JP2002279983A - Lithium secondary battery - Google Patents
Lithium secondary batteryInfo
- Publication number
- JP2002279983A JP2002279983A JP2001073522A JP2001073522A JP2002279983A JP 2002279983 A JP2002279983 A JP 2002279983A JP 2001073522 A JP2001073522 A JP 2001073522A JP 2001073522 A JP2001073522 A JP 2001073522A JP 2002279983 A JP2002279983 A JP 2002279983A
- Authority
- JP
- Japan
- Prior art keywords
- carbon material
- lithium secondary
- fluorine
- secondary battery
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 103
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 101
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 206
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 108
- 239000011737 fluorine Substances 0.000 claims abstract description 108
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 108
- 239000011255 nonaqueous electrolyte Substances 0.000 claims abstract description 22
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 72
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 239000011593 sulfur Substances 0.000 claims description 9
- 229910052717 sulfur Inorganic materials 0.000 claims description 9
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 claims description 4
- 238000003860 storage Methods 0.000 abstract description 32
- 150000002641 lithium Chemical class 0.000 abstract 1
- 229910021382 natural graphite Inorganic materials 0.000 description 71
- 230000000052 comparative effect Effects 0.000 description 20
- 239000000463 material Substances 0.000 description 10
- 229910002804 graphite Inorganic materials 0.000 description 9
- 239000010439 graphite Substances 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 239000002904 solvent Substances 0.000 description 7
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 229910021383 artificial graphite Inorganic materials 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- -1 LiCF 3 S O 3 Inorganic materials 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000003125 aqueous solvent Substances 0.000 description 3
- 239000002180 crystalline carbon material Substances 0.000 description 3
- 230000010220 ion permeability Effects 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- 238000007606 doctor blade method Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 2
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- WKFQMDFSDQFAIC-UHFFFAOYSA-N 2,4-dimethylthiolane 1,1-dioxide Chemical compound CC1CC(C)S(=O)(=O)C1 WKFQMDFSDQFAIC-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- VWIIJDNADIEEDB-UHFFFAOYSA-N 3-methyl-1,3-oxazolidin-2-one Chemical compound CN1CCOC1=O VWIIJDNADIEEDB-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101100321670 Fagopyrum esculentum FA18 gene Proteins 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013733 LiCo Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910021115 PF 6 Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- DISYGAAFCMVRKW-UHFFFAOYSA-N butyl ethyl carbonate Chemical compound CCCCOC(=O)OCC DISYGAAFCMVRKW-UHFFFAOYSA-N 0.000 description 1
- FWBMVXOCTXTBAD-UHFFFAOYSA-N butyl methyl carbonate Chemical compound CCCCOC(=O)OC FWBMVXOCTXTBAD-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000005539 carbonized material Substances 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 150000001786 chalcogen compounds Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- CYEDOLFRAIXARV-UHFFFAOYSA-N ethyl propyl carbonate Chemical compound CCCOC(=O)OCC CYEDOLFRAIXARV-UHFFFAOYSA-N 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- YVIVRJLWYJGJTJ-UHFFFAOYSA-N gamma-Valerolactam Chemical compound CC1CCC(=O)N1 YVIVRJLWYJGJTJ-UHFFFAOYSA-N 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002642 lithium compounds Chemical class 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- 229910021450 lithium metal oxide Inorganic materials 0.000 description 1
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 1
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- RCYJPSGNXVLIBO-UHFFFAOYSA-N sulfanylidenetitanium Chemical compound [S].[Ti] RCYJPSGNXVLIBO-UHFFFAOYSA-N 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、正極と、炭素材
料を用いた負極と、非水電解質とを備えたリチウム二次
電池に係り、特に、炭素材料を用いた負極を改良して、
リチウム二次電池の保存特性を向上させた点に特徴を有
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery having a positive electrode, a negative electrode using a carbon material, and a non-aqueous electrolyte.
The feature is that the storage characteristics of the lithium secondary battery are improved.
【0002】[0002]
【従来の技術】近年、高出力,高エネルギー密度の新型
二次電池として、非水電解質を用い、リチウムの酸化,
還元を利用した高起電力のリチウム二次電池が利用され
るようになった。2. Description of the Related Art In recent years, as a new type of secondary battery having a high output and a high energy density, a non-aqueous electrolyte has been used to oxidize lithium.
High-electromotive lithium secondary batteries utilizing reduction have come to be used.
【0003】ここで、このようなリチウム二次電池にお
いては、その負極に用いる材料として、リチウムイオン
の吸蔵,放出が可能な黒鉛やコークス等の炭素材料が広
く利用されており、特に、この炭素材料として結晶性の
高い黒鉛を用いると、リチウム金属電位の近傍で非常に
卑な放電電位を示し、高エネルギー密度のリチウム二次
電池が得られるという利点がある。[0003] In such a lithium secondary battery, carbon materials such as graphite and coke capable of occluding and releasing lithium ions are widely used as a material for the negative electrode. When graphite having high crystallinity is used as a material, there is an advantage that a very low discharge potential is exhibited in the vicinity of a lithium metal potential, and a lithium secondary battery having a high energy density can be obtained.
【0004】しかし、このように結晶性の高い黒鉛を負
極に用いたリチウム二次電池の場合、充電状態での保存
時に、この黒鉛中におけるリチウムが非水電解液におけ
る溶媒等と反応して自己放電し、電池容量が低下すると
いう問題があった。However, in the case of a lithium secondary battery using graphite having high crystallinity as a negative electrode, when stored in a charged state, lithium in the graphite reacts with a solvent in a non-aqueous electrolyte and becomes self-reactive. There is a problem that the battery is discharged and the battery capacity is reduced.
【0005】また、従来においては、特開平8−314
04号公報に示されるように、表面をフッ素で処理した
炭素材料をリチウム二次電池の負極に用い、リチウム二
次電池における充放電特性を改善することが提案されて
いる。In the prior art, Japanese Patent Laid-Open No. 8-314
As disclosed in Japanese Patent Application Publication No. 04-2004, it has been proposed to use a carbon material whose surface has been treated with fluorine for a negative electrode of a lithium secondary battery to improve the charge / discharge characteristics of the lithium secondary battery.
【0006】しかし、上記のような結晶性の高い黒鉛か
らなる炭素材料の表面にフッ素を含有させるように処理
すると、この黒鉛におけるて結晶構造に乱れが生じ、依
然として、充電状態での保存時において、黒鉛中におけ
るリチウムが非水電解液における溶媒等と反応して、電
池容量が低下するという問題があった。However, if the surface of the carbon material made of graphite having high crystallinity as described above is treated so as to contain fluorine, the crystal structure of the graphite is disturbed, and the graphite still has a problem during storage in a charged state. In addition, there is a problem that lithium in graphite reacts with a solvent or the like in a non-aqueous electrolyte and battery capacity is reduced.
【0007】[0007]
【発明が解決しようとする課題】この発明は、正極と、
炭素材料を用いた負極と、非水電解質とを備えたリチウ
ム二次電池における上記のような問題を解決することを
課題とするものであり、炭素材料を用いた負極を改良し
て、保存特性に優れたリチウム二次電池が得られるよう
にすることを課題とするものである。SUMMARY OF THE INVENTION The present invention provides a positive electrode,
An object of the present invention is to solve the above-described problems in a lithium secondary battery including a negative electrode using a carbon material and a non-aqueous electrolyte. It is an object of the present invention to obtain a lithium secondary battery having excellent characteristics.
【0008】[0008]
【課題を解決するための手段】この発明におけるリチウ
ム二次電池においては、上記のような課題を解決するた
め、正極と、炭素材料を用いた負極と、非水電解質とを
備えたリチウム二次電池において、上記の負極における
炭素材料として、フッ素が含有されていない芯部となる
第1の炭素材料の表面を、この芯部となる第1の炭素材
料より結晶性が低くかつフッ素が含有された第2の炭素
材料で被覆したものを用いるようにしたのである。In order to solve the above-mentioned problems, a lithium secondary battery according to the present invention has a lithium secondary battery including a positive electrode, a negative electrode using a carbon material, and a non-aqueous electrolyte. In the battery, as the carbon material in the negative electrode, the surface of the first carbon material serving as a core containing no fluorine is lower in crystallinity and contains fluorine than the first carbon material serving as the core. Thus, a material coated with the second carbon material is used.
【0009】そして、この発明におけるリチウム二次電
池のように、負極の炭素材料として、フッ素が含有され
ていない芯部となる第1の炭素材料の表面を、この芯部
となる第1の炭素材料より結晶性が低くかつフッ素が含
有された第2の炭素材料で被覆したものを用いると、芯
部となる第1の炭素材料の結晶構造がフッ素によって乱
れることがなくなると共に、初期の充電時において、こ
の芯部となる第1の炭素材料の表面を被覆したフッ素を
含有する第2の炭素材料の表面に、リチウムイオンの透
過性に優れると共に安定なフッ化リチウムの被膜が形成
されるようになり、上記の芯部となる第1の炭素材料中
におけるリチウムが非水電解液における溶媒等と反応す
るのが抑制され、電池容量が低下するのが防止されてリ
チウム二次電池における保存特性が向上する。Then, as in the lithium secondary battery of the present invention, the surface of the first carbon material which does not contain fluorine as the carbon material of the negative electrode is changed to the first carbon material which becomes the core. When a material coated with a second carbon material having lower crystallinity than the material and containing fluorine is used, the crystal structure of the first carbon material serving as a core is not disturbed by fluorine, and the initial charge time is reduced. In this case, a stable lithium fluoride film having excellent lithium ion permeability and being formed on the surface of the fluorine-containing second carbon material that covers the surface of the first carbon material serving as the core is formed. The reaction of lithium in the first carbon material serving as the core with the solvent or the like in the non-aqueous electrolyte is suppressed, and the battery capacity is prevented from lowering. Kicking storage characteristics can be improved.
【0010】ここで、負極に用いる炭素材料において、
フッ素が含有されていない芯部となる第1の炭素材料と
しては、高エネルギー密度のリチウム二次電池が得られ
るようにするため、結晶性の高い黒鉛系の炭素材料を用
いることが好ましく、例えば、天然黒鉛、人造黒鉛、黒
鉛化されたピッチ系炭素繊維等を使用することが好まし
い。特に、X線広角回折により測定される(002)面
の面間隔d002 が0.335〜0.338nmの範囲で
あり、かつc軸方向の結晶子の大きさLcが30nm以
上のものを用いることが好ましく、より好ましくは、
(002)面の面間隔d002 が0.335〜0.336
nmの範囲であり、かつc軸方向の結晶子の大きさLc
が100nm以上のものを用いるようにする。また、こ
の第1の炭素材料として粒状のものを用いる場合には、
その平均粒径が1〜80μm、より好ましくは5〜40
μmのものを用いるようにする。Here, in the carbon material used for the negative electrode,
As the first carbon material serving as the core portion containing no fluorine, it is preferable to use a graphite-based carbon material having high crystallinity in order to obtain a lithium secondary battery with high energy density. It is preferable to use natural graphite, artificial graphite, graphitized pitch-based carbon fibers, and the like. In particular, those having a (002) plane spacing d 002 measured by X-ray wide-angle diffraction in the range of 0.335 to 0.338 nm and a crystallite size Lc in the c-axis direction of 30 nm or more are used. Preferably, more preferably,
The (002) plane distance d 002 is 0.335 to 0.336.
nm, and the size Lc of the crystallite in the c-axis direction.
Is 100 nm or more. When a granular material is used as the first carbon material,
Its average particle size is 1 to 80 µm, more preferably 5 to 40
Use a μm one.
【0011】一方、上記の芯部となる第1の炭素材料を
被覆するフッ素が含有された第2の炭素材料としては、
第1の炭素材料中におけるリチウムが非水電解液におけ
る溶媒等と反応するのを抑制するため、X線広角回折に
より測定される(002)面の面間隔d002 が0.33
9〜0.390nmの範囲になったものを用いることが
好ましい。On the other hand, as the second carbon material containing fluorine which coats the first carbon material serving as the core,
In order to suppress the reaction of lithium in the first carbon material with a solvent or the like in the non-aqueous electrolyte, the plane distance d 002 of the (002) plane measured by X-ray wide-angle diffraction is 0.33.
It is preferable to use one having a thickness in the range of 9 to 0.390 nm.
【0012】そして、このようなフッ素が含有された第
2の炭素材料を、芯部となる第1の炭素材料の表面に設
けるにあたっては、例えば、芯部となる第1の炭素材料
を炭化可能な有機化合物中に浸漬させて取り出し、これ
を500〜1800℃程度の温度、好ましくは700〜
1400℃程度の温度で加熱処理して炭化させた後、こ
れをフッ素化させるようにする。When the second carbon material containing fluorine is provided on the surface of the first carbon material serving as the core, for example, the first carbon material serving as the core can be carbonized. Immersed in an organic compound and taken out, and then taken out at a temperature of about 500 to 1800 ° C., preferably 700 to 1800 ° C.
After carbonizing by heat treatment at a temperature of about 1400 ° C., it is fluorinated.
【0013】ここで、第2の炭素材料を設けるにあたっ
て使用する上記の有機化合物としては、例えば、ピッ
チ,タール,フェノールホムルアルデヒド樹脂,フルフ
リールアルコール樹脂,カーボンブラック,ポリ塩化ビ
ニリデン,セルロース等を溶融させたものや、これらを
メタノール,エタノール,ベンゼン,アセトン,トルエ
ン等の有機溶媒に溶解させた溶液等を使用できる。The organic compound used for providing the second carbon material may be, for example, pitch, tar, phenolformaldehyde resin, furfuryl alcohol resin, carbon black, polyvinylidene chloride, cellulose, etc. Or a solution in which these are dissolved in an organic solvent such as methanol, ethanol, benzene, acetone, and toluene.
【0014】また、上記のように炭化させたものをフッ
素化させる方法としては、例えば、高温でフッ素ガスと
反応させる方法を用いることができ、フッ素ガスと反応
させる温度としては、50〜400℃の範囲の温度が好
ましく、より好ましくは100〜250℃の範囲の温度
にする。As a method of fluorinating the carbonized material as described above, for example, a method of reacting with fluorine gas at a high temperature can be used, and the temperature of reacting with fluorine gas is 50 to 400 ° C. The temperature is preferably in the range of 100 to 250 ° C.
【0015】ここで、上記のようにして芯部となる第1
の炭素材料の表面に、フッ素が含有された第2の炭素材
料を設けるにあたり、フッ素が含有された第2の炭素材
料の量が少ないと、芯部となる第1の炭素材料の表面が
この第2の炭素材料によって十分に被覆されず、第1の
炭素材料中におけるリチウムが非水電解液における溶媒
等と反応するのを十分に抑制することができなくなる一
方、フッ素が含有された第2の炭素材料の量が多くなり
過ぎると、芯部となる第1の炭素材料を十分に利用する
ことができなくなる。このため、負極の全炭素材料中に
おける上記のフッ素が含有された第2の炭素材料の重量
比率を1〜20重量%の範囲にすることが好ましく、よ
り好ましくは5〜15重量%の範囲になるようにする。Here, as described above, the first core serving as the core is formed.
In providing the fluorine-containing second carbon material on the surface of the carbon material of (1), if the amount of the fluorine-containing second carbon material is small, the surface of the first carbon material serving as the core will While not sufficiently covered by the second carbon material, it is not possible to sufficiently suppress the reaction of lithium in the first carbon material with a solvent or the like in the non-aqueous electrolyte, while the second carbon containing the fluorine is not sufficiently covered. When the amount of the carbon material is too large, the first carbon material serving as the core cannot be sufficiently used. For this reason, the weight ratio of the above-mentioned fluorine-containing second carbon material in the total carbon material of the negative electrode is preferably in the range of 1 to 20% by weight, more preferably in the range of 5 to 15% by weight. To be.
【0016】そして、負極の全炭素材料中におけるフッ
素が含有された第2の炭素材料の重量比率を調整するに
あたっては、芯部となる第1の炭素材料を上記のような
有機化合物に浸漬させるにあたり、その浸漬時間や浸漬
回数を調整することにより制御することができる。In adjusting the weight ratio of the second carbon material containing fluorine in the total carbon material of the negative electrode, the first carbon material serving as the core is immersed in the organic compound as described above. Can be controlled by adjusting the immersion time and the number of immersions.
【0017】また、芯部となる第1の炭素材料の表面を
上記のフッ素が含有された第2の炭素材料で被覆するに
あたり、この第2の炭素材料中におけるフッ素の量が少
ないと、初期の充電時において、この第2の炭素材料の
表面にリチウムイオンの透過性に優れると共に安定なフ
ッ化リチウムの被膜が形成されなくなる一方、この第2
の炭素材料中におけるフッ素の量が多くなり過ぎると、
このフッ素が芯部となる第1の炭素材料中にも含有され
るようになって、芯部となる第1の炭素材料の結晶構造
に乱れが生じるようになる。このため、X線光電子分光
法によって求められる上記のフッ素が含有された第2の
炭素材料の表面における炭素に対するフッ素の原子比
(F/C)を0.01〜0.2の範囲にすることが好ま
しく、より好ましくは0.05〜0.1の範囲になるよ
うにする。When the surface of the first carbon material serving as the core is coated with the above-mentioned second carbon material containing fluorine, if the amount of fluorine in the second carbon material is small, the initial During the charging, the surface of the second carbon material has excellent lithium ion permeability and a stable lithium fluoride film is not formed.
If the amount of fluorine in the carbon material becomes too large,
The fluorine is also contained in the first carbon material serving as the core, so that the crystal structure of the first carbon material serving as the core is disturbed. For this reason, the atomic ratio of fluorine to carbon (F / C) on the surface of the fluorine-containing second carbon material determined by X-ray photoelectron spectroscopy is in the range of 0.01 to 0.2. Is more preferable, and more preferably in the range of 0.05 to 0.1.
【0018】さらに、フッ素を含有させる前の第2の炭
素材料にイオウを含有させると、この第2の炭素材料の
C−C結合に欠陥ができ、上記のようにフッ素化させて
フッ素を含有させる際にC−F結合ができやすくなる。Further, when sulfur is contained in the second carbon material before fluorine is contained, a defect is formed in the CC bond of the second carbon material, and the second carbon material is fluorinated as described above to contain fluorine. In this case, a C—F bond is easily formed.
【0019】ここで、この発明におけるリチウム二次電
池は、その負極に上記のような炭素材料を用いることを
特徴とするものであり、このリチウム二次電池において
使用する正極や非水電解質の種類等については特に限定
されず、従来より一般に使用されている公知のものを用
いることができる。Here, the lithium secondary battery of the present invention is characterized in that the above-mentioned carbon material is used for the negative electrode, and the type of the positive electrode and the non-aqueous electrolyte used in the lithium secondary battery is as follows. There is no particular limitation on the like, and known ones conventionally used generally can be used.
【0020】そして、この発明におけるリチウム二次電
池においては、その正極における正極材料として、リチ
ウムイオンを吸蔵,放出することができる公知の正極材
料を用いることができ、例えば、リチウムコバルト酸化
物LiCoO2 ,リチウムニッケル酸化物LiNi
O2 ,リチウムマンガン酸化物LiMn2 O4 等のリチ
ウム金属酸化物や、酸化クロム,酸化チタン,酸化コバ
ルト,五酸化バナジウム等の金属酸化物や、硫化チタ
ン,硫化モリブデン等の遷移金属のカルコゲン化合物等
を用いることができる。In the lithium secondary battery of the present invention, a known positive electrode material capable of inserting and extracting lithium ions can be used as the positive electrode material of the positive electrode. For example, a lithium cobalt oxide LiCoO 2 , Lithium nickel oxide LiNi
Chalcogen compounds of lithium metal oxides such as O 2 and lithium manganese oxide LiMn 2 O 4 , metal oxides such as chromium oxide, titanium oxide, cobalt oxide and vanadium pentoxide, and transition metals such as titanium sulfide and molybdenum sulfide Etc. can be used.
【0021】また、この発明におけるリチウム二次電池
において、非水電解質としては、非水系の溶媒に電解質
を溶解された公知の非水電解液等を用いることができ
る。In the lithium secondary battery according to the present invention, as the non-aqueous electrolyte, a known non-aqueous electrolytic solution or the like in which an electrolyte is dissolved in a non-aqueous solvent can be used.
【0022】ここで、この非水電解液に用いる非水系の
溶媒としては、例えば、エチレンカーボネート、プロピ
レンカーボネート、ブチレンカーボネート、ビニレンカ
ーボネート、シクロペンタノン、スルホラン、ジメチル
スルホラン、3−メチル−1,3−オキサゾリジン−2
−オン、γ−ブチロラクトン、ジメチルカーボネート、
ジエチルカーボネート、エチルメチルカーボネート、メ
チルプロピルカーボネート、ブチルメチルカーボネー
ト、エチルプロピルカーボネート、ブチルエチルカーボ
ネート、ジプロピルカーボネート、1,2−ジメトキシ
エタン、テトラヒドロフラン、2−メチルテトラヒドロ
フラン、1,3−ジオキソラン、酢酸メチル、酢酸エチ
ル等の有機溶媒を1種又は2種以上組み合わせて使用す
ることができる。The non-aqueous solvent used for the non-aqueous electrolyte is, for example, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, cyclopentanone, sulfolane, dimethyl sulfolane, 3-methyl-1,3 -Oxazolidine-2
-One, γ-butyrolactone, dimethyl carbonate,
Diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butyl ethyl carbonate, dipropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan, methyl acetate, Organic solvents such as ethyl acetate can be used alone or in combination of two or more.
【0023】また、この非水電解液において、上記の非
水系の溶媒に溶解させる電解質としては、例えば、Li
PF6 、LiBF4 、LiClO4 、LiCF3 S
O3 、LiAsF6 、LiN(CF3 SO2 )2 、Li
OSO2 (CF2 )3 CF3 等のリチウム化合物を使用
することができ、特にLiPF6 等のフッ素を含有する
電解質を用いることが好ましい。In this non-aqueous electrolyte, the electrolyte to be dissolved in the non-aqueous solvent is, for example, Li
PF 6 , LiBF 4 , LiClO 4 , LiCF 3 S
O 3 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , Li
A lithium compound such as OSO 2 (CF 2 ) 3 CF 3 can be used, and it is particularly preferable to use a fluorine-containing electrolyte such as LiPF 6 .
【0024】[0024]
【実施例】以下、この発明に係るリチウム二次電池につ
いて実施例を挙げて具体的に説明すると共に、この実施
例に係るリチウム二次電池においては保存特性が優れて
いることを、比較例を挙げて明らかにする。なお、この
発明におけるリチウム二次電池は、下記の実施例に示し
たものに限定されるものではなく、その要旨を変更しな
い範囲において適宜変更して実施できるものである。EXAMPLES Hereinafter, the lithium secondary battery according to the present invention will be described in detail with reference to examples, and the lithium secondary battery according to this example will be described as having excellent storage characteristics. I will clarify it. The lithium secondary battery according to the present invention is not limited to those shown in the following examples, but can be appropriately modified and implemented without changing the gist of the invention.
【0025】(実施例1)実施例1においては、下記の
ようにして作製した正極と負極とを用いると共に、下記
のようにして調製した非水電解液を用い、直径が14.
2mm,高さが50mmになった図1に示すような円筒
型のリチウム二次電池を作製した。Example 1 In Example 1, a positive electrode and a negative electrode prepared as described below were used, and a non-aqueous electrolyte prepared as described below was used.
A cylindrical lithium secondary battery as shown in FIG. 1 having a height of 2 mm and a height of 50 mm was produced.
【0026】[正極の作製]正極を作製するにあたって
は、正極材料として、リチウムコバルト酸化物LiCo
O2 の粉末を用い、このLiCoO2 の粉末と、導電剤
である炭素粉末と、結着剤であるポリフッ化ビニリデン
とを90:5:5の重量比で混合し、この混合物にN−
メチル−2−ピロリドンを加えてスラリー化させ、この
スラリーを正極集電体であるアルミニウム箔の両面にド
クターブレード法により塗布し、乾燥させた後、これを
圧延し、所定の幅に切断して正極を作製した。[Preparation of Positive Electrode] In preparing the positive electrode, a lithium cobalt oxide LiCo
Using O 2 powder, this LiCoO 2 powder, carbon powder as a conductive agent, and polyvinylidene fluoride as a binder were mixed at a weight ratio of 90: 5: 5, and N-
Methyl-2-pyrrolidone was added to form a slurry, and this slurry was applied to both sides of an aluminum foil as a positive electrode current collector by a doctor blade method, dried and then rolled and cut into a predetermined width. A positive electrode was produced.
【0027】[負極の作製]負極を作製するにあたって
は、芯部となる第1の炭素材料として、X線広角回折に
より測定される(002)面の面間隔d002 が0.33
56nmで、c軸方向の結晶子の大きさLcが100n
m以上になった天然黒鉛の粉末を用い、この天然黒鉛の
粉末を溶融状態のピッチ中に浸漬させた後、これを取り
出して乾燥させ、表面がピッチで被覆された天然黒鉛の
粉末を得た後、これを不活性雰囲気中において1100
℃で2時間焼成して、芯部となる上記の天然黒鉛の粉末
の表面を、この天然黒鉛より結晶性の低い炭素材料で被
覆した。[Preparation of Negative Electrode] In preparing the negative electrode, as the first carbon material serving as the core, the (002) plane spacing d 002 measured by X-ray wide-angle diffraction was 0.33.
At 56 nm, the crystallite size Lc in the c-axis direction is 100 n
m or more, and after immersing the natural graphite powder in a molten pitch, taking out and drying the powder to obtain a natural graphite powder whose surface is covered with the pitch. Later, this is carried out in an inert atmosphere for 1100
After baking at 2 ° C. for 2 hours, the surface of the above-mentioned natural graphite powder to be a core was covered with a carbon material having a lower crystallinity than the natural graphite.
【0028】そして、上記のように芯部となる天然黒鉛
の粉末の表面を結晶性の低い炭素材料で被覆したものを
100℃の温度条件で10分間フッ素ガスと反応させ
て、上記の結晶性の低い炭素材料にフッ素を含有させ、
芯部となる天然黒鉛の粉末の表面を、この天然黒鉛より
結晶性が低くかつフッ素が含有された第2の炭素材料で
被覆した炭素材料を得た。Then, the surface of the natural graphite powder serving as the core, which is coated with a low-crystalline carbon material as described above, is reacted with fluorine gas at a temperature of 100 ° C. for 10 minutes to obtain the above-mentioned crystallinity. Low-carbon material containing fluorine,
A carbon material was obtained in which the surface of the natural graphite powder serving as the core was coated with a second carbon material having a lower crystallinity than the natural graphite and containing fluorine.
【0029】ここで、天然黒鉛を含めた負極の全炭素材
料に対する上記のフッ素が含有された第2の炭素材料の
重量比率を求めたところ、その重量比率は10重量%に
なっており、またX線広角回折によって測定されるフッ
素が含有された第2の炭素材料における(002)面の
面間隔d002 は0.342nmであった。Here, when the weight ratio of the above-mentioned fluorine-containing second carbon material to the total carbon material of the negative electrode including the natural graphite was determined, the weight ratio was 10% by weight. The plane distance d 002 of the (002) plane in the second carbon material containing fluorine measured by X-ray wide-angle diffraction was 0.342 nm.
【0030】また、X線光電子分光法によって上記のフ
ッ素が含有された第2の炭素材料の表面における炭素に
対するフッ素の原子比(F/C)を求めたところ、この
原子比(F/C)は0.05であった。The atomic ratio of fluorine to carbon (F / C) on the surface of the fluorine-containing second carbon material was determined by X-ray photoelectron spectroscopy. Was 0.05.
【0031】そして、上記のようにして得た炭素材料と
結着剤であるポリフッ化ビニリデンとを90:10の重
量比で混合し、この混合物にN−メチル−2−ピロリド
ンを加えてスラリー化させ、このスラリーを負極集電体
である銅箔の両面にドクターブレード法により塗布し、
乾燥させた後、これを圧延し、所定の幅に切断して負極
を作製した。Then, the carbon material obtained as described above and polyvinylidene fluoride as a binder are mixed at a weight ratio of 90:10, and N-methyl-2-pyrrolidone is added to the mixture to form a slurry. This slurry is applied to both sides of a copper foil as a negative electrode current collector by a doctor blade method,
After drying, this was rolled and cut into a predetermined width to produce a negative electrode.
【0032】[非水電解液の調製]非水電解液を調製す
るにあたっては、溶媒としてエチレンカーボネートとジ
エチルカーボネートとを1:1の体積比率で混合させた
混合溶媒を用い、この混合溶媒に、電解質としてヘキサ
フルオロリン酸リチウムLiPF6 を1mol/lの濃
度になるように溶解させて非水電解液を調製した。[Preparation of Non-Aqueous Electrolyte] In preparing a non-aqueous electrolyte, a mixed solvent of ethylene carbonate and diethyl carbonate mixed at a volume ratio of 1: 1 was used as a solvent. Lithium hexafluorophosphate LiPF 6 was dissolved as an electrolyte to a concentration of 1 mol / l to prepare a non-aqueous electrolyte.
【0033】[電池の作製]電池を作製するにあたって
は、図1に示すように、上記のようにして作製した正極
1と負極2との間に、セパレータ3としてリチウムイオ
ン透過性のポリプロピレン製の微多孔膜を介在させ、こ
れらをスパイラル状に巻いて電池缶4内に収容させた
後、この電池缶4内に上記のようにして作製した非水電
解液を注液して封口し、正極1を正極リード5を介して
正極外部端子6に接続させると共に負極2を負極リード
7を介して電池缶4に接続させ、正極外部端子6と電池
缶4とを絶縁パッキン8により電気的に分離させた。[Preparation of Battery] In preparing a battery, as shown in FIG. 1, a separator 3 made of lithium ion-permeable polypropylene was placed between the positive electrode 1 and the negative electrode 2 prepared as described above. After a microporous membrane is interposed and wound in a spiral shape and accommodated in the battery can 4, the non-aqueous electrolyte prepared as described above is injected into the battery can 4 and sealed. 1 is connected to a positive electrode external terminal 6 via a positive electrode lead 5, and the negative electrode 2 is connected to a battery can 4 via a negative electrode lead 7, and the positive external terminal 6 and the battery can 4 are electrically separated by an insulating packing 8. I let it.
【0034】(比較例1)比較例1においては、上記の
実施例1のリチウム二次電池における負極の作製におい
て、負極における炭素材料として、上記の実施例1にお
ける第1の炭素材料と同じ、(002)面の面間隔d
002 が0.3356nmで、c軸方向の結晶子の大きさ
Lcが100nm以上になった天然黒鉛の粉末を用い、
この天然黒鉛の粉末の表面を被覆させないようにした。(Comparative Example 1) In Comparative Example 1, the same carbon material as that of the first carbon material in Example 1 was used as the carbon material in the negative electrode in the lithium secondary battery of Example 1 described above. (002) Surface distance d
002 is 0.3356 nm, and the size Lc of the crystallite in the c-axis direction is 100 nm or more.
The surface of the natural graphite powder was not coated.
【0035】そして、この天然黒鉛の粉末をそのまま負
極に使用し、それ以外については、上記の実施例1の場
合と同様にして、負極を作製すると共に、この負極を用
いて比較例1のリチウム二次電池を作製した。Then, the natural graphite powder was used for the negative electrode as it was, and in the other respects, a negative electrode was prepared in the same manner as in Example 1 described above, and the lithium of Comparative Example 1 was used using the negative electrode. A secondary battery was manufactured.
【0036】(比較例2)比較例2においては、上記の
実施例1のリチウム二次電池における負極の作製におい
て、上記の実施例1の場合と同様にして、(002)面
の面間隔d002 が0.3356nmで、c軸方向の結晶
子の大きさLcが100nm以上になった天然黒鉛の粉
末からなる第1の炭素材料の表面をピッチで被覆した
後、これを不活性雰囲気中において1100℃で2時間
焼成して、上記の天然黒鉛の粉末からなる第1の炭素材
料の表面を、この第1の炭素材料より結晶性の低い炭素
材料で被覆する一方、これをフッ素ガスと反応させない
で、上記の結晶性の低い炭素材料にフッ素を含有させな
いようにした。(Comparative Example 2) In Comparative Example 2, in the production of the negative electrode in the lithium secondary battery of Example 1 described above, the (002) plane distance d 002 is 0.3356 nm, and the size Lc of the crystallite in the c-axis direction is 100 nm or more. After the surface of the first carbon material made of natural graphite powder is coated at a pitch, this is coated in an inert atmosphere. By baking at 1100 ° C. for 2 hours, the surface of the first carbon material made of the above natural graphite powder is coated with a carbon material having a lower crystallinity than the first carbon material, and this is reacted with fluorine gas. Instead, the carbon material having low crystallinity was not allowed to contain fluorine.
【0037】そして、上記のように芯部となる天然黒鉛
の粉末からなる第1の炭素材料の表面をフッ素が含有さ
れていない結晶性の低い第2の炭素材料で被覆したもの
を負極に使用し、それ以外については、上記の実施例1
の場合と同様にして、負極を作製すると共に、この負極
を用いて比較例2のリチウム二次電池を作製した。Then, the surface of the first carbon material composed of natural graphite powder as the core as described above coated with the second carbon material having a low crystallinity containing no fluorine is used for the negative electrode. Other than that, in the above-described first embodiment,
In the same manner as in the above case, a negative electrode was produced, and a lithium secondary battery of Comparative Example 2 was produced using the negative electrode.
【0038】(比較例3)比較例3においては、上記の
実施例1のリチウム二次電池における負極の作製におい
て、上記の実施例1における第1の炭素材料と同じ、
(002)面の面間隔d002 が0.3356nmで、c
軸方向の結晶子の大きさLcが100nm以上になった
天然黒鉛の粉末を、100℃の温度条件で10分間フッ
素ガスと反応させ、上記の天然黒鉛の粉末の表面にフッ
素を含有させるようにした。(Comparative Example 3) In Comparative Example 3, the same method as in the first carbon material in Example 1 described above was used to fabricate the negative electrode in the lithium secondary battery of Example 1 described above.
The (002) plane spacing d 002 is 0.3356 nm, and c
A natural graphite powder having a crystallite size Lc of 100 nm or more in the axial direction is reacted with fluorine gas at a temperature of 100 ° C. for 10 minutes so that the surface of the natural graphite powder contains fluorine. did.
【0039】そして、このようにして天然黒鉛の粉末の
表面にフッ素が含有されたものを負極に使用し、それ以
外については、上記の実施例1の場合と同様にして、負
極を作製すると共に、この負極を用いて比較例3のリチ
ウム二次電池を作製した。The powder of natural graphite thus containing fluorine on the surface is used for the negative electrode, and otherwise the same procedure as in Example 1 is carried out to produce the negative electrode. Using this negative electrode, a lithium secondary battery of Comparative Example 3 was produced.
【0040】(比較例4)比較例4においては、上記の
実施例1のリチウム二次電池における負極の作製におい
て、芯部となる第1の炭素材料として、X線広角回折に
より測定される(002)面の面間隔d002 が0.34
4nmで、c軸方向の結晶子の大きさLcが3.2nm
になったコークスの粉末を用い、それ以外は、上記の実
施例1の場合と同様にして、このコークスの粉末からな
る芯部の表面を、フッ素が含有された第2の炭素材料で
被覆した。Comparative Example 4 In Comparative Example 4, in the production of the negative electrode in the lithium secondary battery of Example 1 described above, the first carbon material serving as the core was measured by X-ray wide-angle diffraction. 002) The plane spacing d 002 is 0.34
4 nm, the crystallite size Lc in the c-axis direction is 3.2 nm
The surface of the core portion made of the coke powder was coated with a second carbon material containing fluorine in the same manner as in Example 1 except that the coke powder was used. .
【0041】ここで、上記のようにして得た炭素材料に
おいては、芯部となるコークスの粉末よりも、この表面
を被覆しているフッ素が含有された第2の炭素材料の方
が結晶性が高くなっていた。Here, in the carbon material obtained as described above, the fluorine-containing second carbon material covering this surface is more crystalline than the core coke powder. Was higher.
【0042】そして、上記のようにコークスの粉末から
なる芯部の表面が、フッ素が含有された第2の炭素材料
で被覆されたものを負極に使用し、それ以外について
は、上記の実施例1の場合と同様にして、負極を作製す
ると共に、この負極を用いて比較例4のリチウム二次電
池を作製した。The core having the surface made of the coke powder coated with the second carbon material containing fluorine is used for the negative electrode as described above. A negative electrode was produced in the same manner as in Example 1, and a lithium secondary battery of Comparative Example 4 was produced using the negative electrode.
【0043】次に、上記のようにして作製した実施例1
及び比較例1〜4の各リチウム二次電池について、それ
ぞれ75mAの定電流で電池電圧が4.2Vになるまで
充電した後、75mAの定電流で電池電圧が2.7Vに
なるまで放電させて、保存前の放電容量Qoを測定し
た。Next, Example 1 manufactured as described above was used.
For each of the lithium secondary batteries of Comparative Examples 1 to 4, the battery was charged at a constant current of 75 mA until the battery voltage reached 4.2 V, and then discharged at a constant current of 75 mA until the battery voltage reached 2.7 V. The discharge capacity Qo before storage was measured.
【0044】次いで、上記の各リチウム二次電池を、そ
れぞれ75mAの定電流で電池電圧が4.2Vになるま
で充電した後、25℃の恒温槽内で30日間保存した
後、75mAの定電流で電池電圧が2.7Vになるまで
放電させて、保存後の放電容量Qaを測定し、下記の式
により、実施例1及び比較例1〜4の各リチウム二次電
池における自己放電率を算出し、その結果を下記の表1
に示した。Next, each of the above lithium secondary batteries was charged at a constant current of 75 mA until the battery voltage reached 4.2 V, stored in a thermostat at 25 ° C. for 30 days, and then charged at a constant current of 75 mA. To discharge the battery voltage to 2.7 V, measure the discharge capacity Qa after storage, and calculate the self-discharge rate in each of the lithium secondary batteries of Example 1 and Comparative Examples 1 to 4 by the following equation. And the results are shown in Table 1 below.
It was shown to.
【0045】 自己放電率(%)=[(Qo−Qa)/Qo]×100Self-discharge rate (%) = [(Qo−Qa) / Qo] × 100
【0046】[0046]
【表1】 [Table 1]
【0047】この結果から明らかなように、結晶性の高
い天然黒鉛の粉末を用いた芯部となる第1の炭素材料の
表面を、この第1の炭素材料より結晶性が低くかつフッ
素が含有された第2の炭素材料で被覆したものを負極に
使用した実施例1のリチウム二次電池は、結晶性の高い
天然黒鉛の粉末をそのまま負極に使用した比較例1のリ
チウム二次電池や、結晶性の高い天然黒鉛の粉末を用い
た芯部となる第1の炭素材料の表面を、フッ素が含有さ
れていない結晶性の低い第2の炭素材料で被覆したもの
を負極に使用した比較例2のリチウム二次電池や、結晶
性の高い天然黒鉛の粉末の表面をフッ素を含有させたも
のを負極に使用した比較例3のリチウム二次電池や、結
晶性の低いコークスの粉末を用いた芯部となる第1の炭
素材料の表面を、この第1の炭素材料より結晶性の高く
かつフッ素が含有された第2の炭素材料で被覆したもの
を負極に使用した比較例4のリチウム二次電池に比べ
て、自己放電率が大きく低下して、保存特性が大きく向
上していた。As is apparent from the results, the surface of the first carbon material, which is a core using a powder of natural graphite having high crystallinity, has lower crystallinity than the first carbon material and contains fluorine. The lithium secondary battery of Example 1 using the negative electrode coated with the obtained second carbon material, the lithium secondary battery of Comparative Example 1 using natural graphite powder having high crystallinity as the negative electrode, Comparative example in which a surface of a first carbon material serving as a core portion using a powder of natural graphite having high crystallinity and coated with a low-crystallinity second carbon material containing no fluorine was used as a negative electrode. The lithium secondary battery of Comparative Example 3 and the lithium secondary battery of Comparative Example 3 in which the surface of natural graphite powder having high crystallinity and fluorine were used as the negative electrode, and the powder of coke having low crystallinity were used. The surface of the first carbon material serving as the core is In comparison with the lithium secondary battery of Comparative Example 4 in which a negative electrode was coated with a second carbon material having higher crystallinity than that of the first carbon material and containing fluorine, the self-discharge rate was significantly reduced. Thus, the storage characteristics were greatly improved.
【0048】(実施例2〜4)実施例2〜4において
は、上記の実施例1のリチウム二次電池における負極の
作製において、その芯部に用いる第1の炭素材料の種類
だけを変更させるようにした。(Examples 2 to 4) In Examples 2 to 4, only the type of the first carbon material used for the core of the negative electrode in the lithium secondary battery of Example 1 was changed. I did it.
【0049】ここで、上記の芯部に用いる第1の炭素材
料として、下記の表2に示すように、実施例2では面間
隔d002 が0.3360nm、c軸方向の結晶子の大き
さLcが60nmになった人造黒鉛の粉末を、実施例3
では面間隔d002 が0.3378nm、c軸方向の結晶
子の大きさLcが30nmになった人造黒鉛の粉末を、
実施例4では面間隔d002 が0.3388nm、c軸方
向の結晶子の大きさLcが20nmになった人造黒鉛の
粉末を用いるようにした。Here, as shown in Table 2 below, as the first carbon material used for the core portion, in Example 2, the plane distance d 002 was 0.3360 nm, and the crystallite size in the c-axis direction was An artificial graphite powder having an Lc of 60 nm was prepared in Example 3
In this example, artificial graphite powder having a plane spacing d 002 of 0.3378 nm and a crystallite size Lc in the c-axis direction of 30 nm was obtained.
In Example 4, an artificial graphite powder having a plane distance d 002 of 0.3388 nm and a crystallite size Lc in the c-axis direction of 20 nm was used.
【0050】その後は、上記の実施例1の場合と同様に
して、それぞれ上記の第1の炭素材料の表面を、この第
1の炭素材料より結晶性が低くかつフッ素が含有された
第2の炭素材料で被覆し、このような炭素材料を使用し
て各負極を作製すると共に、このように作製した各負極
を用いて実施例2〜4の各リチウム二次電池を作製し
た。Thereafter, in the same manner as in the first embodiment, the surface of the first carbon material is made to have a lower crystallinity and a second fluorine-containing second carbon material. Each of the negative electrodes was coated with a carbon material, and each of the negative electrodes was manufactured using such a carbon material, and each of the lithium secondary batteries of Examples 2 to 4 was manufactured using each of the negative electrodes thus manufactured.
【0051】また、上記のようにして作製した実施例2
〜4の各リチウム二次電池についても、上記の実施例1
のリチウム二次電池の場合と同様にして、保存前の放電
容量Qo及び保存後の放電容量Qaを測定して自己放電
率を求め、保存前の放電容量Qo及び自己放電率を下記
の表2に示した。Example 2 produced as described above
In each of the lithium secondary batteries of Examples 1 to 4,
In the same manner as in the case of the lithium secondary battery described above, the discharge capacity Qo before storage and the discharge capacity Qa after storage were measured to determine the self-discharge rate, and the discharge capacity Qo before storage and the self-discharge rate were calculated as shown in Table 2 below. It was shown to.
【0052】[0052]
【表2】 [Table 2]
【0053】この結果から明らかなように、負極におけ
る芯部の第1の炭素材料として、(002)面の面間隔
d002 が0.335nm〜0.338nmの範囲である
と共に、c軸方向の結晶子の大きさLcが30nm以上
になったものを用いた実施例1〜3の各リチウム二次電
池は、芯部の第1の炭素材料として、(002)面の面
間隔d002 が0.3388nm、c軸方向の結晶子の大
きさLcが20nmになったものを用いた実施例4のリ
チウム二次電池に比べて、放電容量が大きくなると共
に、自己放電率が低くなって保存特性が向上していた。
特に、負極における芯部の第1の炭素材料として、(0
02)面の面間隔d002 が0.3356nm、c軸方向
の結晶子の大きさLcが100nm以上になったものを
用いた実施例1のリチウム二次電池においては、放電容
量がさらに大きくなる一方、自己放電率がさらに低くな
っており、十分な放電容量が得られると共に、保存特性
にも優れていた。As is apparent from the results, as the first carbon material of the core in the negative electrode, the plane distance d 002 of the (002) plane is in the range of 0.335 nm to 0.338 nm, and the c-axis direction is In each of the lithium secondary batteries of Examples 1 to 3 using a crystallite having a crystallite size Lc of 30 nm or more, as the first carbon material of the core portion, the (002) plane spacing d 002 was 0. In comparison with the lithium secondary battery of Example 4 using a battery having a size of 3388 nm and a crystallite size Lc of 20 nm in the c-axis direction, the discharge capacity was increased, the self-discharge rate was reduced, and the storage characteristics were low. Had improved.
In particular, as the first carbon material of the core in the negative electrode, (0
02) surface plane spacing d 002 of 0.3356 nm, in a lithium secondary battery of Example 1 was used as the size Lc in the c-axis direction of the crystallite is equal to or greater than 100 nm, the discharge capacity is further increased On the other hand, the self-discharge rate was further reduced, a sufficient discharge capacity was obtained, and the storage characteristics were excellent.
【0054】(実施例5〜9)実施例5〜9において
は、上記の実施例1のリチウム二次電池における負極の
作製において、その芯部に用いる第1の炭素材料とし
て、上記の実施例1の場合と同じ、(002)面の面間
隔d002 が0.3356nm、c軸方向の結晶子の大き
さLcが100nm以上になった天然黒鉛の粉末を用い
る一方、この芯部の第1の炭素材料の表面を被覆する第
1の炭素材料より結晶性が低くかつフッ素が含有された
第2の炭素材料の種類を変更させたものを用いるように
した。(Examples 5 to 9) In Examples 5 to 9, in the production of the negative electrode in the lithium secondary battery of Example 1 described above, the first carbon material used for the core was used as the first carbon material. As in the case of No. 1, a natural graphite powder having a (002) plane spacing d 002 of 0.3356 nm and a crystallite size Lc in the c-axis direction of 100 nm or more is used. The second carbon material, which has lower crystallinity than the first carbon material covering the surface of the first carbon material and contains fluorine, is used.
【0055】ここで、実施例5においては、上記の実施
例1の場合と同様に、上記の天然黒鉛の粉末を溶融状態
のピッチ中に浸漬させ、これを取り出し乾燥させて、表
面がピッチで被覆された天然黒鉛の粉末を得た後、これ
を不活性雰囲気中において2800℃で2時間焼成し
て、芯部となる上記の天然黒鉛の粉末の表面を天然黒鉛
より結晶性の低い炭素材料で被覆し、その後は、上記の
実施例1の場合と同様にして、上記の結晶性の低い炭素
材料にフッ素を含有させ、芯部となる天然黒鉛の粉末の
表面を、この天然黒鉛より結晶性が低くかつフッ素が含
有された第2の炭素材料で被覆した炭素材料を得た。な
お、上記のフッ素が含有された第2の炭素材料における
(002)面の面間隔d002 は0.3358nmになっ
ていた。Here, in Example 5, as in Example 1 described above, the natural graphite powder was immersed in a pitch in a molten state, taken out and dried, and the surface was pitched. After obtaining the coated natural graphite powder, it is calcined at 2800 ° C. for 2 hours in an inert atmosphere, so that the surface of the natural graphite powder as a core part is a carbon material having a lower crystallinity than natural graphite. After that, in the same manner as in Example 1 described above, the carbon material having low crystallinity is made to contain fluorine, and the surface of the natural graphite powder serving as the core is crystallized from the natural graphite. Thus, a carbon material coated with a second carbon material having a low property and containing fluorine was obtained. Note that the plane distance d 002 of the (002) plane of the second carbon material containing fluorine was 0.3358 nm.
【0056】また、実施例6においては、上記の実施例
1の場合と同様に、上記の天然黒鉛の粉末を溶融状態の
ピッチ中に浸漬させ、これを取り出し乾燥させて、表面
がピッチで被覆された天然黒鉛の粉末を得た後、これを
不活性雰囲気中において2400℃で2時間焼成して、
芯部となる上記の天然黒鉛の粉末の表面を天然黒鉛より
結晶性の低い炭素材料で被覆し、その後は、上記の実施
例1の場合と同様にして、上記の結晶性の低い炭素材料
にフッ素を含有させ、芯部となる天然黒鉛の粉末の表面
を、この天然黒鉛より結晶性が低くかつフッ素が含有さ
れた第2の炭素材料で被覆した炭素材料を得た。なお、
上記のフッ素が含有された第2の炭素材料における(0
02)面の面間隔d002 は0.3372nmになってい
た。In Example 6, as in Example 1, the natural graphite powder was immersed in a molten pitch, taken out and dried, and the surface was coated with the pitch. After obtaining the obtained natural graphite powder, it is calcined at 2400 ° C. for 2 hours in an inert atmosphere,
The surface of the above-mentioned natural graphite powder to be the core is coated with a carbon material having lower crystallinity than natural graphite, and thereafter, in the same manner as in Example 1 described above, the carbon material having lower crystallinity is coated. A carbon material was obtained in which fluorine was contained and the surface of a natural graphite powder serving as a core was coated with a second carbon material having a lower crystallinity than the natural graphite and containing fluorine. In addition,
In the above-mentioned second carbon material containing fluorine, (0
Surface spacing d 002 of 02) plane was supposed to 0.3372nm.
【0057】また、実施例7においては、上記の実施例
1の場合と同様に、上記の天然黒鉛の粉末を溶融状態の
ピッチ中に浸漬させ、これを取り出し乾燥させて、表面
がピッチで被覆された天然黒鉛の粉末を得た後、これを
不活性雰囲気中において2000℃で2時間焼成して、
芯部となる上記の天然黒鉛の粉末の表面を天然黒鉛より
結晶性の低い炭素材料で被覆し、その後は、上記の実施
例1の場合と同様にして、上記の結晶性の低い炭素材料
にフッ素を含有させ、芯部となる天然黒鉛の粉末の表面
を、この天然黒鉛より結晶性が低くかつフッ素が含有さ
れた第2の炭素材料で被覆した炭素材料を得た。なお、
上記のフッ素が含有された第2の炭素材料における(0
02)面の面間隔d002 は0.3391nmになってい
た。In Example 7, as in Example 1 above, the natural graphite powder was immersed in a molten pitch, taken out and dried, and the surface was coated with the pitch. After obtaining the obtained natural graphite powder, it is calcined at 2000 ° C. for 2 hours in an inert atmosphere,
The surface of the above-mentioned natural graphite powder to be the core is coated with a carbon material having lower crystallinity than natural graphite, and thereafter, in the same manner as in Example 1 described above, the carbon material having lower crystallinity is coated. A carbon material was obtained in which fluorine was contained and the surface of a natural graphite powder serving as a core was coated with a second carbon material having a lower crystallinity than the natural graphite and containing fluorine. In addition,
In the above-mentioned second carbon material containing fluorine, (0
02) The plane spacing d 002 was 0.3391 nm.
【0058】また、実施例8においては、上記の天然黒
鉛の粉末を溶融された状態のフルフリルアルコール樹脂
中に浸漬させた後、これを取り出し乾燥させて、表面が
フルフリルアルコール樹脂で被覆された天然黒鉛の粉末
を得た後、これを不活性雰囲気中において1100℃で
2時間焼成して、芯部となる上記の天然黒鉛の粉末の表
面を結晶性の低い炭素材料で被覆し、その後は、上記の
実施例1の場合と同様にして、上記の結晶性の低い炭素
材料にフッ素を含有させ、芯部となる天然黒鉛の粉末の
表面を、この天然黒鉛より結晶性が低くかつフッ素が含
有された第2の炭素材料で被覆した炭素材料を得た。な
お、上記のフッ素が含有された第2の炭素材料における
(002)面の面間隔d002 は0.386nmになって
いた。In Example 8, the above natural graphite powder was immersed in a molten furfuryl alcohol resin, and then taken out and dried to coat the surface with the furfuryl alcohol resin. After the obtained natural graphite powder is obtained, it is fired in an inert atmosphere at 1100 ° C. for 2 hours, and the surface of the above-mentioned natural graphite powder to be a core is coated with a low-crystalline carbon material. In the same manner as in Example 1 described above, the carbon material having low crystallinity is made to contain fluorine, and the surface of the natural graphite powder serving as the core is made to have a lower crystallinity and a lower fluorine content than that of the natural graphite. A carbon material coated with the second carbon material containing is obtained. Note that the plane distance d 002 of the (002) plane of the second carbon material containing fluorine was 0.386 nm.
【0059】また、実施例9においては、上記の天然黒
鉛の粉末を溶融された状態のフルフリルアルコール樹脂
中に浸漬させた後、これを取り出し乾燥させて、表面が
フルフリルアルコール樹脂で被覆された天然黒鉛の粉末
を得た後、これを不活性雰囲気中において700℃で2
時間焼成して、芯部となる上記の天然黒鉛の粉末の表面
を結晶性の低い炭素材料で被覆し、その後は、上記の実
施例1の場合と同様にして、上記の結晶性の低い炭素材
料にフッ素を含有させ、芯部となる天然黒鉛の粉末の表
面を、この天然黒鉛より結晶性が低くかつフッ素が含有
された第2の炭素材料で被覆した炭素材料を得た。な
お、上記のフッ素が含有された第2の炭素材料における
(002)面の面間隔d002 は0.398nmになって
いた。In Example 9, the above natural graphite powder was immersed in a furfuryl alcohol resin in a molten state, and then taken out and dried to coat the surface with the furfuryl alcohol resin. After obtaining the natural graphite powder, it is heated at 700 ° C. for 2 hours in an inert atmosphere.
After baking for a time, the surface of the natural graphite powder to be the core is coated with a low-crystalline carbon material, and thereafter, the low-crystalline carbon powder is treated in the same manner as in Example 1 above. A carbon material was obtained in which the material contained fluorine, and the surface of a natural graphite powder serving as a core was coated with a second carbon material having lower crystallinity than the natural graphite and containing fluorine. The spacing d 002 of the (002) plane of the second carbon material containing fluorine was 0.398 nm.
【0060】そして、上記のようにして得た各炭素材料
を使用し、それ以外は、上記の実施例1の場合と同様に
して各負極を作製すると共に、このように作製した各負
極を用いて実施例5〜9の各リチウム二次電池を作製し
た。Then, each of the carbon materials obtained as described above was used, and other than that, each negative electrode was prepared in the same manner as in Example 1 above, and each of the negative electrodes thus prepared was used. Thus, each lithium secondary battery of Examples 5 to 9 was produced.
【0061】次いで、上記のようにして作製した実施例
5〜9の各リチウム二次電池についても、上記の実施例
1のリチウム二次電池の場合と同様にして、保存前の放
電容量Qo及び保存後の放電容量Qaを測定して自己放
電率を求め、その結果を下記の表3に示した。Next, with respect to each of the lithium secondary batteries of Examples 5 to 9 produced as described above, similarly to the case of the lithium secondary battery of Example 1 described above, the discharge capacity Qo before storage and the discharge capacity Qo before storage were obtained. The self-discharge rate was determined by measuring the discharge capacity Qa after storage, and the results are shown in Table 3 below.
【0062】[0062]
【表3】 [Table 3]
【0063】この結果から明らかなように、負極におい
て、芯部となる第1の炭素材料の表面を被覆する結晶性
が低くかつフッ素が含有された第2の炭素材料として、
その(002)面の面間隔d002 が0.339nm〜
0.390nmの範囲になったものを使用した実施例
1,7,8の各リチウム二次電池は、上記の第2の炭素
材料として、その(002)面の面間隔d002 が0.3
39nm未満になったものを使用した実施例5,6の各
リチウム二次電池や、上記の第2の炭素材料として、そ
の(002)面の面間隔d002 が0.390nmを越え
たものを使用した実施例9の各リチウム二次電池に比べ
て、自己放電率が低くなって、リチウム二次電池の保存
特性が向上していた。特に、上記の第2の炭素材料とし
て、その(002)面の面間隔d002 が0.3420n
mになったものを使用した実施例1のリチウム二次電池
においては、自己放電率がさらに低くなっており、保存
特性がさらに向上していた。As is clear from the results, in the negative electrode, as the second carbon material having low crystallinity and containing fluorine, which covers the surface of the first carbon material serving as the core,
The (002) plane distance d 002 is 0.339 nm or more.
In each of the lithium secondary batteries of Examples 1, 7, and 8 using a battery having a range of 0.390 nm, the (002) plane spacing d 002 of the second carbon material was 0.3.
Each of the lithium secondary batteries of Examples 5 and 6 using a battery having a thickness of less than 39 nm, and a second carbon material having a (002) plane spacing d 002 exceeding 0.390 nm. The self-discharge rate was lower than that of each of the lithium secondary batteries of Example 9 used, and the storage characteristics of the lithium secondary battery were improved. Particularly, as the second carbon material, the (002) plane spacing d 002 is 0.3420 n.
In the lithium secondary battery of Example 1 using the battery having the value of m, the self-discharge rate was further reduced, and the storage characteristics were further improved.
【0064】(実施例10〜15)実施例10〜15に
おいては、上記の実施例1のリチウム二次電池における
負極の作製において、その芯部に用いる第1の炭素材料
として、上記の実施例1の場合と同じ、(002)面の
面間隔d002 が0.3356nm、c軸方向の結晶子の
大きさLcが100nm以上になった天然黒鉛の粉末を
用いる一方、この芯部における第1の炭素材料の表面
を、この第1の炭素材料より結晶性が低くかつフッ素が
含有された第2の炭素材料で被覆させるにあたり、上記
の天然黒鉛の粉末を溶融状態のピッチ中に浸漬させる時
間を変更させて、天然黒鉛を含めた負極の全炭素材料に
対するフッ素が含有された第2の炭素材料の重量比率を
変更させるようにした。(Examples 10 to 15) In Examples 10 to 15, in the production of the negative electrode in the lithium secondary battery of Example 1 described above, the first carbon material used for the core was used as the first carbon material. As in the case of No. 1, a powder of natural graphite having a (002) plane spacing d 002 of 0.3356 nm and a crystallite size Lc in the c-axis direction of 100 nm or more is used. In coating the surface of the carbon material with a second carbon material having a lower crystallinity than that of the first carbon material and containing fluorine, the time for immersing the natural graphite powder in a pitch in a molten state Was changed to change the weight ratio of the second carbon material containing fluorine to the total carbon material of the negative electrode including the natural graphite.
【0065】ここで、実施例10〜15においては、天
然黒鉛を含めた負極の全炭素材料に対するフッ素が含有
された第2の炭素材料の重量比率を、下記の表4に示す
ように、実施例10では0.5重量%、実施例11では
1重量%、実施例12では5重量%、実施例13では1
5重量%、実施例14では20重量%、実施例15では
25重量%にし、それ以外は、上記の実施例1の場合と
同様にして、芯部となる第1の炭素材料の表面を、フッ
素が含有された結晶性の低い第2の炭素材料で被覆した
各炭素材料を作製した。In Examples 10 to 15, the weight ratio of the second carbon material containing fluorine to the total carbon material of the negative electrode including natural graphite was determined as shown in Table 4 below. 0.5 wt% in Example 10, 1 wt% in Example 11, 5 wt% in Example 12, 1 wt% in Example 13.
5% by weight, 20% by weight in Example 14, and 25% by weight in Example 15, except that the surface of the first carbon material serving as the core portion was the same as in Example 1 described above. Each carbon material coated with a fluorine-containing second carbon material having low crystallinity was produced.
【0066】そして、このように作製した各炭素材料を
使用し、それ以外は、上記の実施例1の場合と同様にし
て、各負極を作製すると共に、このように作製した各負
極を使用して実施例10〜15の各リチウム二次電池を
作製した。Then, each of the carbon materials produced in this manner was used, and in the other respects, each negative electrode was produced in the same manner as in Example 1 above, and each of the negative electrodes produced in this manner was used. Thus, each lithium secondary battery of Examples 10 to 15 was produced.
【0067】次いで、上記のようにして作製した実施例
10〜15の各リチウム二次電池についても、上記の実
施例1のリチウム二次電池の場合と同様にして、保存前
の放電容量Qo及び保存後の放電容量Qaを測定して自
己放電率を求め、その結果を下記の表4に示した。Next, with respect to each of the lithium secondary batteries of Examples 10 to 15 manufactured as described above, similarly to the case of the lithium secondary battery of Example 1, the discharge capacity Qo before storage and the discharge capacity Qo before storage were obtained. The self-discharge rate was determined by measuring the discharge capacity Qa after storage, and the results are shown in Table 4 below.
【0068】[0068]
【表4】 [Table 4]
【0069】この結果から明らかなように、負極におい
て、天然黒鉛からなる第1の炭素材料を含めた負極の全
炭素材料に対するフッ素が含有された第2の炭素材料の
重量比率が1〜20重量%の範囲になったものを使用し
た実施例1,11〜14の各リチウム二次電池は、負極
の全炭素材料に対するフッ素が含有された第2の炭素材
料の重量比率が0.5重量%になったものを使用した実
施例10のリチウム二次電池や、負極の全炭素材料に対
するフッ素が含有された第2の炭素材料の重量比率が2
5重量%になったものを使用した実施例15のリチウム
二次電池に比べて、自己放電率が低くなり、リチウム二
次電池の保存特性が向上していた。特に、負極の全炭素
材料に対するフッ素が含有された第2の炭素材料の重量
比率が5〜15重量%の範囲になったものを使用した実
施例1,12,13の各リチウム二次電池においては、
自己放電率がさらに低くなって、保存特性がさらに向上
していた。As is apparent from the results, in the negative electrode, the weight ratio of the second carbon material containing fluorine to the total carbon material of the negative electrode including the first carbon material made of natural graphite was 1 to 20% by weight. %, The weight ratio of the second carbon material containing fluorine to the total carbon material of the negative electrode was 0.5% by weight. And the weight ratio of the second carbon material containing fluorine to the total carbon material of the negative electrode was 2
The self-discharge rate was lower than that of the lithium secondary battery of Example 15 using 5% by weight, and the storage characteristics of the lithium secondary battery were improved. In particular, in each of the lithium secondary batteries of Examples 1, 12, and 13 in which the weight ratio of the second carbon material containing fluorine to the total carbon material of the negative electrode was in the range of 5 to 15% by weight. Is
The self-discharge rate was further reduced, and the storage characteristics were further improved.
【0070】(実施例16〜20)実施例16〜20に
おいては、上記の実施例1のリチウム二次電池における
負極の作製において、その芯部に用いる第1の炭素材料
として、上記の実施例1の場合と同じ、(002)面の
面間隔d002 が0.3356nm、c軸方向の結晶子の
大きさLcが100nm以上になった天然黒鉛の粉末を
用い、上記の実施例1の場合と同様にして、この芯部と
なる天然黒鉛の粉末の表面を、この天然黒鉛より結晶性
の低い炭素材料で被覆した後、これをフッ素ガスと反応
させてこの結晶性の低い炭素材料にフッ素を含有させる
条件だけを変更させ、それ以外は、上記の実施例1の場
合と同様にして、芯部となる天然黒鉛で構成された第1
の炭素材料の表面を、この天然黒鉛より結晶性が低くか
つフッ素が含有された第2の炭素材料で被覆した各炭素
材料を作製した。(Examples 16 to 20) In Examples 16 to 20, in the production of the negative electrode in the lithium secondary battery of Example 1 described above, the above-described Example was used as the first carbon material used for the core. As in the case of Example 1 above, a natural graphite powder having a (002) plane spacing d 002 of 0.3356 nm and a crystallite size Lc in the c-axis direction of 100 nm or more was used. In the same manner as described above, the surface of the natural graphite powder serving as the core is coated with a carbon material having a lower crystallinity than the natural graphite, and then is reacted with fluorine gas to form a fluorine on the carbon material having a low crystallinity. Is changed only in the same conditions as in Example 1 except that the first material composed of natural graphite as a core portion is changed.
The surface of the carbon material was coated with a second carbon material having a lower crystallinity than that of the natural graphite and containing fluorine.
【0071】そして、上記のように芯部となる天然黒鉛
の粉末の表面を、この天然黒鉛より結晶性の低い炭素材
料で被覆したものをフッ素ガスと反応させて、結晶性の
低い炭素材料にフッ素を含有させるにあたり、実施例1
6では50℃で5分間フッ素ガスと反応させるように
し、実施例17では50℃で10分間フッ素ガスと反応
させるようにし、実施例18では250℃で10分間フ
ッ素ガスと反応させるようにし、実施例19では400
℃で10分間フッ素ガスと反応させるようにし、実施例
20では500℃で10分間フッ素ガスと反応させるよ
うにした。Then, as described above, the surface of the natural graphite powder serving as the core is coated with a carbon material having a lower crystallinity than that of the natural graphite and reacted with fluorine gas to form a carbon material having a low crystallinity. Example 1 for containing fluorine
In Example 6, the reaction was performed at 50 ° C. for 5 minutes with fluorine gas. In Example 17, the reaction was performed at 50 ° C. for 10 minutes with fluorine gas. In Example 18, the reaction was performed at 250 ° C. for 10 minutes with fluorine gas. 400 in Example 19
It was made to react with fluorine gas at 10 ° C. for 10 minutes, and in Example 20, it was made to react with fluorine gas at 500 ° C. for 10 minutes.
【0072】ここで、上記のようにフッ素ガスと反応さ
せて、結晶性の低い炭素材料にフッ素を含有させた後、
それぞれX線光電子分光法によって上記のフッ素が含有
された第2の炭素材料の表面における炭素に対するフッ
素の原子比(F/C)を求めたところ、下記の表5に示
すように、上記の原子比(F/C)の値が、実施例16
では0.005、実施例17では0.01、実施例18
では0.1、実施例19では0.2、実施例20では
0.5になっていた。Here, after reacting with the fluorine gas as described above to make the carbon material having low crystallinity contain fluorine,
When the atomic ratio of fluorine to carbon (F / C) on the surface of the second carbon material containing fluorine was determined by X-ray photoelectron spectroscopy, as shown in Table 5 below, The value of the ratio (F / C) was determined in Example 16.
0.005 in Example 17, 0.01 in Example 17, Example 18
Was 0.1 in Example 19, 0.2 in Example 19, and 0.5 in Example 20.
【0073】そして、上記のように作製した各炭素材料
を使用し、それ以外は、上記の実施例1の場合と同様に
して、各負極を作製すると共に、このように作製した各
負極を使用して実施例16〜20の各リチウム二次電池
を作製した。Then, each of the carbon materials prepared as described above was used, and other than that, each negative electrode was prepared in the same manner as in Example 1 above, and each of the negative electrodes thus prepared was used. Thus, each lithium secondary battery of Examples 16 to 20 was produced.
【0074】次いで、上記のようにして作製した実施例
16〜20の各リチウム二次電池についても、上記の実
施例1のリチウム二次電池の場合と同様にして、保存前
の放電容量Qo及び保存後の放電容量Qaを測定して自
己放電率を求め、その結果を下記の表5に示した。Next, with respect to each of the lithium secondary batteries of Examples 16 to 20 manufactured as described above, similarly to the case of the lithium secondary battery of Example 1, the discharge capacity Qo before storage and the discharge capacity Qo before storage were obtained. The self-discharge rate was determined by measuring the discharge capacity Qa after storage, and the results are shown in Table 5 below.
【0075】[0075]
【表5】 [Table 5]
【0076】この結果から明らかなように、負極におい
て、芯部となる第1の炭素材料の表面を被覆した第2の
炭素材料の表面における炭素に対するフッ素の原子比
(F/C)が0.01〜0.2の範囲になったものを使
用した実施例1,17〜19の各リチウム二次電池は、
上記の第2の炭素材料の表面における炭素に対するフッ
素の原子比(F/C)が0.005になったものを負極
に使用した実施例16のリチウム二次電池や、上記の第
2の炭素材料の表面における炭素に対するフッ素の原子
比(F/C)が0.5になったものを使用した実施例2
0のリチウム二次電池に比べて、自己放電率が低くな
り、リチウム二次電池における保存特性が向上してい
た。特に、上記の第2の炭素材料の表面における炭素に
対するフッ素の原子比(F/C)が0.05〜0.1の
範囲になったものを使用した実施例1,18の各リチウ
ム二次電池においては、自己放電率がさらに低くなっ
て、保存特性がさらに向上していた。As is apparent from these results, in the negative electrode, the atomic ratio of fluorine to carbon (F / C) on the surface of the second carbon material covering the surface of the first carbon material serving as the core is 0.1. Each of the lithium secondary batteries of Examples 1 and 17 to 19 using the ones in the range of 01 to 0.2,
The lithium secondary battery of Example 16 using a material having an atomic ratio of fluorine to carbon (F / C) of 0.005 on the surface of the second carbon material of 0.005 or the second carbon material Example 2 using a material having an atomic ratio of fluorine to carbon (F / C) of 0.5 on the surface of the material
0, the self-discharge rate was lower than that of the lithium secondary battery, and the storage characteristics of the lithium secondary battery were improved. In particular, in each of the lithium secondary batteries of Examples 1 and 18, using the second carbon material having an atomic ratio of fluorine to carbon (F / C) in the surface range of 0.05 to 0.1 was used. In the battery, the self-discharge rate was further reduced, and the storage characteristics were further improved.
【0077】(実施例21)実施例21においては、上
記の実施例1のリチウム二次電池における負極の作製に
おいて、その芯部に用いる第1の炭素材料として、上記
の実施例1の場合と同じ、(002)面の面間隔d002
が0.3356nm、c軸方向の結晶子の大きさLcが
100nm以上になった天然黒鉛の粉末を用い、この天
然黒鉛の粉末をイオウを添加させた溶融状態のピッチ中
に浸漬させ、これを取り出して乾燥させた後、これを不
活性雰囲気中において1100℃で2時間焼成して、芯
部となる上記の天然黒鉛の粉末の表面を、この天然黒鉛
より結晶性が低くイオウが含有された炭素材料で被覆し
た。(Example 21) In Example 21, in the production of the negative electrode in the lithium secondary battery of Example 1 described above, the first carbon material used for the core was the same as that of Example 1 described above. Same (002) plane spacing d 002
Is 0.3356 nm, the size Lc of the crystallite in the c-axis direction is 100 nm or more. Natural graphite powder is used, and the natural graphite powder is immersed in a pitch in a molten state to which sulfur is added. After being taken out and dried, it was baked at 1100 ° C. for 2 hours in an inert atmosphere, so that the surface of the above-mentioned natural graphite powder to be a core had lower crystallinity than this natural graphite and contained sulfur. Coated with carbon material.
【0078】そして、上記のように結晶性が低くイオウ
が含有された炭素材料によって芯部となる天然黒鉛の粉
末の表面を被覆したものを、上記の実施例1の場合と同
様に、100℃の温度条件で10分間フッ素ガスと反応
させて、上記の結晶性が低くイオウが含有された炭素材
料にフッ素を含有させ、芯部となる天然黒鉛の粉末の表
面が、天然黒鉛より結晶性が低くかつフッ素とイオウと
を含有する第2の炭素材料で被覆された炭素材料を得
た。Then, the surface of the natural graphite powder, which is to be the core part, was coated with the carbon material having a low crystallinity and containing sulfur as described above at 100 ° C. in the same manner as in Example 1 above. Reacting with fluorine gas for 10 minutes under the temperature conditions described above to cause the carbon material having a low crystallinity and containing sulfur to contain fluorine, and the surface of the natural graphite powder serving as the core is more crystalline than the natural graphite. A low carbon material coated with a second carbon material containing fluorine and sulfur was obtained.
【0079】そして、このように作製した炭素材料を負
極に使用し、それ以外は、上記の実施例1の場合と同様
にして、負極を作製すると共に、この負極を使用して実
施例21のリチウム二次電池を作製した。Then, the carbon material produced in this manner was used for a negative electrode. Except for the other points, a negative electrode was produced in the same manner as in Example 1 described above, and the negative electrode of Example 21 was produced using this negative electrode. A lithium secondary battery was manufactured.
【0080】次いで、上記のようにして作製した実施例
21のリチウム二次電池についても、上記の実施例1の
リチウム二次電池の場合と同様にして、保存前の放電容
量Qo及び保存後の放電容量Qaを測定して自己放電率
を求め、その結果を下記の表6に示した。Next, with respect to the lithium secondary battery of Example 21 manufactured as described above, similarly to the case of the lithium secondary battery of Example 1 described above, the discharge capacity Qo before storage and the discharge capacity after storage were The self-discharge rate was determined by measuring the discharge capacity Qa, and the results are shown in Table 6 below.
【0081】[0081]
【表6】 [Table 6]
【0082】この結果から明らかなように、負極におい
て、芯部となる天然黒鉛の粉末の表面を、この天然黒鉛
より結晶性が低くかつフッ素とイオウとを含有する第2
の炭素材料で被覆させた炭素材料を使用した実施例21
のリチウム二次電池は、第2の炭素材料にイオウが含ま
れていない実施例1のリチウム二次電池よりも、さらに
自己放電率が低下して、優れた保存特性が得られた。As is apparent from the results, the surface of the natural graphite powder as the core in the negative electrode was made to have a lower crystallinity than that of the natural graphite and a second powder containing fluorine and sulfur.
Example 21 using a carbon material coated with a carbon material
In the lithium secondary battery of Example 1, the self-discharge rate was further reduced as compared with the lithium secondary battery of Example 1 in which no sulfur was contained in the second carbon material, and excellent storage characteristics were obtained.
【0083】なお、上記の各実施例においては、直径が
14.2mm,高さが50mmになった円筒型のリチウ
ム二次電池について説明したが、リチウム二次電池の形
状や大きさ等については特に限定されず、扁平なコイン
形や、角形状等の種々の形状になったリチウム二次電池
においても同様の効果が得られる。In each of the above embodiments, a cylindrical lithium secondary battery having a diameter of 14.2 mm and a height of 50 mm has been described. However, the shape and size of the lithium secondary battery are not limited. There is no particular limitation, and similar effects can be obtained in lithium secondary batteries having various shapes such as a flat coin shape and a square shape.
【0084】[0084]
【発明の効果】以上詳述したように、この発明における
リチウム二次電池においては、負極における炭素材料と
して、フッ素が含有されていない芯部となる第1の炭素
材料の表面を、この芯部となる第1の炭素材料より結晶
性が低くかつフッ素が含有された第2の炭素材料で被覆
したものを用いるようにしたため、初期の充電時におい
て、第1の炭素材料を被覆している上記の結晶性が低く
かつフッ素が含有された第2の炭素材料の表面に、リチ
ウムイオンの透過性に優れると共に安定なフッ化リチウ
ムの被膜が形成されるようになり、また結晶性の高い第
1の炭素材料にフッ素が含有されていないため、この第
1の炭素材料の結晶構造に乱れが生じるということがな
かった。As described above in detail, in the lithium secondary battery according to the present invention, the surface of the first carbon material which does not contain fluorine is used as the carbon material in the negative electrode. Since the first carbon material is coated with a second carbon material having lower crystallinity and containing fluorine than the first carbon material, the first carbon material coated with the first carbon material at the time of initial charging is used. The second carbon material, which has low crystallinity and contains fluorine, has a stable lithium fluoride film having excellent lithium ion permeability and a high crystallinity. Since no carbon material contained fluorine, the crystal structure of the first carbon material was not disturbed.
【0085】この結果、この発明におけるリチウム二次
電池においては、充電状態で保存した場合において、上
記の結晶性の高い第1の炭素材料中におけるリチウムが
非水電解液における溶媒等と反応するのが抑制され、電
池容量が低下するのが防止されて、リチウム二次電池に
おける保存特性が大きく向上した。As a result, in the lithium secondary battery of the present invention, when stored in a charged state, the lithium in the first carbon material having high crystallinity reacts with the solvent in the non-aqueous electrolyte. And the battery capacity was prevented from lowering, and the storage characteristics of the lithium secondary battery were greatly improved.
【図1】この発明の実施例及び比較例において作製した
リチウム二次電池の概略断面図である。FIG. 1 is a schematic sectional view of a lithium secondary battery produced in an example of the present invention and a comparative example.
1 正極 2 負極 1 Positive electrode 2 Negative electrode
フロントページの続き (72)発明者 喜田 佳典 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 船橋 淳浩 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H029 AJ04 AK02 AK03 AK05 AL06 AM03 AM04 AM05 AM07 DJ16 HJ01 HJ02 HJ13 5H050 AA09 BA17 CA01 CA02 CA08 CA09 CB07 DA03 EA24 FA17 FA18 HA01 HA02 HA13 Continued on the front page (72) Inventor Yoshinori Kida 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Inside Sanyo Electric Co., Ltd. (72) Inventor Atsuhiro Funabashi 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Inside Sanyo Electric Co., Ltd. (72) Inventor Toshiyuki Noma 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Prefecture Inside Sanyo Electric Co., Ltd. (72) Inventor Ikuo Yonezu 2-chome, Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. F term (reference) 5H029 AJ04 AK02 AK03 AK05 AL06 AM03 AM04 AM05 AM07 DJ16 HJ01 HJ02 HJ13 5H050 AA09 BA17 CA01 CA02 CA08 CA09 CB07 DA03 EA24 FA17 FA18 HA01 HA02 HA13
Claims (6)
電解質とを備えたリチウム二次電池において、上記の負
極における炭素材料として、フッ素が含有されていない
芯部となる第1の炭素材料の表面を、この芯部となる第
1の炭素材料より結晶性が低くかつフッ素が含有された
第2の炭素材料で被覆したものを用いたことを特徴とす
るリチウム二次電池。1. A lithium secondary battery comprising a positive electrode, a negative electrode using a carbon material, and a non-aqueous electrolyte, wherein the carbon material in the negative electrode is a first core that does not contain fluorine. A lithium secondary battery, wherein a surface of a carbon material is coated with a second carbon material having lower crystallinity than the first carbon material serving as a core and containing fluorine.
おいて、上記の芯部となる第1の炭素材料における(0
02)面の面間隔d002 が0.335〜0.338nm
の範囲であり、かつc軸方向の結晶子の大きさLcが3
0nm以上である。2. The lithium secondary battery according to claim 1, wherein (0) in the first carbon material serving as the core portion.
02) The plane spacing d 002 is 0.335 to 0.338 nm
And the size Lc of the crystallite in the c-axis direction is 3
0 nm or more.
電池において、上記のフッ素が含有された第2の炭素材
料における(002)面の面間隔d002 が0.339〜
0.390nmの範囲である。3. The lithium secondary battery according to claim 1 or 2, wherein the fluorine-containing second carbon material has a (002) plane spacing d 002 of 0.339 to 0.339.
The range is 0.390 nm.
チウム二次電池において、負極の全炭素材料中における
上記のフッ素が含有された第2の炭素材料の重量比率が
1〜20重量%の範囲である。4. The lithium secondary battery according to claim 1, wherein the weight ratio of the fluorine-containing second carbon material in the total carbon material of the negative electrode is 1 to 20. % By weight.
チウム二次電池において、X線光電子分光法によって求
められる上記のフッ素が含有された第2の炭素材料の表
面における炭素に対するフッ素の原子比(F/C)が
0.01〜0.2の範囲である。5. The lithium secondary battery according to claim 1, wherein fluorine is determined by X-ray photoelectron spectroscopy with respect to carbon on the surface of the fluorine-containing second carbon material. Has an atomic ratio (F / C) of 0.01 to 0.2.
チウム二次電池において、上記のフッ素が含有された第
2の炭素材料中にさらにイオウが含有されている。6. The lithium secondary battery according to claim 1, wherein the fluorine-containing second carbon material further contains sulfur.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001073522A JP3973369B2 (en) | 2001-03-15 | 2001-03-15 | Lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001073522A JP3973369B2 (en) | 2001-03-15 | 2001-03-15 | Lithium secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002279983A true JP2002279983A (en) | 2002-09-27 |
JP3973369B2 JP3973369B2 (en) | 2007-09-12 |
Family
ID=18930935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001073522A Expired - Fee Related JP3973369B2 (en) | 2001-03-15 | 2001-03-15 | Lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3973369B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150044552A1 (en) * | 2012-03-29 | 2015-02-12 | Sanyo Electric Co., Ltd. | Nonaqueous electrolyte secondary battery |
US20180315998A1 (en) * | 2017-04-28 | 2018-11-01 | Toyota Jidosha Kabushiki Kaisha | Negative electrode active material particle, negative electrode, lithium-ion secondary battery, and production method of negative electrode active material particle |
JP2018195558A (en) * | 2017-05-16 | 2018-12-06 | パナソニックIpマネジメント株式会社 | Negative electrode active material for non-aqueous secondary battery and non-aqueous secondary battery |
JP2019057431A (en) * | 2017-09-21 | 2019-04-11 | トヨタ自動車株式会社 | Method for producing negative electrode sheet |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0831404A (en) * | 1994-07-18 | 1996-02-02 | Toray Ind Inc | Electrode and secondary battery using the same |
JPH09147865A (en) * | 1995-11-27 | 1997-06-06 | Sanyo Electric Co Ltd | Lithium secondary battery |
JPH09320596A (en) * | 1996-05-27 | 1997-12-12 | Sanyo Electric Co Ltd | Nonaqueous electrolytic battery |
JPH09320597A (en) * | 1996-05-27 | 1997-12-12 | Sanyo Electric Co Ltd | Nonaqueous electrolytic battery |
-
2001
- 2001-03-15 JP JP2001073522A patent/JP3973369B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0831404A (en) * | 1994-07-18 | 1996-02-02 | Toray Ind Inc | Electrode and secondary battery using the same |
JPH09147865A (en) * | 1995-11-27 | 1997-06-06 | Sanyo Electric Co Ltd | Lithium secondary battery |
JPH09320596A (en) * | 1996-05-27 | 1997-12-12 | Sanyo Electric Co Ltd | Nonaqueous electrolytic battery |
JPH09320597A (en) * | 1996-05-27 | 1997-12-12 | Sanyo Electric Co Ltd | Nonaqueous electrolytic battery |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150044552A1 (en) * | 2012-03-29 | 2015-02-12 | Sanyo Electric Co., Ltd. | Nonaqueous electrolyte secondary battery |
US9716268B2 (en) * | 2012-03-29 | 2017-07-25 | Sanyo Electric Co., Ltd. | Nonaqueous electrolyte secondary battery |
US20180315998A1 (en) * | 2017-04-28 | 2018-11-01 | Toyota Jidosha Kabushiki Kaisha | Negative electrode active material particle, negative electrode, lithium-ion secondary battery, and production method of negative electrode active material particle |
CN108807874A (en) * | 2017-04-28 | 2018-11-13 | 丰田自动车株式会社 | The manufacturing method of negative electrode active material particle, cathode, lithium rechargeable battery and negative electrode active material particle |
JP2018190544A (en) * | 2017-04-28 | 2018-11-29 | トヨタ自動車株式会社 | Negative electrode active material particles, negative electrode, lithium ion secondary battery, and method for producing negative electrode active material particles |
CN108807874B (en) * | 2017-04-28 | 2021-01-12 | 丰田自动车株式会社 | Negative electrode active material particle, negative electrode, lithium ion secondary battery, and method for producing negative electrode active material particle |
US10944098B2 (en) | 2017-04-28 | 2021-03-09 | Toyota Jidosha Kabushiki Kaisha | Negative electrode active material particle, negative electrode, lithium-ion secondary battery, and production method of negative electrode active material particle |
JP2018195558A (en) * | 2017-05-16 | 2018-12-06 | パナソニックIpマネジメント株式会社 | Negative electrode active material for non-aqueous secondary battery and non-aqueous secondary battery |
JP2019057431A (en) * | 2017-09-21 | 2019-04-11 | トヨタ自動車株式会社 | Method for producing negative electrode sheet |
Also Published As
Publication number | Publication date |
---|---|
JP3973369B2 (en) | 2007-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6072688B2 (en) | Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery | |
JP5430920B2 (en) | Nonaqueous electrolyte secondary battery | |
JP3844733B2 (en) | Nonaqueous electrolyte secondary battery | |
KR100955981B1 (en) | Nonaqueous electrolyte battery | |
JP5070753B2 (en) | battery | |
JP5430849B2 (en) | Non-aqueous electrolyte battery | |
JP4412778B2 (en) | Polymer electrolyte battery | |
WO2014049964A1 (en) | Nonaqueous electrolyte secondary battery and positive electrode active material for nonaqueous electrolyte secondary batteries | |
JP2021501454A (en) | Lithium secondary battery with improved high temperature storage characteristics | |
JP2004139743A (en) | Nonaqueous electrolyte secondary battery | |
JP2008300180A (en) | Nonaqueous electrolyte secondary battery | |
JP5813736B2 (en) | Non-aqueous electrolyte battery | |
JP5546787B2 (en) | Non-aqueous electrolyte battery | |
JP2016031881A (en) | Nonaqueous electrolyte secondary battery | |
KR102274784B1 (en) | positive material having surface coated positive active material for lithium secondary battery, preparation method thereof and lithium secondary battery comprising the same | |
JP2005093414A (en) | Lithium cell | |
JP2008311211A (en) | Nonaqueous electrolyte secondary battery | |
WO2022004696A1 (en) | Sulfur-modified polyacrylonitrile, electrode active material containing same, secondary battery electrode containing said electrode active material, manufacturing method for said electrode, and nonaqueous electrolyte secondary battery using said electrode | |
JP4436611B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3973369B2 (en) | Lithium secondary battery | |
JP2022512443A (en) | Positive electrode active material for lithium secondary batteries and lithium secondary batteries containing them | |
JP2008016316A (en) | Nonaqueous electrolyte secondary battery | |
JP3825571B2 (en) | Non-aqueous electrolyte battery | |
JPH09320596A (en) | Nonaqueous electrolytic battery | |
JP3619702B2 (en) | Lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041111 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070206 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070402 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070515 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070612 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100622 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110622 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110622 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120622 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130622 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |