to the type of refrigerant, etc. to improve the heat exchange capacity.

【0011】この発明の他の局面に係る空調装置は、冷
媒を、蒸発→圧縮→凝縮→減圧→蒸発と状態変化して循
環させ、冷凍作用を行わせる空調装置に係る。冷媒が、
凝縮器→圧縮機→蒸発器→キャピラリ(減圧器)→凝縮
器と循環する空調装置の凝縮器に発熱体を設ける空調装
置である。
An air conditioner according to another aspect of the present invention relates to an air conditioner in which a refrigerant changes its state in the order of evaporation → compression → condensation → decompression → evaporation and circulates to perform a refrigeration operation. Refrigerant
An air conditioner in which a heating element is provided in a condenser of an air conditioner that circulates through a condenser, a compressor, an evaporator, a capillary (a decompressor), and a condenser.

【0012】[0012]

【発明の実施の形態】[実施例1]既設の冷媒R22を
使用した空調装置を使用し、環境試験室で暖房運転し
た。熱交換物は大気である。凝縮器を加熱する発熱体は
電熱器を使用した。既設の空調装置の能力は12000
kCAL/hであり、圧縮機駆動用電動機の定格は、3
相220V、60Hz、出力3.7kWで、圧縮機の形
式は圧縮機と上記電動機が同一容器に収納された全密閉
型であった。
[Embodiment 1] An air conditioner using an existing refrigerant R22 was used to perform a heating operation in an environmental test room. The heat exchanger is the atmosphere. An electric heater was used as a heating element for heating the condenser. The capacity of the existing air conditioner is 12000
kCAL / h, and the rating of the compressor driving motor is 3
The phase was 220 V, 60 Hz, the output was 3.7 kW, and the type of the compressor was a hermetically sealed type in which the compressor and the electric motor were housed in the same container.

【0013】図1は既設の空調装置の概念図である。暖
房運転では、冷媒は冷媒アキュムレータSから圧縮機2
に入り断熱圧縮されて高温高圧ガスとなり、四方弁RV
を通り、操作弁V1を経て室内機6にある蒸発器1に入
り常温・高圧の液となり、キャピラリ4で膨脹して低温
・低圧の湿り蒸気となり、操作弁V2を経て室外機7に
ある凝縮器3で大気の有する熱を吸収して低温・低圧の
過熱蒸気となって、冷媒アキュムレータSに戻る。ま
た、冷房運転は四方弁RVを切り替えて、冷媒を暖房運
転と逆方向に流して行うことができる。
FIG. 1 is a conceptual diagram of an existing air conditioner. In the heating operation, the refrigerant is supplied from the refrigerant accumulator S to the compressor 2.
Into a high-temperature, high-pressure gas, and a four-way valve RV
Through the operating valve V1, enters the evaporator 1 in the indoor unit 6 and becomes a liquid at normal temperature and high pressure, expands in the capillary 4 to become low-temperature and low-pressure wet steam, and condenses in the outdoor unit 7 via the operating valve V2. The heat of the atmosphere is absorbed by the heat exchanger 3 to become a low-temperature, low-pressure superheated steam, and returns to the refrigerant accumulator S. In addition, the cooling operation can be performed by switching the four-way valve RV and flowing the refrigerant in the opposite direction to the heating operation.

【0014】図1で大気温度Tiが5℃の場合、Teは
0℃、t1は55℃、t2は5℃、t3は40℃、T1
は18℃、T2は30℃、使用電力は4.0kwとなっ
た。
In FIG. 1, when the atmospheric temperature Ti is 5 ° C., Te is 0 ° C., t1 is 55 ° C., t2 is 5 ° C., t3 is 40 ° C., T1
Was 18 ° C., T2 was 30 ° C., and the power consumption was 4.0 kW.

【0015】[実施例2]次に、図1で大気温度Tiを
−5℃まで低下させると、T1は15℃、T2は19℃
に低下し、圧縮機は過負荷となり約15分後に圧縮機は
停止した。その時の使用電力は6kwであった。凝縮器
3に真っ白に霜が付着して、凝縮器3と外気との熱交換
作用が全く行われないことが観察された。
[Embodiment 2] Next, when the atmospheric temperature Ti is lowered to -5 ° C in FIG. 1, T1 is 15 ° C and T2 is 19 ° C.
And the compressor became overloaded and stopped after about 15 minutes. The power used at that time was 6 kW. It was observed that frost adhered to the condenser 3 in pure white, and no heat exchange action between the condenser 3 and the outside air was performed.

【0016】[実施例3]そこで、大気温度Tiを15
℃まで上昇して凝縮器の霜を除去した後、図1の凝縮器
3の上流に、電熱器A、逆止弁AV1およびAV2を図
2に図示のように追設した。それらの逆止弁により、冷
媒は暖房運転時に電熱器Aを通過し、冷房運転時には電
熱器Aを通過しない冷媒通路を形成する。
[Embodiment 3] Then, the atmospheric temperature Ti was set to 15
After the temperature was raised to ° C. to remove the frost from the condenser, an electric heater A and check valves AV1 and AV2 were additionally provided upstream of the condenser 3 in FIG. 1 as shown in FIG. By these check valves, the refrigerant passes through the electric heater A during the heating operation and forms a refrigerant passage that does not pass through the electric heater A during the cooling operation.

【0017】図3を参照して、電熱器Aの出力は0〜1
0kwで、手動操作または自動制御を行う出力設定器C
に付属した電圧調整素子Th−Aにより、電熱器Aの発
生熱量を増減する装置の概念図である。自動制御の場合
には、最適制御プログラムに温度計・湿度計の計測値T
i、Ts、およびTeを入力して、電熱器Aの出力の自
動制御を行う。
Referring to FIG. 3, the output of electric heater A is 0-1.
Output setting device C that performs manual operation or automatic control at 0 kw
FIG. 2 is a conceptual diagram of an apparatus for increasing / decreasing the amount of heat generated by an electric heater A by using a voltage adjusting element Th-A attached to the heater. In the case of automatic control, the measured value T
By inputting i, Ts, and Te, the output of the electric heater A is automatically controlled.

【0018】次に、図2で大気温度Tiを−5℃まで低
下させた。凝縮器3の大気吹き出し側表面に設けた温度
計Tsが3℃になるように、出力設定器Cを手動操作で
電熱器Aの出力を調整して、暖房運転を3時間継続する
ことができた。T1は16℃、T2は20℃、t1は5
4℃、t2は5℃、t3は39℃、Tiは−5℃、Ts
は3℃、Teは0℃、電熱器Aの出力は8kw、電熱器
A以外の使用電力は4.5kwであった。
Next, in FIG. 2, the atmospheric temperature Ti was lowered to -5.degree. The output of the electric heater A is manually adjusted to adjust the output of the electric heater A so that the thermometer Ts provided on the air outlet side surface of the condenser 3 becomes 3 ° C., and the heating operation can be continued for 3 hours. Was. T1 is 16 ° C., T2 is 20 ° C., t1 is 5
4 ° C, t2 is 5 ° C, t3 is 39 ° C, Ti is -5 ° C, Ts
Was 3 ° C., Te was 0 ° C., the output of the electric heater A was 8 kW, and the electric power used other than the electric heater A was 4.5 kW.

【0019】図4は、第2段凝縮器5を図2に追設した
装置の概念図で、第2段凝縮器5の冷媒通路の断面積は
第2段凝縮器5の上流側および下流側の断面積の1/2
で4分岐の冷媒通路を有し、その熱交換能力は5000
kCAL/hであった。
FIG. 4 is a conceptual diagram of an apparatus in which the second-stage condenser 5 is additionally provided in FIG. 2. The cross-sectional area of the refrigerant passage of the second-stage condenser 5 is upstream and downstream of the second-stage condenser 5. 1/2 of the cross-sectional area on the side
And has a four-branch refrigerant passage, and its heat exchange capacity is 5000
kCAL / h.

【0020】図5を参照して、電熱器Aおよび電熱器B
の出力は0〜10kwで、手動操作または自動制御を行
う出力設定器Cに付属した電圧調整素子Th−Aおよび
Th−Bにより電熱器Aおよび電熱器Bの発生熱量を増
減する装置の概念図である。自動制御の場合には、最適
制御プログラムに温度計・湿度計の計測値Ti、Tm、
TsおよびTeを入力して、電熱器AおよびBの出力の
自動制御を行う。
Referring to FIG. 5, electric heater A and electric heater B
Is an output of 0 to 10 kw, and is a conceptual diagram of a device for increasing or decreasing the amount of heat generated by the electric heater A and the electric heater B by the voltage adjusting elements Th-A and Th-B attached to the output setting device C which performs manual operation or automatic control. It is. In the case of automatic control, the measurement values Ti, Tm,
By inputting Ts and Te, the outputs of the electric heaters A and B are automatically controlled.

【0021】[実施例4]次に、図4で大気温度Tiを
−5℃から更に大気温度を降下させた。電熱器Aは使用
しないで、第2段凝縮器の外部表面に設けた温度計Ts
が3℃になるように、電熱器Bを手動操作で出力を上昇
させながら3時間運転した。その時のT1は18℃、T
2は28℃、t1は56℃、t2は6℃、t3は42
℃、Tiは−7℃、Tsは3℃、Teは0℃、電熱器B
の出力が5kwで、それ以外の使用電力は4.3kwで
あった。
Example 4 Next, in FIG. 4, the atmospheric temperature Ti was further lowered from -5 ° C. A thermometer Ts provided on the outer surface of the second-stage condenser without using the electric heater A
The electric heater B was operated for 3 hours while manually increasing the output so that the temperature became 3 ° C. T1 at that time is 18 ° C, T
2 is 28 ° C., t1 is 56 ° C., t2 is 6 ° C., t3 is 42
℃, Ti -7 ℃, Ts 3 ℃, Te 0 ℃, electric heater B
Was 5 kW, and the other power consumption was 4.3 kW.

【0022】[実施例5]図4の空調装置から冷媒R2
2を抜き取り、冷媒HFC−134aに入れ替え、暖房
運転を行った。大気温度Tiを0℃から降下させなが
ら、電熱器Aは使用しないで、電熱器Bの出力を手動操
作で上げて、第1段凝縮器の大気出口側の表面に設けて
いる温度計Tsが3℃になるように調整した。その時の
電熱器Bの出力は6kwであった。T1は18℃、T2
は28℃、Tiは−5℃、Tmは−1℃、Teは3℃、
tiは55℃、t2は4℃、t3は41℃、t4は20
℃、電熱器以外の使用電力は3.5kwであった。その
後、3時間運転を継続して各温度計の温度に変化がない
ことを確認した。[実施例6]
[Embodiment 5] The air conditioner shown in FIG.
2 was taken out, replaced with refrigerant HFC-134a, and a heating operation was performed. While lowering the atmospheric temperature Ti from 0 ° C., without using the electric heater A, the output of the electric heater B was manually increased, and a thermometer Ts provided on the surface of the first stage condenser on the atmospheric outlet side was used. The temperature was adjusted to 3 ° C. The output of the electric heater B at that time was 6 kW. T1 is 18 ° C, T2
Is 28 ° C, Ti is -5 ° C, Tm is -1 ° C, Te is 3 ° C,
ti is 55 ° C, t2 is 4 ° C, t3 is 41 ° C, and t4 is 20
° C, electric power used other than the electric heater was 3.5 kW. Thereafter, the operation was continued for 3 hours, and it was confirmed that there was no change in the temperature of each thermometer. [Example 6]

【0023】図4で、電熱器Aおよび電熱器Bを併用し
て、電熱器Bの出力を6kwに固定し、大気温度Tiを
−5℃から低下させながら、第1段凝縮器の大気出口側
の表面に設けている温度計Tsを3℃に設定して、電熱
器Aの出力を自動制御した。なお、第1段および第2段
凝縮器を通過する大気の風量を20%増加した。3時間
後に電熱器Aの出力は4kwで安定し、T1は20℃、
T2は30℃、Tiは−10℃、Tmは−4℃、Teは
0℃、t1は56℃、t2は6℃、t3は42℃、t4
は21℃、電熱器以外の使用電力は3.8kwであっ
た。従来、大気温度が−10℃では暖房運転は不可能で
あったが、発熱体の追設により上記のような安定した暖
房が可能となった。
In FIG. 4, the output of the first stage condenser is reduced while the output of the heater B is fixed at 6 kW and the temperature of the atmosphere Ti is lowered from −5 ° C. by using the electric heater A and the electric heater B together. The thermometer Ts provided on the side surface was set at 3 ° C., and the output of the electric heater A was automatically controlled. In addition, the air volume of the air passing through the first and second stage condensers was increased by 20%. After 3 hours, the output of the heater A is stabilized at 4 kW, T1 is 20 ° C.,
T2 is 30C, Ti is -10C, Tm is -4C, Te is 0C, t1 is 56C, t2 is 6C, t3 is 42C, and t4.
Was 21 ° C., and the power used other than the electric heater was 3.8 kW. Conventionally, heating operation was impossible when the ambient temperature was -10 ° C, but the additional heating element enabled stable heating as described above.

【0024】冷媒通路を通過する冷媒に電熱器または電
熱線の発生熱を伝達する手段は、上記の例のように電熱
器を単独に使用する場合、または、複数の電熱器と併用
する場合、冷媒通路に沿って配置した電熱線を使用する
場合など、冷媒の種類、大気の状況などを考慮して選択
することできる。
Means for transmitting the heat generated by the electric heater or the heating wire to the refrigerant passing through the refrigerant passage may be used when the electric heater is used alone as in the above example, or when used in combination with a plurality of electric heaters. For example, when using a heating wire arranged along the refrigerant passage, the selection can be made in consideration of the type of the refrigerant, the state of the atmosphere, and the like.

【0025】以上の実施例から次のことが確認された。
凝縮器に霜が付着した後に、冷媒を手動操作で加熱する
場合と、大気温度と凝縮器表面温度の変化を検知して、
例えば、凝縮器の表面温度が3℃になるように最適制御
プログラムで自動制御した場合とでは、後者の場合が快
適な暖房を行うことができる。凝縮器に霜が付着した後
で霜取りを行うと、長時間暖房は中断する不具合を生じ
る。実施例3と実施例4を比較した場合、電熱器Aの出
力より電熱器Bの出力が少なくて同じ目的を達成できる
ので、実施例4の方が暖房効率が良い。実施例5および
実施例6では、電熱器AおよびBの単独使用、または、
組み合わせの使用、また、風量の増減による、暖房能力
の向上が確認された。暖房運転が摂氏零度以下に低下す
る地域で、従来得られかった快適な暖房が可能になるこ
とも確認された。
The following has been confirmed from the above examples.
After the frost has adhered to the condenser, when the refrigerant is heated by manual operation, and by detecting changes in the atmospheric temperature and the condenser surface temperature,
For example, when automatic control is performed by an optimal control program so that the surface temperature of the condenser becomes 3 ° C., comfortable heating can be performed in the latter case. If defrosting is performed after the frost has adhered to the condenser, there is a problem that heating is interrupted for a long time. When the third embodiment and the fourth embodiment are compared, the output of the electric heater B is smaller than the output of the electric heater A, and the same object can be achieved. Therefore, the heating efficiency of the fourth embodiment is better. In Examples 5 and 6, the electric heaters A and B were used alone or
It was confirmed that the heating capacity was improved by using the combination and increasing or decreasing the air volume. It has also been confirmed that in areas where the heating operation drops below zero degrees Celsius, it is possible to achieve comfortable heating that was previously impossible.

【0026】図6を参照して、Pは凝縮器の冷媒通路で
ある管路で、HEは管路内の電熱線である。電熱線HE
の発生熱を通過する冷媒を介して、凝縮器に効率よく伝
達するように、管路内に沿って設置する概念図である。
Referring to FIG. 6, P is a conduit which is a refrigerant passage of the condenser, and HE is a heating wire in the conduit. Heating wire HE
FIG. 3 is a conceptual diagram of installation along a pipe so that heat generated by the heat is efficiently transmitted to a condenser through a refrigerant passing through the refrigerant.

【0027】図7は矩形状の発熱体を冷媒通路の外側に
設けて、凝縮器の表面温度を保持、または、上昇するよ
うに発熱体を凝縮器の冷媒通路外側に沿って、一体化し
た概念図である。10は凝縮管、11は冷媒通路、12
は発熱体である。
FIG. 7 shows a case in which a rectangular heating element is provided outside the refrigerant passage, and the heating element is integrated along the outside of the refrigerant passage of the condenser so as to maintain or increase the surface temperature of the condenser. It is a conceptual diagram. 10 is a condenser tube, 11 is a refrigerant passage, 12
Is a heating element.

【0028】図8は円形の発熱体を円形の冷媒通路の外
側に、凝縮器の表面温度を保持または上昇するように、
発熱体を凝縮器の冷媒通路に沿って設置し、熱交換フィ
ンで支持した概念図である。10は凝縮管、11は冷媒
通路、12は発熱体、13は熱交換フィンである。
FIG. 8 shows a circular heating element placed outside the circular refrigerant passage so as to maintain or increase the surface temperature of the condenser.
It is the conceptual diagram which installed the heating element along the refrigerant | coolant path | pass of the condenser, and supported by the heat exchange fin. Reference numeral 10 denotes a condensing tube, 11 denotes a refrigerant passage, 12 denotes a heating element, and 13 denotes a heat exchange fin.

【0029】今回開示された実施の形態は、すべての点
で例示であって制限的なものではない、と考えられるべ
きである。本発明の範囲は上記した説明ではなくて、特
許請求の範囲によって示され、特許請求の範囲と均等の
意味および範囲内のすべての変更が含まれることが意図
される。
The embodiments disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

【0030】[0030]

【発明の効果】以上のように、既設の空調装置の凝縮器
に発熱体を設け、凝縮器を加熱する装置を追設すること
により、暖房運転における外気温度の低下に起因する暖
房能力の低下および凝縮器の霜付きによる暖房運転の停
止を回避することができる。
As described above, a heating element is provided in a condenser of an existing air conditioner, and a device for heating the condenser is additionally provided, whereby the heating capacity is reduced due to a decrease in the outside air temperature in the heating operation. Further, it is possible to prevent the heating operation from being stopped due to frost on the condenser.

【0031】また、最初から発熱体を第1段凝縮器およ
び第2段凝縮器に設け、凝縮器を加熱し、凝縮器の表面
温度を保持または上昇するように最適設計を行い、化石
燃料を使用しない環境に優しい暖房装置を提供できる。
なお、空調装置の最適設計・製作手法の選択肢が増加す
るので、空調装置の発展に貢献する。
In addition, heating elements are provided in the first and second stage condensers from the beginning, and the condensers are heated, and the optimum design is performed so as to maintain or increase the surface temperature of the condensers. An environment-friendly heating device that is not used can be provided.
In addition, since the options of the optimal design / production method of the air conditioner increase, it contributes to the development of the air conditioner.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来の、暖房運転における空調装置の概念図
である。
FIG. 1 is a conceptual diagram of a conventional air conditioner in a heating operation.

【図2】 本発明の暖房運転における概念図の一例であ
る。
FIG. 2 is an example of a conceptual diagram in a heating operation of the present invention.

【図3】 図2に設けた電熱器Aの制御装置の概念図で
ある。
FIG. 3 is a conceptual diagram of a control device of an electric heater A provided in FIG.

【図4】 本発明の暖房運転における概念図の一例であ
る。
FIG. 4 is an example of a conceptual diagram in a heating operation of the present invention.

【図5】 図4に設けた電熱器Aおよび電熱器Bの制御
装置の概念図である。
FIG. 5 is a conceptual diagram of a control device for an electric heater A and an electric heater B provided in FIG.

【図6】 凝縮器の冷媒通路内に電熱線を設置する概念
図である。
FIG. 6 is a conceptual diagram of installing a heating wire in a refrigerant passage of a condenser.

【図7】 発熱体を凝縮器の冷媒通路の外側に沿って配
置し、凝縮器と一体化した概念図である。
FIG. 7 is a conceptual diagram in which a heating element is arranged along the outside of a refrigerant passage of the condenser and integrated with the condenser.

【図8】 発熱体を凝縮器の冷媒通路の外側に沿って設
置し、熱交換フィンで支持する概念図である。
FIG. 8 is a conceptual diagram in which a heating element is installed along the outside of a refrigerant passage of a condenser and supported by heat exchange fins.

【符号の説明】[Explanation of symbols]

1 蒸発器、2 圧縮機、3 凝縮器(第1段凝縮
器)、4 暖房用キャピラリ、4−1 冷房用キャピラ
リ、5 第2段凝縮器、RV 四方弁、S 冷媒アキュ
ムレータ、A 電熱器、B 電熱器、V1 操作弁、V
2 操作弁、OV1逆止弁、AV1 逆止弁、AV2
逆止弁、BV1 逆止弁、BV2 逆止弁、A1 電熱
器の端子、A2 電熱器の端子、B1 電熱器の端子、
B2 電熱器の端子、Ti 熱交換物(大気)の凝縮器
(第1段凝縮器)入り口温度計・湿度計の温度、Te
大気の凝縮器出口温度計・湿度計の温度、Tm 大気の
第2段凝縮器出口温度計・湿度計の温度、Te 大気の
第1段凝縮器出口温度計・湿度計の温度、Ts 第1段
凝縮器の外部表面に設けた温度計・湿度計の温度、t1
蒸発器と圧縮機の間の冷媒温度、t2 圧縮機と凝縮器
の間の冷媒温度、t3凝縮器と暖房用キャピラリの間の
冷媒温度、t4 第1段凝縮器と第2段凝縮器の間の冷
媒温度、T1 蒸発器の吸い込み大気温度、T2 蒸発
器の吹き出し大気温度、6 室内機、7 室外機、C
出力設定器、Th−A 電圧調整素子、Th−B 電圧
調整素子、P 凝縮器の冷媒通路である管路、HE 電
熱線、10 凝縮管、11 冷媒通路、12 発熱体、
13 熱交換フィン。
1 evaporator, 2 compressor, 3 condenser (first stage condenser), 4 heating capillary, 4-1 cooling capillary, 5 second stage condenser, RV four-way valve, S refrigerant accumulator, A electric heater, B electric heater, V1 operating valve, V
2 Operating valve, OV1 check valve, AV1 check valve, AV2
Check valve, BV1 check valve, BV2 check valve, A1 electric heater terminal, A2 electric heater terminal, B1 electric heater terminal,
B2 Terminal of electric heater, Ti heat exchanger (atmosphere) condenser (first stage condenser) entrance thermometer / hygrometer temperature, Te
Temperature of the condenser outlet thermometer / hygrometer of the atmosphere, Tm Temperature of the second stage condenser outlet thermometer / hygrometer of the atmosphere, Te Temperature of the first stage condenser outlet thermometer / hygrometer of the atmosphere, Ts first Temperature of thermometer / hygrometer provided on the outer surface of the stage condenser, t1
Refrigerant temperature between evaporator and compressor, t2 Refrigerant temperature between compressor and condenser, t3 Refrigerant temperature between condenser and heating capillary, t4 Between first-stage condenser and second-stage condenser Refrigerant temperature, T1 evaporator suction air temperature, T2 evaporator air temperature, 6 indoor units, 7 outdoor units, C
Output setting device, Th-A voltage adjusting element, Th-B voltage adjusting element, pipe as refrigerant passage of P condenser, HE heating wire, 10 condenser pipe, 11 refrigerant passage, 12 heating element,
13 Heat exchange fins.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F25B 1/00 321 F25B 1/00 321B 6/04 6/04 Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F25B 1/00 321 F25B 1/00 321B 6/04 6/04 Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 空調装置において、凝縮器の冷媒通路
内、または/および外側に発熱体を設けて、該発熱体の
発生する熱を凝縮器に伝達し、凝縮器の表面温度を保持
または上昇する、凝縮器。
In an air conditioner, a heating element is provided inside and / or outside of a refrigerant passage of a condenser, and heat generated by the heating element is transmitted to the condenser to maintain or increase the surface temperature of the condenser. Do, condenser.
【請求項2】 冷媒を、蒸発→圧縮→凝縮→減圧→蒸発
と状態変化させて循環して、冷凍作用を行わせる空調装
置であって、 冷媒通路において、第2段凝縮器を前記請求項1の凝縮
器(以下第1段凝縮器と称する)の上流に設け、第2段
凝縮器と第1段凝縮器とは、熱交換物が通過する方向に
並んで配置され、かつ該熱交換物が、最初、該第2段凝
縮器を通過し、次に該第1段凝縮器を通過するように配
置されて、 前記第2段凝縮器の冷媒通路内、または/および外側に
発熱体を設けて、該発熱体の発生する熱を該第2段凝縮
器に伝達し、熱交換物が第2段凝縮器を通過する過程
で、該第2段凝縮器より奪った熱を第1段凝縮器に伝達
して、該第1段凝縮器の表面温度を保持または上昇す
る、空調装置。
2. An air conditioner for circulating a refrigerant by changing the state of evaporation → compression → condensation → decompression → evaporation to perform a refrigeration operation, wherein a second stage condenser is provided in the refrigerant passage. A first condenser (hereinafter referred to as a first condenser), the second condenser and the first condenser are arranged side by side in a direction in which the heat exchange material passes, and An article is arranged to first pass through the second stage condenser and then pass through the first stage condenser, wherein a heating element is provided in and / or outside the refrigerant passage of the second stage condenser. To transfer the heat generated by the heating element to the second-stage condenser, and remove the heat taken from the second-stage condenser in the process of the heat exchange passing through the second-stage condenser. An air conditioner that communicates to a stage condenser to maintain or increase the surface temperature of the first stage condenser.
【請求項3】 空調装置の凝縮器において、熱交換物が
凝縮器を通過する通路の前後、該凝縮器の外部表面に温
度計・湿度計を設けて、該温度計・湿度計の計測値を使
用して該凝縮器に設けた発熱体の発熱量の増減を行う制
御装置を有する、請求項1および請求項2に記載の空調
装置。
3. A condenser for an air conditioner, wherein a thermometer and a hygrometer are provided on the outer surface of the condenser before and after a passage through which the heat exchanger passes through the condenser, and the measured values of the thermometer and the hygrometer are measured. The air conditioner according to claim 1 or 2, further comprising a control device for increasing / decreasing the amount of heat generated by a heating element provided in the condenser using the controller.
JP2001133400A 2001-03-26 2001-03-26 Air conditioner and condenser used therefor Pending JP2002286318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001133400A JP2002286318A (en) 2001-03-26 2001-03-26 Air conditioner and condenser used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001133400A JP2002286318A (en) 2001-03-26 2001-03-26 Air conditioner and condenser used therefor

Publications (1)

Publication Number Publication Date
JP2002286318A true JP2002286318A (en) 2002-10-03

Family

ID=18981265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001133400A Pending JP2002286318A (en) 2001-03-26 2001-03-26 Air conditioner and condenser used therefor

Country Status (1)

Country Link
JP (1) JP2002286318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101004302B (en) * 2006-01-25 2011-05-04 武汉凯龙技术开发有限责任公司 Frostless air-source heat pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101004302B (en) * 2006-01-25 2011-05-04 武汉凯龙技术开发有限责任公司 Frostless air-source heat pump

Similar Documents

Publication Publication Date Title
US7210303B2 (en) Transcritical heat pump water heating system using auxiliary electric heater
JP5495526B2 (en) Heat source system and control method thereof
WO2010070828A1 (en) Heat pump hot-water supply device and operation method therefor
JP4317793B2 (en) Cooling system
KR100712196B1 (en) Heat pump system and outdoor unit defrosting method
CN101713573B (en) Dehumidifying air conditioning system
JP3145551U (en) Air conditioner
US20040134218A1 (en) Air conditioning system, interior heat exchanger coil unit and method for conditioning ambient air
JP5150300B2 (en) Heat pump type water heater
KR101500068B1 (en) Heat pump system including inverter compressor
JP2002286318A (en) Air conditioner and condenser used therefor
JP2002310497A (en) Heat pump water heater
CN213020046U (en) Novel low-temperature dehumidifier
KR101350781B1 (en) Air conditioning boiler thermal efficiency system
JP2008116184A (en) Refrigeration cycle equipment
KR20220019173A (en) Apparatus for air-conditioning control with ultra-compact heat pump and method for air-conditioning control using the same
JPH11182948A (en) Air conditioner
KR100712192B1 (en) Air Conditioning for Air Conditioning
KR200405714Y1 (en) Heat Pump Heating System
KR100682718B1 (en) Air conditioner with heat exchanger connected to branched refrigerant distributor
JPH10205932A (en) Air conditioner
KR100212677B1 (en) Apparatus for compensating evaporation temperature of heat pump
JPH11211195A (en) Air conditioning equipment
JP2008170045A (en) Air conditioning system and operation method thereof
KR20250065977A (en) Cooling system using waste cold