[go: up one dir, main page]

JP2002277083A - refrigerator - Google Patents

refrigerator

Info

Publication number
JP2002277083A
JP2002277083A JP2001073755A JP2001073755A JP2002277083A JP 2002277083 A JP2002277083 A JP 2002277083A JP 2001073755 A JP2001073755 A JP 2001073755A JP 2001073755 A JP2001073755 A JP 2001073755A JP 2002277083 A JP2002277083 A JP 2002277083A
Authority
JP
Japan
Prior art keywords
cooling
evaporator
compartment
refrigerator
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001073755A
Other languages
Japanese (ja)
Other versions
JP4608790B2 (en
Inventor
Toshikazu Sakai
寿和 境
Masaaki Tanaka
正昭 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2001073755A priority Critical patent/JP4608790B2/en
Publication of JP2002277083A publication Critical patent/JP2002277083A/en
Application granted granted Critical
Publication of JP4608790B2 publication Critical patent/JP4608790B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】 【課題】 蒸発温度の異なる複数の蒸発器を有し、それ
らの蒸発器を切り替えて冷却を行う冷却サイクルを用い
た冷凍冷蔵庫等において、蒸発器への冷媒の流入を遮断
した状態で圧縮機を運転(ポンプダウン)して冷媒回収
する場合に問題となる電力損失や耐久性低下を防止する
ことを目的とする。 【解決手段】 あらゆる条件下で冷凍室3の冷却を優先
して行い、冷蔵室2冷却時の蒸発温度に比べて冷凍室3
冷却時の蒸発温度が低くなる状態になってから冷却サイ
クルの切り替えを行うとともに、冷凍室冷却サイクルか
ら冷蔵室冷却サイクルに切り替える直前のみポンプダウ
ンを行う制御方法を用いることにより、ポンプダウンに
伴う電力損失や耐久性低下の問題を軽減することができ
る。
PROBLEM TO BE SOLVED: To block the flow of refrigerant into an evaporator in a refrigerator having a plurality of evaporators having different evaporation temperatures and using a cooling cycle for cooling by switching the evaporators. An object of the present invention is to prevent a power loss and a decrease in durability, which are problems when the compressor is operated (pump-down) in a state where the refrigerant is recovered and the refrigerant is recovered. SOLUTION: The cooling of the freezing room 3 is preferentially performed under all conditions, and the freezing room 3 is compared with the evaporation temperature at the time of cooling the freezing room 2.
By using a control method in which the cooling cycle is switched after the evaporating temperature at the time of cooling becomes low and the pump is reduced only immediately before switching from the freezing compartment cooling cycle to the refrigerator compartment cooling cycle, the power consumption associated with the pump down is reduced. The problem of loss and reduced durability can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍室と冷蔵室と
を互いに独立に冷却を行う冷却サイクルを有する冷蔵庫
の冷媒量不足の解消に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator having a cooling cycle for independently cooling a freezer compartment and a refrigerating compartment, thereby eliminating the shortage of refrigerant.

【0002】[0002]

【従来の技術】現在、地球温暖化防止の観点より冷凍冷
蔵庫等の冷凍装置の省エネルギー化が進められている。
従来、冷凍室と冷蔵室のように異なる温度で冷却する冷
凍冷蔵庫においては、単独の蒸発器を冷凍室温度以下ま
で下げて庫内空気と熱交換を行い、庫内の温度調整は熱
交換量で制御していた。これに対して、冷凍室と冷蔵室
の蒸発器を独立させて、2つの蒸発器を冷凍室温度と冷
蔵室温度で運転することにより、比較的圧縮比が低く理
論効率の高い冷蔵室冷却サイクルを利用して省エネルギ
ー化を図る試みが為されている。
2. Description of the Related Art At present, energy saving of refrigerating apparatuses such as refrigerators and refrigerators has been promoted from the viewpoint of prevention of global warming.
Conventionally, in refrigerators that cool at different temperatures, such as a freezer compartment and a refrigerator compartment, a single evaporator is cooled to a temperature lower than the freezer compartment temperature to exchange heat with the air in the refrigerator, and the temperature in the refrigerator is adjusted by the amount of heat exchange. Was controlled by. On the other hand, by operating the two evaporators at the freezing room temperature and the cold room temperature independently of the freezing room and the cold room evaporator, the cooling room cooling cycle with a relatively low compression ratio and high theoretical efficiency is achieved. Attempts have been made to achieve energy savings by using a computer.

【0003】例えば特開平58−88559号公報にお
いて、2つの蒸発器を切り替えて冷蔵室と冷凍室を交互
に冷却する冷却サイクルを有する冷蔵庫が提案されてい
る。また、2つの蒸発器を切り替える直前に蒸発器に滞
留した冷媒を回収して、循環冷媒量不足の問題を解消す
る方法が特開2000−266443号公報において提
案されている。以下、図面を参照しながら冷蔵室と冷凍
室を交互に冷却する冷却サイクルを用いた従来の冷蔵庫
の特徴について説明する。
For example, Japanese Patent Application Laid-Open No. 58-88559 discloses a refrigerator having a cooling cycle in which two evaporators are switched to alternately cool a refrigerator compartment and a freezer compartment. Further, Japanese Patent Application Laid-Open No. 2000-266443 proposes a method of recovering the refrigerant remaining in the evaporator immediately before switching between the two evaporators and solving the problem of the shortage of the circulating refrigerant. Hereinafter, features of a conventional refrigerator using a cooling cycle for alternately cooling a refrigerator compartment and a freezer compartment will be described with reference to the drawings.

【0004】従来の冷蔵庫のサイクル構成を図18に示
す。図18において、1は冷蔵庫、2は冷蔵室、3は冷
凍室、4は能力制御可能な圧縮機、5は凝縮器、6は流
路切替弁、7は冷蔵室2内に設置された第一の膨張機
構、8は冷蔵室2内に設置された第一の蒸発器、9は冷
蔵室2内に設置された冷蔵室2内に設置された第一のア
キュームレータ、10は冷凍室3内に設置された第二の
膨張機構、11は冷凍室3内に設置された第二の蒸発
器、12は冷凍室3内に設置された第二のアキュームレ
ータ、13は第二のアキュームレータ12の下流側に設
置された逆止弁、14は冷蔵室2および冷凍室3を形成
しながら外部と断熱する冷蔵庫箱体、15は圧縮機4と
凝縮器5と流路切替弁6が配置された機械室である。
FIG. 18 shows a cycle configuration of a conventional refrigerator. In FIG. 18, 1 is a refrigerator, 2 is a refrigerating room, 3 is a freezing room, 4 is a compressor whose capacity can be controlled, 5 is a condenser, 6 is a flow path switching valve, and 7 is a One expansion mechanism, 8 is a first evaporator installed in the refrigerator compartment 2, 9 is a first accumulator installed in the refrigerator compartment 2 installed in the refrigerator compartment 2, 10 is a freezer compartment 3 , A second evaporator installed in the freezing room 3, a second accumulator installed in the freezing room 3, and a downstream of the second accumulator 12. A check valve installed on the side, 14 is a refrigerator box that forms the refrigerator compartment 2 and the freezer compartment 3 and insulates the outside, and 15 is a machine in which the compressor 4, the condenser 5, and the flow path switching valve 6 are arranged. Room.

【0005】以上のように構成された従来の冷蔵庫につ
いて、以下その動作を説明する。
The operation of the conventional refrigerator configured as described above will be described below.

【0006】冷蔵室2を冷却する場合、凝縮器5から第
一の膨張機構7への流路が開となり、第二の膨張機構1
0への流路が閉となるように、流路切替弁6が動作す
る。そして、圧縮機4で圧縮された気体冷媒が凝縮器5
で凝縮液化し、第一の膨張機構7で減圧され、第一の蒸
発器8で蒸発する。このとき、第一の送風ファン16に
より循環している冷蔵室2内の空気が、第一の蒸発器8
と熱交換して冷蔵室2内が冷却される。第一の蒸発器8
で蒸発した冷媒は、第一のアキュームレータ9で残る液
体冷媒と分離され、気体冷媒が圧縮機4へ戻る。また、
冷凍室3内に設置された第二の蒸発器11内の圧力は第
一の蒸発器8より低くなるが、逆止弁13が閉状態とな
るため、圧縮機4へ還流する気体冷媒が第二の蒸発器1
1内に滞留することはない。
When the refrigerator compartment 2 is cooled, the flow path from the condenser 5 to the first expansion mechanism 7 is opened, and the second expansion mechanism 1 is opened.
The flow path switching valve 6 operates so that the flow path to 0 is closed. The gas refrigerant compressed by the compressor 4 is supplied to the condenser 5
, And is decompressed by the first expansion mechanism 7 and evaporated by the first evaporator 8. At this time, the air in the refrigerator compartment 2 circulated by the first blower fan 16 is removed by the first evaporator 8.
The inside of the refrigerator compartment 2 is cooled by heat exchange. First evaporator 8
The refrigerant evaporated in the step is separated from the remaining liquid refrigerant by the first accumulator 9, and the gas refrigerant returns to the compressor 4. Also,
Although the pressure in the second evaporator 11 installed in the freezing chamber 3 is lower than that in the first evaporator 8, the check valve 13 is closed, so that the gas refrigerant flowing back to the compressor 4 is the second refrigerant. Second evaporator 1
It does not stay in 1.

【0007】同様に、冷凍室3を冷却する場合、凝縮器
5から第二の膨張機構10への流路が開となり、第一の
膨張機構7への流路が閉となるように、流路切替弁6が
動作する。そして、圧縮機4で圧縮された気体冷媒が凝
縮器5で凝縮液化し、第二の膨張機構10で減圧され、
第二の蒸発器11で蒸発する。このとき、第二の送風フ
ァン17により循環している冷凍室3内の空気が、第二
の蒸発器11と熱交換して冷凍室3内が冷却される。第
二の蒸発器11で蒸発した冷媒は、第二のアキュームレ
ータ12で残る液体冷媒と分離され、気体冷媒が逆止弁
13を通過して圧縮機4へ戻る。また、冷蔵室2内に設
置された第一の蒸発器8内の圧力は第二の蒸発器より高
くなるため、第一の蒸発器8内に滞留している冷媒は蒸
発して圧縮機4へ還流していく。
Similarly, when cooling the freezing compartment 3, the flow from the condenser 5 to the second expansion mechanism 10 is opened and the flow to the first expansion mechanism 7 is closed. The path switching valve 6 operates. Then, the gas refrigerant compressed by the compressor 4 is condensed and liquefied by the condenser 5 and decompressed by the second expansion mechanism 10.
It evaporates in the second evaporator 11. At this time, the air in the freezing room 3 circulated by the second blower fan 17 exchanges heat with the second evaporator 11 to cool the inside of the freezing room 3. The refrigerant evaporated in the second evaporator 11 is separated from the remaining liquid refrigerant in the second accumulator 12, and the gas refrigerant passes through the check valve 13 and returns to the compressor 4. Further, since the pressure in the first evaporator 8 installed in the refrigerator compartment 2 is higher than that in the second evaporator, the refrigerant staying in the first evaporator 8 evaporates and the compressor 4 To reflux.

【0008】一般に、冷蔵室2は0〜5℃、冷凍室3は
−18℃前後、に設定されることから第一の蒸発器8の
蒸発温度は−10℃程度、第二の蒸発器11の蒸発温度
は−30℃程度に制御される。この結果、冷蔵室2を冷
却する際に蒸発温度が高く効率の良い運転が可能とな
り、冷蔵庫1の消費電力を低減することができる。
In general, the temperature of the refrigerating compartment 2 is set at 0 to 5 ° C. and the temperature of the freezing compartment 3 is set at about −18 ° C., so that the evaporating temperature of the first evaporator 8 is about −10 ° C. Is controlled at about −30 ° C. As a result, when the refrigerating compartment 2 is cooled, an efficient operation with a high evaporating temperature becomes possible, and the power consumption of the refrigerator 1 can be reduced.

【0009】また、冷却サイクルを切り替える際に蒸発
器内に冷媒が死蔵される問題を解消する方法として、ポ
ンプダウン(以下PDという)が提案されている。以下
に、この冷媒が死蔵される問題と、その解消方法である
PDについて説明する。
Further, as a method of solving the problem that the refrigerant is dead inside the evaporator when the cooling cycle is switched, pump down (hereinafter referred to as PD) has been proposed. Hereinafter, the problem that the refrigerant is stored dead and the PD as a method for solving the problem will be described.

【0010】冷凍室3の冷却から冷蔵室2の冷却に切り
替える場合、第二の蒸発器11の蒸発温度に比べて第一
の蒸発器8の蒸発温度が高いために、冷凍室3の冷却時
に第二の蒸発器11や第二のアキュームレータ12内に
滞留した液体冷媒が冷蔵室2の冷却中も滞留したままと
なり、結果として冷蔵室2の冷却中に循環冷媒量が不足
する問題が発生する。同様に、電源投入時や負荷変動時
に第二の蒸発器11の蒸発温度が第一の蒸発器8の蒸発
温度より高くなった場合も、冷凍室3の冷却中に循環冷
媒量が不足する問題が発生する。
When switching from cooling the freezer compartment 3 to cooling the refrigerator compartment 2, the first evaporator 8 has a higher evaporation temperature than the second evaporator 11. The liquid refrigerant retained in the second evaporator 11 and the second accumulator 12 remains retained during the cooling of the refrigerator compartment 2, and as a result, a problem occurs in which the amount of the circulating refrigerant is insufficient during the cooling of the refrigerator compartment 2. . Similarly, when the evaporation temperature of the second evaporator 11 becomes higher than the evaporation temperature of the first evaporator 8 when the power is turned on or when the load changes, the amount of the circulating refrigerant is insufficient during the cooling of the freezing compartment 3. Occurs.

【0011】そこで、冷却サイクルを切り替える際に、
凝縮器5から第一の蒸発器8及び凝縮器5から第二の蒸
発器11への流路を閉塞しながら、圧縮機4を運転させ
て第一の蒸発器と第一のアキュームレータ9、あるいは
第二の蒸発器11と第二のアキュームレータ12に滞留
する冷媒を凝縮器5に回収する方法であるPDが提案さ
れている。また、PDを行うことで冷却サイクルに過剰
な冷媒を封入する必要がなくなり、炭化水素等の可燃性
冷媒を用いた冷却サイクルにおいて冷媒封入量が削減で
き、安全性が向上する効果も期待される。
Therefore, when switching the cooling cycle,
While closing the flow paths from the condenser 5 to the first evaporator 8 and from the condenser 5 to the second evaporator 11, the compressor 4 is operated to operate the first evaporator and the first accumulator 9, or A PD has been proposed, which is a method of collecting the refrigerant remaining in the second evaporator 11 and the second accumulator 12 in the condenser 5. Further, by performing PD, it is not necessary to fill an excessive refrigerant into the cooling cycle, and the amount of the refrigerant to be charged can be reduced in the cooling cycle using a flammable refrigerant such as a hydrocarbon, and the effect of improving safety is expected. .

【0012】PDを用いた冷却サイクルの切り替え動作
の一例と、このときの圧縮機4の吸入圧力変化を図19
に示す。図19に示した動作は、比較的負荷が大きい場
合の運転状態であり、圧縮機4を100%出力で連続運
転しながら冷蔵室2の冷却と冷凍室3の冷却を交互に行
うものである。冷蔵室2の冷却モードでは、流路切替弁
6の冷蔵室側を開とし、第一の送風ファン16で冷蔵室
2内の空気を冷却しながら、冷却ファン18で凝縮器5
の熱を外部へ放熱している。このとき、圧縮機4の吸入
圧力は、第一の蒸発器8の蒸発温度に相当する圧力で安
定する。次のPDモードでは、流路切替弁6の冷蔵室側
及び冷凍室側をともに閉とし、圧縮機4を運転する。こ
のとき、第一の蒸発器8と第一のアキュームレータ9内
に滞留する液体冷媒が蒸発しながら圧縮機4へ還流され
るとともに、圧縮機4の吸入圧力は急激に低下してい
く。冷凍室3の冷却モードでは、流路切替弁6の冷凍室
側を開とし、第二の送風ファン17で冷凍室3内の空気
を冷却しながら、冷却ファン18で凝縮器5の熱を外部
へ放熱している。このとき、圧縮機4の吸入圧力は、第
二の蒸発器11の蒸発温度に相当する圧力で安定する。
次のPDモードでは、流路切替弁6の冷蔵室側及び冷凍
室側をともに閉とし、圧縮機4を運転する。このとき、
第二の蒸発器11と第二のアキュームレータ12内に滞
留する液体冷媒が蒸発しながら圧縮機4へ還流されると
ともに、圧縮機4の吸入圧力は急激に低下していく。こ
のように運転モードを切り替えながら冷蔵室2と冷凍室
3を交互に冷却することで、循環冷媒量不足の問題が生
じることなく高効率な運転が可能となり、冷蔵庫1の消
費電力が低減できる。
FIG. 19 shows an example of a cooling cycle switching operation using a PD and a change in suction pressure of the compressor 4 at this time.
Shown in The operation shown in FIG. 19 is an operation state in the case where the load is relatively large, in which the cooling of the refrigerator compartment 2 and the cooling of the freezer compartment 3 are alternately performed while the compressor 4 is continuously operated at 100% output. . In the cooling mode of the refrigerating room 2, the refrigerating room side of the flow path switching valve 6 is opened, and while the air in the refrigerating room 2 is cooled by the first blower fan 16, the condenser 5 is cooled by the cooling fan 18.
Heat is radiated to the outside. At this time, the suction pressure of the compressor 4 is stabilized at a pressure corresponding to the evaporation temperature of the first evaporator 8. In the next PD mode, the refrigerating compartment side and the freezing compartment side of the flow path switching valve 6 are both closed, and the compressor 4 is operated. At this time, the liquid refrigerant staying in the first evaporator 8 and the first accumulator 9 is returned to the compressor 4 while evaporating, and the suction pressure of the compressor 4 is rapidly reduced. In the cooling mode of the freezing room 3, the freezing room side of the flow path switching valve 6 is opened, and while the air in the freezing room 3 is cooled by the second blower fan 17, the heat of the condenser 5 is externally cooled by the cooling fan 18. Dissipates heat to At this time, the suction pressure of the compressor 4 is stabilized at a pressure corresponding to the evaporation temperature of the second evaporator 11.
In the next PD mode, the refrigerating compartment side and the freezing compartment side of the flow path switching valve 6 are both closed, and the compressor 4 is operated. At this time,
The liquid refrigerant staying in the second evaporator 11 and the second accumulator 12 is returned to the compressor 4 while evaporating, and the suction pressure of the compressor 4 is rapidly reduced. By alternately cooling the refrigerating compartment 2 and the freezing compartment 3 while switching the operation mode in this manner, high-efficiency operation can be performed without causing a problem of insufficient amount of circulating refrigerant, and power consumption of the refrigerator 1 can be reduced.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、上記従
来の構成では、PD動作に伴う圧縮機4の損失により消
費電力低減の効果が相殺されるだけでなく、PD動作時
の圧縮機4の吸入圧力が許容範囲を越えて異常に低下し
耐久性が維持できなくなる可能性があった。
However, in the above-described conventional configuration, the effect of reducing the power consumption is not only offset by the loss of the compressor 4 due to the PD operation, but also the suction pressure of the compressor 4 during the PD operation. Was abnormally lowered beyond the allowable range, and durability could not be maintained.

【0014】そこで、PD動作の時間を抑制するととも
に、PD動作時の吸入圧力に異常低下を根本的に回避す
る施策が望まれている。
Therefore, there is a demand for a measure for suppressing the time of the PD operation and fundamentally avoiding an abnormal decrease in the suction pressure during the PD operation.

【0015】本発明は、冷却サイクル切り替え時に死蔵
される冷媒量およびPD動作時の冷媒回収挙動を詳細に
検討し、蒸発器構成と吸入圧力との関係を明らかにする
ことでPD動作の改善を図り、PD動作に伴う電力損失
や耐久性低下の問題の解消を目指すものである。
The present invention examines in detail the amount of refrigerant stored at the time of switching the cooling cycle and the refrigerant recovery behavior during the PD operation, and clarifies the relationship between the evaporator configuration and the suction pressure to improve the PD operation. The purpose of the present invention is to solve the problems of power loss and durability deterioration due to the PD operation.

【0016】[0016]

【課題を解決するための手段】そこで本発明の冷蔵庫
は、あらゆる条件下で冷凍室の冷却を優先して行い、冷
蔵室冷却時の蒸発温度に比べて冷凍室冷却時の蒸発温度
が低くなる状態になってから冷却サイクルの切り替えを
行うとともに、冷凍室冷却サイクルから冷蔵室冷却サイ
クルに切り替える直前のみPD動作を行う制御方法を用
いるものである。
Therefore, in the refrigerator of the present invention, cooling of the freezer compartment is prioritized under all conditions, and the evaporation temperature of the freezer compartment is lower than that of the refrigerator compartment. A control method is used in which the cooling cycle is switched after the state is reached, and the PD operation is performed only immediately before switching from the freezing compartment cooling cycle to the refrigerator compartment cooling cycle.

【0017】この発明によれば、冷蔵室冷却サイクルか
ら冷凍室冷却サイクルに切り替える際のPD動作を省略
し、PD動作に伴う電力損失や耐久性低下の問題を軽減
することができる。
According to the present invention, the PD operation at the time of switching from the refrigerator compartment cooling cycle to the freezer compartment cooling cycle can be omitted, and the problems of power loss and reduced durability due to the PD operation can be reduced.

【0018】また、本発明の冷蔵庫は、冷凍室および冷
蔵室にアキュームレータを設置せず、PD動作なしに冷
却サイクルの切り替えを行う制御方法を用いるものであ
る。
Further, the refrigerator of the present invention uses a control method in which an accumulator is not installed in a freezer compartment and a refrigerator compartment, and a cooling cycle is switched without PD operation.

【0019】この発明によれば、死蔵される冷媒量を削
減することで冷却サイクル切り替え時のPD動作を省略
し、PD動作に伴う電力損失や耐久性低下の問題を解消
することができる。
According to the present invention, the PD operation at the time of switching the cooling cycle can be omitted by reducing the amount of refrigerant to be stored, and the problems of power loss and durability reduction accompanying the PD operation can be solved.

【0020】[0020]

【発明の実施の形態】本発明の請求項1に記載の発明
は、冷蔵室と冷凍室を備えた冷蔵庫であって、圧縮機
と、凝縮器と、流路切替弁と、第一の膨張機構と、前記
冷蔵室内に設置された第一の蒸発器と、前記冷蔵室内に
設置された第一のアキュームレータと、第二の膨張機構
と、前記冷凍室内に設置された第二の蒸発器と、前記冷
凍室内に設置された第二のアキュームレータとを備え、
前記圧縮機と前記凝縮器と前記流路切替弁と前記第一の
膨張機構と前記第一の蒸発器と前記第一のアキュームレ
ータとで閉ループを形成すると共に、前記第一の膨張機
構と前記第一の蒸発器と前記第一のアキュームレータに
並列になるように前記第二の膨張機構と前記第二の蒸発
器と前記第二のアキュームレータと逆止弁とを接続し、
前記流路切替弁により冷媒の流れを切り替えることで前
記冷蔵室と前記冷凍室の冷却を互いに独立して行うもの
であり、前記冷凍室の冷却を優先するとともに、前記冷
凍室の冷却から前記冷蔵室の冷却に切り替わる直前に、
前記流路切替弁あるいは前記第二の膨張機構を用いて前
記第二の蒸発器への冷媒の流入を遮断した状態で前記圧
縮機を運転(すなわちPD動作)する制御手段を備えた
ことを特徴とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is a refrigerator having a refrigerator compartment and a freezer compartment, comprising a compressor, a condenser, a flow path switching valve, and a first expansion. A mechanism, a first evaporator installed in the refrigerator compartment, a first accumulator installed in the refrigerator compartment, a second expansion mechanism, and a second evaporator installed in the freezer compartment. And a second accumulator installed in the freezer compartment,
A closed loop is formed by the compressor, the condenser, the flow path switching valve, the first expansion mechanism, the first evaporator, and the first accumulator, and the first expansion mechanism and the first Connect the second expansion mechanism, the second evaporator, the second accumulator and the check valve so as to be in parallel with one evaporator and the first accumulator,
The refrigerating compartment and the freezing compartment are cooled independently of each other by switching the flow of the refrigerant by the flow path switching valve, and the cooling of the freezing compartment is prioritized, and the cooling of the freezing compartment is performed from the cooling of the freezing compartment. Just before switching to room cooling,
Control means for operating the compressor (ie, PD operation) in a state where the flow of the refrigerant into the second evaporator is shut off using the flow path switching valve or the second expansion mechanism. And

【0021】そして、以上の構成により、あらゆる条件
下で冷凍室の冷却を優先して行い、冷蔵室冷却時の蒸発
温度に比べて冷凍室冷却時の蒸発温度が低くなる状態に
なってから冷却サイクルの切り替えを行うことで、冷蔵
室冷却サイクルから冷凍室冷却サイクルに切り替える際
のPD動作を省略し、冷凍室冷却サイクルから冷蔵室冷
却サイクルに切り替える場合にのみPD動作を行い、P
D動作に伴う電力損失や耐久性低下の問題を軽減するこ
とができる。
With the above configuration, cooling of the freezer compartment is prioritized under all conditions, and cooling is performed after the evaporating temperature of the freezing compartment becomes lower than that of the refrigerating compartment. By performing the cycle switching, the PD operation when switching from the refrigerator compartment cooling cycle to the freezer compartment cooling cycle is omitted, and the PD operation is performed only when switching from the freezer compartment cooling cycle to the refrigerator compartment cooling cycle.
It is possible to reduce power loss and durability problems associated with the D operation.

【0022】本発明の請求項2に記載の発明は、冷凍室
内の空気と第二の蒸発器の熱交換を促進する送風ファン
を備え、前記冷凍室の冷却から冷蔵室の冷却に切り替わ
る直前に、前記第二の蒸発器への冷媒の流入を遮断した
状態で、前記送風ファンを運転しながら圧縮機を運転
(すなわちPD動作)する制御手段を備えたことを特徴
とする請求項1記載の冷蔵庫であって、第二の蒸発器を
冷凍室内の空気で加熱することで、滞留する液体冷媒を
回収する際の温度低下を抑制し、PD動作時の吸入圧力
の低下を抑制することにより、さらにPD動作に伴う電
力損失や耐久性低下の問題を軽減することができる。
According to a second aspect of the present invention, there is provided a blower fan for promoting heat exchange between air in the freezer compartment and the second evaporator, and immediately before switching from cooling of the freezer compartment to cooling of the refrigerator compartment. 2. The control device according to claim 1, further comprising control means for operating the compressor (i.e., PD operation) while operating the blower fan in a state where the flow of the refrigerant into the second evaporator is shut off. In a refrigerator, by heating the second evaporator with air in the freezer compartment, by suppressing the temperature drop when collecting the staying liquid refrigerant, and by suppressing the drop in suction pressure during PD operation, Further, the problem of power loss and deterioration of durability due to the PD operation can be reduced.

【0023】なお、第二の蒸発器内は気液2相流である
ことから、第二の蒸発器内に滞留する液体冷媒量は第二
のアキュームレータ内に滞留する量よりも少なく、かつ
送風ファン運転時は第二の蒸発器内に滞留する液体冷媒
が優先して蒸発していくので、PD動作中常に送風ファ
ンを運転する必要はなく、PD動作の初期に所定の時間
送風ファンを運転するだけでよい。
Since the inside of the second evaporator is a gas-liquid two-phase flow, the amount of liquid refrigerant retained in the second evaporator is smaller than the amount retained in the second accumulator, and During the fan operation, the liquid refrigerant staying in the second evaporator evaporates preferentially, so it is not necessary to always operate the blower fan during the PD operation, and operate the blower fan for a predetermined time at the beginning of the PD operation. Just do it.

【0024】本発明の請求項3に記載の発明は、第二の
アキュームレータの表面に配置されたヒータを備え、冷
凍室の冷却から冷蔵室の冷却に切り替わる直前に、第二
の蒸発器への冷媒の流入を遮断した状態で、前記ヒータ
に通電しながら圧縮機を運転(すなわちPD動作)する
制御手段を備えたことを特徴とする請求項1から請求項
2いずれか一項記載の冷蔵庫であって、第二のアキュー
ムレータをヒータで加熱することで、滞留する液体冷媒
を回収する際の温度低下を抑制し、PD動作時の吸入圧
力低下を抑制することにより、さらにPD動作に伴う電
力損失や耐久性低下の問題を軽減することができる。
[0024] The invention according to claim 3 of the present invention is provided with a heater disposed on the surface of the second accumulator, and immediately before switching from the cooling of the freezing room to the cooling of the refrigerating room, the heater is connected to the second evaporator. The refrigerator according to any one of claims 1 to 2, further comprising control means for operating the compressor (i.e., PD operation) while energizing the heater while the flow of the refrigerant is shut off. By heating the second accumulator with a heater, the temperature drop when recovering the staying liquid refrigerant is suppressed, and the suction pressure drop during the PD operation is suppressed, thereby further reducing the power loss accompanying the PD operation. And the problem of reduced durability can be reduced.

【0025】なお、第二の蒸発器内は気液2相流である
ことから、第二のアキュームレータ内に滞留する液体冷
媒量は第二の蒸発器内に滞留する量よりもはるかに多い
ため、第二のアキュームレータを加熱することが重要で
ある。また、冷凍室内を加熱することによる損失を軽減
するためにも、面ヒータ等を第二のアキュームレータの
表面に貼り付けて第二のアキュームレータを直接加熱す
る方が望ましい。
Since the inside of the second evaporator is a gas-liquid two-phase flow, the amount of liquid refrigerant retained in the second accumulator is much larger than the amount retained in the second evaporator. It is important to heat the second accumulator. In addition, in order to reduce the loss caused by heating the freezing compartment, it is preferable to attach a surface heater or the like to the surface of the second accumulator and directly heat the second accumulator.

【0026】なお、PD動作時前に第二のアキュームレ
ータを長時間加熱しても、冷却動作と相殺されるだけで
第二のアキュームレータ内の液体冷媒の滞留量を低減す
る効果は少ないが、ヒータ昇温までのタイムラグを減ら
すためにPD動作の所定時間前からヒータをONする方
が望ましい。
It should be noted that, even if the second accumulator is heated for a long time before the PD operation, the effect of reducing the amount of liquid refrigerant retained in the second accumulator is small only by being offset by the cooling operation. In order to reduce the time lag until the temperature rise, it is desirable to turn on the heater a predetermined time before the PD operation.

【0027】本発明の請求項4に記載の発明は、能力可
変型の圧縮機を備え、冷凍室の冷却から冷蔵室の冷却に
切り替わる直前に、第二の蒸発器への冷媒の流入を遮断
した状態で、圧縮機を低能力運転(すなわちPD動作)
する制御手段を備えたことを特徴とする請求項1から請
求項3のいずれか一項に記載の冷蔵庫であって、滞留す
る液体冷媒への伝熱量に見合う速度で蒸発させること
で、滞留する液体冷媒を回収する際の温度低下を抑制
し、PD動作時の吸入圧力の低下を抑制することによ
り、さらにPD動作に伴う電力損失や耐久性低下の問題
を軽減することができる。
According to a fourth aspect of the present invention, a compressor having a variable capacity type is provided, and the flow of refrigerant into the second evaporator is interrupted immediately before switching from cooling of the freezing compartment to cooling of the refrigerator compartment. With the compressor operating at low capacity (ie, PD operation)
The refrigerator according to any one of claims 1 to 3, further comprising a control unit that performs evaporation by evaporating at a speed commensurate with the amount of heat transferred to the staying liquid refrigerant. By suppressing the temperature drop when recovering the liquid refrigerant and the drop in the suction pressure during the PD operation, it is possible to further reduce the problems of power loss and reduced durability associated with the PD operation.

【0028】ここで、PD動作を低能力運転で行った場
合、冷媒回収速度が低下し必要冷媒量を回収するPD動
作時間は長くなるが、吸入圧力の低下が抑制できること
からPD動作時の所要動力は削減できる。ただし、高負
荷条件においては凝縮圧力にほぼ比例して軸受け負荷が
増加するため、軸受け負荷耐力の劣る低速回転化による
低能力化が困難な場合がある。この場合は、耐久性が保
証できる限界の低速回転で低能力を実現することが望ま
しい。
Here, when the PD operation is performed in a low-capacity operation, the refrigerant recovery speed is reduced and the PD operation time for recovering the required amount of refrigerant is prolonged. However, since the reduction in the suction pressure can be suppressed, the required time during the PD operation is reduced. Power can be reduced. However, under high load conditions, since the bearing load increases almost in proportion to the condensing pressure, it may be difficult to reduce the capacity by low-speed rotation, which is inferior in bearing load resistance. In this case, it is desirable to realize a low capacity at a low speed rotation at a limit where durability can be guaranteed.

【0029】本発明の請求項5に記載の発明は、冷凍室
の冷却から冷蔵室の冷却に切り替わる直前に、第二の蒸
発器への冷媒の流入を遮断した状態で、流路切替弁ある
いは第一の膨張機構を用いて第一の蒸発器への少量の冷
媒を流入させながら圧縮機を運転(すなわちPD動作)
する制御手段を備えたことを特徴とする請求項1から請
求項4のいずれか一項に記載の冷蔵庫であって、滞留す
る液体冷媒への伝熱量に見合う速度で蒸発させること
で、滞留する液体冷媒を回収する際の温度低下を抑制
し、PD動作時の吸入圧力の低下を抑制することによ
り、さらにPD動作に伴う電力損失や耐久性低下の問題
を軽減することができる。
[0029] The invention according to claim 5 of the present invention is characterized in that the flow of the refrigerant to the second evaporator is shut off immediately before switching from the cooling of the freezing compartment to the cooling of the refrigerating compartment. Operate the compressor using the first expansion mechanism while allowing a small amount of refrigerant to flow into the first evaporator (ie, PD operation)
The refrigerator according to any one of claims 1 to 4, further comprising: a control unit configured to evaporate at a speed commensurate with the amount of heat transferred to the staying liquid refrigerant. By suppressing the temperature drop when recovering the liquid refrigerant and the drop in the suction pressure during the PD operation, it is possible to further reduce the problems of power loss and reduced durability associated with the PD operation.

【0030】ここで、冷蔵室冷却サイクルから冷媒を流
入することにより冷媒回収速度が低下するため、必要冷
媒量を回収するPD動作時間は長くなるが、吸入圧力の
低下が抑制できることからPD動作に必要な所要動力は
削減できる。また、この方法は圧縮機の低能力化による
冷媒回収速度の低減に比べて制約条件がなく、滞留する
液体冷媒への伝熱量に見合う速度に冷媒回収速度を自由
に設定することが可能であるだけでなく、PD動作中に
冷蔵室冷却サイクルから流入する冷媒は第一の蒸発器の
冷却に寄与することから、冷蔵室冷却サイクルの立ち上
がりが早くなる効果も期待できる。
Here, the flow of the refrigerant from the refrigerating compartment cooling cycle lowers the refrigerant recovery speed, so that the PD operation time for recovering the required amount of refrigerant becomes longer. However, since the reduction of the suction pressure can be suppressed, the PD operation is stopped. The required power requirements can be reduced. In addition, this method has no restrictions as compared with the reduction of the refrigerant recovery speed due to the reduction in capacity of the compressor, and the refrigerant recovery speed can be freely set to a speed commensurate with the amount of heat transferred to the staying liquid refrigerant. In addition, since the refrigerant flowing from the refrigerator compartment cooling cycle during the PD operation contributes to the cooling of the first evaporator, the effect that the rise of the refrigerator compartment cooling cycle is accelerated can be expected.

【0031】本発明の請求項6に記載の発明は、圧縮機
あるいは凝縮器を冷却する冷却ファンを備え、冷凍室の
冷却から冷蔵室の冷却に切り替わる直前に、第二の蒸発
器への冷媒の流入を遮断した状態で、前記冷却ファンを
運転しながら圧縮機を運転(すなわちPD動作)する制
御手段を備えたことを特徴とする請求項1から請求項5
のいずれか一項に記載の冷蔵庫であって、PD動作時の
凝縮圧力を低減することにより、さらにPD動作に伴う
電力損失や耐久性低下の問題を軽減することができる。
According to a sixth aspect of the present invention, there is provided a cooling fan for cooling the compressor or the condenser, and the refrigerant is supplied to the second evaporator immediately before switching from cooling the freezing compartment to cooling the refrigerator compartment. 6. A control means for operating the compressor (ie, the PD operation) while operating the cooling fan in a state where the inflow of air is blocked.
In the refrigerator according to any one of the above, by reducing the condensing pressure at the time of the PD operation, it is possible to further reduce the problem of power loss and reduced durability associated with the PD operation.

【0032】本発明の請求項7に記載の発明は、第二の
アキュームレータに滞留する冷媒の温度あるいは圧力を
検知する検知手段を備え、冷凍室の冷却から冷蔵室の冷
却に切り替わる直前に、第二の蒸発器への冷媒の流入を
遮断した状態で、前記検知手段によって得られた冷媒の
温度あるいは圧力が所定の値を下回るまで圧縮機を運転
(すなわちPD動作)する制御手段を備えたことを特徴
とする請求項1から請求項6のいずれか一項に記載の冷
蔵庫であって、異常に低い吸入圧力でのPD動作を防止
することで、さらにPD動作に伴う電力損失や耐久性低
下の問題を軽減することができる。
[0032] The invention according to claim 7 of the present invention is provided with detecting means for detecting the temperature or pressure of the refrigerant stagnating in the second accumulator, and immediately before switching from cooling of the freezing compartment to cooling of the refrigerator compartment, the detecting means is provided. Control means for operating the compressor (ie, PD operation) until the temperature or pressure of the refrigerant obtained by the detection means falls below a predetermined value while the flow of the refrigerant into the second evaporator is blocked. The refrigerator according to any one of claims 1 to 6, wherein a PD operation at an abnormally low suction pressure is prevented to further reduce power loss and durability due to the PD operation. Problem can be reduced.

【0033】本発明の請求項8に記載の発明は、冷蔵室
と冷凍室を備えた冷蔵庫であって、圧縮機と、凝縮器
と、流路切替弁と、第一の膨張機構と、前記冷蔵室内に
設置された第一の蒸発器と、第二の膨張機構と、前記冷
凍室内に設置された第二の蒸発器と、前記圧縮機と前記
凝縮器と前記流路切替弁と前記第一の膨張機構と前記第
一の蒸発器とで閉ループを形成すると共に、前記第一の
膨張機構と前記第一の蒸発器に並列になるように前記第
二の膨張機構と前記第二の蒸発器と逆止弁とを接続し、
前記流路切替弁により冷媒の流れを切り替えることで前
記冷蔵室と前記冷凍室の冷却を互いに独立して行うもの
であり、前記冷凍室及び前記冷蔵室内にアキュームレー
タを設置せず、かつ前記冷凍室の冷却から前記冷蔵室の
冷却に切り替わる直前に前記第二の蒸発器への冷媒の流
入を遮断した状態で前記圧縮機を、所定の時間、運転
(すなわちPD動作)する制御手段を備えたことを特徴
とする冷蔵庫であって、液体冷媒が大量に死蔵されるア
キュームレータを設置せず、かつ所定時間PD動作する
ことで、比較的伝熱しやすく温度低下が少ない第二の蒸
発器内の滞留冷媒をほぼ全量回収することにより、PD
動作に伴う電力損失や耐久性低下の問題をほぼ解消する
ことができる。
[0033] The invention according to claim 8 of the present invention is a refrigerator having a refrigerator compartment and a freezer compartment, comprising: a compressor, a condenser, a flow path switching valve, a first expansion mechanism, A first evaporator installed in the refrigerator compartment, a second expansion mechanism, a second evaporator installed in the freezer compartment, the compressor, the condenser, the flow switching valve, and the second evaporator. A second expansion mechanism and the second evaporator so as to form a closed loop with one expansion mechanism and the first evaporator, and to be in parallel with the first expansion mechanism and the first evaporator; And the check valve,
The refrigerating compartment and the freezing compartment are independently cooled by switching the flow of the refrigerant by the flow path switching valve, and no accumulator is provided in the freezing compartment and the refrigerating compartment, and the freezing compartment is not provided. Control means for operating the compressor for a predetermined period of time (ie, PD operation) in a state in which the flow of the refrigerant into the second evaporator is shut off immediately before switching from cooling of the refrigerator to cooling of the refrigerator compartment. A refrigerator that does not have an accumulator in which a large amount of liquid refrigerant is stored and operates for a predetermined period of time in PD, so that heat is relatively easily transferred and the temperature of the refrigerant in the second evaporator is small with a decrease in temperature. By recovering almost all of the
The problems of power loss and reduced durability associated with the operation can be almost eliminated.

【0034】ここで、冷蔵室にのみアキュームレータを
設置した場合、冷凍室冷却中は冷蔵室温度に相当する蒸
発圧力より吸入圧力の方が低く、冷蔵室のアキュームレ
ータ内の液体冷媒は圧縮機により回収されて空になる
が、冷蔵室冷却中のアキュームレータはほぼ満液状態と
なるため、冷蔵室冷却中に循環冷媒量が不足する傾向を
示す。従って、冷凍室内および冷蔵室内ともにアキュー
ムレータを設置しない方が望ましい。同様に、冷凍室内
および冷蔵室内ともにアキュームレータを設置しない場
合、アキュームレータ設置時に死蔵される冷媒量の分だ
け冷媒封入量が削減できることから、炭化水素等の可燃
性冷媒を用いた冷却サイクルにおいてさらに安全性が向
上する効果も期待される。
Here, when the accumulator is installed only in the refrigerator compartment, the suction pressure is lower than the evaporation pressure corresponding to the refrigerator compartment temperature during the cooling of the refrigerator compartment, and the liquid refrigerant in the accumulator of the refrigerator compartment is recovered by the compressor. However, since the accumulator during cooling of the refrigerator compartment is almost full, the amount of circulating refrigerant tends to be insufficient during cooling of the refrigerator compartment. Therefore, it is desirable not to install an accumulator in both the freezer compartment and the refrigerator compartment. Similarly, when the accumulator is not installed in both the freezing room and the refrigerator compartment, the amount of refrigerant charged can be reduced by the amount of the refrigerant that is dead when the accumulator is installed. Is also expected to improve the effect.

【0035】また、第二の蒸発器内は気液2相流である
ことから、アキュームレータ設置時にアキュームレータ
内に滞留する液体冷媒量は第二の蒸発器内に滞留する量
よりもはるかに多い。従って、滞留冷媒をほぼ全量回収
するためにPD時間は、アキュームレータ設置時には3
〜10分程度必要であるのに対して、アキュームレータ
なしでは数十秒と1/10程度に短縮できる。この結
果、PD動作に伴う電力損失や耐久性低下の問題をほぼ
解消することができる。
Further, since the inside of the second evaporator is a gas-liquid two-phase flow, the amount of liquid refrigerant retained in the accumulator when the accumulator is installed is much larger than the amount retained in the second evaporator. Therefore, the PD time for recovering almost all of the accumulated refrigerant is 3 hours when the accumulator is installed.
While it takes about 10 to 10 minutes, it can be reduced to several tens of seconds or about 1/10 without an accumulator. As a result, the problems of power loss and reduced durability associated with the PD operation can be almost eliminated.

【0036】なお、PD動作で第二の蒸発器内の滞留冷
媒をほぼ全量回収する場合、第二の蒸発器が冷凍室内の
空気と熱伝達しやすいために、回収中の液体冷媒の温度
低下が少なく比較的吸入圧力を維持しやすいが、送風フ
ァンを用いて第二の蒸発器が冷凍室内の空気の熱伝達を
促進する方が望ましい。送風ファンを用いた場合、圧縮
比の増加がほとんどない状態でPD動作を行うことがで
きる。
When almost all of the refrigerant remaining in the second evaporator is recovered by the PD operation, since the second evaporator easily conducts heat with the air in the freezing chamber, the temperature of the liquid refrigerant being recovered decreases. Although it is relatively easy to maintain the suction pressure, it is preferable that the second evaporator uses a blower fan to promote the heat transfer of the air in the freezer compartment. When a blower fan is used, the PD operation can be performed with little increase in the compression ratio.

【0037】本発明の請求項9に記載の発明は、冷蔵室
と冷凍室を備えた冷蔵庫であって、圧縮機と、凝縮器
と、流路切替弁と、第一の膨張機構と、前記冷蔵室内に
設置された第一の蒸発器と、第二の膨張機構と、前記冷
凍室内に設置された第二の蒸発器と、前記圧縮機と前記
凝縮器と前記流路切替弁と前記第一の膨張機構と前記第
一の蒸発器とで閉ループを形成すると共に、前記第一の
膨張機構と前記第一の蒸発器に並列になるように前記第
二の膨張機構と前記第二の蒸発器と逆止弁とを接続し、
前記流路切替弁により冷媒の流れを切り替えることで前
記冷蔵室と前記冷凍室の冷却を互いに独立して行うもの
であり、前記冷凍室及び前記冷蔵室内にアキュームレー
タを設置せず、かつ前記第一の蒸発器及び第二の蒸発器
への冷媒の流入を遮断した状態で前記圧縮機を運転(す
なわちPD動作)する制御手段を用いないことを特徴と
する冷蔵庫であって、液体冷媒が大量に死蔵されるアキ
ュームレータを設置せず、かつPD動作を行わないこと
により、PD動作に伴う電力損失や耐久性低下の問題を
解消することができる。
According to a ninth aspect of the present invention, there is provided a refrigerator having a refrigerator compartment and a freezer compartment, comprising a compressor, a condenser, a flow path switching valve, a first expansion mechanism, A first evaporator installed in the refrigerator compartment, a second expansion mechanism, a second evaporator installed in the freezer compartment, the compressor, the condenser, the flow switching valve, and the second evaporator. A second expansion mechanism and the second evaporator so as to form a closed loop with one expansion mechanism and the first evaporator, and to be in parallel with the first expansion mechanism and the first evaporator; And the check valve,
The refrigerating compartment and the freezing compartment are cooled independently of each other by switching the flow of the refrigerant by the flow passage switching valve, and no accumulator is installed in the freezing compartment and the refrigerating compartment, and the first A control means for operating the compressor (that is, PD operation) in a state where the inflow of the refrigerant into the evaporator and the second evaporator is shut off, wherein a large amount of liquid refrigerant is used. By not installing a dead accumulator and not performing the PD operation, it is possible to solve the problems of power loss and reduced durability due to the PD operation.

【0038】ここで、冷蔵室にのみアキュームレータを
設置した場合、冷凍室冷却中は冷蔵室温度に相当する蒸
発圧力より吸入圧力の方が低く、冷蔵室のアキュームレ
ータ内の液体冷媒は圧縮機により回収されて空になる
が、冷蔵室冷却中のアキュームレータはほぼ満液状態と
なるため、冷蔵室冷却中に循環冷媒量が不足する傾向を
示す。従って、冷凍室内および冷蔵室内ともにアキュー
ムレータを設置しない方が望ましい。同様に、冷凍室内
および冷蔵室内ともにアキュームレータを設置しない場
合、アキュームレータ設置時に死蔵される冷媒量の分だ
け冷媒封入量が削減できることから、炭化水素等の可燃
性冷媒を用いた冷却サイクルにおいてさらに安全性が向
上する効果も期待される。
Here, when the accumulator is installed only in the refrigerator compartment, the suction pressure is lower than the evaporation pressure corresponding to the refrigerator compartment temperature during the cooling of the freezer compartment, and the liquid refrigerant in the accumulator of the refrigerator compartment is recovered by the compressor. However, since the accumulator during cooling of the refrigerator compartment is almost full, the amount of circulating refrigerant tends to be insufficient during cooling of the refrigerator compartment. Therefore, it is desirable not to install an accumulator in both the freezer compartment and the refrigerator compartment. Similarly, when the accumulator is not installed in both the freezer compartment and the refrigerator compartment, the amount of refrigerant charged can be reduced by the amount of the refrigerant that is refrigerated when the accumulator is installed, so that the safety in the cooling cycle using flammable refrigerants such as hydrocarbons is further improved. Is also expected to improve the effect.

【0039】また、第二の蒸発器内は気液2相流である
ことから、アキュームレータ設置時にアキュームレータ
内に滞留する液体冷媒量に比べて、第二の蒸発器内に滞
留する液体冷媒量ははるかに少ない。従って、凝縮器出
口に小容量の受液器を設置するなどして、冷媒封入量の
許容幅を大きくすれば、第二の蒸発器内に少量の液体冷
媒を滞留させたまま冷蔵室冷却サイクルを動作させて
も、循環冷媒量不足が生じることはない。
Further, since the inside of the second evaporator is a gas-liquid two-phase flow, the amount of liquid refrigerant retained in the second evaporator is smaller than the amount of liquid refrigerant retained in the accumulator when the accumulator is installed. Much less. Therefore, if the allowable range of the amount of the filled refrigerant is increased by, for example, installing a small-capacity liquid receiver at the condenser outlet, the refrigerating chamber cooling cycle can be performed while a small amount of the liquid refrigerant remains in the second evaporator. Does not cause a shortage of the circulating refrigerant.

【0040】本発明の請求項10に記載の発明は、電源
投入時に第二の膨張機構の流路抵抗を、定常運転時より
小さくする制御手段を備えたことを特徴とする請求項8
または9に記載の冷蔵庫であって、液体冷媒が大量に死
蔵されるアキュームレータを設置しないことにより、P
D動作に伴う電力損失や耐久性低下の問題を解消するこ
とができるとともに、電源投入時の冷媒流量を増大する
ことでプルダウン時間を短縮することができる。
According to a tenth aspect of the present invention, there is provided a control means for reducing the flow path resistance of the second expansion mechanism when the power is turned on, as compared with the normal operation.
Or the refrigerator according to item 9, wherein an accumulator in which a large amount of liquid refrigerant is stored is not installed.
It is possible to solve the problems of power loss and durability deterioration associated with the D operation, and to shorten the pull-down time by increasing the flow rate of the refrigerant at the time of turning on the power.

【0041】ここで、蒸発器出口にアキュームレータを
設置した場合、アキュームレータ内の滞留冷媒量は、定
常運転時にはほとんど変化せず死蔵された状態となる
が、冷凍室や冷蔵室の温度が高くなる電源投入時や過負
荷時には減少して冷却サイクルを循環する冷媒量が増加
する。この結果、電源投入時や過負荷時には冷媒流量が
増大して冷却サイクルが高能力化することができる。と
ころが、アキュームレータを設置しない場合はこの作用
がなく、電源投入時に冷却サイクルの能力が不足してプ
ルダウン時間が長くなる傾向を示すとともに、過負荷時
にも冷却サイクルの能力が不足して冷凍室や冷蔵室の温
度上昇がやや大きくなる傾向を示す。
When an accumulator is installed at the outlet of the evaporator, the amount of refrigerant staying in the accumulator hardly changes during steady-state operation and remains in a dead state. At the time of charging or overload, the amount of refrigerant circulating through the cooling cycle decreases and increases. As a result, at the time of power-on or overload, the flow rate of the refrigerant increases, and the cooling cycle can have a higher capacity. However, when an accumulator is not installed, this effect does not occur, and the cooling cycle capacity is insufficient when the power is turned on, which tends to increase the pull-down time. The room temperature tends to increase slightly.

【0042】そこで、比較的流路抵抗が大きく電源投入
時に冷媒流量不足となりやすい第二の膨張機構を、電源
投入時に定常運転時よりも流路抵抗を小さくするように
切り替えることにより、電源投入時の冷却サイクルの冷
媒流量を増大させてプルダウン時間を短縮することがで
きる。同様に、冷凍室や冷蔵室の温度が高くなる過負荷
時にも定常運転時よりも流路抵抗を小さくするように切
り替えることにより、冷却サイクルの冷媒流量を増大さ
せて冷凍室や冷蔵室の温度上昇を抑制する効果が期待で
きる。
Therefore, by switching the second expansion mechanism, which has a relatively large flow path resistance and is likely to cause a shortage of the refrigerant flow when the power is turned on, so that the flow resistance becomes smaller than at the time of the normal operation at the time of power supply, the second expansion mechanism is switched at the time of power supply. The pull-down time can be shortened by increasing the refrigerant flow rate in the cooling cycle. Similarly, even during overload when the temperature of the freezer compartment or the refrigerator compartment becomes higher, the flow rate is switched so as to make the flow path resistance smaller than at the time of steady operation, thereby increasing the refrigerant flow rate of the cooling cycle and increasing the temperature of the freezer compartment or the refrigerator compartment. The effect of suppressing the rise can be expected.

【0043】本発明の請求項11に記載の発明は、第一
の蒸発器と第二の蒸発器の能力が過大であり、定常運転
時にスーパーヒートが保たれることを特徴とする請求項
8から請求項10のいずれか一項に記載の冷蔵庫であっ
て、液体冷媒が大量に死蔵されるアキュームレータを設
置しないことにより、PD動作に伴う電力損失や耐久性
低下の問題を解消することができるとともに、吸入配管
への液バックを防止することができる。
According to an eleventh aspect of the present invention, the first evaporator and the second evaporator have excessive capacity, and superheat is maintained during a steady operation. The refrigerator according to any one of claims 1 to 10, wherein the problem of power loss and durability deterioration due to PD operation can be solved by not installing an accumulator in which a large amount of liquid refrigerant is stored. At the same time, liquid back to the suction pipe can be prevented.

【0044】ここで、蒸発器出口にアキュームレータを
設置した場合、第一の蒸発器あるいは第二の蒸発器の能
力が冷媒流量に対して不足した時に、蒸発器で蒸発しき
れなかった液体冷媒が一時的にアキュームレータ内に滞
留する。この結果、吸入配管への液バックが防止でき
る。ところが、アキュームレータを設置しない場合はこ
の作用がなく吸入配管への液バックが発生し、温度低下
のため吸入配管が露つき傾向を示すとともに、圧縮機の
耐久性が低下する可能性がある。
Here, when an accumulator is installed at the evaporator outlet, when the capacity of the first evaporator or the second evaporator is insufficient with respect to the refrigerant flow rate, the liquid refrigerant that cannot be completely evaporated by the evaporator is removed. Temporarily stays in the accumulator. As a result, liquid back to the suction pipe can be prevented. However, when the accumulator is not installed, this function is not provided, and liquid backs to the suction pipe, and the suction pipe tends to be exposed due to a decrease in temperature, and the durability of the compressor may be reduced.

【0045】そこで、第一の蒸発器と第二の蒸発器の能
力を高くし定常運転時にスーパーヒートが保たれるよう
に設計することにより、吸入配管への液バックを防止す
ることができる。
Therefore, by increasing the capacity of the first evaporator and the second evaporator so as to maintain the superheat during the steady operation, it is possible to prevent the liquid from flowing back into the suction pipe.

【0046】本発明の請求項12に記載の発明は、圧縮
機近傍にアキュームレータを設置したことを特徴とする
請求項8から請求項11のいずれか一項に記載の冷蔵庫
であって、液体冷媒が大量に死蔵されるアキュームレー
タを設置しないことにより、PD動作に伴う電力損失や
耐久性低下の問題を解消することができるとともに、吸
入配管への液バックを防止することができる。
According to a twelfth aspect of the present invention, in the refrigerator according to any one of the eighth to eleventh aspects, an accumulator is provided near the compressor. By not installing an accumulator in which a large amount is stored, it is possible to solve the problems of power loss and reduced durability due to the PD operation, and also to prevent liquid back into the suction pipe.

【0047】ここで、蒸発器出口にアキュームレータを
設置した場合、第一の蒸発器あるいは第二の蒸発器の能
力が冷媒流量に対して不足した時に、蒸発器で蒸発しき
れなかった液体冷媒が一時的にアキュームレータ内に滞
留する。この結果、吸入配管への液バックが防止でき
る。ところが、アキュームレータを設置しない場合はこ
の作用がなく吸入配管への液バックが発生し、温度低下
のため吸入配管が露つき傾向を示すとともに、圧縮機の
耐久性が低下する可能性がある。
Here, when an accumulator is installed at the evaporator outlet, when the capacity of the first evaporator or the second evaporator is insufficient with respect to the refrigerant flow rate, the liquid refrigerant that cannot be completely evaporated by the evaporator is removed. Temporarily stays in the accumulator. As a result, liquid back to the suction pipe can be prevented. However, when the accumulator is not installed, this function is not provided, and liquid backs to the suction pipe, and the suction pipe tends to be exposed due to a decrease in temperature, and the durability of the compressor may be reduced.

【0048】そこで、圧縮機近傍にアキュームレータを
設置することにより、吸入ガスとともに還流してきた液
体冷媒を一時的に圧縮機近傍のアキュームレータに滞留
させ、吸入配管への液バックを防止することができる。
Therefore, by installing an accumulator near the compressor, the liquid refrigerant that has been recirculated together with the suction gas can be temporarily retained in the accumulator near the compressor, and liquid back to the suction pipe can be prevented.

【0049】以下、本発明の実施の形態について図1〜
図17を用いて説明する。これらの図において、図1
8、図19で示した従来例と同一の構成および運転動作
についてはその詳細な説明を省略し、同一符号を付す。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to FIG. In these figures, FIG.
8, the same configuration and operation as those of the conventional example shown in FIG. 19 will not be described in detail, and will be denoted by the same reference numerals.

【0050】(実施の形態1)図1は本発明の一実施の
形態を示す冷蔵庫の冷凍サイクル図、図2は同実施の形
態における運転動作と吸入圧力変化を示すタイミングチ
ャートである。
(Embodiment 1) FIG. 1 is a refrigeration cycle diagram of a refrigerator showing an embodiment of the present invention, and FIG. 2 is a timing chart showing the operation and suction pressure change in the embodiment.

【0051】本実施の形態における冷蔵庫のサイクル構
成は、図18で示した従来例と同一である。本実施の形
態における運転動作の特徴は、冷蔵室2の冷却に対して
冷凍室3の冷却を優先し、冷凍室3内の空気温度が冷蔵
室2内よりも高くなっている間は常に冷凍室3のみを冷
却するとともに、図2に示すように冷凍室3の冷却から
冷蔵室2の冷却に切り替える時のみPD動作を行うもの
である。
The cycle configuration of the refrigerator in the present embodiment is the same as that of the conventional example shown in FIG. The feature of the operation in the present embodiment is that the cooling of the freezer compartment 3 is given priority over the cooling of the refrigerator compartment 2, and the freezing is always performed while the air temperature in the freezer compartment 3 is higher than that in the refrigerator compartment 2. Only the chamber 3 is cooled, and the PD operation is performed only when switching from the cooling of the freezing chamber 3 to the cooling of the refrigerator compartment 2 as shown in FIG.

【0052】この結果、冷蔵室2の冷却から冷凍室3の
冷却に切り替えた時に、冷蔵室2内に設置された第一の
蒸発器8や第一のアキュームレータ9に滞留した液体冷
媒が、蒸発温度が低い冷凍室3の冷却中に蒸発して圧縮
機4に回収されて、冷却サイクルへ還流していくことで
循環冷媒量を確保するとともに、PD動作を約半分にす
ることでPD動作に伴う圧縮機4の入力損失や吸入圧力
低下に伴う耐久性低下の問題を軽減することができる。
As a result, when the cooling of the refrigerator compartment 2 is switched to the cooling of the freezer compartment 3, the liquid refrigerant retained in the first evaporator 8 and the first accumulator 9 installed in the refrigerator compartment 2 is evaporated. During the cooling of the freezing room 3 having a low temperature, the refrigerant evaporates and is collected by the compressor 4 and is returned to the cooling cycle to secure the amount of the circulating refrigerant. Accordingly, the problem of the input loss of the compressor 4 and the decrease in durability due to the decrease in suction pressure can be reduced.

【0053】なお、本実施の形態においては、流路切替
弁6を用いて凝縮器5からの流路を切り替えたが、第一
の膨張機構7と第二の膨張機構10に閉塞機構を持たせ
れば、流路切替弁6を用いず流路を切り替えることがで
きる。また、第一の膨張機構7と第二の膨張機構10の
流路抵抗はキャピラリ等の一定の抵抗でもよいし、膨張
弁等の可変抵抗でもよい。
In the present embodiment, the flow path from the condenser 5 is switched using the flow path switching valve 6, but the first expansion mechanism 7 and the second expansion mechanism 10 have closing mechanisms. If it does, the flow path can be switched without using the flow path switching valve 6. Further, the flow path resistance of the first expansion mechanism 7 and the second expansion mechanism 10 may be a constant resistance such as a capillary, or may be a variable resistance such as an expansion valve.

【0054】(実施の形態2)図3は本発明の一実施の
形態における運転動作と吸入圧力変化を示すタイミング
チャートである。
(Embodiment 2) FIG. 3 is a timing chart showing a driving operation and a change in suction pressure according to an embodiment of the present invention.

【0055】本実施の形態における冷蔵庫のサイクル構
成は、実施の形態1と同一である。
The cycle configuration of the refrigerator in the present embodiment is the same as that in the first embodiment.

【0056】本実施の形態における運転動作の特徴は、
冷蔵室2の冷却に対して冷凍室3の冷却を優先し、冷凍
室3内の空気温度が冷蔵室2内よりも高くなっている間
は常に冷凍室3のみを冷却するとともに、図3に示すよ
うに冷凍室3の冷却から冷蔵室2の冷却に切り替える時
のみPD動作を行うものである。また、図3に示したよ
うにPD動作中に第二の送風ファン17を運転するもの
である。
The features of the driving operation in this embodiment are as follows.
Prioritizing the cooling of the freezer compartment 3 over the cooling of the refrigerator compartment 2, while the air temperature in the freezer compartment 3 is higher than that in the refrigerator compartment 2, only the freezer compartment 3 is always cooled, and FIG. As shown, the PD operation is performed only when switching from the cooling of the freezer compartment 3 to the cooling of the refrigerator compartment 2. Further, as shown in FIG. 3, the second blower fan 17 is operated during the PD operation.

【0057】この結果、冷蔵室2の冷却から冷凍室3の
冷却に切り替えた時に、冷蔵室2内に設置された第一の
蒸発器8や第一のアキュームレータ9に滞留した液体冷
媒が、蒸発温度が低い冷凍室3の冷却中に蒸発して圧縮
機4に回収されて、冷却サイクルへ還流していくことで
循環冷媒量を確保するとともに、PD動作を約半分にす
ることでPD動作に伴う圧縮機4の入力損失や吸入圧力
低下に伴う耐久性低下の問題を軽減することができる。
さらに、PD動作中に第二の送風ファン17を運転する
ことにより、第二の蒸発器11を冷凍室3内の空気で加
温し第二の蒸発器11内に滞留する液体冷媒が蒸発する
際の液体冷媒の温度低下を抑制することができ、図3に
示したようにPD動作中の吸入圧力の低下が抑制でき
る。
As a result, when the cooling of the refrigerator compartment 2 is switched to the cooling of the freezer compartment 3, the liquid refrigerant retained in the first evaporator 8 and the first accumulator 9 installed in the refrigerator compartment 2 is evaporated. During the cooling of the freezing room 3 having a low temperature, the refrigerant evaporates and is collected by the compressor 4 and is returned to the cooling cycle to secure the amount of the circulating refrigerant. Accordingly, the problem of the input loss of the compressor 4 and the decrease in durability due to the decrease in suction pressure can be reduced.
Further, by operating the second blower fan 17 during the PD operation, the second evaporator 11 is heated by the air in the freezing room 3 and the liquid refrigerant remaining in the second evaporator 11 evaporates. In this case, a decrease in the temperature of the liquid refrigerant at the time can be suppressed, and a decrease in the suction pressure during the PD operation can be suppressed as shown in FIG.

【0058】ここで、図3のA点は第二の蒸発器11に
滞留する液体冷媒がすべて蒸発した時点であり、このポ
イントまで吸入圧力の低下が抑制できることを示してい
る。
Here, the point A in FIG. 3 is a point in time when all the liquid refrigerant staying in the second evaporator 11 evaporates, and indicates that a decrease in the suction pressure can be suppressed up to this point.

【0059】図3のA点を過ぎると、第二のアキューム
レータ12に滞留する液体冷媒の蒸発が始まり液体冷媒
の温度低下とともに吸入圧力が低下し、B点においてP
D動作が終了する。これは、第二のアキュームレータ1
2が液体冷媒を貯留する目的で設計されるため冷凍室3
内の空気の熱交換効率が悪く、第二の送風ファン17を
運転するだけでは第二のアキュームレータ12に滞留す
る液体冷媒の温度低下が防止できないためである。しか
しながら、PD開始からA点までの間、主として第二の
蒸発器11に滞留する液体冷媒が蒸発した結果、第二の
送風ファン17を停止する場合に比べて第二のアキュー
ムレータ12に滞留する液体冷媒の蒸発及び温度低下が
抑制される。
After the point A in FIG. 3, the liquid refrigerant remaining in the second accumulator 12 starts to evaporate, the temperature of the liquid refrigerant decreases, and the suction pressure decreases.
The D operation ends. This is the second accumulator 1
2 is designed for storing a liquid refrigerant,
This is because the heat exchange efficiency of the air inside is low, and the temperature of the liquid refrigerant staying in the second accumulator 12 cannot be prevented from decreasing only by operating the second blower fan 17. However, during the period from the start of PD to the point A, as a result of evaporating the liquid refrigerant mainly retained in the second evaporator 11, the liquid retained in the second accumulator 12 is smaller than when the second blower fan 17 is stopped. Evaporation and temperature drop of the refrigerant are suppressed.

【0060】なお、第二の送風ファン17の運転に伴う
発熱量を抑制するために、図3のA点において第二の送
風ファン17を停止させる方が望ましい。A点からB点
の間で第二の送風ファン17を運転しても第二のアキュ
ームレータ12に滞留する液体冷媒を蒸発させる効果は
ほとんどない上に、第二の送風ファン17の運転に伴う
発熱量によって冷凍室3内の空気温度が上昇する問題が
発生する。
In order to suppress the amount of heat generated by the operation of the second blower fan 17, it is desirable to stop the second blower fan 17 at the point A in FIG. Operating the second blower fan 17 between the points A and B has almost no effect of evaporating the liquid refrigerant remaining in the second accumulator 12 and also generates heat due to the operation of the second blower fan 17. The problem that the air temperature in the freezer compartment 3 rises depending on the amount occurs.

【0061】(実施の形態3)図4は本発明の一実施の
形態を示す冷蔵庫の冷凍サイクル図、図5は同実施の形
態における運転動作と吸入圧力変化を示すタイミングチ
ャートである。本実施の形態における冷蔵庫のサイクル
構成の特徴は、第二のアキュームレータ12を直接加温
するためにその表面にアキュームヒータ19を設置した
点である。
(Embodiment 3) FIG. 4 is a refrigeration cycle diagram of a refrigerator showing an embodiment of the present invention, and FIG. 5 is a timing chart showing the operation and suction pressure change in the embodiment. A feature of the cycle configuration of the refrigerator in the present embodiment is that an accumulator heater 19 is provided on the surface of the second accumulator 12 to directly heat the second accumulator 12.

【0062】本実施の形態における運転動作の特徴は、
冷蔵室2の冷却に対して冷凍室3の冷却を優先し、冷凍
室3内の空気温度が冷蔵室2内よりも高くなっている間
は常に冷凍室3のみを冷却するとともに、図5に示すよ
うに冷凍室3の冷却から冷蔵室2の冷却に切り替える時
のみPD動作を行うものである。また、図5に示したよ
うにPD動作中にのみアキュームヒータ19をONする
ものである。
The features of the driving operation in this embodiment are as follows.
The cooling of the freezer compartment 3 is prioritized over the cooling of the refrigerator compartment 2, and while the air temperature in the freezer compartment 3 is higher than that in the refrigerator compartment 2, only the freezer compartment 3 is always cooled. As shown, the PD operation is performed only when switching from the cooling of the freezer compartment 3 to the cooling of the refrigerator compartment 2. Further, as shown in FIG. 5, the accumulation heater 19 is turned ON only during the PD operation.

【0063】この結果、冷蔵室2の冷却から冷凍室3の
冷却に切り替えた時に、冷蔵室2内に設置された第一の
蒸発器8や第一のアキュームレータ9に滞留した液体冷
媒が、蒸発温度が低い冷凍室3の冷却中に蒸発して圧縮
機4に回収されて、冷却サイクルへ還流していくことで
循環冷媒量を確保するとともに、PD動作を約半分にす
ることでPD動作に伴う圧縮機4の入力損失や吸入圧力
低下に伴う耐久性低下の問題を軽減することができる。
さらに、PD動作中にアキュームヒータ19をONする
ことにより、第二のアキュームレータ12を直接加温し
第二のアキュームレータ12内に滞留する液体冷媒が蒸
発する際の液体冷媒の温度低下を抑制することができ、
図5に示したようにPD動作中の吸入圧力の低下が抑制
できる。
As a result, when the cooling of the refrigerator compartment 2 is switched to the cooling of the freezer compartment 3, the liquid refrigerant retained in the first evaporator 8 or the first accumulator 9 installed in the refrigerator compartment 2 is evaporated. During the cooling of the freezing room 3 having a low temperature, the refrigerant evaporates and is collected by the compressor 4 and is returned to the cooling cycle to secure the amount of the circulating refrigerant. Accordingly, the problem of the input loss of the compressor 4 and the decrease in durability due to the decrease in suction pressure can be reduced.
Further, by turning on the accumulator heater 19 during the PD operation, the second accumulator 12 is directly heated to suppress a decrease in the temperature of the liquid refrigerant when the liquid refrigerant remaining in the second accumulator 12 evaporates. Can be
As shown in FIG. 5, a decrease in suction pressure during PD operation can be suppressed.

【0064】ここで、図5のC点は、第二のアキューム
レータ12に滞留する液体冷媒の一部が蒸発してPD動
作が終了した点であり、アキュームヒータ19がOFF
のまま同量の液体冷媒を蒸発させた場合に比べて、第二
のアキュームレータ12に滞留する液体冷媒の蒸発及び
温度低下が抑制される。
Here, the point C in FIG. 5 is a point where a part of the liquid refrigerant staying in the second accumulator 12 evaporates and the PD operation ends, and the accumulator 19 is turned off.
As compared with the case where the same amount of the liquid refrigerant is evaporated as it is, the evaporation and the temperature decrease of the liquid refrigerant remaining in the second accumulator 12 are suppressed.

【0065】なお、アキュームヒータ19に替えて、第
二の蒸発器11の近傍に通常設置される除霜用ヒータ
(図示せず)を用いても同様の効果は期待できるが、構
造上冷凍室3内の空気との熱交換効率が悪い第二のアキ
ュームレータ12を間接的に加温すると冷凍室3内の空
気温度が上昇する問題が発生するため、固体熱伝導を主
に第二のアキュームレータ12を加温する手段を用いる
方が望ましい。
Although a similar effect can be expected by using a defrosting heater (not shown) normally installed near the second evaporator 11 in place of the accumulator heater 19, the structure is freezer compartment. Indirect heating of the second accumulator 12, which has a poor heat exchange efficiency with the air in the refrigerator 3, causes a problem in that the temperature of the air in the freezer 3 rises. It is preferable to use a means for heating the water.

【0066】(実施の形態4)図6は本発明の一実施の
形態における運転動作と吸入圧力変化を示すタイミング
チャートである。本実施の形態における冷蔵庫のサイク
ル構成は、実施の形態1と同一である。
(Embodiment 4) FIG. 6 is a timing chart showing a driving operation and a change in suction pressure according to an embodiment of the present invention. The cycle configuration of the refrigerator in the present embodiment is the same as that in the first embodiment.

【0067】本実施の形態における運転動作の特徴は、
冷蔵室2の冷却に対して冷凍室3の冷却を優先し、冷凍
室3内の空気温度が冷蔵室2内よりも高くなっている間
は常に冷凍室3のみを冷却するとともに、図6に示すよ
うに冷凍室3の冷却から冷蔵室2の冷却に切り替える時
のみPD動作を行うものである。また、図6に示したよ
うにPD動作中に圧縮機4の出力を40%に低減するも
のである。
The features of the driving operation in this embodiment are as follows.
The cooling of the freezer compartment 3 is prioritized over the cooling of the refrigerator compartment 2, and while the air temperature in the freezer compartment 3 is higher than that in the refrigerator compartment 2, only the freezer compartment 3 is always cooled, and FIG. As shown, the PD operation is performed only when switching from the cooling of the freezer compartment 3 to the cooling of the refrigerator compartment 2. Further, as shown in FIG. 6, the output of the compressor 4 is reduced to 40% during the PD operation.

【0068】この結果、冷蔵室2の冷却から冷凍室3の
冷却に切り替えた時に、冷蔵室2内に設置された第一の
蒸発器8や第一のアキュームレータ9に滞留した液体冷
媒が、蒸発温度が低い冷凍室3の冷却中に蒸発して圧縮
機4に回収されて、冷却サイクルへの還流していくこと
で循環冷媒量が確保するとともに、PD動作を約半分に
することでPD動作に伴う圧縮機4の入力損失や吸入圧
力低下に伴う耐久性低下の問題を軽減することができ
る。さらに、PD動作中の圧縮機4の出力を40%に低
減することにより、第二の蒸発器11及び第二のアキュ
ームレータ12内に滞留する液体冷媒が蒸発する速度を
低減し、その結果として液体冷媒の温度低下を抑制する
ことができ、図6に示したようにPD動作中の吸入圧力
の低下が抑制できる。
As a result, when the cooling of the refrigerator compartment 2 is switched to the cooling of the freezer compartment 3, the liquid refrigerant retained in the first evaporator 8 and the first accumulator 9 installed in the refrigerator compartment 2 is evaporated. During the cooling of the low-temperature freezing chamber 3, the refrigerant evaporates and is collected by the compressor 4, and is returned to the cooling cycle to secure the amount of circulating refrigerant. Thus, the problem of the input loss of the compressor 4 and the decrease of the durability due to the decrease of the suction pressure can be reduced. Further, by reducing the output of the compressor 4 during the PD operation to 40%, the speed at which the liquid refrigerant staying in the second evaporator 11 and the second accumulator 12 evaporates is reduced, and as a result, the liquid A decrease in the temperature of the refrigerant can be suppressed, and a decrease in the suction pressure during the PD operation can be suppressed as shown in FIG.

【0069】ここで、第二の蒸発器11及び第二のアキ
ュームレータ12内に滞留する液体冷媒の温度変化は、
蒸発によって失われる蒸発潜熱と冷凍室3内空気あるい
は構成部品からの熱伝導によって供給される熱とのバラ
ンスによって決まることから、液体冷媒が蒸発する速度
を低減することで液体冷媒の温度低下が抑制できるもの
である。図6のD点は、第二の蒸発器11及び第二のア
キュームレータ12に滞留する液体冷媒の一部が蒸発し
てPD動作が終了した点であり、圧縮機4の出力を10
0%のまま同量の液体冷媒を蒸発させた場合に比べて、
第二の蒸発器11及び第二のアキュームレータ12に滞
留する液体冷媒の蒸発及び温度低下が抑制される。
Here, the temperature change of the liquid refrigerant staying in the second evaporator 11 and the second accumulator 12 is as follows.
It is determined by the balance between the latent heat of evaporation lost by evaporation and the heat supplied by the air in the freezer compartment 3 or the heat conduction from the components, so that the temperature at which the liquid refrigerant evaporates is reduced by reducing the speed at which the liquid refrigerant evaporates. You can do it. The point D in FIG. 6 is a point where a part of the liquid refrigerant staying in the second evaporator 11 and the second accumulator 12 evaporates and the PD operation is completed.
Compared to the case where the same amount of liquid refrigerant was evaporated at 0%,
Evaporation and temperature decrease of the liquid refrigerant staying in the second evaporator 11 and the second accumulator 12 are suppressed.

【0070】なお、本実施の形態ではPD動作中の圧縮
機4の出力を40%としたが、一般に家庭用冷蔵庫に用
いられるロータリ型圧縮機あるいはレシプロ型圧縮機の
場合、圧縮機の回転数を低減して任意に出力を抑制して
も同様の効果が期待できる。
In this embodiment, the output of the compressor 4 during the PD operation is set to 40%. However, in the case of a rotary compressor or a reciprocating compressor generally used in a household refrigerator, the rotation speed of the compressor is The same effect can be expected even if the output is reduced and the output is arbitrarily suppressed.

【0071】このとき、第二の蒸発器11及び第二のア
キュームレータ12に滞留する液体冷媒の蒸発速度を5
g/10s程度以下に制御すると、滞留冷媒の温度低下
がかなり抑制できる。また、滞留冷媒の蒸発速度低減と
合わせて、実施の形態2〜3で示した方法で加温する
と、滞留冷媒の温度がより安定することが期待される。
At this time, the evaporation speed of the liquid refrigerant staying in the second evaporator 11 and the second accumulator 12 is set to 5
By controlling the temperature to about g / 10 s or less, a decrease in the temperature of the staying refrigerant can be considerably suppressed. Further, when the temperature is increased by the method described in Embodiments 2 and 3 together with the reduction of the evaporation rate of the staying refrigerant, the temperature of the staying refrigerant is expected to be more stable.

【0072】(実施の形態5)図7は本発明の一実施の
形態における運転動作と吸入圧力変化を示すタイミング
チャートである。
(Embodiment 5) FIG. 7 is a timing chart showing a driving operation and a change in suction pressure according to an embodiment of the present invention.

【0073】本実施の形態における冷蔵庫のサイクル構
成は、実施の形態1と同一である。
The cycle configuration of the refrigerator according to the present embodiment is the same as that of the first embodiment.

【0074】本実施の形態における運転動作の特徴は、
冷蔵室2の冷却に対して冷凍室3の冷却を優先し、冷凍
室3内の空気温度が冷蔵室2内よりも高くなっている間
は常に冷凍室3のみを冷却するとともに、図7に示すよ
うに冷凍室3の冷却から冷蔵室2の冷却に切り替える時
のみPD動作を行うものである。また、図7に示したよ
うにPD動作中に第一の膨張機構7を30%開とすると
ともに流路切替弁6の冷蔵側の流路を開とするものであ
る。
The features of the driving operation in this embodiment are as follows.
The cooling of the freezer compartment 3 is prioritized over the cooling of the refrigerator compartment 2, and while the air temperature in the freezer compartment 3 is higher than that in the refrigerator compartment 2, only the freezer compartment 3 is always cooled, and FIG. As shown, the PD operation is performed only when switching from the cooling of the freezer compartment 3 to the cooling of the refrigerator compartment 2. Further, as shown in FIG. 7, during the PD operation, the first expansion mechanism 7 is opened by 30% and the flow path on the refrigeration side of the flow path switching valve 6 is opened.

【0075】この結果、冷蔵室2の冷却から冷凍室3の
冷却に切り替えた時に、冷蔵室2内に設置された第一の
蒸発器8や第一のアキュームレータ9に滞留した液体冷
媒が、蒸発温度が低い冷凍室3の冷却中に蒸発して圧縮
機4に回収されて、冷却サイクルへ還流していくことで
循環冷媒量を確保するとともに、PD動作を約半分にす
ることでPD動作に伴う圧縮機4の入力損失や吸入圧力
低下に伴う耐久性低下の問題を軽減することができる。
さらにPD動作中に第一の膨張機構7を30%開とする
とともに流路切替弁6の冷蔵側の流路を開として、冷蔵
室2の冷却サイクルに少量の冷媒を供給することによ
り、第二の蒸発器11及び第二のアキュームレータ12
内に滞留する液体冷媒が蒸発する速度を低減し、その結
果として液体冷媒の温度低下を抑制することができ、図
7に示したようにPD動作中の吸入圧力の低下が抑制で
きる。
As a result, when the cooling of the refrigerator compartment 2 is switched to the cooling of the freezer compartment 3, the liquid refrigerant retained in the first evaporator 8 and the first accumulator 9 installed in the refrigerator compartment 2 is evaporated. During the cooling of the freezing room 3 having a low temperature, the refrigerant evaporates and is collected by the compressor 4 and is returned to the cooling cycle to secure the amount of the circulating refrigerant. Accordingly, the problem of the input loss of the compressor 4 and the decrease in durability due to the decrease in suction pressure can be reduced.
Further, by opening the first expansion mechanism 7 by 30% during the PD operation and opening the refrigerating side flow path of the flow path switching valve 6 to supply a small amount of refrigerant to the cooling cycle of the refrigerating chamber 2, Second evaporator 11 and second accumulator 12
The rate at which the liquid refrigerant staying inside evaporates is reduced, and as a result, a decrease in the temperature of the liquid refrigerant can be suppressed. As shown in FIG. 7, a decrease in the suction pressure during the PD operation can be suppressed.

【0076】ここで、第二の蒸発器11及び第二のアキ
ュームレータ12内に滞留する液体冷媒の温度変化は、
蒸発によって失われる蒸発潜熱と冷凍室3内空気あるい
は構成部品からの熱伝導によって供給される熱とのバラ
ンスによって決まることから、液体冷媒が蒸発する速度
を低減することで液体冷媒の温度低下が抑制できるもの
である。図7のE点は、第二の蒸発器11及び第二のア
キュームレータ12に滞留する液体冷媒の一部が蒸発し
てPD動作が終了した点であり、冷蔵室2の冷却サイク
ルを閉じたまま同量の液体冷媒を蒸発させた場合に比べ
て、第二の蒸発器11及び第二のアキュームレータ12
に滞留する液体冷媒の蒸発及び温度低下が抑制される。
Here, the temperature change of the liquid refrigerant staying in the second evaporator 11 and the second accumulator 12 is as follows.
It is determined by the balance between the latent heat of evaporation lost by evaporation and the heat supplied by the air in the freezer compartment 3 or the heat conduction from the components, so that the temperature at which the liquid refrigerant evaporates is reduced by reducing the speed at which the liquid refrigerant evaporates. You can do it. Point E in FIG. 7 is a point at which a part of the liquid refrigerant remaining in the second evaporator 11 and the second accumulator 12 evaporates and the PD operation ends, and the cooling cycle of the refrigerator compartment 2 is closed. As compared with the case where the same amount of liquid refrigerant is evaporated, the second evaporator 11 and the second accumulator 12
Evaporation and temperature decrease of the liquid refrigerant staying in the tank are suppressed.

【0077】なお、本実施の形態ではPD動作中の第一
の膨張機構7の開度を30%としたが、冷蔵室2の冷却
サイクル単独運転時の蒸発温度が冷凍室3の空気温度よ
り低い温度になるように第一の膨張機構7の開度を調整
すれば、第二の蒸発器11及び第二のアキュームレータ
12に滞留する液体冷媒の蒸発を維持しながらその蒸発
速度を抑制することができ同様の効果が期待できる。こ
のとき、第二の蒸発器11及び第二のアキュームレータ
12に滞留する液体冷媒の蒸発速度を5g/10s程度
以下に制御すると、滞留冷媒の温度低下がかなり抑制で
きる。また、滞留冷媒の蒸発速度低減と合わせて、実施
の形態2〜3で示した方法で加温すると、滞留冷媒の温
度がより安定することが期待される。
In the present embodiment, the opening degree of the first expansion mechanism 7 during the PD operation is set to 30%. However, the evaporating temperature of the refrigerating compartment 2 when the cooling cycle is operated alone is lower than the air temperature of the freezing compartment 3. If the opening degree of the first expansion mechanism 7 is adjusted to be a low temperature, the evaporation rate of the liquid refrigerant remaining in the second evaporator 11 and the second accumulator 12 can be suppressed while maintaining the evaporation rate. The same effect can be expected. At this time, if the evaporation rate of the liquid refrigerant staying in the second evaporator 11 and the second accumulator 12 is controlled to about 5 g / 10 s or less, the temperature drop of the staying refrigerant can be considerably suppressed. Further, when the temperature is increased by the method described in Embodiments 2 and 3 together with the reduction of the evaporation rate of the staying refrigerant, the temperature of the staying refrigerant is expected to be more stable.

【0078】また、本実施の形態においては、第一の膨
張機構7は膨張弁等の可変抵抗が望ましいが、PD動作
中の少量の冷媒を流すために開閉動作を繰り替えして流
量制御しても、PD動作のために抵抗の大きいキャピラ
リに切り替えて流量制御してもよい。
In the present embodiment, the first expansion mechanism 7 is desirably a variable resistor such as an expansion valve. However, in order to flow a small amount of refrigerant during the PD operation, the opening and closing operation is repeated to control the flow rate. Alternatively, the flow rate may be controlled by switching to a capillary having a large resistance for the PD operation.

【0079】(実施の形態6)図8は本発明の一実施の
形態における運転動作と吸入圧力変化を示すタイミング
チャートである。
(Embodiment 6) FIG. 8 is a timing chart showing a driving operation and a change in suction pressure according to an embodiment of the present invention.

【0080】本実施の形態における冷蔵庫のサイクル構
成は、実施の形態1と同一である。
The cycle configuration of the refrigerator according to the present embodiment is the same as that of the first embodiment.

【0081】本実施の形態における運転動作の特徴は、
冷蔵室2の冷却に対して冷凍室3の冷却を優先し、冷凍
室3内の空気温度が冷蔵室2内よりも高くなっている間
は常に冷凍室3のみを冷却するとともに、図8に示すよ
うに冷凍室3の冷却から冷蔵室2の冷却に切り替える時
のみPD動作を行うものである。また、図8に示したよ
うにPD動作中に冷却ファン18を運転するものであ
る。
The features of the driving operation in this embodiment are as follows.
The cooling of the freezer compartment 3 is prioritized over the cooling of the refrigerator compartment 2, and while the air temperature in the freezer compartment 3 is higher than that in the refrigerator compartment 2, only the freezer compartment 3 is always cooled, and FIG. As shown, the PD operation is performed only when switching from the cooling of the freezer compartment 3 to the cooling of the refrigerator compartment 2. Further, as shown in FIG. 8, the cooling fan 18 is operated during the PD operation.

【0082】この結果、冷蔵室2の冷却から冷凍室3の
冷却に切り替えた時に、冷蔵室2内に設置された第一の
蒸発器8や第一のアキュームレータ9に滞留した液体冷
媒が、蒸発温度が低い冷凍室3の冷却中に蒸発して圧縮
機4に回収されて、冷却サイクルへ還流していくことで
循環冷媒量を確保するとともに、PD動作を約半分にす
ることでPD動作に伴う圧縮機4の入力損失や吸入圧力
低下に伴う耐久性低下の問題を軽減することができる。
さらに、PD動作中に冷却ファン18を運転することに
より、凝縮器5の熱交換を促進して凝縮温度を低減し
て、結果としてPD動作中の圧縮比を低減することがで
きる。また、凝縮温度を低減と合わせて、実施の形態2
〜5で示した方法で吸入圧力の低減を抑制すると、圧縮
比がより低く安定することが期待される。
As a result, when the cooling of the refrigerator compartment 2 is switched to the cooling of the freezer compartment 3, the liquid refrigerant retained in the first evaporator 8 and the first accumulator 9 installed in the refrigerator compartment 2 is evaporated. During the cooling of the freezing room 3 having a low temperature, the refrigerant evaporates and is collected by the compressor 4 and is returned to the cooling cycle to secure the amount of the circulating refrigerant. Accordingly, the problem of the input loss of the compressor 4 and the decrease in durability due to the decrease in suction pressure can be reduced.
Further, by operating the cooling fan 18 during the PD operation, heat exchange of the condenser 5 is promoted to reduce the condensation temperature, and as a result, the compression ratio during the PD operation can be reduced. In addition to reducing the condensation temperature, the second embodiment
When the reduction of the suction pressure is suppressed by the methods described in Nos. To 5, it is expected that the compression ratio will be lower and stable.

【0083】なお、吸入圧力の低下に伴う電力損失の増
大は、再膨張ガスの圧縮に伴うことから圧縮比に比例し
て顕著になる、と同時に耐久性低下も再膨張ガスの圧縮
に伴う挙動変化に起因し特定の圧縮比以上で顕著となる
ことから、PD動作中の圧縮比に上限を設定することが
望ましい。一般の冷蔵庫用レシプロ型圧縮機において
は、PD動作中の圧縮比は15〜20程度が上限であ
り、この圧縮比を超えると効率の著しい低下が起こると
ともに、吐出ガス温度の上昇や軸受け部の摩耗が発生し
て耐久性低下の問題が発生する。
The increase in the power loss due to the decrease in the suction pressure becomes significant in proportion to the compression ratio because of the compression of the re-expansion gas. It is desirable to set an upper limit on the compression ratio during the PD operation, because the change becomes noticeable at a specific compression ratio or higher due to the change. In general reciprocating compressors for refrigerators, the upper limit of the compression ratio during PD operation is about 15 to 20. Exceeding this compression ratio causes a significant decrease in efficiency, a rise in discharge gas temperature and an increase in the size of the bearing. Abrasion occurs and the problem of reduced durability occurs.

【0084】(実施の形態7)図9は本発明の一実施の
形態を示す冷蔵庫の冷凍サイクル図、図10は同実施の
形態における運転動作と吸入圧力変化を示すタイミング
チャートである。本実施の形態における冷蔵庫のサイク
ル構成の特徴は、第二のアキュームレータ12にその温
度を検知する温度検知器20を設置した点である。
(Embodiment 7) FIG. 9 is a refrigeration cycle diagram of a refrigerator showing an embodiment of the present invention, and FIG. 10 is a timing chart showing the operation and suction pressure change in the embodiment. A feature of the cycle configuration of the refrigerator in the present embodiment is that a temperature detector 20 for detecting the temperature of the second accumulator 12 is provided.

【0085】本実施の形態における運動動作の特徴は、
冷蔵室2の冷却に対して冷凍室3の冷却を優先し、冷凍
室3内の空気温度が冷蔵室2内よりも高くなっている間
は常に冷凍室3のみを冷却するとともに、図10に示す
ように冷凍室3の冷却から冷蔵室2の冷却に切り替える
時のみPD動作を行うものである。また、図10に示し
たようにPD動作中に温度検知器20が所定の値以下に
なった時点でPD動作を中止し、冷蔵室冷却モードに移
行するものである。
The features of the exercise operation in the present embodiment are as follows.
The cooling of the freezer compartment 3 is prioritized over the cooling of the refrigerator compartment 2, and while the air temperature in the freezer compartment 3 is higher than that in the refrigerator compartment 2, only the freezer compartment 3 is always cooled, and FIG. As shown, the PD operation is performed only when switching from the cooling of the freezer compartment 3 to the cooling of the refrigerator compartment 2. Further, as shown in FIG. 10, when the temperature detector 20 becomes lower than a predetermined value during the PD operation, the PD operation is stopped, and the mode shifts to the refrigerator compartment cooling mode.

【0086】この結果、冷蔵室2の冷却から冷凍室3の
冷却に切り替えた時に、冷却室2内に設置された第一の
蒸発器8や第一のアキュームレータ9に滞留した液体冷
媒が、蒸発温度が低い冷凍室3の冷却中に蒸発して圧縮
機4に回収されて、冷却サイクルへ還流していくことで
循環冷媒量を確保するとともに、PD動作を約半分にす
ることでPD動作に伴う圧縮機4の入力損失や吸入圧力
低下に伴う耐久性低下の問題を軽減することができる。
さらに、第二のアキュームレータ12内に滞留する液体
冷媒の温度が低下して第二のアキュームレータ12の表
面温度が低下した時に、その温度を温度検知器20が検
知してPD動作を中止することによりPD動作に伴う圧
縮機4の入力損失や吸入圧力低下に伴う耐久性低下の問
題を軽減することができる。
As a result, when the cooling of the refrigerator compartment 2 is switched to the cooling of the freezing compartment 3, the liquid refrigerant retained in the first evaporator 8 and the first accumulator 9 installed in the cooling compartment 2 is evaporated. During the cooling of the freezing room 3 having a low temperature, the refrigerant evaporates and is collected by the compressor 4 and is returned to the cooling cycle to secure the amount of the circulating refrigerant. Accordingly, the problem of the input loss of the compressor 4 and the decrease in durability due to the decrease in suction pressure can be reduced.
Further, when the temperature of the liquid refrigerant staying in the second accumulator 12 decreases and the surface temperature of the second accumulator 12 decreases, the temperature detector 20 detects the temperature and stops the PD operation. The problem of the input loss of the compressor 4 due to the PD operation and the decrease in durability due to the decrease in the suction pressure can be reduced.

【0087】なお、吸入圧力の低下に伴う電力損失の増
大は、再膨張ガスの圧縮に伴うことから圧縮比に比例し
て顕著になる、と同時に耐久性低下も再膨張ガスの圧縮
に伴う挙動変化に起因し特定の圧縮比以上で顕著となる
ことから、PD動作中の圧縮比に上限を設定することが
望ましい。一般の冷蔵庫用レシプロ型圧縮機において
は、PD動作中の圧縮比は15〜20程度が上限であ
り、この圧縮比を超えると効率の著しい低下が起こると
ともに、吐出ガス温度の上昇や軸受け部の摩耗が発生し
て耐久性低下の問題が発生する。
The increase in the power loss due to the decrease in the suction pressure becomes significant in proportion to the compression ratio because of the compression of the re-expansion gas. It is desirable to set an upper limit on the compression ratio during the PD operation, because the change becomes noticeable at a specific compression ratio or higher due to the change. In general reciprocating compressors for refrigerators, the upper limit of the compression ratio during PD operation is about 15 to 20. Exceeding this compression ratio causes a significant decrease in efficiency, a rise in discharge gas temperature and an increase in the size of the bearing. Abrasion occurs and the problem of reduced durability occurs.

【0088】(実施の形態8)図11は本発明の一実施
の形態を示す冷蔵庫の冷凍サイクル図、図12は同実施
の形態における運転動作と吸入圧力変化を示すタイミン
グチャートである。
(Eighth Embodiment) FIG. 11 is a refrigeration cycle diagram of a refrigerator showing an embodiment of the present invention, and FIG. 12 is a timing chart showing the operation and suction pressure change in the embodiment.

【0089】本実施の形態における冷蔵庫のサイクル構
成の特徴は、冷蔵室2及び冷凍室3内に液体冷媒を貯留
するアキュームレータを設置していない点である。本実
施の形態における運転動作の特徴は、冷蔵室2の冷却に
対して冷凍室3の冷却を優先し、冷凍室3内の空気温度
が冷凍室2内よりも高くなっている間は常に冷凍室3の
みを冷却するとともに、図12に示すように冷凍室3の
冷却から冷蔵室2の冷却に切り替える時のみPD動作を
行うものである。また、図12に示すようにPD動作中
に第二の送風ファン17を運転するとともに、吸入圧力
の低下がほとんどない範囲の時間でPD動作を終了する
ものである。
The feature of the cycle configuration of the refrigerator in the present embodiment is that no accumulator for storing the liquid refrigerant is installed in the refrigerator compartment 2 and the freezer compartment 3. The feature of the operation in the present embodiment is that the cooling of the freezing compartment 3 is prioritized over the cooling of the refrigerator compartment 2 and the freezing is always performed while the air temperature in the freezing compartment 3 is higher than that in the freezing compartment 2. In addition to cooling only the chamber 3, the PD operation is performed only when switching from the cooling of the freezing chamber 3 to the cooling of the refrigerator compartment 2 as shown in FIG. In addition, as shown in FIG. 12, the second blowing fan 17 is operated during the PD operation, and the PD operation is completed within a time period in which the suction pressure hardly decreases.

【0090】この結果、冷蔵室2の冷却から冷凍室3の
冷却に切り替えた時に、冷蔵室2内に設置された第一の
蒸発器8や第一のアキュームレータ9に滞留した液体冷
媒が、蒸発温度が低い冷凍室3の冷却中に蒸発して圧縮
機4に回収されて、冷却サイクルへ還流していくことで
循環冷媒量を確保するとともに、PD動作を約半分にす
ることでPD動作に伴う圧縮機4の入力損失や吸入圧力
低下に伴う耐久性低下の問題を軽減することができる。
As a result, when the cooling of the refrigerator compartment 2 is switched to the cooling of the freezer compartment 3, the liquid refrigerant retained in the first evaporator 8 and the first accumulator 9 installed in the refrigerator compartment 2 is evaporated. During the cooling of the freezing room 3 having a low temperature, the refrigerant evaporates and is collected by the compressor 4 and is returned to the cooling cycle to secure the amount of the circulating refrigerant. Accordingly, the problem of the input loss of the compressor 4 and the decrease in durability due to the decrease in suction pressure can be reduced.

【0091】さらに、第二の送風ファン17を運転する
ことで第二の蒸発器11内に滞留する液体冷媒を加温し
て温度低下及び吸入圧力の低下を防止するとともに、第
二の蒸発器11内の液体冷媒がなくなる程度の時間のみ
PD動作を行うことで時間短縮が図れることによりPD
動作に伴う圧縮機4の入力損失や吸入圧力低下に伴う耐
久性低下の問題を軽減することができる。
Further, by operating the second blower fan 17, the liquid refrigerant staying in the second evaporator 11 is heated to prevent a temperature drop and a suction pressure drop. By performing the PD operation only for the time that the liquid refrigerant in the chamber 11 runs out, the time can be shortened.
It is possible to reduce the problem of the input loss of the compressor 4 due to the operation and the decrease in durability due to the decrease of the suction pressure.

【0092】ここで、図12のH点は第二の蒸発器11
内の液体冷媒がなくなり冷蔵室冷却モードに移行する時
点であり、第二の蒸発器11の大きさと圧縮機4の能力
によって所定の時間に規定することができる。また、多
量の液体冷媒を貯留するアキュームレータを冷凍室3内
に設置する場合に比べて、PD動作時間を1/10程度
に短縮することができる。
Here, the point H in FIG.
This is the point in time when the liquid refrigerant in the chamber is exhausted and the refrigerator shifts to the refrigerator compartment cooling mode. Further, the PD operation time can be reduced to about 1/10 as compared with the case where an accumulator for storing a large amount of liquid refrigerant is installed in the freezing room 3.

【0093】なお、冷凍室冷却サイクルと冷蔵室冷却サ
イクルの内容積に大きな差がなく、冷凍室3内にアキュ
ームレータを設置しない場合は、冷蔵室2内にもアキュ
ームレータを設置しない方が望ましい。冷蔵室冷却サイ
クルのみ過剰な冷媒が生じることがないため、冷蔵室2
内にアキュームレータを設置する必要がないとともに、
冷蔵室冷却モードから冷凍室冷却モードへ移行する際に
第一の蒸発器8内に貯留された液体冷媒を回収する時間
が短縮できる。
When there is no large difference in the internal volume between the freezing room cooling cycle and the freezing room cooling cycle and no accumulator is installed in the freezing room 3, it is preferable that no accumulator is installed in the freezing room 2. Since no excess refrigerant is generated only in the refrigerator compartment cooling cycle, the refrigerator compartment 2
It is not necessary to install an accumulator inside,
When shifting from the refrigerator compartment cooling mode to the freezer compartment cooling mode, the time for collecting the liquid refrigerant stored in the first evaporator 8 can be reduced.

【0094】(実施の形態9)図13は本発明の一実施
の形態における運転動作と吸入圧力変化を示す図であ
る。
(Embodiment 9) FIG. 13 is a diagram showing a driving operation and a change in suction pressure according to an embodiment of the present invention.

【0095】本実施の形態における冷蔵庫のサイクル構
成は、実施の形態8と同一である。
[0095] The cycle configuration of the refrigerator in the present embodiment is the same as that of the eighth embodiment.

【0096】また、本実施の形態における運動動作の特
徴は、図13に示すように、冷蔵室冷却モードから冷凍
室冷却モードに移行する際、及び冷凍室冷却モードから
冷蔵室冷却モードに移行する際ともにPD動作を行わな
い点である。
Further, as shown in FIG. 13, the movement operation in the present embodiment is characterized in that the mode is shifted from the cooling mode to the freezing mode and from the freezing mode to the cooling mode. In both cases, the PD operation is not performed.

【0097】この結果、多量の液体冷媒を貯留するアキ
ュームレータを冷凍室3内及び冷蔵室2内に設置せず、
冷却モード移行時に発生する循環冷媒量不足を軽減する
ことでPD動作を廃止し、PD動作に伴う圧縮機4の入
力損失や吸入圧力低下に伴う耐久性低下の問題を解決す
ることができる。
As a result, the accumulator for storing a large amount of liquid refrigerant is not installed in the freezing room 3 and the refrigeration room 2,
The PD operation is abolished by reducing the shortage of the amount of circulating refrigerant generated at the time of transition to the cooling mode, and the problem of the input loss of the compressor 4 due to the PD operation and the decrease in durability due to the decrease in the suction pressure can be solved.

【0098】(実施の形態10)図14は本発明の一実
施の形態を示す冷蔵庫の冷凍サイクル図、図15は同実
施の形態における電源投入時の運動動作と吸入圧力変化
を示すタイミングチャートである。
(Embodiment 10) FIG. 14 is a refrigeration cycle diagram of a refrigerator according to an embodiment of the present invention, and FIG. 15 is a timing chart showing a kinetic operation and a change in suction pressure when the power is turned on in the embodiment. is there.

【0099】本実施の形態における冷蔵庫のサイクル構
成の特徴は、冷蔵室2及び冷凍室3内に液体冷媒を貯留
するアキュームレータを設置していない点と、第二の膨
張機構10と並列に冷凍室冷却サイクルを形成するよう
に起動用膨張機構22を設置した点である。また、本実
施の形態における運動動作の特徴は、図15に示すよう
に、電源投入後の初期に冷凍室冷却モードにおいて、凝
縮器5から第二の膨張機構10につながる冷凍側流路を
閉じて、凝縮器5から起動用膨張機構22につながる起
動用流路を開けるように三流路切替弁21を動作させる
点である。
The cycle configuration of the refrigerator in the present embodiment is characterized in that no accumulator for storing the liquid refrigerant in the refrigerator compartment 2 and the freezer compartment 3 is provided, and the freezer compartment is provided in parallel with the second expansion mechanism 10. The point is that the starting expansion mechanism 22 is installed so as to form a cooling cycle. Further, the feature of the kinetic operation in the present embodiment is that, as shown in FIG. 15, in the freezing room cooling mode at the initial stage after the power is turned on, the refrigeration side flow path connected from the condenser 5 to the second expansion mechanism 10 is closed. The third flow path switching valve 21 is operated so as to open a startup flow path from the condenser 5 to the startup expansion mechanism 22.

【0100】この結果、多量の液体冷媒を貯留するアキ
ュームレータを冷凍室3内及び冷蔵室2内に設置せず、
冷却モード移行時に発生する循環冷媒量不足を軽減する
ことでPD動作を廃止し、PD動作に伴う圧縮機4の入
力損失や吸入圧力低下に伴う耐久性低下の問題を解消す
ることができる。さらに、電源投入後の初期に比較的抵
抗の小さい起動用膨張機構22を用いて冷凍室3を冷却
することで、図15の吸入圧力変化の実線に示したよう
に、蒸発温度を上げて冷凍能力を増大させプルダウン時
間を短縮することができる。また、冷凍室3内の空気温
度が上昇するような過負荷時において、電源投入後の初
期と同じように起動用膨張機構22を用いると、蒸発温
度を上げて冷凍能力を増大させて冷凍室3内の空気温度
を速やかに低下させることも期待できる。
As a result, an accumulator for storing a large amount of liquid refrigerant is not provided in the freezing room 3 and the refrigeration room 2,
The PD operation is abolished by reducing the shortage of the amount of the circulating refrigerant generated at the time of the transition to the cooling mode, and the problem of the input loss of the compressor 4 due to the PD operation and the decrease in durability due to the decrease in the suction pressure can be solved. Further, by cooling the freezing compartment 3 using the starting expansion mechanism 22 having relatively low resistance in the initial stage after the power is turned on, the evaporation temperature is raised to increase the refrigeration temperature as shown by the solid line of the suction pressure change in FIG. Capability can be increased and pull-down time can be reduced. Also, in the case of an overload in which the air temperature in the freezing room 3 rises, if the starting expansion mechanism 22 is used in the same manner as in the initial stage after the power is turned on, the evaporating temperature is increased to increase the freezing capacity, and the freezing room is increased. It can also be expected that the temperature of the air in 3 is rapidly reduced.

【0101】なお、本実施の形態においては、三流路切
替弁21を用いて凝縮器5からの流路を切り替えたが、
第一の膨張機構7と第二の膨張機構10および起動用膨
張機構22に閉塞機構を持たせれば、三流路切替弁21
を用いずに流路を切り替えることができる。また、第一
の膨張機構7と第二の膨張機構10および起動用膨張機
構22の流路抵抗はキャピラリ等の一定の抵抗でもよい
し、膨張弁等の可変抵抗でもよい。さらに、第二の膨張
機構10の抵抗可変範囲を拡大して、電源投入時や過負
荷時に抵抗を下げて起動用膨張機構22を代用してもよ
い。
In this embodiment, the flow path from the condenser 5 is switched by using the three-flow path switching valve 21.
If the first expansion mechanism 7, the second expansion mechanism 10, and the starting expansion mechanism 22 are provided with a closing mechanism, the three flow path switching valve 21
It is possible to switch the flow path without using. Further, the flow path resistance of the first expansion mechanism 7, the second expansion mechanism 10, and the starting expansion mechanism 22 may be a constant resistance such as a capillary or a variable resistance such as an expansion valve. Further, the resistance variable range of the second expansion mechanism 10 may be expanded, and the resistance may be reduced at the time of power-on or overload to substitute the startup expansion mechanism 22.

【0102】(実施の形態11)図16は本発明の一実
施の形態を示す冷蔵庫の蒸発器及びその周辺の冷凍サイ
クル図である。本実施の形態における冷蔵庫のサイクル
構成、及び運転動作と吸入圧力変化は実施の形態9と同
一である。
(Embodiment 11) FIG. 16 is a refrigeration cycle diagram of an evaporator of a refrigerator and the periphery thereof according to an embodiment of the present invention. The cycle configuration, operation, and suction pressure change of the refrigerator in the present embodiment are the same as those in the ninth embodiment.

【0103】本実施の形態における蒸発器の構成の特徴
は、第一の蒸発器8及び第二の蒸発器11の能力を過大
に設計するとともに、図16に示すように、冷媒流路と
なる直管部11aとコーナー部11b、及び冷凍室3内
の空気との熱交換を行う冷却フィン11c、出口側配管
である立ち上げ管11dから構成された第二の蒸発器1
1を用いる点である。
The features of the configuration of the evaporator in the present embodiment are that the capacity of the first evaporator 8 and the second evaporator 11 is designed to be excessive, and as shown in FIG. The second evaporator 1 includes a straight pipe portion 11a, a corner portion 11b, a cooling fin 11c for exchanging heat with air in the freezing compartment 3, and a rising pipe 11d serving as an outlet pipe.
1 is used.

【0104】この結果、多量の液体冷媒を貯留するアキ
ュームレータを冷凍室3内及び冷蔵室2内に設置せず、
冷却モード移行時に発生する循環冷媒量不足を軽減する
ことでPD動作を廃止し、PD動作に伴う圧縮機4の入
力損失や吸入圧力低下に伴う耐久性低下の問題を解消す
ることができる。さらに、図16に示すように、第二の
蒸発器11の冷媒流路を冷凍室3内の空気の流れと対向
させた流れにし、かつ入口側となる第二の膨張機構10
と出口側配管である立ち上げ管11dとを離すことで、
第二の蒸発器11の出口での冷媒の乾き度を100%近
くに保つことで、圧縮機4の吸入配管でのスーパーヒー
トの確保が容易となり、吸入配管の露つきや液体冷媒の
吸入による圧縮機4の耐久性低下を防止することができ
る。
As a result, the accumulator for storing a large amount of liquid refrigerant is not installed in the freezing room 3 and the refrigeration room 2,
The PD operation is abolished by reducing the shortage of the amount of the circulating refrigerant generated at the time of the transition to the cooling mode, and the problem of the input loss of the compressor 4 due to the PD operation and the decrease in durability due to the decrease in the suction pressure can be solved. Further, as shown in FIG. 16, the refrigerant flow path of the second evaporator 11 is set to a flow facing the air flow in the freezing chamber 3, and the second expansion mechanism 10 on the inlet side is provided.
By separating the riser pipe 11d, which is the outlet side pipe,
By keeping the dryness of the refrigerant at the outlet of the second evaporator 11 close to 100%, it is easy to secure the superheat in the suction pipe of the compressor 4, and it is possible to prevent the dew of the suction pipe and the suction of the liquid refrigerant. A decrease in the durability of the compressor 4 can be prevented.

【0105】ここで、図16に示した第二の蒸発器11
の構成では、第二の送風ファン17によって冷凍室3内
の空気が下方から供給され、主に第二の蒸発器11の下
部で熱交換することから、入口側となる第二の膨張機構
10の近傍の温度が最も低くなる。そこで、出口側配管
である立ち上げ管11dを第二の膨張機構10と反対の
側に設置することで第二の膨張機構10近傍で冷却され
ることを防止して、出口での冷媒の乾き度を100%近
くに保つようにしたものである。また、出口側配管を立
ち上げ管11dとしたことで、冷媒流量の変動によって
液体冷媒が圧縮機4の吸入配管へ進入することが防止で
きる。
Here, the second evaporator 11 shown in FIG.
In the configuration described above, the air in the freezing chamber 3 is supplied from below by the second blower fan 17 and heat is exchanged mainly in the lower part of the second evaporator 11, so that the second expansion mechanism 10 on the inlet side is provided. Is the lowest. Therefore, the riser pipe 11d, which is the outlet side pipe, is installed on the side opposite to the second expansion mechanism 10, thereby preventing cooling near the second expansion mechanism 10 and drying the refrigerant at the outlet. The degree is kept close to 100%. In addition, since the outlet pipe is the rising pipe 11d, it is possible to prevent the liquid refrigerant from entering the suction pipe of the compressor 4 due to a change in the refrigerant flow rate.

【0106】なお、本実施の形態では、第二の蒸発器1
1の構成についてのみ記述したが、第一の蒸発器8につ
いても同じ構成で同様の効果が期待できる。また、圧縮
機4の吸入配管部でのスーパーヒートを確保するため、
吸入配管部と冷却サイクルの高温部との熱交換を行うこ
とが望ましい。
In the present embodiment, the second evaporator 1
Although only the configuration 1 is described, the same effect can be expected with the same configuration for the first evaporator 8. In addition, in order to secure superheat in the suction pipe section of the compressor 4,
It is desirable to perform heat exchange between the suction pipe section and the high temperature section of the cooling cycle.

【0107】(実施の形態12)図17は本発明の一実
施の形態を示す冷蔵庫の冷凍サイクル図である。本実施
の形態における運転動作と吸入圧力変化は実施の形態9
と同一である。
(Embodiment 12) FIG. 17 is a refrigeration cycle diagram of a refrigerator showing an embodiment of the present invention. The driving operation and suction pressure change in the present embodiment are described in Embodiment 9
Is the same as

【0108】本実施の形態における冷蔵庫のサイクル構
成の特徴は、圧縮機4の吸入配管部にコンプアキューム
24を設けた点である。
A feature of the cycle configuration of the refrigerator in the present embodiment is that a comp accumulator 24 is provided in the suction pipe of the compressor 4.

【0109】この結果、多量の液体冷媒を貯留するアキ
ュームレータを冷凍室3内及び冷蔵室2内に設置せず、
冷却モード移行時に発生する循環冷媒量不足を軽減する
ことでPD動作を廃止し、PD動作に伴う圧縮機4の入
力損失や吸入圧力低下に伴う耐久性低下の問題を解消す
ることができる。さらに、図17に示すように、圧縮機
4の吸入配管部にコンプアキューム24を設けたこと
で、冷媒流量の変動によって液体冷媒が圧縮機4の吸入
配管へ進入した場合にコンプアキューム24内に一時貯
留することができ、防止吸入配管の露つきや液体冷媒の
吸入による圧縮機4の耐久性低下を防止することができ
る。
As a result, the accumulator for storing a large amount of liquid refrigerant is not installed in the freezing room 3 and the refrigeration room 2,
The PD operation is abolished by reducing the shortage of the amount of the circulating refrigerant generated at the time of the transition to the cooling mode, and the problem of the input loss of the compressor 4 due to the PD operation and the decrease in durability due to the decrease in the suction pressure can be solved. Further, as shown in FIG. 17, by providing the comp accumulator 24 in the suction pipe portion of the compressor 4, when the liquid refrigerant enters the suction pipe of the compressor 4 due to a change in the refrigerant flow rate, the comp accumulator 24 is placed in the comp accumulator 24. The compressor 4 can be temporarily stored, and the durability of the compressor 4 can be prevented from deteriorating due to dew on the prevention suction pipe and suction of the liquid refrigerant.

【0110】[0110]

【発明の効果】以上のように本発明によれば、蒸発温度
の異なる複数の蒸発器を有し、それらの蒸発器を切り替
えて冷却を行う冷却サイクルを用いた冷凍冷蔵庫等にお
いて、あらゆる条件下で冷凍室の冷却を優先して行い、
冷蔵室冷却時の蒸発温度に比べて冷凍室冷却時の蒸発温
度が低くなる状態になってから冷却サイクルの切り替え
を行うとともに、冷凍室冷却サイクルから冷蔵室冷却サ
イクルに切り替える直前のみPD動作を行う制御方法を
用いることにより、冷蔵室冷却サイクルから冷凍室冷却
サイクルに切り替える際のPD動作を省略し、PD動作
に伴う電力損失や耐久性低下の問題を軽減することがで
きる。
As described above, according to the present invention, a refrigerator having a plurality of evaporators having different evaporation temperatures and using a cooling cycle in which the evaporators are switched to perform cooling is used under all conditions. And give priority to cooling the freezer,
The cooling cycle is switched after the evaporating temperature during freezing compartment cooling becomes lower than the evaporating temperature during freezing compartment cooling, and the PD operation is performed only immediately before switching from the freezing compartment cooling cycle to the refrigerating compartment cooling cycle. By using the control method, the PD operation at the time of switching from the refrigerator compartment cooling cycle to the freezer compartment cooling cycle can be omitted, and the problems of power loss and reduced durability due to the PD operation can be reduced.

【0111】また、冷凍室および冷蔵室にアキュームレ
ータを設置せず、PD動作なしに冷却サイクルの切り替
えを行う制御方法を用いることにより、死蔵される冷媒
量を削減することで冷却サイクル切り替え時のPD動作
を省略し、PD動作に伴う電力損失や耐久性低下の問題
を解消することができる。
Further, by using a control method of switching the cooling cycle without PD operation without installing an accumulator in the freezer compartment and the refrigerator compartment, the amount of refrigerant to be refrigerated can be reduced and the PD at the time of switching the cooling cycle can be reduced. By omitting the operation, it is possible to solve the problems of power loss and reduced durability associated with the PD operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1の冷蔵庫の冷凍サイクル
FIG. 1 is a refrigeration cycle diagram of a refrigerator according to a first embodiment of the present invention.

【図2】本発明の実施の形態1の冷蔵庫の運転動作と吸
入圧力変化を示すタイミングチャート
FIG. 2 is a timing chart showing the operation of the refrigerator and changes in suction pressure of the refrigerator according to the first embodiment of the present invention.

【図3】本発明の実施の形態2の冷蔵庫の運転動作と吸
入圧力変化を示すタイミングチャート
FIG. 3 is a timing chart showing the operation of the refrigerator and changes in suction pressure of the refrigerator according to the second embodiment of the present invention.

【図4】本発明の実施の形態3の冷蔵庫の冷凍サイクル
FIG. 4 is a refrigeration cycle diagram of the refrigerator according to the third embodiment of the present invention.

【図5】本発明の実施の形態3の冷蔵庫の運転動作と吸
入圧力変化を示すタイミングチャート
FIG. 5 is a timing chart showing the operation of the refrigerator and a change in suction pressure according to the third embodiment of the present invention;

【図6】本発明の実施の形態4の冷蔵庫の運転動作と吸
入圧力変化を示すタイミングチャート
FIG. 6 is a timing chart showing the operation of the refrigerator and changes in suction pressure of the refrigerator according to the fourth embodiment of the present invention.

【図7】本発明の実施の形態5の冷蔵庫の運転動作と吸
入圧力変化を示すタイミングチャート
FIG. 7 is a timing chart showing the operation of the refrigerator and a change in suction pressure of the refrigerator according to the fifth embodiment of the present invention.

【図8】本発明の実施の形態6の冷蔵庫の運転動作と吸
入圧力変化を示すタイミングチャート
FIG. 8 is a timing chart showing the operation of the refrigerator and changes in suction pressure of the refrigerator according to the sixth embodiment of the present invention.

【図9】本発明の実施の形態7の冷蔵庫の冷凍サイクル
FIG. 9 is a refrigeration cycle diagram of a refrigerator according to a seventh embodiment of the present invention.

【図10】本発明の実施の形態7の冷蔵庫の運転動作と
吸入圧力変化を示すタイミングチャート
FIG. 10 is a timing chart showing the operation of the refrigerator and changes in suction pressure of the refrigerator according to the seventh embodiment of the present invention.

【図11】本発明の実施の形態8の冷蔵庫の冷凍のサイ
クル図
FIG. 11 is a refrigeration cycle diagram of the refrigerator according to the eighth embodiment of the present invention.

【図12】本発明の実施の形態8の冷蔵庫の運転動作と
吸入圧力変化を示すタイミングチャート
FIG. 12 is a timing chart showing the operation of the refrigerator and changes in suction pressure of the refrigerator according to the eighth embodiment of the present invention.

【図13】本発明の実施の形態9の冷蔵庫の運転動作と
吸入圧力変化を示すタイミングチャート
FIG. 13 is a timing chart showing the operation of the refrigerator and changes in suction pressure of the refrigerator according to the ninth embodiment of the present invention.

【図14】本発明の実施の形態10の冷蔵庫の冷凍サイ
クル図
FIG. 14 is a refrigeration cycle diagram of the refrigerator according to the tenth embodiment of the present invention.

【図15】本発明の実施の形態10の冷蔵庫の運転動作
と吸入圧力変化を示すタイミングチャート
FIG. 15 is a timing chart showing the operation of the refrigerator and changes in suction pressure of the refrigerator according to the tenth embodiment of the present invention.

【図16】本発明の実施の形態11の冷蔵庫の要部冷凍
サイクル図
FIG. 16 is a refrigeration cycle diagram of a main part of a refrigerator according to an eleventh embodiment of the present invention.

【図17】本発明の実施の形態12の冷蔵庫の冷凍サイ
クル図
FIG. 17 is a refrigeration cycle diagram of a refrigerator according to a twelfth embodiment of the present invention.

【図18】従来の冷蔵庫の冷凍サイクル図FIG. 18 is a refrigeration cycle diagram of a conventional refrigerator.

【図19】従来の冷蔵庫の運転動作と吸入圧力変化を示
すタイミングチャート
FIG. 19 is a timing chart showing the operation of a conventional refrigerator and changes in suction pressure.

【符号の説明】[Explanation of symbols]

4 圧縮機 5 凝縮器 6 流路切替弁 7 第一の膨張機構 8 第一の蒸発器 9 第一のアキュームレータ 10 第二の膨張機構 11 第二の蒸発器 12 第二のアキュームレータ 13 逆止弁 14 冷蔵庫箱体 15 機械室 Reference Signs List 4 compressor 5 condenser 6 flow switching valve 7 first expansion mechanism 8 first evaporator 9 first accumulator 10 second expansion mechanism 11 second evaporator 12 second accumulator 13 check valve 14 Refrigerator box 15 Machine room

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 冷蔵室と冷凍室を備えた冷蔵庫であっ
て、圧縮機と、凝縮器と、流路切替弁と、第一の膨張機
構と、前記冷蔵室内に設置された第一の蒸発器と、前記
冷蔵室内に設置された第一のアキュームレータと、第二
の膨張機構と、前記冷凍室内に設置された第二の蒸発器
と、前記冷凍室内に設置された第二のアキュームレータ
とを備え、前記圧縮機と前記凝縮器と前記流路切替弁と
前記第一の膨張機構と前記第一の蒸発器と前記第一のア
キュームレータとで閉ループを形成すると共に、前記第
一の膨張機構と前記第一の蒸発器と前記第一のアキュー
ムレータに並列になるように前記第二の膨張機構と前記
第二の蒸発器と前記第二アキュームレータと逆止弁とを
接続し、前記流路切替弁により冷媒の流れを切り替える
ことで前記冷蔵室と前記冷凍室の冷却を互いに独立して
行うものであり、前記冷凍室の冷却を優先するととも
に、前記冷凍室の冷却から前記冷蔵室の冷却に切り替わ
る直前に、前記流路切替弁あるいは前記第二の膨張機構
を用いて前記第二の蒸発器への冷媒の流入を遮断した状
態で前記圧縮機を運転する制御手段を備えたことを特徴
とする冷蔵庫。
1. A refrigerator having a refrigerator compartment and a freezer compartment, comprising a compressor, a condenser, a flow path switching valve, a first expansion mechanism, and a first evaporator installed in the refrigerator compartment. Vessel, a first accumulator installed in the refrigerator compartment, a second expansion mechanism, a second evaporator installed in the freezer compartment, and a second accumulator installed in the freezer compartment And a closed loop formed by the compressor, the condenser, the flow path switching valve, the first expansion mechanism, the first evaporator, and the first accumulator, and the first expansion mechanism. Connecting the second expansion mechanism, the second evaporator, the second accumulator, and a check valve so as to be in parallel with the first evaporator and the first accumulator; By switching the flow of the refrigerant, the refrigerator compartment and the front The cooling of the freezing compartments is performed independently of each other, and the cooling of the freezing compartments is prioritized, and immediately before switching from the cooling of the freezing compartments to the cooling of the refrigerator compartment, the channel switching valve or the second A control means for operating the compressor in a state where the flow of the refrigerant into the second evaporator is shut off using the expansion mechanism of (1).
【請求項2】 冷凍室内の空気と第二の蒸発器の熱交換
を促進する送風ファンを備え、前記冷凍室の冷却から冷
蔵室の冷却に切り替わる直前に、前記第二の蒸発器への
冷媒の流入を遮断した状態で、前記送風ファンを運転し
ながら圧縮機を運転する制御手段を備えたことを特徴と
する請求項1に記載の冷蔵庫。
2. A cooling fan for facilitating heat exchange between the air in the freezer compartment and the second evaporator, wherein the refrigerant is supplied to the second evaporator immediately before switching from cooling of the freezer compartment to cooling of the refrigerator compartment. The refrigerator according to claim 1, further comprising control means for operating the compressor while operating the blower fan in a state where the inflow of air is shut off.
【請求項3】 第二のアキュームレータの表面に配置さ
れたヒータを備え、冷凍室の冷却から冷蔵室の冷却に切
り替わる直前に、第二の蒸発器への冷媒の流入を遮断し
た状態で、前記ヒータに通電しながら圧縮機を運転する
制御手段を備えたことを特徴とする請求項1または2に
記載の冷蔵庫。
And a heater disposed on the surface of the second accumulator, wherein the flow of refrigerant into the second evaporator is shut off immediately before switching from cooling of the freezing compartment to cooling of the refrigerator compartment. The refrigerator according to claim 1 or 2, further comprising control means for operating the compressor while energizing the heater.
【請求項4】 能力可変型の圧縮機を備え、冷凍室の冷
却から冷蔵室の冷却に切り替わる直前に、第二の蒸発器
への冷媒の流入を遮断した状態で、圧縮機を低能力運転
する制御手段を備えたことを特徴とする請求項1から請
求項3のいずれかに一項に記載の冷蔵庫。
4. A low-capacity operation of a compressor having a variable capacity compressor in a state in which the flow of refrigerant into a second evaporator is shut off immediately before switching from cooling of a freezing compartment to cooling of a refrigerator compartment. The refrigerator according to any one of claims 1 to 3, further comprising control means for performing the operation.
【請求項5】 冷凍室の冷却から冷蔵室の冷却に切り替
わる直前に、第二の蒸発器への冷媒の流入を遮断した状
態で、流路切替弁あるいは第一の膨張機構を用いて第一
の蒸発器へ少量の冷媒を流入させながら圧縮機を運転す
る制御手段を備えたことを特徴とする請求項1から請求
項4のいずれか一項に記載の冷蔵庫。
5. A method of using a flow path switching valve or a first expansion mechanism in a state in which the flow of refrigerant into a second evaporator is shut off immediately before switching from cooling of a freezing compartment to cooling of a refrigerator compartment. The refrigerator according to any one of claims 1 to 4, further comprising control means for operating the compressor while allowing a small amount of refrigerant to flow into the evaporator.
【請求項6】 圧縮機あるいは凝縮器を冷却する冷却フ
ァンを備え、冷凍室の冷却から冷蔵室の冷却に切り替わ
る直前に、第二の蒸発器への冷媒の流入を遮断した状態
で、前記冷却ファンを運転しながら圧縮機を運転する制
御手段を備えたことを特徴とする請求項1から請求項5
のいずれか一項に記載の冷蔵庫。
6. A cooling fan for cooling a compressor or a condenser, wherein the cooling of the refrigerant into the second evaporator is interrupted immediately before switching from cooling of the freezing compartment to cooling of the refrigerator compartment. The control means for operating the compressor while operating the fan is provided.
A refrigerator according to any one of the preceding claims.
【請求項7】 第二のアキュームレータに滞留する冷媒
の温度あるいは圧力を検知する検知手段を備え、冷凍室
の冷却から冷蔵室の冷却に切り替わる直前に、第二の蒸
発器への冷媒の流入を遮断した状態で、前記検知手段に
よって得られた冷媒の温度あるいは圧力が所定の値を下
回るまで圧縮機を運転する制御手段を備えたことを特徴
とする請求項1から請求項6のいずれか一項に記載の冷
蔵庫。
7. A refrigerant detecting device for detecting the temperature or pressure of refrigerant staying in the second accumulator, wherein the flow of refrigerant into the second evaporator is reduced immediately before switching from cooling of the freezing compartment to cooling of the refrigerator compartment. 7. The control device according to claim 1, further comprising control means for operating the compressor until the temperature or pressure of the refrigerant obtained by the detection means falls below a predetermined value in the shut-off state. Refrigerator according to item.
【請求項8】 冷蔵室と冷凍室を備えた冷蔵庫であっ
て、圧縮機と、凝縮器と、流路切替弁と、第一の膨張機
構と、前記冷蔵室内に設置された第一の蒸発器と、第二
の膨張機構と、前記冷凍室内に設置された第二の蒸発器
と、前記圧縮機と前記凝縮器と前記流路切替弁と前記第
一の膨張機構と前記第一の蒸発器とで閉ループを形成す
ると共に、前記第一の膨張機構と前記第一の蒸発器に並
列になるように前記第二の膨張機構と前記第二の蒸発器
と逆止弁とを接続し、前記流路切替弁により冷媒の流れ
を切り替えることで前記冷蔵室と前記冷凍室の冷却を互
いに独立して行うものであり、前記冷凍室及び前記冷蔵
室内にアキュームレータを設置せず、かつ前記冷凍室の
冷却から前記冷蔵室の冷却に切り替わる直前に前記第二
の蒸発器への冷媒の流入を遮断した状態で前記圧縮機
を、所定の時間、運転する制御手段を備えたことを特徴
とする冷蔵庫。
8. A refrigerator having a refrigerator compartment and a freezer compartment, comprising: a compressor, a condenser, a flow path switching valve, a first expansion mechanism, and a first evaporator installed in the refrigerator compartment. A second expansion mechanism, a second evaporator installed in the freezing chamber, the compressor, the condenser, the flow path switching valve, the first expansion mechanism, and the first evaporation. Forming a closed loop with the vessel, connecting the second expansion mechanism, the second evaporator and the check valve so as to be in parallel with the first expansion mechanism and the first evaporator, The refrigerating compartment and the freezing compartment are cooled independently by switching the flow of the refrigerant by the flow path switching valve, and no accumulator is provided in the freezing compartment and the refrigerating compartment, and the freezing compartment is not provided. Immediately before switching from the cooling of the refrigerator to the cooling of the refrigerator compartment, the flow of the refrigerant to the second evaporator. A refrigerator comprising a control means for operating the compressor for a predetermined time in a state in which the compressor is turned off.
【請求項9】 冷蔵室と冷凍室を備えた冷蔵庫であっ
て、圧縮機と、凝縮器と、流路切替弁と、第一の膨張機
構と、前記冷蔵室内に設置された第一の蒸発器と、第二
の膨張機構と、前記冷凍室内に設置された第二の蒸発器
と、前記圧縮機と前記凝縮器と前記流路切替弁と前記第
一の膨張機構と前記第一の蒸発器とで閉ループを形成す
ると共に、前記第一の膨張機構と前記第一の蒸発器に並
列になるように前記第二の膨張機構と前記第二の蒸発器
と逆止弁とを接続し、前記流路切替弁により冷媒の流れ
を切り替えることで前記冷蔵室と前記冷凍室の冷却を互
いに独立して行うものであり、前記冷凍室及び前記冷蔵
室内にアキュームレータを設置せず、かつ前記第一の蒸
発器及び第二の蒸発器への冷媒の流入を遮断した状態で
前記圧縮機を運転する制御手段を用いないことを特徴と
する冷蔵庫。
9. A refrigerator having a refrigerator compartment and a freezer compartment, comprising: a compressor, a condenser, a flow path switching valve, a first expansion mechanism, and a first evaporator installed in the refrigerator compartment. A second expansion mechanism, a second evaporator installed in the freezing chamber, the compressor, the condenser, the flow path switching valve, the first expansion mechanism, and the first evaporation. Forming a closed loop with the vessel, connecting the second expansion mechanism, the second evaporator and the check valve so as to be in parallel with the first expansion mechanism and the first evaporator, The refrigerating compartment and the freezing compartment are cooled independently of each other by switching the flow of the refrigerant by the flow passage switching valve, and no accumulator is installed in the freezing compartment and the refrigerating compartment, and the first The compressor is operated in a state where the flow of the refrigerant into the evaporator and the second evaporator is shut off Refrigerator characterized by using no control means.
【請求項10】 電源投入時に第二の膨張機構の流路抵
抗を、定常運転時より小さくする制御手段を備えたこと
を特徴とする請求項8または9に記載の冷蔵庫。
10. The refrigerator according to claim 8, further comprising control means for reducing the flow path resistance of the second expansion mechanism when the power is turned on, as compared with the time of steady operation.
【請求項11】 第一の蒸発器と第二の蒸発器の能力が
過大であり、定常運転時にスーパーヒートが保たれるこ
とを特徴とする請求項8から請求項10のいずれかの一
項に記載の冷蔵庫。
11. The apparatus according to claim 8, wherein the first evaporator and the second evaporator have excessive capacity, and superheat is maintained during a steady operation. A refrigerator according to claim 1.
【請求項12】 圧縮機近傍にアキュームレータを設置
したことを特徴とする請求項8から請求項11のいずれ
か一項に記載の冷蔵庫。
12. The refrigerator according to any one of claims 8 to 11, wherein an accumulator is provided near the compressor.
JP2001073755A 2001-03-15 2001-03-15 refrigerator Expired - Fee Related JP4608790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001073755A JP4608790B2 (en) 2001-03-15 2001-03-15 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001073755A JP4608790B2 (en) 2001-03-15 2001-03-15 refrigerator

Publications (2)

Publication Number Publication Date
JP2002277083A true JP2002277083A (en) 2002-09-25
JP4608790B2 JP4608790B2 (en) 2011-01-12

Family

ID=18931134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001073755A Expired - Fee Related JP4608790B2 (en) 2001-03-15 2001-03-15 refrigerator

Country Status (1)

Country Link
JP (1) JP4608790B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010220A (en) * 2005-06-30 2007-01-18 Sanyo Electric Co Ltd Refrigerating unit and refrigerator comprising the same
JP2007093081A (en) * 2005-09-28 2007-04-12 Matsushita Electric Ind Co Ltd Cooling system and vending machine using the same
JP2008039370A (en) * 2006-07-14 2008-02-21 Toshiba Corp Refrigerator
JP2010043757A (en) * 2008-08-08 2010-02-25 Fuji Electric Retail Systems Co Ltd Refrigerant circuit device
WO2011099056A1 (en) * 2010-02-10 2011-08-18 三菱電機株式会社 Air conditioner
KR101275184B1 (en) 2007-05-25 2013-06-18 엘지전자 주식회사 Control method of refrigerating system
JP2013234784A (en) * 2012-05-08 2013-11-21 Mitsubishi Heavy Ind Ltd Refrigerator for transportation
CN105202831A (en) * 2015-10-10 2015-12-30 安徽美芝精密制造有限公司 Liquid storage device, compressor provided with liquid storage device, and air-conditioning system
JP2016200376A (en) * 2015-04-14 2016-12-01 東芝ライフスタイル株式会社 refrigerator
US10139149B2 (en) 2015-07-02 2018-11-27 Samsung Electronics Co., Ltd. Refrigerator and method for controlling the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62201362U (en) * 1986-06-11 1987-12-22
JPH05196309A (en) * 1992-01-22 1993-08-06 Daikin Ind Ltd Air conditioner operation control method
JP2000230767A (en) * 1999-02-09 2000-08-22 Matsushita Refrig Co Ltd Refrigerator
JP2000266443A (en) * 1999-03-12 2000-09-29 Matsushita Refrig Co Ltd Refrigerator
JP2000266444A (en) * 1999-03-12 2000-09-29 Matsushita Refrig Co Ltd Refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62201362U (en) * 1986-06-11 1987-12-22
JPH05196309A (en) * 1992-01-22 1993-08-06 Daikin Ind Ltd Air conditioner operation control method
JP2000230767A (en) * 1999-02-09 2000-08-22 Matsushita Refrig Co Ltd Refrigerator
JP2000266443A (en) * 1999-03-12 2000-09-29 Matsushita Refrig Co Ltd Refrigerator
JP2000266444A (en) * 1999-03-12 2000-09-29 Matsushita Refrig Co Ltd Refrigerator

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010220A (en) * 2005-06-30 2007-01-18 Sanyo Electric Co Ltd Refrigerating unit and refrigerator comprising the same
JP2007093081A (en) * 2005-09-28 2007-04-12 Matsushita Electric Ind Co Ltd Cooling system and vending machine using the same
JP2008039370A (en) * 2006-07-14 2008-02-21 Toshiba Corp Refrigerator
KR101275184B1 (en) 2007-05-25 2013-06-18 엘지전자 주식회사 Control method of refrigerating system
JP2010043757A (en) * 2008-08-08 2010-02-25 Fuji Electric Retail Systems Co Ltd Refrigerant circuit device
WO2011099056A1 (en) * 2010-02-10 2011-08-18 三菱電機株式会社 Air conditioner
JPWO2011099056A1 (en) * 2010-02-10 2013-06-13 三菱電機株式会社 Air conditioner
JP2013234784A (en) * 2012-05-08 2013-11-21 Mitsubishi Heavy Ind Ltd Refrigerator for transportation
JP2016200376A (en) * 2015-04-14 2016-12-01 東芝ライフスタイル株式会社 refrigerator
US10139149B2 (en) 2015-07-02 2018-11-27 Samsung Electronics Co., Ltd. Refrigerator and method for controlling the same
CN105202831A (en) * 2015-10-10 2015-12-30 安徽美芝精密制造有限公司 Liquid storage device, compressor provided with liquid storage device, and air-conditioning system

Also Published As

Publication number Publication date
JP4608790B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
CN107110570B (en) Thermal storage air conditioner
CN100565038C (en) Refrigerating plant
KR101155497B1 (en) Heat pump type speed heating apparatus
JP2004190917A (en) Refrigeration device
JP3743861B2 (en) Refrigeration air conditioner
JP2001221556A (en) Refrigerator
JP5434460B2 (en) Heat pump equipment
JP4363997B2 (en) Refrigeration equipment
WO2013159827A1 (en) Cooling system
JP2017161159A (en) Air conditioner outdoor unit
RU2432532C2 (en) Procedure for control of refrigerator and refrigerator with time delay of compressor turning on
JP2002277083A (en) refrigerator
JP5558132B2 (en) Refrigerator and refrigeration apparatus to which the refrigerator is connected
JP4178646B2 (en) refrigerator
JP2005214444A (en) Refrigerator
JP3724239B2 (en) Cooling system
CN2906415Y (en) A two-stage cold storage system
JP4902585B2 (en) Air conditioner
JP2004190916A (en) Refrigeration device
JP4013875B2 (en) Freezer refrigerator
JP4513441B2 (en) Vending machine with cooling and heating system
JP4108003B2 (en) Refrigeration system
JP3871207B2 (en) Refrigeration system combining absorption and compression
JP4104519B2 (en) Refrigeration system
CN112856889B (en) Refrigerator and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080129

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080213

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080425

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees