[go: up one dir, main page]

JP2002280600A - Semiconductor position detector - Google Patents

Semiconductor position detector

Info

Publication number
JP2002280600A
JP2002280600A JP2001078659A JP2001078659A JP2002280600A JP 2002280600 A JP2002280600 A JP 2002280600A JP 2001078659 A JP2001078659 A JP 2001078659A JP 2001078659 A JP2001078659 A JP 2001078659A JP 2002280600 A JP2002280600 A JP 2002280600A
Authority
JP
Japan
Prior art keywords
resistance region
region
psd
distance
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001078659A
Other languages
Japanese (ja)
Inventor
Tatsuo Takeshita
辰夫 竹下
Masayuki Sakakibara
正之 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2001078659A priority Critical patent/JP2002280600A/en
Publication of JP2002280600A publication Critical patent/JP2002280600A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a PSD capable of suppressing the deterioration of distance detection accuracy on a short-distance side and on a long-distance side. SOLUTION: The PSD comprises a main resistance region PN from both ends of which the different currents can be extracted depending on a light incident position on a photosensitive region. The main resistance region PN comprises a wide first resistance region R1, a narrow second resistance region R2 and a wide third resistance region R3, which are formed continuously. In the photosensitive region, there is only a small change in light incident position on the long-distance side, however, the small change in light incident position can be detected accurately since the second resistance region R2 is narrow. Furthermore, the effect of the third resistance region suppresses the deterioration of the distance detection accuracy caused by the decrease of an S/N ratio. Since the third resistance region R3 is wider relative to the second resistance region R2, even if the incident light misses the second resistance region, a length enough to collect electric charges generated in the second resistance region can be obtained, suppressing the deterioration of the distance detection accuracy caused by missing of the incident light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体位置検出器
(PSD)に関する。
[0001] The present invention relates to a semiconductor position detector (PSD).

【0002】[0002]

【従来の技術】半導体位置検出器(PSD)は所謂三角
測量の原理等を用いて被測定物の距離を測定する装置と
して知られている。PSDはアクティブ方式の距離測定
器としてカメラ等の撮像機器に搭載されており、このよ
うな撮像機器においてはPSDによって測定された被測
定物の距離に基づいて撮影レンズのフォーカシングが行
われている。
2. Description of the Related Art A semiconductor position detector (PSD) is known as an apparatus for measuring the distance of an object to be measured by using the so-called triangulation principle or the like. The PSD is mounted on an imaging device such as a camera as an active distance measuring device, and in such an imaging device, focusing of a photographic lens is performed based on a distance of an object to be measured measured by the PSD.

【0003】上述のPSDにおいては、被測定物までの
距離に応じてPSDの光感応領域上の入射光スポット位
置が移動する。出力電流は、入射光スポット位置から抵
抗層両端までの抵抗値に反比例するように分配され抵抗
層両端の信号取出電極から出力されるため、当該出力電
流に基づいて被測定物までの距離を検出することができ
る。
In the above-mentioned PSD, the position of the incident light spot on the photosensitive region of the PSD moves according to the distance to the object to be measured. The output current is distributed in inverse proportion to the resistance value from the incident light spot position to the both ends of the resistive layer and is output from the signal extraction electrodes at both ends of the resistive layer, so the distance to the DUT is detected based on the output current. can do.

【0004】ところが、三角測量法の原理を用いて距離
測定を行う場合、近距離にある被測定物までの距離が変
化したときには入射光スポットの位置が光感応領域上で
大きく移動するのに対し、遠距離にある被測定物までの
距離が変化したときには入射光スポットの位置はあまり
移動しない。すなわち、この場合には、遠距離にある被
測定物までの距離検出精度は近距離における精度と比較
して低くなる。
However, when the distance is measured using the principle of the triangulation method, the position of the incident light spot largely moves on the photosensitive area when the distance to the object at a short distance changes. When the distance to the object at a long distance changes, the position of the incident light spot does not move much. That is, in this case, the accuracy of detecting the distance to the object to be measured at a long distance is lower than the accuracy at the short distance.

【0005】光感応領域の近距離側の抵抗層の幅より
も、遠距離側の抵抗層の幅を狭くすると、遠距離にある
被測定物からの入射光スポットの移動量が微小であって
も抵抗層の抵抗分割比が大きく変化する。したがって、
この場合には、遠距離にある被測定物までの距離検出精
度を向上することができる。このようなPSDは、例え
ば特開平4−240511号公報に記載されている。
If the width of the resistive layer on the far side is narrower than the width of the resistive layer on the near side of the photosensitive region, the amount of movement of the incident light spot from the object to be measured at a long distance is small. Also, the resistance division ratio of the resistance layer greatly changes. Therefore,
In this case, it is possible to improve the accuracy of detecting the distance to the object at a long distance. Such a PSD is described, for example, in JP-A-4-240511.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、同公報
に記載のPSDでは、抵抗層の幅を遠距離側から近距離
側に向かうにしたがって1次関数的に広くする、すなわ
ち、抵抗層の幅を近距離側から遠距離側に向かうにした
がって1次関数的に狭くして出力信号の変化を大きくし
ているが、抵抗領域の幅狭の側、すなわち遠距離側に、
測定対象物から入射する光の強度は低く、幅を狭くする
ことによりPSDから出力される片側の信号は更に小さ
くなるため、S/N比が低下し、PSDによる距離検出
精度が低下する。また、最も出力信号変化の大きい抵抗
層端部に光を入射させた場合、光の一部は光感応領域を
外れ、入射光欠けにより距離検出精度が低下する。すな
わち、距離検出精度を向上させるために、抵抗領域の幅
を近距離側で狭くしても、S/N比低下および入射光欠
けによる距離検出精度の低下という課題がある。
However, in the PSD described in the publication, the width of the resistance layer is increased linearly from the far side to the short side, that is, the width of the resistance layer is increased. Although the output signal change is increased by narrowing linearly from the short distance side to the long distance side, the resistance region becomes narrower, that is, on the long distance side,
Since the intensity of light incident from the measurement object is low, and the width is reduced, the signal on one side output from the PSD is further reduced, so that the S / N ratio is reduced and the distance detection accuracy by the PSD is reduced. In addition, when light is incident on the end of the resistive layer where the output signal change is the largest, part of the light goes out of the photosensitive region, and the distance detection accuracy is reduced due to lack of incident light. That is, even if the width of the resistance region is reduced on the short distance side in order to improve the distance detection accuracy, there is a problem that the S / N ratio decreases and the distance detection accuracy decreases due to lack of incident light.

【0007】本発明は、このような課題を解決するため
になされたものであり、近距離及び遠距離側において距
離検出精度の低下を抑制可能なPSDを提供することを
目的とする。
The present invention has been made to solve such a problem, and an object of the present invention is to provide a PSD capable of suppressing a decrease in distance detection accuracy at a short distance and a long distance.

【0008】[0008]

【課題を解決するための手段】上述の課題を解決するた
め、本発明の半導体位置検出器(PSD)は、光感応領
域上の入射光位置に応じて異なる電流が両端から取り出
される主抵抗領域を備えたPSDにおいて、前記主抵抗
領域は、それぞれが実質的に同一の抵抗率を有する幅広
の第1抵抗領域、幅狭の第2抵抗領域、及び幅広の第3
抵抗領域が位置検出方向に沿って連続してなることを特
徴とする。
In order to solve the above-mentioned problems, a semiconductor position detector (PSD) according to the present invention comprises a main resistance region in which different currents are taken from both ends according to an incident light position on a photosensitive region. Wherein the main resistance region includes a wide first resistance region, a narrow second resistance region, and a wide third resistance region, each having substantially the same resistivity.
The resistance region is continuous along the position detection direction.

【0009】入射光の位置は被測定物の距離に応じて光
感応領域上を移動する。入射光の光感応領域上における
移動方向を位置検出方向とする。光感応領域への入射光
の照射に応じて発生した電荷は、分枝導電層で収集され
主抵抗領域に流れ込む。もしくは、主抵抗領域に直接収
集される。すなわち、被測定物の位置に応じて、光感応
領域内の光入射位置が変化し、それに対応し主抵抗領域
両端から取り出される電流が変化するため、かかる電流
から被測定物までの距離が検出されることとなる。
[0009] The position of the incident light moves on the light-sensitive area according to the distance of the object to be measured. The direction in which the incident light moves on the photosensitive region is defined as a position detection direction. The charges generated in response to the irradiation of the photosensitive region with the incident light are collected by the branch conductive layer and flow into the main resistance region. Alternatively, it is collected directly in the main resistance region. That is, the light incident position in the photosensitive region changes according to the position of the device under test, and the current drawn from both ends of the main resistance region changes correspondingly, so that the distance from the current to the device under test is detected. Will be done.

【0010】ここで、主抵抗領域は、実質的に同一の抵
抗率を有する幅広の第1抵抗領域、幅狭の第2抵抗領
域、及び幅広の第3抵抗領域が位置検出方向に沿って連
続してなる。近距離にある被測定物からの入射光が第1
抵抗領域側の光感応領域に入射するように配置される。
Here, the main resistance region is composed of a wide first resistance region, a narrow second resistance region, and a wide third resistance region having substantially the same resistivity, which are continuous in the position detection direction. Do it. The incident light from the object at a short distance is the first
It is arranged so as to be incident on the photosensitive region on the resistance region side.

【0011】近距離側にある被測定物からの光によって
発生した電荷が、近傍の分枝導電層により収集され第1
抵抗領域に流れ込む、あるいは第1抵抗領域にて直接収
集された場合、第1抵抗領域は相対的に幅広であるた
め、入射位置の移動に伴う抵抗変化は小さいが、被測定
物の距離変化に応じて入射光の位置が大きく移動するた
め、正確に距離検出を行うことができる。
[0011] Electric charges generated by light from the object to be measured on the short distance side are collected by the nearby branched conductive layer, and the first electric charges are collected.
When flowing into the resistance region or directly collecting at the first resistance region, the first resistance region is relatively wide, so that the resistance change accompanying the movement of the incident position is small, but the change in the distance of the DUT is small. Accordingly, the position of the incident light largely moves, so that the distance can be accurately detected.

【0012】被測定物が遠距離側に移動することによっ
て、入射位置が位置検出方向に沿って第2抵抗領域側へ
移動した場合、遠距離側にある被測定物からの光によっ
て発生した電荷が、近傍の分枝導電層により収集され第
2抗領域に流れ込む、あるいは第2抵抗領域にて直接収
集される。この場合、被測定物の距離変化に応じて入射
光の位置が小さく移動するが、第2抵抗領域は相対的に
幅狭であるため、入射位置の移動に伴う抵抗変化は大き
く、したがって正確に距離検出を行うことができる。
When the object moves to the second resistance region side along the position detection direction by moving the object to the far side, the charge generated by light from the object to be measured at the far side Is collected by the neighboring branch conductive layer and flows into the second resistance region, or is collected directly in the second resistance region. In this case, the position of the incident light moves small according to the change in the distance of the object to be measured, but since the second resistance region is relatively narrow, the resistance change accompanying the movement of the incident position is large, and therefore, accurately. Distance detection can be performed.

【0013】また、被測定物が更に遠距離側に移動する
ことによって、入射位置が位置検出方向に沿って第2抵
抗領域からはみ出した場合、はみ出した光によって発生
した電荷は近傍の分枝導電層で収集され第3抵抗領域に
流れ込む、もしくは第3抵抗領域にて直接収集される。
この場合、有限の大きさを有する入射光の一部が第2抵
抗領域から外れても、第3抵抗領域により位置検出に寄
与することができる。また、被測定物が遠距離にあるこ
とによって入射光強度が低下した場合においても、第3
抵抗領域により第2抵抗領域での過度の信号出力の低下
を抑制することができ、且つ、第3抵抗領域は相対的に
幅広なので、第2抵抗領域からはみ出す入射光に対応す
るのに必要な長さを確保することができる。したがって
距離検出精度の劣化を抑制することができる。
Further, when the object to be measured further moves to the far distance side, and the incident position protrudes from the second resistance region along the position detecting direction, the electric charge generated by the protruding light is changed to a nearby branch conductive material. It is collected at the layer and flows into the third resistance region or is collected directly at the third resistance region.
In this case, even if a part of incident light having a finite size deviates from the second resistance region, the third resistance region can contribute to position detection. Further, even when the intensity of the incident light is reduced due to the object to be measured being at a long distance, the third
The resistance region can suppress an excessive decrease in signal output in the second resistance region, and the third resistance region is relatively wide, so that it is necessary to cope with incident light protruding from the second resistance region. The length can be secured. Therefore, it is possible to suppress the deterioration of the distance detection accuracy.

【0014】ここで、主抵抗領域は、前記両端間を直線
的に接続しており、主抵抗領域の複数の位置から複数の
分枝導電層がそれぞれ延びていることが好ましい。この
場合、主抵抗領域は位置検出方向に沿って延びる基幹導
電層として機能する。分枝導電層は基幹導電層と接続さ
れ感応領域上に延びることになり、入射光により発生し
た電荷を収集し基幹導電層に伝搬する作用をし、基幹導
電層両端からの出力電流から入射光位置を検出すること
ができる。
Here, it is preferable that the main resistance region is linearly connected between the two ends, and that a plurality of branch conductive layers extend from a plurality of positions of the main resistance region. In this case, the main resistance region functions as a main conductive layer extending along the position detection direction. The branch conductive layer is connected to the base conductive layer and extends over the sensitive region. The branch conductive layer collects charges generated by the incident light and propagates the charge to the base conductive layer. The position can be detected.

【0015】また、前記主抵抗領域は、前記両端間を直
線的に接続しており、前記主抵抗領域と同一構造の別の
主抵抗領域を、前記主抵抗領域に対して平行に複数備え
ることが好ましい。この場合、主抵抗領域群は、ストラ
イプを構成することなり、入射光に対応して発生した電
荷は、各主抵抗領域にて直接収集され、各主抵抗領域の
第1、第2及び第3抵抗領域にて上述の場合と同様に光
入射位置から主抵抗領域両端までの抵抗値に反比例する
ように各主抵抗領域の両端から取り出される。
The main resistance region has a linear connection between the two ends, and a plurality of other main resistance regions having the same structure as the main resistance region are provided in parallel with the main resistance region. Is preferred. In this case, the main resistance region group forms a stripe, and the charges generated corresponding to the incident light are directly collected in each main resistance region, and the first, second, and third electric charges of each main resistance region are collected. In the resistance region, as in the case described above, the light is extracted from both ends of each main resistance region so as to be inversely proportional to the resistance value from the light incident position to both ends of the main resistance region.

【0016】また、前記主抵抗領域は、前記両端間を三
角波状を代表とする様に、蛇行しながら接続しているこ
ととしてもよい。入射光に対応して発生した電荷は、各
主抵抗領域にて直接収集され、主抵抗領域の第1、第2
及び第3抵抗領域にて上述の場合と同様に光入射位置か
ら主抵抗領域両端までの抵抗値に反比例するように、主
抵抗領域の両端から取り出される。
Further, the main resistance region may be connected in a meandering manner between both ends so as to represent a triangular waveform. Electric charges generated in response to the incident light are directly collected in each main resistance region, and the first and second electric charges of the main resistance region are collected.
Similarly, in the third resistance region, the light is extracted from both ends of the main resistance region so as to be inversely proportional to the resistance value from the light incident position to both ends of the main resistance region in the same manner as described above.

【0017】[0017]

【発明の実施の形態】以下、実施の形態に係る半導体位
置検出器(PSD)について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A semiconductor position detector (PSD) according to an embodiment will be described below.

【0018】同一要素又は同一機能を有する要素には同
一符号を用いるものとし、重複する説明は省略する。
The same reference numerals are used for the same elements or elements having the same functions, and duplicate descriptions are omitted.

【0019】(第1実施形態)図1は第1実施形態に係
るPSDの平面図、図2は図1に示したPSDのII−
II矢印断面図、図3は図1に示したPSDのIII−
III矢印断面図である。なお、説明に用いるPSDの
断面図は、その端面を示す。また、PSDは表面側にパ
ッシベーション膜5を備えるが(図2,図3)、図1及
び以下の実施形態に係るPSDの平面図においてはパッ
シベーション膜5の記載を省略する。
(First Embodiment) FIG. 1 is a plan view of a PSD according to a first embodiment, and FIG. 2 is a plan view of the PSD shown in FIG.
FIG. 3 is a sectional view of the PSD shown in FIG.
It is III arrow sectional drawing. The cross-sectional view of the PSD used for the description shows the end face. Although the PSD includes a passivation film 5 on the front surface side (FIGS. 2 and 3), the description of the passivation film 5 is omitted in FIG. 1 and the plan views of the PSD according to the following embodiments.

【0020】本PSDは、低濃度n型Siからなる半導
体基板2nと、半導体基板2nの裏面に形成された高濃
度n型Siからなる裏面側n型半導体層1nとを備え
る。半導体基板2nの表面は長方形である。以下の説明
では、n型半導体基板2nの長方形表面の長辺の伸延方
向を長さ方向(長手方向:位置検出方向)X、短辺の伸
延方向を幅方向Y、長さ方向X及び幅方向Y双方に垂直
な方向を深さ方向(厚さ方向)Zとする。すなわち、方
向X、Y及びZは互いに直交している。
This PSD includes a semiconductor substrate 2n made of low-concentration n-type Si and a back-side n-type semiconductor layer 1n made of high-concentration n-type Si formed on the back surface of the semiconductor substrate 2n. The surface of the semiconductor substrate 2n is rectangular. In the following description, the extension direction of the long side of the rectangular surface of the n-type semiconductor substrate 2n is the length direction (longitudinal direction: position detection direction) X, the extension direction of the short side is the width direction Y, the length direction X, and the width direction. A direction perpendicular to both Y is defined as a depth direction (thickness direction) Z. That is, the directions X, Y, and Z are orthogonal to each other.

【0021】本PSDは、半導体基板2n内に形成さ
れ、長さ方向Xに沿って延びたp型Siからなる基幹導
電層(主抵抗領域)PNを備える。基幹導電層PNは、
複数のp型の抵抗領域P1〜P30がPSDの長さ方向
Xに沿って連続してなり、n型半導体基板2n内に形成
されている。各抵抗領域P1〜P30は実質的に同一の
不純物濃度を有しており、n型半導体基板2nの表面か
ら厚さ方向Zに沿って実質的に同一の深さまで延びてい
る。各抵抗領域P1〜P30は実質的に同一の抵抗率ρ
を有する。
The PSD includes a basic conductive layer (main resistance region) PN made of p-type Si and formed in the semiconductor substrate 2n and extending along the length direction X. The basic conductive layer PN is
A plurality of p-type resistance regions P1 to P30 are continuous along the length direction X of the PSD and are formed in the n-type semiconductor substrate 2n. Each of the resistance regions P1 to P30 has substantially the same impurity concentration, and extends from the surface of the n-type semiconductor substrate 2n to substantially the same depth along the thickness direction Z. Each of the resistance regions P1 to P30 has substantially the same resistivity ρ
Having.

【0022】各抵抗領域P1〜P30の表面は長方形を
しており、長方形表面の対向する2辺はX方向に、残り
の2辺はY方向に平行である。なお、基幹導電層PN
は、第1抵抗領域(R1=P12〜P30)、第2抵抗
領域(R2=P5〜P11)及び第3抵抗領域(R3=
P1〜P4)がX方向に連続してなる。R1,R2,R
3を構成している抵抗領域P12〜P30,P5〜P1
1,P1〜P4は、各々の領域で幅は一定である。
The surface of each of the resistance regions P1 to P30 is rectangular, and two opposing sides of the rectangular surface are parallel to the X direction, and the other two sides are parallel to the Y direction. Note that the main conductive layer PN
Are the first resistance region (R1 = P12 to P30), the second resistance region (R2 = P5 to P11) and the third resistance region (R3 =
P1 to P4) are continuous in the X direction. R1, R2, R
3 resistance regions P12 to P30, P5 to P1
1, P1 to P4 have a constant width in each region.

【0023】第2抵抗領域R2の各抵抗領域P5〜P1
1の各X方向長は、第1抵抗領域R1の各抵抗領域P1
2〜P30の各X方向長と略同一であり、Y方向長は第
1抵抗領域R1の各抵抗領域P12〜P30の各Y方向
長よりも短い。第3抵抗領域R3の各抵抗領域P1〜P
4の各X及びY方向長は、第1抵抗領域R1の各抵抗領
域P12〜P30の各X及びY方向長と略同一である。
したがって、基幹導電層PNの表面の輪郭は全体とし
て、第1、第2及び第3抵抗領域R1,R2,R3から
なる3つの長方形を、長手方向に連続するように組み合
わせた形状を構成する。
Each of the resistance regions P5 to P1 of the second resistance region R2
1 is the length of each resistance region P1 of the first resistance region R1.
The lengths in the Y direction are substantially the same as the lengths in the X direction of 2 to P30, and the lengths in the Y direction are shorter than the lengths in the Y direction of the resistance regions P12 to P30 of the first resistance region R1. Each resistance region P1 to P of the third resistance region R3
4 is substantially the same as the length of each of the resistance regions P12 to P30 of the first resistance region R1 in the X and Y directions.
Therefore, the contour of the surface of the main conductive layer PN as a whole has a shape in which three rectangles including the first, second, and third resistance regions R1, R2, and R3 are combined so as to be continuous in the longitudinal direction.

【0024】光入射によって電荷(キャリア)が発生す
る半導体基板2n上の領域は光感応領域であり、本PS
Dは、光感応領域上の入射光位置に応じて異なる電流が
両端から取り出される基幹導電層(主抵抗領域)PNを
備えたPSDにおいて、基幹導電層PNは、それぞれが
実質的に同一の抵抗率ρを有する幅広の第1抵抗領域R
1(P12〜P30)、幅狭の第2抵抗領域R2(P5
〜P11)、及び幅広の第3抵抗領域R3(P1〜P
4)が位置検出方向Xに沿って連続してなる。
The region on the semiconductor substrate 2n where charges (carriers) are generated by light incidence is a light-sensitive region.
D is a PSD having a main conductive layer (main resistance region) PN from which both different currents are extracted from both ends according to the position of incident light on the photosensitive region, and the main conductive layers PN each have substantially the same resistance. Wide first resistance region R having a rate ρ
1 (P12 to P30) and the narrow second resistance region R2 (P5
To P11) and the wide third resistance region R3 (P1 to P3).
4) is continuous along the position detection direction X.

【0025】入射光の位置は被測定物の距離に応じて光
感応領域上を移動する。入射光の光感応領域上における
移動方向Xは位置検出方向である。光感応領域への入射
光の照射に応じて発生した電荷は、後述する入射位置近
傍の分枝導電層4PNにより収集され、基幹導電層PN
内に流れ込む。基幹導電層PNに流れ込んだ電荷は、光
入射位置から主抵抗領域両端までの抵抗値に反比例する
ように基幹導電層PN両端から電流として取り出される
ため、かかる電流から被測定物までの距離が検出される
こととなる。
The position of the incident light moves on the light sensitive area according to the distance of the object to be measured. The moving direction X of the incident light on the light sensitive area is a position detection direction. The charges generated in response to the irradiation of the photosensitive region with the incident light are collected by the branching conductive layer 4PN near the incident position described later, and
Flows into. The electric charge flowing into the main conductive layer PN is taken out as a current from both ends of the main conductive layer PN so as to be inversely proportional to the resistance value from the light incident position to both ends of the main resistance region, and the distance from the current to the object to be measured is detected. Will be done.

【0026】ここで、基幹導電層PNを構成する第1抵
抗領域R1、第2抵抗領域R2、及び第3抵抗領域R3
は実質的に同一の抵抗率を有し、これらは位置検出方向
に沿って連続している。近距離側に幅広の第1抵抗領域
R1(P12〜P30)側が配置される。
Here, the first resistance region R1, the second resistance region R2, and the third resistance region R3 which form the basic conductive layer PN.
Have substantially the same resistivity, which are continuous along the position detection direction. The wide first resistance region R1 (P12 to P30) side is arranged on the short distance side.

【0027】近距離側にある被測定物からの光によって
発生した電荷が第1抵抗領域R1(P12〜P30)に
流れ込んだ場合、これは相対的に幅広であるため、入射
位置の移動に伴う抵抗変化は小さいが、被測定物の距離
変化に応じて入射光の位置が大きく移動するため、正確
に距離検出を行うことができる。
When the charge generated by the light from the object to be measured on the short distance side flows into the first resistance region R1 (P12 to P30), it is relatively wide, so that it is accompanied by the movement of the incident position. Although the resistance change is small, the position of the incident light largely moves in accordance with the change in the distance of the object to be measured, so that the distance can be accurately detected.

【0028】被測定物が遠距離側に移動することによっ
て、入射位置が位置検出方向に沿って第2抵抗領域R2
側へ移動した場合、遠距離側にある被測定物からの光に
よって発生した電荷が第2抵抗領域R2(P5〜P1
1)に流れ込む。この場合、被測定物の距離変化に応じ
て入射光の位置が小さく移動するが、第2抵抗領域R2
(P5〜P11)は相対的に幅狭であるため、入射位置
の移動に伴う抵抗変化は大きく、したがって正確に距離
検出を行うことができる。
When the object to be measured moves to a far distance side, the incident position is shifted along the position detection direction to the second resistance region R2.
Side, the charges generated by the light from the object to be measured on the long distance side are charged by the second resistance region R2 (P5 to P1).
Flow into 1). In this case, although the position of the incident light moves slightly according to the change in the distance of the device under test, the second resistance region R2
Since (P5 to P11) are relatively narrow, the resistance change accompanying the movement of the incident position is large, so that the distance can be accurately detected.

【0029】また、被測定物が更に遠距離側に移動する
ことによって、入射位置が位置検出方向に沿って第2抵
抗領域R2(P5〜P11)からはみ出した場合、はみ
出した光によって発生した電荷は後述する入射位置近傍
の分枝導電層により収集され第3抵抗領域R3(P1〜
P4)に流れ込む。この場合、有限の大きさを有する入
射光の一部が幅狭の第2抵抗領域R2(P5〜P11)
から外れても、第3抵抗領域R3(P1〜P4)の機能
によって距離検出精度の低下は抑制される。また、被測
定物が遠距離にあることによって入射光強度が低下した
場合においても、第3抵抗領域R3(P1〜P4)によ
り第2抵抗領域R2(P5〜P11)での過度の信号出
力の低下を抑制することができ、且つ、第3抵抗領域R
3(P12〜P30)は幅広なので、第2抵抗領域R2
(P5〜P11)からはみ出す入射光に対応するのに必
要な長さを確保することができる。したがってS/N比
及び距離検出精度の劣化を抑制することができる。
Further, when the object to be measured further moves to the far distance side, and the incident position protrudes from the second resistance region R2 (P5 to P11) along the position detection direction, the charge generated by the protruding light. Are collected by a branched conductive layer near the incident position, which will be described later, and are collected by the third resistance region R3 (P1 to P3).
P4). In this case, a part of incident light having a finite size is reduced in the width of the second resistance region R2 (P5 to P11).
, The function of the third resistance region R3 (P1 to P4) suppresses a decrease in distance detection accuracy. Further, even when the intensity of the incident light decreases due to the object to be measured being at a long distance, the excessive output of the signal in the second resistance region R2 (P5 to P11) is generated by the third resistance region R3 (P1 to P4). Can be suppressed, and the third resistance region R
3 (P12 to P30) are wide, so the second resistance region R2
It is possible to secure a length necessary to cope with incident light protruding from (P5 to P11). Therefore, deterioration of the S / N ratio and the distance detection accuracy can be suppressed.

【0030】なお、形状のみが類似のPSDが特公平7
−83133号公報に記載されている。このPSDは、
光感応領域としての幅広の抵抗領域に、非検出領域(非
入射領域)としての幅狭の抵抗領域を連続させることに
より小型化を達成したものであり、測定距離に応じた検
出精度向上技術とは本質的には関係ない。
It should be noted that a PSD having a shape similar to that of JP-B-7
-83133. This PSD is
The miniaturization is achieved by connecting a narrow resistance area as a non-detection area (non-incident area) to a wide resistance area as a light-sensitive area. Is essentially irrelevant.

【0031】本PSDは、PSDの表面両端部に形成さ
れ、基幹導電層PN両端からの出力電流がそれぞれ取り
出される一対の信号取出電極1e,2eを備える。
The present PSD includes a pair of signal extraction electrodes 1e and 2e formed at both ends of the surface of the PSD to extract output currents from both ends of the main conductive layer PN.

【0032】本PSDは、基幹導電層PNから光感応領
域に沿って延びた複数の高濃度p型Siからなる分枝導
電層4PNを備えている。
This PSD includes a plurality of branched conductive layers 4PN made of high-concentration p-type Si extending from the basic conductive layer PN along the photosensitive region.

【0033】分枝導電層4PNを構成する複数の分枝導
電層4P1〜4P29は、n型半導体基板2n内に形成
されており、基幹導電層PNを構成する複数の抵抗領域
P1〜P30間から幅方向Yに沿って延びている。分枝
導電層4P1〜4P29は、厚み方向Zに沿ってn型半
導体基板2nの表面から基幹導電層PNの深さよりも深
い位置まで延びており、分枝導電層4P1〜4P29の
幅方向Yの長さは同一である。光感応領域への光入射に
より発生した電荷は、当該分枝導電層4PNにより収集
され、基幹導電層PNの接続部位へと流れ込み、同接続
部位から基幹導電層両端までの抵抗値に反比例するよう
に基幹導電層PN両端から電流として取り出されるた
め、かかる電流から被測定物までの距離を検出すること
ができる。
The plurality of branched conductive layers 4P1 to 4P29 forming the branched conductive layer 4PN are formed in the n-type semiconductor substrate 2n, and extend from between the plurality of resistance regions P1 to P30 forming the basic conductive layer PN. It extends along the width direction Y. The branch conductive layers 4P1 to 4P29 extend along the thickness direction Z from the surface of the n-type semiconductor substrate 2n to a position deeper than the depth of the main conductive layer PN, and extend in the width direction Y of the branch conductive layers 4P1 to 4P29. The length is the same. The charge generated by the light incident on the photosensitive region is collected by the branch conductive layer 4PN, flows into the connection part of the main conductive layer PN, and is inversely proportional to the resistance value from the connection part to both ends of the main conductive layer. Since the current is taken out from both ends of the base conductive layer PN as a current, the distance from the current to the object to be measured can be detected.

【0034】本PSDは、抵抗領域P1〜P30が長さ
方向Xに連続してなる基幹導電層PNの両端にそれぞれ
連続し、半導体基板2n内に形成された一対の高濃度信
号取出用半導体層1p,2pを備える。高濃度信号取出
用半導体層1p,2pは、高濃度p型Siからなる。高
濃度信号取出用半導体層1p,2pは、半導体基板2n
の表面から厚み方向Zに沿って抵抗領域P1〜P30の
深さよりも深い位置まで延びている。
The present PSD includes a pair of high-concentration signal extraction semiconductor layers formed in a semiconductor substrate 2n, each of which is continuous with both ends of a basic conductive layer PN in which resistance regions P1 to P30 are continuous in the length direction X. 1p and 2p. The high-concentration signal extraction semiconductor layers 1p and 2p are made of high-concentration p-type Si. The high-concentration signal extraction semiconductor layers 1p and 2p are formed on the semiconductor substrate 2n.
Extends from the surface along the thickness direction Z to a position deeper than the depths of the resistance regions P1 to P30.

【0035】高濃度信号取出用半導体層1p,2pは、
それぞれ長方形の表面を有しており、その長辺は幅方向
Yに平行であって、短辺は長さ方向Xに平行である。基
幹導電層PNの両端は、それぞれ高濃度信号取出用半導
体層1p,2pの長方形表面の長辺の一端部を境界とし
て高濃度信号取出用半導体層1p,2pに接続してい
る。
The semiconductor layers 1p and 2p for extracting a high concentration signal are
Each has a rectangular surface, the long sides of which are parallel to the width direction Y and the short sides thereof are parallel to the length direction X. Both ends of the main conductive layer PN are connected to the high-concentration signal extraction semiconductor layers 1p and 2p, respectively, with one end of the long side of the rectangular surface of the high-concentration signal extraction semiconductor layers 1p and 2p as a boundary.

【0036】換言すれば、基幹導電層PNの長さ方向X
に沿った一方の端部、すなわち、抵抗領域P1は、一方
の高濃度信号取出用半導体層1pの幅方向Yに沿った一
方の端部に接続しており、基幹導電層PNの長さ方向X
に沿った他方の端部、すなわち抵抗領域P30は他方の
高濃度信号取出用半導体層2pの幅方向Yに沿った一方
の端部に接続している。
In other words, the length direction X of the main conductive layer PN
Is connected to one end along the width direction Y of one high-concentration signal extraction semiconductor layer 1p, and the resistance region P1 extends along the length direction of the main conductive layer PN. X
, That is, the resistance region P30 is connected to one end along the width direction Y of the other high-concentration signal extraction semiconductor layer 2p.

【0037】本PSDは、半導体基板2nの長方形表面
の外周部に形成された外枠半導体層3nを備える。外枠
半導体層3nは、高濃度n型Siである。外枠半導体層
3nは、半導体基板2nの長方形表面の外縁領域内に形
成されてロの字形をなし、分枝導電層4PN、基幹導電
層PN及び高濃度信号取出用半導体層1p,2pの形成
された基板表面領域を包囲し、n型半導体基板2nの表
面から厚み方向Zに沿って所定の深さまで延びている。
The present PSD includes an outer frame semiconductor layer 3n formed on the outer peripheral portion of the rectangular surface of the semiconductor substrate 2n. The outer frame semiconductor layer 3n is high-concentration n-type Si. The outer frame semiconductor layer 3n is formed in the outer edge region of the rectangular surface of the semiconductor substrate 2n to form a square shape, and forms the branch conductive layer 4PN, the main conductive layer PN, and the high concentration signal extraction semiconductor layers 1p and 2p. And extends from the surface of the n-type semiconductor substrate 2n to a predetermined depth along the thickness direction Z.

【0038】本PSDは、半導体基板2n内に形成され
た分枝導電層隔離半導体層4nNを揃える。分枝導電層
隔離用半導体層4nNは、高濃度n型Siである。分枝
導電層隔離用半導体層4nNは、ロの字形の外枠半導体
層3nの2つの長辺の内側から幅方向Yに沿って基幹導
電層PN方向に延びた複数のn型の分枝領域4n1〜4
n30からなる。各分枝領域4n1〜4n30は、厚み
方向Zに沿ってn型半導体基板2nの表面から所定深さ
まで延びている。
In the present PSD, the branched conductive layer isolation semiconductor layer 4nN formed in the semiconductor substrate 2n is aligned. The branching conductive layer isolating semiconductor layer 4nN is a high concentration n-type Si. The branched conductive layer isolating semiconductor layer 4nN includes a plurality of n-type branched regions extending inward from the inside of the two long sides of the square-shaped outer frame semiconductor layer 3n along the width direction Y in the base conductive layer PN direction. 4n1-4
n30. Each of the branch regions 4n1 to 4n30 extends from the surface of the n-type semiconductor substrate 2n to a predetermined depth along the thickness direction Z.

【0039】なお、基幹導電層PN、分枝導電層4P
N、高濃度信号取出用半導体層1p,2pは、一体形成
し、同一不純物濃度、同一深さとしても良い。
The basic conductive layer PN and the branched conductive layer 4P
The N and high concentration signal extraction semiconductor layers 1p and 2p may be integrally formed and have the same impurity concentration and the same depth.

【0040】隔離用半導体層4nNを構成するn型の分
枝領域4n2〜4n29は、p型の分枝導電層4P1〜
4P29と略同一の深さを有し、分枝導電層4P1〜4
P29間に介在し、分枝導電層4P1〜4P29を電気
的に隔離している。すなわち、分枝領域4n2〜4n2
9は、分枝導電層4P1〜4P29の隣接するもの同士
間を長さ方向Xに沿って流れる電流を阻止している。
The n-type branch regions 4n2 to 4n29 forming the isolation semiconductor layer 4nN are composed of p-type branch conductive layers 4P1 to 4P1.
4P29 having substantially the same depth as the branch conductive layers 4P1 to 4P4.
The branch conductive layers 4P1 to 4P29 are interposed between the P29s to electrically isolate them. That is, the branch regions 4n2 to 4n2
9 blocks a current flowing along the length direction X between adjacent ones of the branch conductive layers 4P1 to 4P29.

【0041】最も外側に位置する分枝領域4n1及び4
n30は、長さ方向Xに沿って最も外側にある分枝導電
層4P1,4P29と高濃度信号取出用半導体層1p,
2pとの間にそれぞれ介在し、分枝導電層4P1,4P
29と高濃度信号取出用半導体層1p,2pとをそれぞ
れ電気的に隔離している。
The outermost branch regions 4n1 and 4n1
n30 is the outermost branched conductive layers 4P1 and 4P29 along the length direction X and the high-concentration signal extracting semiconductor layers 1p and 4p.
2p and the branch conductive layers 4P1, 4P
29 and the high-concentration signal extraction semiconductor layers 1p and 2p are electrically isolated from each other.

【0042】パッシベーション膜5は、信号取出電極用
の1対の長方形開口を長さ方向両端部に有し、外枠電極
用のロの字形開口を外周部に有する。信号取出電極1
e,2eは、パッシベーション膜5の信号取出電極用の
1対の開口をそれぞれ介して、それぞれ高濃度信号取出
用半導体層1p,2p上に形成されており、高濃度信号
取出用半導体層1p,2pにオーミック接触している。
なお、信号取出電極1e,2eの表面形状は、高濃度信
号取出用半導体層1p,2pの表面形状と同一である。
The passivation film 5 has a pair of rectangular openings for signal extraction electrodes at both ends in the length direction, and a square-shaped opening for an outer frame electrode at the outer periphery. Signal extraction electrode 1
e and 2e are formed on the high-concentration signal extraction semiconductor layers 1p and 2p, respectively, through a pair of openings for signal extraction electrodes of the passivation film 5, and the high-concentration signal extraction semiconductor layers 1p and 2p, respectively. Ohmic contact with 2p.
The surface shapes of the signal extraction electrodes 1e and 2e are the same as the surface shapes of the high-concentration signal extraction semiconductor layers 1p and 2p.

【0043】本PSDは、パッシベーション膜5の外枠
電極用の開口を介して、n型の外枠半導体層3n上に形
成された外枠電極3eを備える。外枠電極3eは、外枠
半導体層3nとオーミック接触している。外枠電極3e
は、半導体基板2n外周部への光の入射を阻止する。ま
た、外枠電極3eと信号取出電極1e,2eとの間に所
定の電圧を印加することもできる。
The present PSD has an outer frame electrode 3e formed on the n-type outer frame semiconductor layer 3n through an opening for the outer frame electrode of the passivation film 5. The outer frame electrode 3e is in ohmic contact with the outer frame semiconductor layer 3n. Outer frame electrode 3e
Prevents light from entering the outer peripheral portion of the semiconductor substrate 2n. Further, a predetermined voltage can be applied between the outer frame electrode 3e and the signal extraction electrodes 1e and 2e.

【0044】本PSDは、裏面側n型半導体層1nの下
面に形成された下面電極4eを備える。下面電極4e
は、裏面側n型半導体層1nとオーミック接触してい
る。
The present PSD has a lower surface electrode 4e formed on the lower surface of the back side n-type semiconductor layer 1n. Lower electrode 4e
Are in ohmic contact with the back side n-type semiconductor layer 1n.

【0045】1対の信号取出電極1e,2eと下面電極
4eとの間に、p型分枝導電層4PN及びn型半導体基
板2nから構成されるpn接合ダイオードに逆バイアス
電圧が印加されるような電圧を与えた状態で、分枝導電
層4PNの形成されたn型半導体基板2nの表面領域で
規定される光感応領域に入射光がスポット光として入射
すると、この入射光に応じてPSD内部で正孔電子対
(キャリア:電荷)が発生し、拡散及びPSD内部の電
界にしたがってその一方は分枝導電層4PNに収集され
る。
A reverse bias voltage is applied between a pair of signal extraction electrodes 1e, 2e and lower electrode 4e to a pn junction diode composed of p-type branched conductive layer 4PN and n-type semiconductor substrate 2n. When an incident light is incident as a spot light on the photosensitive region defined by the surface region of the n-type semiconductor substrate 2n on which the branched conductive layer 4PN is formed in a state where a proper voltage is applied, the PSD inside the PSD is changed in accordance with the incident light. Then, a hole-electron pair (carrier: charge) is generated, one of which is collected in the branched conductive layer 4PN according to the electric field inside the diffusion and PSD.

【0046】この電荷は、分枝導電層4PN内を伝導し
て基幹導電層PNの所定の抵抗領域に流れ込み、所定の
抵抗領域の基幹導電層PNの長さ方向Xの位置に応じて
その電荷量が分配され、分配された電荷はそれぞれ基幹
導電層PNの両端を介して信号取出電極1e及び2eか
ら取り出される。
This electric charge is conducted through the branched conductive layer 4PN and flows into a predetermined resistance region of the basic conductive layer PN, and the electric charge is changed according to the position of the predetermined conductive region PN in the longitudinal direction X. The amount is distributed, and the distributed charges are extracted from the signal extraction electrodes 1e and 2e via both ends of the main conductive layer PN.

【0047】以下の説明では、入射光の光感応領域への
入射に応じて信号取出電極1e及び2eからそれぞれ出
力される出力電流をそれぞれI1及びI2とする。
In the following description, output currents respectively output from the signal extraction electrodes 1e and 2e in accordance with the incidence of incident light on the light-sensitive region are denoted by I1 and I2, respectively.

【0048】図4は、図1に示したPSD100を用い
た測距装置の概念を示し、この測距装置はカメラ等の撮
像機器に設けることができる。なお、この測距装置には
図1に示したPSDの代わりに以下の実施形態のPSD
のいずれを用いてもよい。この測距装置は、PSD10
0と、発光ダイオード(LED)101と、投光用レン
ズ102と、集光用レンズ103と、演算回路104と
を備える。
FIG. 4 shows the concept of a distance measuring device using the PSD 100 shown in FIG. 1, and this distance measuring device can be provided in an imaging device such as a camera. This distance measuring device has a PSD of the following embodiment instead of the PSD shown in FIG.
Any of these may be used. This distance measuring device is a PSD10
0, a light emitting diode (LED) 101, a light projecting lens 102, a light collecting lens 103, and an arithmetic circuit 104.

【0049】PSD100は、その長さ方向Xがレンズ
102及び103の光軸間距離(基線長)Bによって規
定される線分と平行となるように配置され、且つ、信号
取出電極1eが信号取出電極2eよりもレンズ103の
光軸に近くなるように配置されている。また、レンズ1
02,103とPSD100の光感応領域との間の距離
fは、これらのレンズ102,103の焦点距離に略一
致する。
The PSD 100 is arranged such that its length direction X is parallel to a line segment defined by the distance (base line length) B between the optical axes of the lenses 102 and 103, and the signal extraction electrode 1e is used for signal extraction. It is arranged so as to be closer to the optical axis of the lens 103 than the electrode 2e. Also, lens 1
The distance f between the light-sensitive areas 02 and 103 and the light-sensitive area of the PSD 100 substantially corresponds to the focal length of the lenses 102 and 103.

【0050】なお、集光レンズ103の光軸上には、基
幹導電層PNの第2抵抗領域R2のP5端部に一致する
光感応領域が位置する。
It should be noted that on the optical axis of the condensing lens 103, a light-sensitive region coincident with the end of P5 of the second resistance region R2 of the main conductive layer PN is located.

【0051】LED101から出射された光が、投光用
レンズ102を介して近距離(L1)にある被測定物O
B1に照射されると、被測定物OB1からの反射光は集
光レンズ103を介してPSDの光感応領域の近距離
側、すなわち、光感応領域の信号取出電極2eに近い方
に入射し、近傍の分枝導電層4PNに収集される。ま
た、遠距離(L2)にある被測定物OB2からの反射光
は、集光レンズ103を介してPSDの光感応領域の遠
距離側、すなわち、光感応領域の信号取出電極1eに近
い方に入射し、近傍の分枝導電層4PNに収集される。
The light emitted from the LED 101 is transmitted through the projection lens 102 to the object O at a short distance (L1).
When illuminated on B1, reflected light from the measured object OB1 is incident on the near side of the photosensitive region of the PSD via the condenser lens 103, that is, on the side closer to the signal extraction electrode 2e of the photosensitive region, Collected in the nearby branched conductive layer 4PN. The reflected light from the object OB2 at a long distance (L2) passes through the condenser lens 103 toward the far side of the photosensitive region of the PSD, that is, the one closer to the signal extraction electrode 1e of the photosensitive region. The incident light is collected on the nearby branched conductive layer 4PN.

【0052】近距離にある被測定物OB1で反射された
光の光感応領域上への入射位置X1は、集光レンズ10
3の光軸からPSDの長さ方向Xに沿って距離X1離れ
た位置にあり、遠距離にある被測定物OB2で反射され
た光の光感応領域上への入射位置X2は、集光レンズ1
03の光軸からPSDの長さ方向Xに沿って距離X2離
れた位置にある。また、基幹導電層PNの長さ方向Xの
全長をCとする。
The incident position X1 of the light reflected by the object OB1 at a short distance onto the photosensitive region is determined by the condensing lens 10
The distance X1 from the optical axis of the PSD along the lengthwise direction X of the PSD to the distance X1. 1
It is located at a distance X2 from the optical axis 03 along the length direction X of the PSD. Further, the total length of the main conductive layer PN in the length direction X is C.

【0053】図5は、上記PSDによる入射光位置X
(μm)と実測した光電流I1,I2(μA)の関係を
示すグラフである。ここでは、基幹導電層PNの全長を
1.5mm(1500μm)とし、基幹導電層PNの長
さ方向Xの中心位置を基準位置(X=0)とする。
FIG. 5 shows an incident light position X by the PSD.
6 is a graph showing a relationship between (μm) and actually measured photocurrents I1 and I2 (μA). Here, the total length of the main conductive layer PN is 1.5 mm (1500 μm), and the center position in the length direction X of the main conductive layer PN is a reference position (X = 0).

【0054】図6は、上記PSDによる入射光位置X
(mm)と理想的な相対光電流出力I1,I2(%)の
関係を示すグラフである。なお、光電流相対出力とは、
基幹導電層PN両端からの出力電流I1及びI2の全出
力電流I1+I2に対する比率である。また、第1抵抗
領域R1、第2抵抗領域R2及び第3抵抗領域R3のX
方向長は、それぞれ0.95、0.35、0.2mmで
ある。
FIG. 6 shows the incident light position X by the PSD.
6 is a graph showing a relationship between (mm) and ideal relative photocurrent outputs I1 and I2 (%). The relative photocurrent output is
This is the ratio of the output currents I1 and I2 from both ends of the main conductive layer PN to the total output current I1 + I2. In addition, the X of the first resistance region R1, the second resistance region R2, and the third resistance region R3.
The direction lengths are 0.95, 0.35, and 0.2 mm, respectively.

【0055】演算回路104は、出力電流I1及びI2
から比率R1=I1/(I1+I2)及びR2=I2/
(I1+I2)を演算した後、比率R1、R2の関数で
ある位置Xを演算し、予め算出された距離Lと位置Xと
の関係を示す表を格納したメモリ内の位置Xに対応する
距離Lを検索することによって、距離Lを求めることが
できる。これらの関係は、予め実測によって計測してお
けばよいが、実測或いは理論値から算出される所定の計
算式を用いることもできる。また、予め関係式を決定し
ておけば、演算回路104によって演算される演算方法
はかかる関係式に従って距離Lを演算することができ
る。
The arithmetic circuit 104 outputs the output currents I1 and I2
From the ratios R1 = I1 / (I1 + I2) and R2 = I2 /
After calculating (I1 + I2), the position X, which is a function of the ratios R1 and R2, is calculated, and the distance L corresponding to the position X in the memory that stores a table indicating the relationship between the distance L and the position X calculated in advance. By searching for, the distance L can be obtained. These relationships may be measured in advance by actual measurement, but a predetermined calculation formula calculated from actual measurement or theoretical value can also be used. If the relational expression is determined in advance, the calculation method calculated by the calculation circuit 104 can calculate the distance L according to the relational expression.

【0056】(第2実施形態)図7は、第2実施形態に
係るPSDの平面図である。このPSDにおいては、主
抵抗領域PNは、前記両端間を直線的に接続しており、
このPSDは、この主抵抗領域PNに対して平行に設け
られ、これと同一構造の別の主抵抗領域PNを複数備え
ている。この場合、主抵抗領域群PNは、ストライプを
構成することなり、入射光に対応して発生した電荷は、
入射位置近傍の主抵抗領域により直接収集され、各主抵
抗領域PNの第1、第2及び第3抵抗領域R1,R2,
R3にて上述の場合と同様に、光入射位置から主抵抗領
域PNの両端までの抵抗値に反比例するように主抵抗領
域PN両端から電流として取り出される。
(Second Embodiment) FIG. 7 is a plan view of a PSD according to a second embodiment. In this PSD, the main resistance region PN has a linear connection between both ends,
The PSD is provided in parallel with the main resistance region PN, and includes a plurality of other main resistance regions PN having the same structure. In this case, the main resistance region group PN forms a stripe, and the charges generated in response to the incident light are:
The first, second, and third resistance regions R1, R2, and R3 of each main resistance region PN are directly collected by the main resistance regions near the incident position.
At R3, as in the case described above, current is taken out from both ends of the main resistance region PN so as to be inversely proportional to the resistance value from the light incident position to both ends of the main resistance region PN.

【0057】なお、本例においては分枝導電層は存在せ
ず、隔離用半導体層4nNは、各主抵抗領域PN間に介
在し、主抵抗領域PN間をY方向に流れる電流を阻止す
る。
In this embodiment, the branch conductive layer does not exist, and the isolation semiconductor layer 4nN is interposed between the main resistance regions PN and blocks a current flowing between the main resistance regions PN in the Y direction.

【0058】(第3実施形態)図8は、第3実施形態に
係るPSDの平面図である。このPSDにおいては、主
抵抗領域PNは、前記両端間を三角波状に接続してい
る。入射光に対応して発生した電荷は、入射位置近傍の
主抵抗領域により直接収集され、各主抵抗領域PNの第
1、第2及び第3抵抗領域R1,R2,R3にて上述の
場合と同様に光入射位置から主抵抗領域PNの両端まで
の抵抗値に反比例するように主抵抗領域PN両端から電
流として取り出される。
(Third Embodiment) FIG. 8 is a plan view of a PSD according to a third embodiment. In this PSD, the main resistance region PN connects the both ends in a triangular waveform. The charges generated in response to the incident light are directly collected by the main resistance regions near the incident position, and the first, second, and third resistance regions R1, R2, and R3 of each main resistance region PN are different from those described above. Similarly, current is extracted from both ends of the main resistance region PN so as to be inversely proportional to the resistance value from the light incident position to both ends of the main resistance region PN.

【0059】なお、本例においても分枝導電層は存在せ
ず、隔離用半導体層4nNは、主抵抗領域PNの形成領
域以外の領域に形成され、主抵抗領域PNの所定部位間
をX方向に流れる電流を阻止する。
It should be noted that also in this example, there is no branching conductive layer, and the isolation semiconductor layer 4nN is formed in a region other than the region where the main resistance region PN is formed. To block the current flowing through.

【0060】なお、上記では主抵抗領域PNを三角波状
としたが、これは、方形波状あるいは正弦波状とするな
ど、各種の蛇行形状を採用することができる。
Although the main resistance region PN has a triangular waveform in the above description, various meandering shapes such as a square waveform or a sine waveform can be adopted.

【0061】[0061]

【発明の効果】以上、説明したように、本発明のPSD
は、近距離及び遠距離側において距離検出精度の低下を
抑制することができる。
As described above, as described above, the PSD of the present invention is used.
Can suppress a decrease in distance detection accuracy on the short distance and long distance sides.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施形態に係るPSDの平面図である。FIG. 1 is a plan view of a PSD according to a first embodiment.

【図2】図1に示したPSDのII−II矢印断面図で
ある。
FIG. 2 is a cross-sectional view of the PSD shown in FIG. 1 taken along the line II-II.

【図3】図1に示したPSDのIII−III矢印断面
図である。
FIG. 3 is a sectional view of the PSD shown in FIG. 1 taken along the line III-III.

【図4】図1に示したPSD100を用いた測距装置を
示す説明図である。
FIG. 4 is an explanatory diagram showing a distance measuring device using the PSD 100 shown in FIG. 1;

【図5】上記PSDによる入射光位置X(μm)と実測
した光電流I1,I2(μA)の関係を示すグラフであ
る。
FIG. 5 is a graph showing a relationship between an incident light position X (μm) by the PSD and actually measured photocurrents I1 and I2 (μA).

【図6】上記PSDによる入射光位置X(mm)と理想
的な相対光電流出力I1,I2(%)の関係を示すグラ
フである。
FIG. 6 is a graph showing a relationship between an incident light position X (mm) by the PSD and ideal relative photocurrent outputs I1 and I2 (%).

【図7】第2実施形態に係るPSDの平面図である。FIG. 7 is a plan view of a PSD according to a second embodiment.

【図8】第3実施形態に係るPSDの平面図である。FIG. 8 is a plan view of a PSD according to a third embodiment.

【符号の説明】[Explanation of symbols]

4e…下面電極、3e…外枠電極、PN…主抵抗領域
(基幹導電層)、1e,2e…信号取出電極、R1,R
2,R3…第1、第2、第3抵抗領域、OB1…被測定
物、OB2…被測定物、2n…半導体基板、3n…外枠
半導体層、1p,2p…高濃度信号取出用半導体層、4
nN…隔離用半導体層、4PN…分枝導電層、5…パッ
シベーション膜、102…投光用レンズ、103…集光
用レンズ、104…演算回路。
4e: lower surface electrode, 3e: outer frame electrode, PN: main resistance region (basic conductive layer), 1e, 2e: signal extraction electrode, R1, R
2, R3: first, second, and third resistance regions, OB1: measured object, OB2: measured object, 2n: semiconductor substrate, 3n: outer frame semiconductor layer, 1p, 2p: semiconductor layer for extracting a high concentration signal , 4
nN: isolation semiconductor layer, 4PN: branching conductive layer, 5: passivation film, 102: light projecting lens, 103: light collecting lens, 104: arithmetic circuit.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光感応領域上の入射光位置に応じて異な
る電流が両端から取り出される主抵抗領域を備えた半導
体位置検出器において、前記主抵抗領域は、それぞれが
実質的に同一の抵抗率を有する幅広の第1抵抗領域、幅
狭の第2抵抗領域、及び幅広の第3抵抗領域が位置検出
方向に沿って連続してなることを特徴とする半導体位置
検出器。
1. A semiconductor position detector comprising a main resistance region from which both different currents are extracted from both ends according to an incident light position on a light-sensitive region, wherein the main resistance regions have substantially the same resistivity. Wherein the wide first resistance region, the narrow second resistance region, and the wide third resistance region having the following structure are continuous along the position detection direction.
【請求項2】 前記主抵抗領域は、前記両端間を直線的
に接続しており、前記主抵抗領域の複数の位置から複数
の分枝導電層がそれぞれ延びていることを特徴とする請
求項1に記載の半導体位置検出器。
2. The semiconductor device according to claim 1, wherein the main resistance region has a linear connection between both ends thereof, and a plurality of branch conductive layers extend from a plurality of positions of the main resistance region. 2. The semiconductor position detector according to 1.
【請求項3】 前記主抵抗領域は、前記両端間を直線的
に接続しており、前記主抵抗領域と同一構造の別の主抵
抗領域を、前記主抵抗領域に対して平行に複数備えるこ
とを特徴とする請求項1に記載の半導体位置検出器。
3. The main resistance region includes a plurality of main resistance regions having the same structure as the main resistance region in parallel with the main resistance region. The semiconductor position detector according to claim 1, wherein:
【請求項4】 前記主抵抗領域は、前記両端間を蛇行し
ながら接続していることを特徴とする請求項1に記載の
半導体位置検出器。
4. The semiconductor position detector according to claim 1, wherein the main resistance region is connected while meandering between the both ends.
JP2001078659A 2001-03-19 2001-03-19 Semiconductor position detector Pending JP2002280600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001078659A JP2002280600A (en) 2001-03-19 2001-03-19 Semiconductor position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001078659A JP2002280600A (en) 2001-03-19 2001-03-19 Semiconductor position detector

Publications (1)

Publication Number Publication Date
JP2002280600A true JP2002280600A (en) 2002-09-27

Family

ID=18935244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001078659A Pending JP2002280600A (en) 2001-03-19 2001-03-19 Semiconductor position detector

Country Status (1)

Country Link
JP (1) JP2002280600A (en)

Similar Documents

Publication Publication Date Title
JP5620087B2 (en) Distance sensor and distance image sensor
US7333182B2 (en) Range finder and method of reducing signal noise therefrom
KR102232213B1 (en) Range image sensor
KR100491226B1 (en) Semiconductor position detector and range finder using the same
US6459109B2 (en) Semiconductor position sensor
JP2002280600A (en) Semiconductor position detector
EP1071140B1 (en) Semiconductor position sensor
JP3836935B2 (en) Semiconductor position detector
JPH11145510A (en) Semiconductor position sensor
JPS63501395A (en) Large area low capacitance photodiode and distance measuring device using it
JPH11145509A (en) Semiconductor position sensor
JP2012185174A (en) Distance sensor and distance image sensor
JP5632423B2 (en) Distance sensor and distance image sensor
JP2000261028A (en) Semiconductor position detector and distance measuring device using the same
JP4180708B2 (en) Semiconductor position detector
JP2001068723A (en) Semiconductor position detector
JP2001015797A (en) Semiconductor device for detecting light incident position and method of manufacturing the same
JPH06224467A (en) Position sensor
JPH0762605B2 (en) Semiconductor optical position detector
JPS62264678A (en) array type photodiode
JPH0623654B2 (en) Distance detector
JPS58166762A (en) Semiconductor photo detector
JP2000022202A (en) Semiconductor position detector
JP2000091624A (en) Semiconductor position detector
JP2001068724A (en) Distance measuring device