JP2002272436A - Freezing method and thawing method, and refrigeration apparatus and thawing apparatus - Google Patents
Freezing method and thawing method, and refrigeration apparatus and thawing apparatusInfo
- Publication number
- JP2002272436A JP2002272436A JP2001085563A JP2001085563A JP2002272436A JP 2002272436 A JP2002272436 A JP 2002272436A JP 2001085563 A JP2001085563 A JP 2001085563A JP 2001085563 A JP2001085563 A JP 2001085563A JP 2002272436 A JP2002272436 A JP 2002272436A
- Authority
- JP
- Japan
- Prior art keywords
- frozen
- electromagnetic wave
- frequency
- freezing
- cryoprotectant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Freezing, Cooling And Drying Of Foods (AREA)
Abstract
(57)【要約】
【課題】 氷結晶の微細化、凍結進行状態の均一化が可
能で、細胞組織の機械的破壊、細胞膠質物の化学的変化
を抑制し、高度に生鮮食品等の味、栄養などの品質の低
下を防止できる冷凍方法、解凍方法、冷凍装置、および
解凍装置を提供する。
【解決手段】 生鮮食品等の被冷凍体の表面あるいは内
部に、誘電体からなる凍結保護物質を被覆または添加
し、被冷凍体に電磁波を照射して、前記電磁波照射によ
り前記被冷凍体に吸収されるエネルギーよりも大きなエ
ネルギーで冷却する。特に電磁波は、凍結保護物質溶液
と凝固物の比誘電損率とがほぼ一致する、あるいは凝固
物が前記溶液の比誘電損率を上回る特異な周波数を用い
る。また前記特異な周波数の電磁波を用いて解凍する。
(57) [Summary] [Problem] To be able to refine ice crystals and homogenize the state of freezing, suppress the mechanical destruction of cell tissues, and suppress the chemical change of cell colloids, and to enhance the taste of fresh foods and the like. Provided are a refrigeration method, a thawing method, a refrigeration apparatus, and a thawing apparatus capable of preventing a decrease in quality such as nutrition. SOLUTION: A frozen protection substance made of a dielectric material is coated or added to the surface or inside of a frozen body such as fresh food, and the frozen body is irradiated with an electromagnetic wave, and is absorbed by the frozen body by the electromagnetic wave irradiation. Cool with more energy than is done. In particular, as the electromagnetic wave, a specific frequency is used in which the relative dielectric loss factor of the cryoprotectant solution and the coagulated material is substantially the same, or the coagulated material exceeds the relative dielectric loss factor of the solution. In addition, defrosting is performed using the electromagnetic wave having the unique frequency.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、魚介類、畜産物、
野菜類、果実類などの生鮮食品、菓子類などの加工食
品、臓器、血液などの細胞組織体などの冷凍方法、解凍
方法、冷凍装置、および解凍装置に関するものである。TECHNICAL FIELD The present invention relates to seafood, livestock products,
The present invention relates to a freezing method, a thawing method, a refrigeration apparatus, and a thawing apparatus for fresh foods such as vegetables and fruits, processed foods such as confectionery, cell tissues such as organs and blood.
【0002】[0002]
【従来の技術】凍結保存は、生鮮食品、加工食品、細胞
組織体などを長期間にわたって保存するうえで、腐敗を
防止する極めて有効な方法であるが、品質の低下を招く
という問題が指摘されている。例えば、先行文献(加藤
舜郎:「食品冷凍の理論と応用」、p312〜p40.68
7、1993、光琳出版)には、食肉及び魚介類が凍結
状態になったために起こる肉質の変化には、肉質内の氷
結晶生成に伴い、成長もしくは体積膨張し、細胞間構造
や細胞膜を圧迫して機械的破壊が起こる組織構造的なも
の、細胞組織と結合していた水(結合水)の氷結析出に
よって、水分の濃度・組成が変化(凍結濃縮)し、たん
ぱく質などの細胞質や膜表面付近を構成する膠質物質
(細胞膠質物)に化学的変化が起こる膠質構造的なもの
があると説明されている。2. Description of the Related Art Cryopreservation is an extremely effective method for preventing spoilage in preserving fresh foods, processed foods, cell tissues and the like for a long period of time, but has been pointed out as a problem of deteriorating quality. ing. For example, prior literature (Kato Shunro: "Theory and application of food freezing", p312-p40.68
7, 1993, Korin Publishing) states that changes in meat quality caused by the frozen state of meat and seafood include growth or volume expansion due to the formation of ice crystals in the meat, compressing the intercellular structures and cell membranes. Tissues that cause mechanical destruction, and the concentration and composition of water changes (freeze-concentration) due to the freezing-out of water (bound water) that has bound to cellular tissues, and the surface of cytoplasm such as proteins and membrane surfaces It is described that some of the nearby colloidal substances (cellular colloids) have a colloidal structure in which a chemical change occurs.
【0003】このような肉質の変化が起こると、冷凍食
品の解凍時に氷結析出した水分がもと通り肉質に吸収で
きない状態(スポンジ化)になって、液汁の流出(いわ
ゆるドリップ)が発生して品質低下を招く。ドリップに
は呈味成分や水溶性ビタミンなどの栄養素が含まれてい
るので、ドリップの流出によって、味を損ねたり、栄養
の損失を招くなどの問題がある。[0003] When such a change in meat quality occurs, the water that has been frozen and precipitated when the frozen food is thawed cannot be absorbed by the meat quality (sponge), and a sap outflow (so-called drip) occurs. It leads to quality deterioration. Since drip contains nutrients such as taste components and water-soluble vitamins, there is a problem in that spilling of the drip impairs taste or causes loss of nutrition.
【0004】したがって、生鮮食品等の冷凍後に、味、
栄養を維持するためには、上記細胞組織の機械的破壊、
細胞膠質物の化学的変化の抑制が必要で、特に、氷結晶
の微細化、凍結濃縮抑制を図ることが重要である。[0004] Therefore, after freezing fresh foods, the taste,
In order to maintain nutrition, mechanical destruction of the cell tissue,
It is necessary to suppress the chemical change of cell aggregates, and it is particularly important to reduce the size of ice crystals and to suppress freeze concentration.
【0005】これらの策として、急速凍結、すなわち、
最大氷結晶生成帯(被冷凍体によって異なるが、一般的
には-1〜−5℃の氷結晶が最も成長する温度帯)を通
過する時間(以下、有効凍結期間と称す)を短くする方
法がある。食品中の水分の約60〜80%は自由水(細
胞組織と結合しない水)であって、そのほとんどは有効
凍結期間内に凍結する。この有効凍結期間を短くするこ
とにより、氷の結晶を微細化できるので細胞破壊を防止
できる。この急速凍結の手段としては、例えば大型の冷
凍設備や、液体窒素等の低温液体ガスが用いられる。As these measures, quick freezing, that is,
A method of shortening the time required to pass through the maximum ice crystal formation zone (the temperature range in which ice crystals of -1 to -5 ° C grow most, although it varies depending on the object to be frozen) (hereinafter referred to as the effective freezing period). There is. About 60-80% of the water in the food is free water (water that does not bind to cellular tissues), most of which freeze within the effective freezing period. By shortening the effective freezing period, ice crystals can be miniaturized, and cell destruction can be prevented. As a means for the quick freezing, for example, a large refrigeration facility or a low-temperature liquid gas such as liquid nitrogen is used.
【0006】また、特開平8−252082号公報に
は、常温から氷結点付近まで比較的急速に冷却する急速
冷却処理を行い、続いて、氷結点以下から、0.01〜
0.5℃/時間の緩慢な冷却速度で冷却するスロークー
リング処理を行い、氷結点以下の温度帯で未凍結保存す
る方法が開示されている。さらに、前記未凍結状態とし
て、被冷凍体全体を過冷却状態(凝固点以下で液体の状
態)に保つ場合と、細胞内のみを未凍結状態に保つ場合
が示されている。過冷却状態が破壊した温度点(破壊
点)以下では急速凍結する冷凍方法についても開示され
ている。また、同公報には、スロークーリング処理の過
程で、500MHz〜5GHz帯のマイクロ波などを照
射することによって、過冷却状態を安定化できることが
開示されている。JP-A-8-252082 discloses a rapid cooling process of relatively rapidly cooling from room temperature to a temperature near the freezing point.
A method is disclosed in which a slow cooling process of cooling at a slow cooling rate of 0.5 ° C./hour is performed and the product is not frozen and stored in a temperature range below the freezing point. Further, as the unfrozen state, there are shown a case where the whole body to be frozen is kept in a supercooled state (a liquid state below the freezing point) and a case where only the inside of the cell is kept in an unfrozen state. A refrigeration method that rapidly freezes at a temperature equal to or lower than the temperature at which the supercooled state breaks (breaking point) is also disclosed. Further, the publication discloses that a supercooled state can be stabilized by irradiating a microwave of 500 MHz to 5 GHz band or the like in the process of the slow cooling process.
【0007】また、市川らの文献(細胞Vo23(4),p1
3.562〜p13.566,1991)において、マイクロ波
の別の効果も示されており、ラット肝細胞にマイクロ波
照射して冷凍することによって、細胞内の氷結晶が微細
化でき、細胞組織内の氷結晶成長を抑制できることが開
示されている。Further, Ichikawa et al.'S reference (cell Vo23 (4), p1
3.5562-p13.566, 1991) also shows another effect of microwaves. By irradiating rat hepatocytes with microwaves and freezing them, the ice crystals in the cells can be refined, and the cell tissue It is disclosed that ice crystal growth in the inside can be suppressed.
【0008】さらに、細胞破壊を抑制する策として、例
えば被冷凍体に凍結防止剤を添加する方法が検討されて
いる。例えば特開平6−133687号公報には、マル
トース又はデキストリンのいずれかと、マルトテトラオ
ースを里芋に含有させて冷凍保存することにより、細胞
破壊や澱粉の老化が抑制でき、スポンジ化防止できるこ
とが開示されている。Further, as a measure for suppressing cell destruction, for example, a method of adding an antifreezing agent to a frozen body has been studied. For example, JP-A-6-133687 discloses that by containing maltose or dextrin and maltotetraose in taro and storing them in a frozen state, cell destruction and aging of starch can be suppressed, and sponge formation can be prevented. ing.
【0009】また、特開平5−130829号公報に
は、被冷凍体を保存用シートで被覆し、細胞組織の破壊
を防止して、鮮度を長期間保持する方法について開示さ
れている。Japanese Patent Application Laid-Open No. Hei 5-130829 discloses a method for covering a frozen object with a sheet for preservation to prevent destruction of cell tissues and maintain freshness for a long period of time.
【0010】[0010]
【発明が解決しようとする課題】しかしながら、上記従
来の方法は、生鮮食品などを凍結し、長期に渡りその腐
敗を防止するには有効であるが、味や栄養を高度に維持
するには次のような問題があった。However, the above-mentioned conventional method is effective for freezing fresh food and the like and preventing its decay for a long period of time. There was such a problem.
【0011】大型冷凍装置や低温液体ガスなどを用いた
急速凍結方法では、例えばマグロのような大きな被冷凍
体になると冷凍が完結するまでに数分〜数時間要するた
め、被冷凍体の表面と内部で凍結進行状態の差異が大き
くなる。このように凍結進行状態にばらつきが生じる
と、氷結率(氷結した水分の割合)の低いところから高
い所へ水分が移動し、凍結濃縮が進む。また、氷結晶の
大きさにばらつきがあると、冷凍保存時に小さな氷結晶
が大きな氷結晶に取り込まれて肥大化しやすいので、細
胞組織を破壊する原因となる。また、表面が先に凍結す
ると、氷の膨張圧力によって内圧が変化し、表面にひび
割れを生じるなどの問題もあった。さらに、−60℃以
下の低温度帯では氷結晶の成長速度は遅いが生成速度が
大きく、多量の微氷晶を生成するので、被冷凍体の表面
付近で凍結しにくい結合水を無理やり析出させ、かえっ
て品質を低下させる問題もあった。また、低温液体ガス
を用いる方法では、ランニングコストが高くなるという
問題もあった。In a large freezing apparatus or a rapid freezing method using a low-temperature liquid gas, for example, a large frozen object such as tuna requires several minutes to several hours to complete freezing. The difference in the state of freezing progress inside increases. As described above, when the freezing progress state varies, the water moves from a low freezing rate (the ratio of the frozen water) to a high freezing rate, and the freeze concentration proceeds. In addition, if the size of the ice crystals varies, the small ice crystals are taken in by the large ice crystals during the freezing storage and tend to be enlarged, which causes destruction of the cell tissue. Further, if the surface freezes first, the internal pressure changes due to the expansion pressure of the ice, and there is another problem that the surface is cracked. Furthermore, in a low temperature zone of -60 ° C or lower, the growth rate of ice crystals is slow but the generation rate is large, and a large amount of fine ice crystals are generated, so that bound water which is difficult to freeze near the surface of the frozen object is forcibly precipitated. On the contrary, there was also a problem of lowering the quality. In addition, the method using a low-temperature liquid gas has a problem that running costs are increased.
【0012】スロークーリング処理、マイクロ波照射で
は過冷却状態を保持しやすくなるが、振動などの外乱が
加わると容易に破壊されるので、制御することが難し
い。スロークーリング処理では、細胞内未凍結状態で処
理を行うと、細胞外の氷結晶は巨大化し細胞組織の破壊
と、凍結濃縮が進んで膠質的な変化を逆に促進させる危
険があった。さらに、冷却速度0.01〜0.5℃/時
間の処理では、冷凍完了までに時間がかかりすぎるとい
う問題点もあった。In the slow cooling process and the microwave irradiation, the supercooled state is easily maintained, but it is difficult to control because it is easily destroyed by disturbance such as vibration. In the slow cooling treatment, if the treatment is performed in an unfrozen state in the cells, the ice crystals outside the cells become large, and there is a risk that destruction of cell tissues and freeze-concentration proceed to promote colloidal changes. Furthermore, the processing at a cooling rate of 0.01 to 0.5 ° C./hour has a problem that it takes too much time to complete freezing.
【0013】マイクロ波照射では、水を誘電加熱しやす
く、強い電界を照射できないので、その効果に限界があ
った。さらに、一旦、過冷却状態が破壊され、固液共存
状態でマイクロ波を照射すると、液相部分を優先的に誘
電加熱するので、氷結率の高い部分と低い部分とで凍結
進行状態の差が一層大きくなり、凍結濃縮が助長される
問題もあった。[0013] In microwave irradiation, water is easily heated by dielectric heat, and a strong electric field cannot be irradiated. Therefore, its effect is limited. Furthermore, once the supercooled state is destroyed and the microwave is irradiated in the solid-liquid coexistence state, the liquid phase part is preferentially dielectric-heated. There is also a problem that the size is further increased and freeze concentration is promoted.
【0014】また、被冷凍体に凍結防止剤を添加する場
合には、凍結防止剤の選択、組み合わせなどの工夫が必
要であり、高度に味、栄養を維持することが難しかっ
た。In addition, when an antifreezing agent is added to a frozen body, it is necessary to devise selection and combination of the antifreezing agent, and it has been difficult to maintain the taste and nutrition at a high level.
【0015】また、単に保存用シートで覆うのみでは、
改善は見られるものの高度に味、栄養を維持できなかっ
た。[0015] Also, simply covering with a storage sheet,
Although improvement was observed, taste and nutrition could not be maintained at a high level.
【0016】この発明は上記の問題を解決するためにな
されたもので、細胞組織の機械的破壊、細胞膠質物の化
学的変化を抑制し、高度に生鮮食品等の味、栄養などの
品質の低下を防止できる冷凍方法、解凍方法、冷凍装
置、および解凍装置を提供することを目的とするもので
ある。The present invention has been made to solve the above-mentioned problems, and suppresses the mechanical destruction of cell tissues and the chemical change of cell colloids, and provides a high quality of fresh foods such as taste and nutrition. It is an object of the present invention to provide a refrigeration method, a thawing method, a refrigeration apparatus, and a thawing apparatus capable of preventing a decrease.
【0017】[0017]
【課題を解決するための手段】この発明に係わる第1の
冷凍方法は、誘電体からなる凍結保護物質を、被冷凍体
の表面に被覆、あるいは内部に添加し、前記被冷凍体に
電磁波を照射して、前記電磁波照射により前記被冷凍体
に吸収されるエネルギーよりも大きなエネルギーで冷却
して、前記被冷凍体を凍結させるものである。According to a first refrigeration method according to the present invention, a cryoprotective substance made of a dielectric material is coated on or added to the surface of an object to be frozen, and electromagnetic waves are applied to the object to be frozen. Irradiation is performed to cool the object to be frozen by cooling with energy larger than energy absorbed by the object to be frozen by the electromagnetic wave irradiation.
【0018】この発明に係わる第2の冷凍方法は、上記
第1の発明の電磁波が、凍結保護物質を含む水溶液の固
体の比誘電損率が、前記水溶液の比誘電損率を上回る周
波数を備えるようにしたものである。In a second refrigeration method according to the present invention, the electromagnetic wave according to the first invention has a frequency at which the relative dielectric loss factor of the solid of the aqueous solution containing the cryoprotectant exceeds the relative dielectric loss factor of the aqueous solution. It is like that.
【0019】この発明に係わる第3の冷凍方法は、上記
第1の発明の電磁波が、10MHzから300MHzの範囲の
いずれかの周波数を備えるようにしたものである。In a third refrigeration method according to the present invention, the electromagnetic wave of the first invention has a frequency in a range of 10 MHz to 300 MHz.
【0020】この発明に係わる第4の冷凍方法は、上記
第1の発明の電磁波の照射手段を、アンテナにしたもの
である。In a fourth refrigeration method according to the present invention, the means for irradiating electromagnetic waves of the first invention is an antenna.
【0021】この発明に係わる第5の冷凍方法は、上記
第1の発明の電磁波の照射手段を、TEMセル(Transv
erse Electromagnetic)セルにしたものである。According to a fifth refrigeration method according to the present invention, the electromagnetic wave irradiating means of the first invention is provided by a TEM cell (Transv.
(erse Electromagnetic) cell.
【0022】この発明に係わる第6の冷凍方法は、上記
第1の発明の凍結保護物質あるいは前記凍結保護物質を
含む水溶液を、被冷凍体の凍結保存温度における比誘電
損率が、前記被冷凍体の氷結点における比誘電損率より
高くなる周波数帯域を有するようにしたものである。A sixth refrigeration method according to the present invention is characterized in that the relative dielectric loss factor of the cryoprotective substance or the aqueous solution containing the cryoprotective substance at the cryopreservation temperature of the body to be frozen is the same as that of the refrigeration body. It has a frequency band higher than the relative dielectric loss factor at the freezing point of the body.
【0023】この発明に係わる第7の冷凍方法は、上記
第1の発明の凍結保護物質を、少なくとも、糖類、糖た
ん白質、糖脂質、多価アルコール類、多価アルコール類
の重合体、脂質のいずれかを含むようにしたものであ
る。In a seventh refrigeration method according to the present invention, the lyoprotectant of the first invention may comprise at least a saccharide, a glycoprotein, a glycolipid, a polyhydric alcohol, a polymer of a polyhydric alcohol, a lipid. Is included.
【0024】この発明に係わる第8の冷凍方法は、上記
第7の発明の凍結保護物質を、少なくとも、グルコー
ス、果糖、ショ糖、トレハロース、マルトース、ラクト
ース、フルクトオリゴ糖、糖たんぱく質、糖脂質、エチ
レングリコール、グリセリン、グリセリドのいずれか、
あるいはこれらの重合体のいずれかを含むようにしたも
のである。According to an eighth refrigeration method of the present invention, the cryoprotectant of the seventh invention is characterized in that at least glucose, fructose, sucrose, trehalose, maltose, lactose, fructooligosaccharide, glycoprotein, glycolipid, ethylene Any of glycol, glycerin, glyceride,
Alternatively, it contains any of these polymers.
【0025】この発明に係わる第9の冷凍方法は、上記
第1の発明の被覆を、凍結保護物質を塗布、あるいは介
在させたシートで行うようにしたものである。In a ninth refrigeration method according to the present invention, the coating of the first invention is performed on a sheet on which a cryoprotective substance is applied or interposed.
【0026】この発明に係わる第10の冷凍方法は、上
記第1の発明の電磁波照射を、被冷凍体が氷結点に達す
る以前から、最大氷結晶生成帯の下限を過ぎるまで行う
ようにしたものである。According to a tenth refrigeration method of the present invention, the electromagnetic wave irradiation of the first invention is performed before the frozen object reaches the freezing point and until the lower limit of the maximum ice crystal formation zone is exceeded. It is.
【0027】この発明に係わる第1の解凍方法は、上記
第2あるいは3の発明の周波数の電磁波を用いて冷凍体
を解凍するものである。A first defrosting method according to the present invention defrosts a frozen body using electromagnetic waves having the frequency of the second or third invention.
【0028】この発明に係わる第1の冷凍装置は、上記
第2ないし第5のいずれかの発明の電磁波を発生する手
段と、前記電磁波を被冷凍体に照射して加熱する手段
と、前記電磁波照射により前記被冷凍体を加熱するエネ
ルギーよりも大きなエネルギーで冷却して被冷凍体を凍
結させる手段とを備えたものである。A first refrigeration apparatus according to the present invention comprises: means for generating an electromagnetic wave according to any of the second to fifth inventions; means for irradiating the object to be frozen with the electromagnetic wave and heating; Means for cooling the object to be frozen by irradiating the object with cooling energy higher than the energy for heating the object to be frozen.
【0029】この発明に係わる第1の解凍装置は、上記
第2ないし第5のいずれかの発明の電磁波を発生する手
段と、前記電磁波を冷凍体に照射して加熱する手段とを
備えたものである。A first thawing apparatus according to the present invention includes the means for generating electromagnetic waves according to any one of the second to fifth aspects, and means for irradiating the frozen body with the electromagnetic waves and heating the same. It is.
【0030】[0030]
【発明の実施の形態】実施の形態1.以下、本発明の実
施の形態を数式、図を用いて説明する。電磁波照射によ
って誘電体を加熱するエネルギーPh[W/m3]を、
数式で表すと次式のようになる。 Ph=(1/1.8)×f×v2×εr"×10-10 (1) εr"=εr'×tanδ (2) ここで、f[Hz]は周波数、v[V/m]は電界の大
きさ、εr"は比誘電損率、εr'は比誘電率、ε0は真空
の誘電率、tanδは誘電体損失角である。したがっ
て、上記数式(1)より、誘電加熱エネルギーPhは、
物質の比誘電損率ε r"に比例することがわかる。また、
半周期あたりで誘電体がコンデンサとして蓄える誘電エ
ネルギーpi[W]は、 pi=π×v2×εr'×ε0 (3) で表され、誘電エネルギーpiの一部分が、凍結前の水
分子クラスターを小さくして、氷結晶の成長を抑制する
ために用いられており、電界が大きいほどその効果が大
きい。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Hereinafter, the present invention will be described.
Embodiments will be described with reference to mathematical expressions and drawings. By electromagnetic wave irradiation
The energy P to heat the dielectrich[W / mThree]
This can be expressed by the following equation. Ph= (1 / 1.8) × f × vTwo× εr"× 10-Ten (1) εr"= Εr'× tan δ (2) where f [Hz] is a frequency and v [V / m] is a large electric field.
Size, εr"Is the relative dielectric loss factor, εr'Is the relative permittivity, ε0Is a vacuum
Tanδ is the dielectric loss angle. Accordingly
From the above equation (1), the dielectric heating energy PhIs
Specific dielectric loss factor of material ε r"Is proportional to
Dielectric material that the dielectric material stores as a capacitor per half cycle
Energy pi[W] is pi= Π × vTwo× εr'× ε0 (3) expressed by the dielectric energy piPart of the water before freezing
Minimize molecular clusters to suppress ice crystal growth
The effect increases as the electric field increases.
Good.
【0031】発明者らは、上記数式をもとにして、詳細
に水と氷の比誘電損率の周波数依存性を調べた。そし
て、Hippelらの文献(A.R.Von Hippel:Dielectric Mate
rialsand Application,MIT Press 1954)、Ellisonらの
文献(Ellison W J,J Moreau:J.Mol.Liq.Vol.68,No.2/
3,p171-279,1996)、真鍋らの文献(真鍋武嗣、H.LIEB
E、G.Hufford:電情通学会技報、vol.87,No.367,p1-6,1
988)、およびHuffordらの文献(G Hufford:Int.J.of I
nfrared and Millimeter Waves,Vol.12,No.7,p.677-68
2,1991)のデータを鑑み、図1に示す水と氷の比誘電率
εr'、および比誘電損率εr"と周波数の関係を得た。そ
して、水と氷に関する比誘電損率と周波数との特性曲線
は、互いに接近する周波数帯(10kHzから150M
Hz)を有することを見出した。The inventors have studied the frequency dependence of the relative dielectric loss factors of water and ice in detail based on the above formula. And, a document by Hippel et al. (ARVon Hippel: Dielectric Mate)
rialsand Application, MIT Press 1954), Ellison et al. (Ellison WJ, J Moreau: J. Mol. Liq. Vol.68, No.2 /
3, p171-279, 1996), Manabe et al. (Takeshi Manabe, H. LIEB)
E, G. Hufford: IEICE Technical Report, vol.87, No.367, p1-6,1
988), and Hufford et al. (G Hufford: Int. J. of I
nfrared and Millimeter Waves, Vol.12, No.7, p.677-68
In view of the data of 2,1991), the dielectric constant of water and ice shown in Figure 1 epsilon r ', and the relative dielectric loss factor epsilon r "and give the relation between the frequency. Then, dielectric loss factor on water and ice The characteristic curves of frequency and frequency are shown in frequency bands approaching each other (10 kHz to 150 MHz).
Hz).
【0032】したがって、上記他の周波数帯より比誘電
損率−周波数特性曲線が接近する周波数帯を含む電磁波
を被冷凍体に照射し、前記電磁波照射により被冷凍体を
加熱するエネルギーよりも大きなエネルギーで冷却すれ
ば、マイクロ波のように氷成長を抑制する効果があるだ
けでなく、被冷凍体の液相部分に偏って誘電加熱しない
ため、被冷凍体の表面と内部、および被冷凍体全体にわ
たり凍結進行状態を均一化でき、凍結濃縮を助長しない
で冷凍できる。この結果、ドリップ量を減らすことがで
き、品質の低下の少ない冷凍を行うことができる。Accordingly, the object to be frozen is irradiated with an electromagnetic wave including a frequency band in which the relative dielectric loss factor-frequency characteristic curve is closer to the other frequency band, and the energy is larger than the energy for heating the object to be frozen by the electromagnetic wave irradiation. Cooling not only has the effect of suppressing ice growth like microwaves, but also prevents dielectric heating concentrated on the liquid phase portion of the frozen object, so the surface and inside of the frozen object and the entire frozen object Over time, and can be frozen without promoting freeze concentration. As a result, the amount of drip can be reduced, and freezing with less deterioration in quality can be performed.
【0033】実施の形態2.0.001Nの食塩水溶
液、10%ショ糖水溶液、30%PEG600(ポリエ
チレングリコール、分子量600の高分子)水溶液、お
よびエコナオイル(商品名、花王株式会社製、生体中の
脂質であるグリセリドの一種ジアシルグリセリドを主成
分とする)において、周波数40.68MHzあるいは
13.56MHzで、液体と固体の比誘電損率(εr")
と温度との関係を測定して求めたところ、図2〜図5に
示すように、それぞれ比誘電損率は温度により大きく変
わり、図2における0.001Nの食塩水の比誘電損率
は凝固点(約0℃)以下で急激に低下するのに比し、図
3、図4(周波数40.68MHzで測定)における1
0%ショ糖水溶液、30%PEG600水溶液は、凝固
点以下(固体)の比誘電損率の方が凝固点以上(液体)
よりも大きいことがわかった。図5のエコナオイル(周
波数13.56MHzで測定)については、凝固点(約
−25℃)まで到達していないが、通常の凍結温度レベ
ル(−10℃〜―20℃)まで低温になるほど比誘電損
率が高くなることがわかった。Embodiment 2. 0.001N saline solution, 10% sucrose aqueous solution, 30% PEG600 (polyethylene glycol, high molecular weight polymer 600) aqueous solution, and Econa oil (trade name, manufactured by Kao Corporation, in vivo (Based mainly on diacylglyceride, a kind of glyceride), at a frequency of 40.68 MHz or 13.56 MHz at a specific dielectric loss factor (ε r ) of liquid and solid.
2 and 5, the relative dielectric loss factor greatly changes depending on the temperature, and the relative dielectric loss factor of the 0.001N saline solution in FIG. 3 and 4 (measured at a frequency of 40.68 MHz).
For 0% sucrose aqueous solution and 30% PEG600 aqueous solution, the relative dielectric loss factor below the freezing point (solid) is higher than the freezing point (liquid).
Turned out to be bigger. The econa oil in FIG. 5 (measured at a frequency of 13.56 MHz) did not reach the freezing point (about -25 ° C.), but the relative dielectric constant decreased to a normal freezing temperature level (−10 ° C. to −20 ° C.). It was found that the loss ratio was high.
【0034】さらに、1〜10%のショ糖水溶液におい
て、液体と固体の比誘電損率(εr")と周波数との関係
を測定したところ、図6に示すように、液体のεr"は5
0MHz付近で最小となり、水溶液の濃度が高いほどε
r"は小さくなることがわかった。さらに、10%ショ糖
水溶液において、固体と液体(凝固点付近)との比誘電
損率比と周波数との関係を調べたところ、図7に示すよ
うに、10MHz〜100MHzにおいて、水の比誘電
損率と氷の比誘電損率が逆転する特異な周波数領域があ
ることを見出した。ここで、固体の温度は−10℃、液
体の温度は0℃である。Furthermore, in the 1-10% sucrose solution, the relative dielectric loss factor of the liquid and solid (ε r ") and was measured the relation between the frequency, as shown in FIG. 6, the liquid epsilon r" Is 5
It becomes minimum around 0 MHz, and the higher the concentration of the aqueous solution, the higher the ε
r "was found to be small. Further, in a 10% aqueous sucrose solution, the relationship between the relative dielectric loss factor ratio of a solid and a liquid (near the freezing point) and frequency was examined. As shown in FIG. From 10 MHz to 100 MHz, it was found that there is a peculiar frequency region where the relative dielectric loss of water and the relative dielectric loss of ice are reversed, where the temperature of the solid is −10 ° C. and the temperature of the liquid is 0 ° C. is there.
【0035】図8〜図10に示すように、5%トレハロ
ース水溶液、10%グルコース水溶液、および30%P
EG600水溶液においても、同様に、10MHz〜数
百MHz付近にピークが存在する。また、それぞれ周波
数帯は異なるが、固体の比誘電損率のほうが液体の比誘
電損率より大きくなる特異な周波数領域があることがわ
かった。As shown in FIGS. 8 to 10, a 5% trehalose aqueous solution, a 10% glucose aqueous solution, and a 30% P
Similarly, in the EG600 aqueous solution, a peak exists around 10 MHz to several hundred MHz. In addition, although the frequency bands are different from each other, it has been found that there is a peculiar frequency region where the relative dielectric loss factor of the solid is larger than that of the liquid.
【0036】上記のような特異な誘電特性を有する物質
は、それ自身もしくはその水溶液において、冷凍保存温
度における比誘電損率が、被冷凍体氷結点における比誘
電損率より高くなる周波数帯域を有する。生鮮食品等の
被冷凍体の氷結点は通常は−2〜0℃程度であって、ま
た、凍結保存温度は家庭用で通常−10〜−20℃程度
である。The substance having a unique dielectric property as described above has, in itself or an aqueous solution thereof, a frequency band in which the relative dielectric loss factor at the freezing storage temperature is higher than the relative dielectric loss factor at the freezing point of the frozen object. . The freezing point of a frozen body such as fresh food is usually about -2 to 0C, and the cryopreservation temperature is usually about -10 to -20C for home use.
【0037】したがって、凍結保護物質あるいは凍結保
護物質を含む水溶液の固体(氷)の比誘電損率が、前記
水溶液の比誘電損率を上回る特異な誘電特性を有する物
質を凍結保護物質として、被冷凍体の表面に塗布または
内部に添加し、この特異な周波数帯の電磁波を照射すれ
ば、氷結晶の微細化が図れるだけでなく、凍結進行状態
を均一化できるため、凍結濃縮が抑制されてドリップ量
を低下でき、高いレベルで味や栄養を保持できる。Therefore, a substance having a specific dielectric property in which the relative permittivity of the solid (ice) of the cryoprotectant or the aqueous solution containing the cryoprotectant exceeds the relative permittivity of the aqueous solution is defined as the cryoprotectant. Applying or adding to the surface of the frozen body and irradiating it with electromagnetic waves in this peculiar frequency band not only makes it possible to miniaturize the ice crystals, but also makes the freezing progress uniform, so that freeze concentration is suppressed. Drip amount can be reduced, and taste and nutrition can be maintained at a high level.
【0038】また、エコナオイルのように凝固点が低い
ものであっても、被冷凍体の凍結保存温度における比誘
電損率が、前記被冷凍体の氷結点における比誘電損率よ
り高くなる周波数帯域を有する特異な誘電特性を有する
ので、これを凍結保護物質として、被冷凍体の表面に塗
布または内部に添加し、この特異な周波数帯の電磁波を
照射すれば、同様に、凍結濃縮が抑制されてドリップ量
を低下でき、高いレベルで味や栄養を保持できる。In addition, even if the frozen point is low, such as econa oil, the relative dielectric loss factor at the frozen storage temperature of the frozen object is higher than the relative dielectric loss factor at the freezing point of the frozen object. Since it has a unique dielectric property having, as a cryoprotectant, it is applied to the surface of the object to be frozen or added to the inside of the body to be frozen and irradiated with electromagnetic waves in this unique frequency band, similarly, freeze concentration is suppressed. To reduce the amount of drip and maintain a high level of taste and nutrition.
【0039】本実施の形態において、凍結保護物質とし
て、ショ糖、トレハロース、グルコース、PEG、エコ
ナオイルなどを用いる例を示したが、グルコース以外の
単糖類、マルトース、ラクトースなどの二糖類、フルク
トオリゴなどのオリゴ糖、これらを重合した多糖類であ
ってもよい。また、グリセリンなど多価アルコール類で
あってもよい。また、エコナオイル以外にグリセリドを
主成分とする脂質であってもよい。In this embodiment, sucrose, trehalose, glucose, PEG, econa oil and the like are used as cryoprotective substances. Or a polysaccharide obtained by polymerizing these. Further, polyhydric alcohols such as glycerin may be used. In addition, lipids containing glyceride as a main component other than econa oil may be used.
【0040】上記凍結保護物質を被冷凍体の表面に塗布
する方法としては、ハケ塗り、噴霧、シャワリングなど
の方法がある。また凍結保護物質を被冷凍体内部に分散
させても、凍結保護物質溶液に浸漬して含浸させてもよ
い。被冷凍体内部へ注入したり、予め被冷凍体に混合分
散させてもよい。As a method for applying the above-mentioned cryoprotectant to the surface of the object to be frozen, there are methods such as brushing, spraying and showering. Further, the cryoprotectant may be dispersed inside the body to be frozen or may be immersed in the cryoprotectant solution for impregnation. It may be poured into the frozen object, or may be mixed and dispersed in the frozen object in advance.
【0041】本実施の形態において、被冷凍体表面を上
記凍結保護物質で覆った場合には、被冷凍体内部より先
に凍結が進行する表面側を、優先的に誘電加熱でき、被
冷凍体表面と内部との凍結進行状態(氷結率)の均一化
を図ることができる。また、被冷凍体の内部まで上記凍
結保護物質を添加する場合、例えば被冷凍体内部まで凍
結保護物質を含む水溶液で十分含侵すると、同様に被冷
凍体全域で氷結率差をなくすことができる。In this embodiment, when the surface of the object to be frozen is covered with the above-mentioned cryoprotective substance, the surface side where freezing proceeds before the inside of the object to be frozen can be preferentially subjected to dielectric heating. The progress of freezing (freezing rate) between the surface and the inside can be made uniform. When the above-mentioned cryoprotective substance is added to the inside of the frozen body, for example, if the inside of the frozen body is sufficiently impregnated with an aqueous solution containing the cryoprotective substance, a difference in the freezing rate can be similarly reduced in the entire frozen body. .
【0042】本実施の形態において、被冷凍体に上記作
用を発現できる凍結保護物質が既に含まれている場合に
は、添加、被覆せず、これを利用して電磁波照射しても
よい。In the present embodiment, when the cryoprotectant capable of exhibiting the above-mentioned action is already contained in the object to be frozen, electromagnetic wave irradiation may be performed by using the cryoprotectant without adding or coating.
【0043】実施の形態3.図11は、本発明の実施の
形態3における生鮮食品等の冷凍方法を温度と時間の関
係で表した説明図である。この冷凍方法においては、ま
ず、被冷凍体を冷却し、被冷凍体表面の温度が冷蔵温度
(通常約5℃〜氷結点)に達した時点で電磁波照射を開
始する。この時被冷凍体が電磁波を吸収して加熱される
エネルギーより大きなエネルギーで冷却することによ
り、被冷凍体の温度を低下させる。最大氷結晶生成帯上
限(氷結点)に達すると、被冷凍体表面と被冷凍体中心
部がほぼ同じ温度で凍結が進行する。被冷凍体内部の温
度が最大氷結晶生成帯下限を超えた時点で、細胞組織と
結合していない自由水はほとんど凍結し、細胞組織中の
結合水が未凍結状態で残る。さらに、電磁波を照射しな
がら、被冷凍体の温度を更に下降させ、所定の凍結保存
温度まで冷凍する。上記凍結保存温度は家庭用で−10
〜−20℃程度であり、業務用では−60℃以下の場合
もある。Embodiment 3 FIG. 11 is an explanatory diagram showing a method of freezing fresh food or the like according to Embodiment 3 of the present invention in relation to temperature and time. In this freezing method, first, the object to be frozen is cooled, and irradiation of electromagnetic waves is started when the temperature of the surface of the object to be frozen reaches a refrigeration temperature (normally, about 5 ° C. to a freezing point). At this time, the temperature of the object to be cooled is reduced by cooling the object to be cooled with energy larger than the energy heated by absorbing the electromagnetic wave. When the maximum ice crystal formation zone upper limit (freezing point) is reached, the freezing of the surface of the object to be frozen and the center of the object to be frozen proceed at approximately the same temperature. When the temperature inside the frozen object exceeds the lower limit of the maximum ice crystal formation zone, the free water not bound to the cell tissue is almost frozen, and the bound water in the cell tissue remains in an unfrozen state. Furthermore, while irradiating the electromagnetic waves, the temperature of the object to be frozen is further lowered, and the object is frozen to a predetermined frozen storage temperature. The above cryopreservation temperature is -10 for home use.
It is about -20 ° C, and may be -60 ° C or less for business use.
【0044】本実施の形態では、電磁波照射期間を、被
冷凍体表面の温度が冷蔵温度(約5℃〜10℃)に達し
た時点から、結合水が凍結する前としたが、次の3つ期
間A、B、Cに分けて、適宜適切に選んで照射してもよ
い。 期間A:冷蔵温度〜最大氷結晶生成帯上限(自由水が未
凍結な状態から氷結点に達するまで)。 期間B:最大氷結晶生成帯上限〜下限(自由水の凍結が
進行し、自由水はほぼ凍結完了するが、結合水はほぼ未
凍結状態)。 期間C:最大氷結晶生成帯下限〜凍結保存温度(自由水
がぼぼ凍結完了した状態から、結合水の凍結が進行し、
所定の冷凍温度に達するまで)。In the present embodiment, the electromagnetic wave irradiation period is set from the time when the temperature of the surface of the object to be frozen reaches the refrigeration temperature (about 5 ° C. to 10 ° C.) and before the bound water is frozen. The irradiation may be performed by appropriately selecting the periods A, B, and C separately and appropriately. Period A: Refrigeration temperature to the upper limit of the maximum ice crystal formation zone (until free water reaches the freezing point from an unfrozen state). Period B: Upper limit to lower limit of the maximum ice crystal formation zone (free water is freezing, free water is almost completely frozen, but bound water is almost unfrozen). Period C: Maximum ice crystal formation band lower limit to freezing storage temperature (from the state where free water is almost completely frozen, freezing of bound water proceeds,
Until the required freezing temperature is reached).
【0045】実施の形態4.図12は、本発明の実施の
形態4における生鮮食品等の冷凍方法を温度と時間の関
係で表した説明図であり、過冷却状態が生じた場合の例
を示す。凍結過程は上記実施の形態3とほぼ同様である
が、期間A、B、Cを次のとおりとする。 期間A:冷蔵温度〜過冷却状態の破壊点まで。 期間B:過冷却状態の破壊点〜最大氷結晶生成帯上下
限。 期間C:最大氷結晶生成帯下限〜凍結保存温度(自由水
がぼぼ凍結完了した状態から、結合水の凍結が進行し、
所定の冷凍温度に達するまで)。Embodiment 4 FIG. 12 is an explanatory diagram showing a method of freezing fresh food or the like according to Embodiment 4 of the present invention in a relationship between temperature and time, and shows an example in a case where a supercooled state occurs. The freezing process is almost the same as in the third embodiment, except that the periods A, B, and C are as follows. Period A: From the refrigeration temperature to the breaking point in the supercooled state. Period B: from the breaking point in the supercooled state to the upper and lower limits of the maximum ice crystal formation zone. Period C: Maximum ice crystal formation band lower limit to freezing storage temperature (from the state where free water is almost completely frozen, freezing of bound water proceeds,
Until the required freezing temperature is reached).
【0046】本実施の形態および上記実施の形態3で示
した最大氷結晶生成帯の範囲は、被冷凍体の種類によっ
て変わるが原理的には同じである。また、電磁波の周波
数および照射期間は被冷凍体や凍結保護物質の種類によ
り適宜変えればよい。The range of the maximum ice crystal formation zone shown in the present embodiment and the above-described third embodiment varies in accordance with the type of the object to be frozen, but is basically the same. Further, the frequency and the irradiation period of the electromagnetic wave may be appropriately changed depending on the type of the object to be frozen or the cryoprotectant.
【0047】実施の形態5.図13は本発明の実施の形
態5における生鮮食品等の冷凍方法を示す図であり、被
冷凍体7として魚を用い、被冷凍体7の表面をシートで
覆う構成の例を示す。本実施の形態において、シート1
6は、樹脂フィルムシート21と多孔性フィルムシート
22との2層構造となっており、その間に凍結保護物質
15を介在させ、さらに被冷凍体7と多孔性フィルムシ
ート22との間にも凍結保護物質15を介在させてい
る。このように、凍結保護物質15を介在させたシート
16で被冷凍体7を覆い、前記被冷凍体7を電磁波照射
し、電磁波照射により前記被冷凍体7を加熱するエネル
ギーよりも大きなエネルギーで冷却して、被冷凍体7を
凍結させることにより、被冷凍体表面と内部との凍結進
行状態(氷結率)の均一化を図ることができる。また、
容易に被冷凍体表面を凍結保護物質15で覆うことがで
きる。Embodiment 5 FIG. 13 is a diagram illustrating a method for freezing fresh food or the like according to Embodiment 5 of the present invention, and shows an example of a configuration in which a fish is used as the frozen object 7 and the surface of the frozen object 7 is covered with a sheet. In the present embodiment, sheet 1
6 has a two-layer structure of a resin film sheet 21 and a porous film sheet 22 with a cryoprotective substance 15 interposed therebetween, and also freezes between the frozen object 7 and the porous film sheet 22. The protective substance 15 is interposed. As described above, the frozen object 7 is covered with the sheet 16 with the cryoprotective substance 15 interposed therebetween, and the frozen object 7 is irradiated with the electromagnetic wave, and cooled with energy larger than the energy for heating the frozen object 7 by the electromagnetic wave irradiation. Then, by freezing the body 7 to be frozen, the progress of freezing (freezing rate) between the surface and the inside of the body to be frozen can be made uniform. Also,
The frozen object surface can be easily covered with the cryoprotectant 15.
【0048】本実施の形態で示した2層のシートは特に
限定するものではないが、被冷凍体7に接する側に、例
えば多孔性シート22を用いれば、水分の移動がスムー
ズにできなおよい。シートは、例えばポリエチレンやポ
リ塩化ビニリデンなどの絶縁性フィルムを用いればよ
い。多孔性にするには、発砲させたポリエチレンシート
などのフィルムを用いればよい。シート16を被冷凍体
7に密着させれば、特に、シート16と被冷凍体7との
間に凍結保護物質15を設けなくてもよい。予め1枚の
シート16に凍結保護物質15を塗布し、そのまま被冷
凍体7を覆ってもよい。また、上記凍結保護物質15と
しては、上記実施の形態2で示したものを用いればよ
い。Although the two-layer sheet shown in the present embodiment is not particularly limited, if a porous sheet 22 is used on the side in contact with the body 7 to be frozen, for example, the movement of moisture can be smoothly performed. . As the sheet, an insulating film such as polyethylene or polyvinylidene chloride may be used. In order to make the film porous, a film such as a foamed polyethylene sheet may be used. If the sheet 16 is brought into close contact with the body 7 to be frozen, it is not necessary to provide the cryoprotective substance 15 between the sheet 16 and the body 7 to be frozen. The cryoprotective substance 15 may be applied to one sheet 16 in advance, and the frozen object 7 may be covered as it is. Further, as the cryoprotective substance 15, the substance described in the second embodiment may be used.
【0049】実施の形態6.さらに、高品質に冷凍した
被冷凍体の解凍方法について説明する。本実施の形態で
は、0℃以上の雰囲気に自然放置、電子レンジ(マイク
ロ波)加熱などの通常の解凍方法に換えて、上記実施の
形態1あるいは2で示した周波数の電磁波を冷凍体に照
射して加熱解凍した。上記周波数帯においては、液体
(水、溶液)の比誘電損率と固体(氷)の比誘電損率と
の差が小さい、あるいは、固体の比誘電損率が液体の比
誘電損率より大きいので、解凍進行状態を均一化でき、
細胞組織の破壊を抑制し、ドリップ量を減らすことがで
きる。したがって、高度に生鮮食品等の味、栄養などの
品質の低下を防止して、解凍できる。Embodiment 6 FIG. Further, a method of thawing a high-quality frozen object will be described. In this embodiment, the frozen body is irradiated with the electromagnetic wave having the frequency shown in the first or second embodiment in place of a normal thawing method such as natural leaving in an atmosphere of 0 ° C. or more and microwave (microwave) heating. And thawed. In the above-mentioned frequency band, the difference between the relative permittivity of the liquid (water, solution) and the relative permittivity of the solid (ice) is small, or the relative permittivity of the solid is larger than the relative permittivity of the liquid. So you can equalize the progress of thawing,
Destruction of cell tissue can be suppressed, and the amount of drip can be reduced. Therefore, it is possible to prevent the deterioration of the quality of the taste and nutrition of fresh foods and the like, and to thaw it.
【0050】なお、本実施の形態において、特に冷凍方
法は限定しないが、上記実施の形態1〜5で示した冷凍
方法により冷凍した被冷凍体7を用いれば、さらに高度
に生鮮食品等の味、栄養などの品質の低下を防止して、
解凍できる。In the present embodiment, the method of freezing is not particularly limited. However, if the frozen body 7 frozen by the freezing method shown in the first to fifth embodiments is used, the taste of fresh food and the like can be further enhanced. , Prevent deterioration of nutrition and other quality,
Can be thawed.
【0051】実施の形態7.図14は、本発明の実施の
形態7における生鮮食品等の冷凍方法を実現できる冷凍
装置を示す構成図であり、1は高周波誘電加熱機、2は
三極管やトランジスタなどで構成される高周波発生電
源、3はインダクタンス、4は可変式キャパシタンス、
5は印加電極、6は整合器、7は被冷凍体、8は冷凍
機、9は冷却用熱交換器、11は電磁波遮断シールド、
12は断熱シールド、13は冷凍庫内部、37は絶縁
台、42は温度検出部、25は冷気入口、26は冷気出
口、28はパワーメータである。Embodiment 7 FIG. FIG. 14 is a configuration diagram showing a refrigerating apparatus capable of realizing a method for refrigerating fresh food or the like according to Embodiment 7 of the present invention, wherein 1 is a high-frequency induction heater, and 2 is a high-frequency power source composed of a triode, a transistor, and the like. 3 is inductance, 4 is variable capacitance,
5 is an applied electrode, 6 is a matching device, 7 is a frozen object, 8 is a refrigerator, 9 is a heat exchanger for cooling, 11 is an electromagnetic wave shielding shield,
12 is a heat insulating shield, 13 is a freezer interior, 37 is an insulating stand, 42 is a temperature detecting unit, 25 is a cold air inlet, 26 is a cold air outlet, and 28 is a power meter.
【0052】この生鮮食品等の冷凍装置において高周波
誘電加熱機1は、高周波発生電源2、整合器6、印加電
極5を導体で接続して構成している。整合器6は例え
ば、インダクタンス3、可変式キャパシタンス4から構
成し、被冷凍体7のインピーダンスが変動しても、共振
状態を保つようにできるようにした。冷凍庫内部13の
雰囲気温度は、冷凍機8の冷却用熱交換器9で冷却され
た空気を循環させて低温状態に保つようにし、被冷凍体
7を絶縁台37に載せて、例えば二枚の平行平板からな
る印加電極5の間に挟むと、被冷凍体7に電磁波を照射
しながら冷凍できるようにした。In this refrigerating apparatus for fresh food or the like, the high-frequency dielectric heater 1 is configured by connecting a high-frequency generation power supply 2, a matching device 6, and an application electrode 5 with conductors. For example, the matching unit 6 includes the inductance 3 and the variable capacitance 4 so that the resonance state can be maintained even if the impedance of the frozen object 7 changes. The atmosphere temperature in the freezer interior 13 is maintained at a low temperature by circulating the air cooled by the cooling heat exchanger 9 of the refrigerator 8, and the object to be frozen 7 is placed on the insulating stand 37, and for example, two When sandwiched between the application electrodes 5 formed of parallel plates, the object to be frozen 7 can be frozen while being irradiated with electromagnetic waves.
【0053】被冷凍体7のインピーダンスの変動が小さ
い場合には、可変式キャパシタンス4でなくてもよく、
キャパシタンスであればよい。When the fluctuation of the impedance of the frozen object 7 is small, the variable capacitance 4 need not be used.
Any capacitance may be used.
【0054】また、上記実施の形態3あるいは4で説明
した照射期間Aから照射期間B、照射期間Bから照射期
間Cへの切り替えは、例えば温度検出部42から被冷凍
体表面温度とパワーメータ28からSWR(定在波比)
を読み取って判断できる。切り替え点では、被冷凍体7
の誘電特性が大きく変化し、SWRが急激に低下するの
で、これをモニタして照射期間の切り替えて点を判断で
きる。The switching from the irradiation period A to the irradiation period B and from the irradiation period B to the irradiation period C described in the third or fourth embodiment can be performed, for example, by the temperature detector 42 and the surface temperature of the frozen object and the power meter 28. To SWR (standing wave ratio)
Can be read and judged. At the switching point, the frozen body 7
Since the dielectric properties of the SWR greatly change and the SWR drops sharply, the point can be determined by monitoring this and switching the irradiation period.
【0055】特に、上記照射期間を制御しない場合は、
温度検出部42、パワーメータ28を省いてもよい。In particular, when the irradiation period is not controlled,
The temperature detector 42 and the power meter 28 may be omitted.
【0056】本実施の形態において、印加電極5として
平行平板電極を示したが、電極形状は、不平行平板型、
格子状、コイル状、円筒状、ローラ状などでもよい。ま
た、移動式のものであってもよい。電極板間の空気層の
影響を少なくできるフレキシブルなものであればさらに
好ましい。In this embodiment, a parallel plate electrode is shown as the application electrode 5, but the electrode shape is a non-parallel plate type,
The shape may be a lattice shape, a coil shape, a cylindrical shape, a roller shape, or the like. Further, it may be a mobile type. It is more preferable that the flexible member be capable of reducing the influence of the air layer between the electrode plates.
【0057】また、本実施の形態では、発振周波数の変
更によって電波障害を起こす恐れを防止するために、電
磁波遮断シールド11を設けているが、不要な場合は除
いてもよい。In this embodiment, the electromagnetic wave shielding shield 11 is provided in order to prevent the possibility of causing radio interference due to the change of the oscillation frequency, but it may be omitted when unnecessary.
【0058】本実施の形態では、例えば、0.3〜3MH
zの中波、3〜30MHzの短波、30〜300MHzの超短
波のいずれかを用いて高周波誘電加熱を行う例を示して
いる。In this embodiment, for example, 0.3 to 3 MHz
An example is shown in which high-frequency dielectric heating is performed using any one of a medium wave of z, a short wave of 3 to 30 MHz, and an ultrashort wave of 30 to 300 MHz.
【0059】また、本実施の形態における生鮮食品等の
冷凍装置において、少なくとも上記高周波誘電加熱機1
と印加電極5を備えれば、冷凍体に上記電磁波を照射で
き、生鮮食品等の解凍装置とできる。Further, in the refrigerating apparatus for fresh food or the like according to the present embodiment, at least the high-frequency dielectric heater 1
And the application electrode 5, it is possible to irradiate the above-mentioned electromagnetic wave to the frozen body, and it is possible to make a thawing apparatus for fresh foods and the like.
【0060】実施の形態8.図15は、本発明の実施の
形態8による生鮮食品等の冷凍装置を示す構成図であ
り、図において、1は高周波誘電加熱機、6は整合器、
7は被冷凍体、8は冷凍機、9は冷却用熱交換器、10
は圧縮機、11は電磁波遮断シールド、12は断熱シー
ルド、13は冷凍庫内部、31は高周波発振器、32は
高周波用アンプ、33はアンテナ、34は電磁波、37
は絶縁台、42は温度検出部である。Embodiment 8 FIG. FIG. 15 is a configuration diagram showing a refrigerating apparatus for fresh food or the like according to an eighth embodiment of the present invention, in which 1 is a high-frequency dielectric heater, 6 is a matching device,
7 is a frozen object, 8 is a refrigerator, 9 is a heat exchanger for cooling, 10
Is a compressor, 11 is an electromagnetic wave shielding shield, 12 is an adiabatic shield, 13 is inside a freezer, 31 is a high-frequency oscillator, 32 is a high-frequency amplifier, 33 is an antenna, 34 is an electromagnetic wave, 37
Is an insulating table, and 42 is a temperature detecting unit.
【0061】この冷凍装置においては、例えば40.6
8MHzの高周波を高周波発振器31で発生させ、高周
波用アンプ32で増幅し、アンテナ33から冷凍庫内部
13に、電磁波を空気中に照射するので、100W程度
以下の低出力の電磁波を広範囲に照射することが可能で
ある。したがって、例えばマグロや肉類などの大物の被
冷凍体が積み重ねられた冷凍庫内部13においても、均
一に電磁波34を照射しながら冷凍することができる。In this refrigerating apparatus, for example, 40.6
A high frequency of 8 MHz is generated by the high frequency oscillator 31, amplified by the high frequency amplifier 32, and the electromagnetic wave is radiated from the antenna 33 to the inside of the freezer 13 into the air. Is possible. Therefore, even inside the freezer 13 in which large frozen objects such as tuna and meat are stacked, it is possible to freeze while uniformly irradiating the electromagnetic waves 34.
【0062】上記アンテナ33の長さは一般的に1/4
波長以上必要であるため、例えば50MHzの電磁波の
波長6mに対し1.5mとなりスペースを要するため、
ヘリカルアンテナ方式など小型化可能なものを用いるこ
とが好ましい。バイコニカルアンテナ、対数らせんアン
テナ、対数周期アンテナ、ダイポールアンテナ、ループ
アンテナ、パラボラアンテナ、長導線アンテナなどであ
ってもよい。また、マイクロストリップアレイ方式、特
に高誘電体セラミックにアンテナを平面積層した通称セ
ラミックアンテナは小型化、平面化に適しているため好
ましい。The length of the antenna 33 is generally 1/4.
Since it is necessary to have a wavelength longer than the wavelength, for example, 1.5 m for a wavelength of 6 m of an electromagnetic wave of 50 MHz, which requires a space,
It is preferable to use one that can be miniaturized such as a helical antenna system. It may be a biconical antenna, a logarithmic spiral antenna, a logarithmic periodic antenna, a dipole antenna, a loop antenna, a parabolic antenna, a long conducting wire antenna, or the like. Further, a microstrip array system, particularly a so-called ceramic antenna in which an antenna is laminated on a high dielectric ceramic in a plane, is suitable for miniaturization and flattening.
【0063】実施の形態9.図16は、本発明の実施の
形態9による生鮮食品等の冷凍装置を示す構成図であ
り、図において、6は整合器、7は被冷凍体、8は冷凍
機、9は冷却用熱交換器、12は断熱シールド、13.
56は冷凍庫内、15は凍結保護物質、16は絶縁性シ
ート、25は冷気入口、26は冷気出口、27は通気用
穴、31は高周波発振器、32は高周波用アンプ、34
は電磁波、36はTEMセル、37は絶縁台、38は外
部方形導体、39は中心導体板、41は同軸終端負荷で
ある。Embodiment 9 FIG. FIG. 16 is a configuration diagram showing a refrigerating apparatus for fresh food or the like according to a ninth embodiment of the present invention. In the figure, 6 is a matching box, 7 is a frozen object, 8 is a refrigerator, and 9 is heat exchange for cooling. 12. Insulation shield, 12;
56 is a freezer, 15 is a freeze protection substance, 16 is an insulating sheet, 25 is a cool air inlet, 26 is a cool air outlet, 27 is a ventilation hole, 31 is a high frequency oscillator, 32 is a high frequency amplifier, 34
Is an electromagnetic wave, 36 is a TEM cell, 37 is an insulating base, 38 is an outer rectangular conductor, 39 is a center conductor plate, and 41 is a coaxial termination load.
【0064】この冷凍装置においては、例えば外部方形
導体38、中心導体板39、同軸終端負荷41、整合器
6からなるTEMセル36が設けられているので、高周
波電気信号を強電界の電磁波に変換して、被冷凍体7に
照射でき、強電界の電磁波を外部に漏らさず発生させる
ことが可能となり、電磁波シールド11が省略できる。
したがって装置構成を簡略にすることができる。In this refrigerating apparatus, since the TEM cell 36 composed of, for example, the outer rectangular conductor 38, the center conductor plate 39, the coaxial terminal load 41, and the matching unit 6 is provided, the high-frequency electric signal is converted into a strong electric field electromagnetic wave. Thus, the object to be frozen 7 can be irradiated, and an electromagnetic wave of a strong electric field can be generated without leaking to the outside, so that the electromagnetic wave shield 11 can be omitted.
Therefore, the device configuration can be simplified.
【0065】TEMセル36中の整合器6は適宜省略で
きる。The matching device 6 in the TEM cell 36 can be omitted as appropriate.
【0066】通常のTEMセルは定在波を発生させない
ように、1/4波長以内の長さであるが、定在波を発生
させるために約1/4波長に設計すればさらによい。A normal TEM cell has a length of less than に wavelength so as not to generate a standing wave, but it is more preferable to design the TEM cell to have a length of about 4 wavelength to generate a standing wave.
【0067】また、本実施の形態における生鮮食品等の
冷凍装置において、少なくとも上記高周波発振器31と
TEMセル36とを備えれば、冷凍体に上記電磁波を照
射でき、生鮮食品等の解凍装置とできる。Further, in the apparatus for refrigerating fresh food and the like in the present embodiment, if at least the high-frequency oscillator 31 and the TEM cell 36 are provided, the frozen body can be irradiated with the electromagnetic wave and a device for thawing fresh food and the like can be obtained. .
【0068】また、上記実施の形態1〜9で用いる電磁
波は、上記特異な周波数成分のみからなるものであって
もよく、少なくとも上記特異な周波数成分を含むブロー
ドなものであってもよい。Further, the electromagnetic waves used in the first to ninth embodiments may be composed of only the specific frequency component, or may be broad including at least the specific frequency component.
【0069】[0069]
【実施例】上記実施の形態7で示した生鮮食品等の冷凍
装置を用いて、上記実施の形態1ないし5で示した生鮮
食品等の冷凍方法により被冷凍体を冷凍し、解凍させて
品質を評価した実施例、および上記実施の形態7ないし
9で示した生鮮食品等の解凍装置を用いて、上記実施の
形態6で示した生鮮食品等の解凍方法により冷凍体を解
凍して品質を評価した実施例を以下に示す。EXAMPLE Using the apparatus for freezing fresh food or the like described in the seventh embodiment, the object to be frozen is frozen and thawed by the method for freezing a fresh food or the like described in the first to fifth embodiments and the quality is reduced. The frozen body was thawed by the method for thawing fresh food or the like shown in the sixth embodiment using the apparatus for thawing fresh food or the like shown in the seventh or ninth embodiment and the fresh food or the like shown in the sixth embodiment to evaluate the quality. The evaluated examples are shown below.
【0070】実施例1.上記実施の形態7の冷凍装置を
用いて、被冷凍体7としてマグロの切り身を用い、被冷
凍体表面と中心部の温度を測定した。図17は、本発明
の実施例1により得られた冷凍曲線である。マグロの切
り身は約300g、厚み約3cmのものを用い、さらに
10%ショ糖水溶液を含ませたポリエチレンシート16
でマグロの切り身を覆い、発振周波数40.68MHz
にセットし、インダクタンス3とキャパシタンス4を調
整して、SWRが3以下になるように制御しながら、ア
ンプ出力を約15W(電界約2000V/m)で、被冷
凍体の表面温度が約5℃に降下した時点から電磁波照射
を開始し、照射期間B以降は、負荷変動にあわせてアン
プ出力を調整しながら冷却した。被冷凍体の表面温度が
(−15℃)を超えた時点で電磁波照射を終了させ、被
冷凍体の中心温度が約−20℃まで冷凍した。Embodiment 1 Using the refrigeration apparatus of the seventh embodiment, a tuna cut was used as the body 7 to be frozen, and the temperature of the surface and the center of the body to be frozen was measured. FIG. 17 is a refrigeration curve obtained according to Example 1 of the present invention. Tuna fillets of about 300 g and thickness of about 3 cm were used, and a polyethylene sheet 16 further containing a 10% aqueous sucrose solution.
Cover the tuna fillet with an oscillation frequency of 40.68 MHz
While controlling the inductance 3 and the capacitance 4 so that the SWR becomes 3 or less, the amplifier output is about 15 W (electric field is about 2000 V / m), and the surface temperature of the object to be frozen is about 5 ° C. The electromagnetic wave irradiation was started from the time when the temperature dropped to, and after the irradiation period B, cooling was performed while adjusting the amplifier output according to the load fluctuation. When the surface temperature of the object to be frozen exceeded (−15 ° C.), the irradiation of the electromagnetic wave was terminated, and the object to be frozen was frozen to a temperature of about −20 ° C.
【0071】実施例2.上記実施の形態3で示した期間
A(自由水が未凍結な状態。最大氷結晶生成帯上限に達
するまで)のみ、電磁波照射を行った。電磁波照射期間
を除けば、他の条件は、上記実施例1と同じである。Embodiment 2 FIG. The electromagnetic wave irradiation was performed only during the period A (in a state where free water is not frozen; until the maximum ice crystal formation band is reached) described in the third embodiment. Except for the electromagnetic wave irradiation period, other conditions are the same as those in the first embodiment.
【0072】実施例3.上記実施の形態3で示した期間
B(自由水の凍結が進行中。最大氷結晶生成帯域)の
み、電磁波照射を行った。電磁波照射期間を除けば、他
の条件は、上記実施例1と同じである。Embodiment 3 FIG. The electromagnetic wave irradiation was performed only during the period B (freezing of free water is in progress; the maximum ice crystal formation band) described in the third embodiment. Except for the electromagnetic wave irradiation period, other conditions are the same as those in the first embodiment.
【0073】実施例4.上記実施の形態3で示した期間
C(自由水が凍結した状態から結合水がほぼ未凍結な状
態まで)のみ、電磁波照射を行った。電磁波照射期間を
除けば、他の条件は、上記実施例1と同じである。Embodiment 4 FIG. The electromagnetic wave irradiation was performed only during the period C (from the state where free water is frozen to the state where the bound water is almost unfrozen) described in the third embodiment. Except for the electromagnetic wave irradiation period, other conditions are the same as those in the first embodiment.
【0074】実施例5.上記実施の形態3で示した期間
AおよびCのみ、電磁波照射を行った。電磁波照射期間
を除けば、他の条件は、上記実施例1と同じである。Embodiment 5 FIG. Electromagnetic wave irradiation was performed only in the periods A and C described in the third embodiment. Except for the electromagnetic wave irradiation period, other conditions are the same as those in the first embodiment.
【0075】実施例6.凍結保護物質の含まないポリエ
チレンシートでマグロ切り身を覆ったことを除けば、他
の条件は、上記実施例1と同じである。Embodiment 6 FIG. Other conditions were the same as in Example 1 above, except that the tuna fillet was covered with a polyethylene sheet containing no cryoprotectant.
【0076】比較例1.10%ショ糖水溶液を含ませた
ポリエチレンシートでマグロ切り身を覆い、電磁波照射
を行わないで冷凍した。電磁波照射を行わないことを除
けば、他の条件は、上記実施例1と同じである。Comparative Example 1. Tuna cuts were covered with a polyethylene sheet containing a 10% aqueous sucrose solution and frozen without irradiation with electromagnetic waves. Other conditions are the same as those in the first embodiment except that the electromagnetic wave irradiation is not performed.
【0077】比較例2.凍結保護物質の含まないポリエ
チレンシートでマグロ切り身を覆い、電磁波照射を行わ
ないで冷凍した。他の条件は、上記実施例1と同じであ
る。Comparative Example 2 The tuna fillet was covered with a polyethylene sheet containing no cryoprotectant, and frozen without irradiation with electromagnetic waves. Other conditions are the same as in the first embodiment.
【0078】上記実施例1〜6、および比較例1,2に
おいて、解凍後にマグロ切り身のドリップ量、型崩れ、
食感を評価した。ドリップ量は冷凍開始から24hr経
過後、約10℃の暗所で自然解凍してから測定した。結
果は表1に示すとおりであり、実施例1〜6のいずれに
おいても電磁波を照射しない比較例1、2よりトリップ
量が減少し、良好な結果が得られた。さらに、10%シ
ョ糖水溶液を含ませたポリエチレンシートでマグロの切
り身を覆い、上記A〜Cの全期間で電磁波を照射した実
施例1が最もドリップ量が少なく、良好な結果が得られ
た。また、無添加のポリエチレンシートで覆った実施例
6に比し、10%ショ糖を添加したポリエチレンシート
で覆った実施例1のドリップ量が減少していることもわ
かる。In Examples 1 to 6 and Comparative Examples 1 and 2, after the thawing, the amount of drip of the tuna fillet,
The texture was evaluated. The amount of drip was measured after 24 hours from the start of freezing and after natural thawing in a dark place at about 10 ° C. The results are as shown in Table 1. In all of Examples 1 to 6, the trip amount was smaller than in Comparative Examples 1 and 2 in which the electromagnetic wave was not irradiated, and good results were obtained. Further, Example 1 in which the fillet of the tuna was covered with a polyethylene sheet containing a 10% aqueous sucrose solution and irradiated with electromagnetic waves during all of the periods A to C described above had the least amount of drip, and good results were obtained. Also, it can be seen that the drip amount of Example 1 covered with the polyethylene sheet to which 10% sucrose was added was smaller than that of Example 6 covered with the polyethylene sheet without addition.
【0079】[0079]
【表1】 [Table 1]
【0080】実施例7.上記実施例1と同様にして、発
振周波数は13.56MHzで電磁波照射を行った。電
磁波周波数を除けば、他の条件は、上記実施例1と同じ
である。Embodiment 7 FIG. In the same manner as in Example 1, the electromagnetic wave irradiation was performed at an oscillation frequency of 13.56 MHz. Except for the electromagnetic wave frequency, other conditions are the same as those in the first embodiment.
【0081】実施例8.上記実施例1と同様にして、発
振周波数は27.12MHzで電磁波照射を行った。電
磁波周波数を除けば、他の条件は、上記実施例7と同じ
である。Embodiment 8 FIG. Electromagnetic wave irradiation was performed at an oscillation frequency of 27.12 MHz in the same manner as in Example 1 above. Except for the electromagnetic wave frequency, other conditions are the same as those in the seventh embodiment.
【0082】実施例9.上記実施例1と同様にして、発
振周波数は100MHzで電磁波照射を行った。電磁波
周波数を除けば、他の条件は、上記実施例7と同じであ
る。Embodiment 9 FIG. In the same manner as in Example 1 above, irradiation with electromagnetic waves was performed at an oscillation frequency of 100 MHz. Except for the electromagnetic wave frequency, other conditions are the same as those in the seventh embodiment.
【0083】実施例10.上記実施例1と同様にして、
発振周波数は300MHzで電磁波照射を行った。電磁
波周波数を除けば、他の条件は、上記実施例7と同じで
ある。Embodiment 10 FIG. As in Example 1 above,
The oscillation frequency was 300 MHz, and the electromagnetic wave irradiation was performed. Except for the electromagnetic wave frequency, other conditions are the same as those in the seventh embodiment.
【0084】比較例3.発振周波数2.45GHzのマ
グネトロンを用いて、電磁波照射を行った。電磁波周波
数と電磁波発生手段を除けば、他の条件は、上記実施例
7と同じである。図18に本比較例3の冷凍曲線を示
す。アンプ出力を約15W(電界約30V/m)で、被
冷凍体の表面温度が約5℃に降下した時点から電磁波照
射を開始し、照射期間B以降は、負荷変動にあわせてア
ンプ出力を調整しながら、冷却する。被冷凍体の表面温
度が(−15℃)を超えた時点で電磁波照射を終了し、
被冷凍体の中心温度が約−20℃まで冷凍した。Comparative Example 3 Electromagnetic wave irradiation was performed using a magnetron having an oscillation frequency of 2.45 GHz. Except for the electromagnetic wave frequency and the electromagnetic wave generating means, other conditions are the same as those in the seventh embodiment. FIG. 18 shows a freezing curve of Comparative Example 3. When the amplifier output is about 15 W (electric field is about 30 V / m), electromagnetic wave irradiation is started when the surface temperature of the frozen object drops to about 5 ° C. After the irradiation period B, the amplifier output is adjusted according to the load fluctuation While cooling. When the surface temperature of the frozen object exceeds (−15 ° C.), the electromagnetic wave irradiation is terminated,
The object to be frozen was frozen to a center temperature of about −20 ° C.
【0085】比較例4.上記比較例3と同様にして、発
振周波数は2.45GHz、アンプ出力約15W(電界
約30V/m)で電磁波照射を行った。被冷凍体の温度
が約5℃に降下した時点から電磁波照射を開始し、照射
期間はAのみで終了した。Comparative Example 4 In the same manner as in Comparative Example 3, irradiation with electromagnetic waves was performed at an oscillation frequency of 2.45 GHz and an amplifier output of about 15 W (electric field of about 30 V / m). Electromagnetic wave irradiation was started when the temperature of the frozen object dropped to about 5 ° C., and the irradiation period ended only with A.
【0086】上記実施例7〜10および比較例3、4の
冷凍方法において、解凍後にマグロ切り身のドリップ
量、型崩れ、食感を評価した。ドリップ量は冷凍開始か
ら24hr経過後、約10℃の暗所で自然解凍して測定
した。結果は表2に示すとおりである。電磁波周波数4
0.68MHzとした上記実施例1に比しドリップ量は
増えるものの、比較例3、4のマイクロ波照射と比べる
とドリップ量低減の効果があることがわかる。In the freezing methods of Examples 7 to 10 and Comparative Examples 3 and 4, after thawing, the amount of drip, shape loss and texture of the tuna cut were evaluated. The amount of drip was measured by thawing naturally in a dark place at about 10 ° C. after 24 hours from the start of freezing. The results are as shown in Table 2. Electromagnetic wave frequency 4
Although the amount of drip is increased as compared with Example 1 in which the frequency is 0.68 MHz, it is understood that the effect of reducing the amount of drip is smaller than that of the microwave irradiation of Comparative Examples 3 and 4.
【0087】[0087]
【表2】 [Table 2]
【0088】さらに、図17に示した上記実施例1の冷
凍曲線と、図18に示した比較例3の冷凍曲線から、被
冷凍体の表面と内部との最大氷結晶生成帯上限および下
限を超える時間差、すなわち図中有効凍結期間のずれ2
1a、21bを比較した。また、被冷凍体7の表面温度
が、最大氷結晶生成帯の下限に達したとき(図中D)の
氷結率を推定し比較した。結果を表3に示す。比較例3
のマイクロ波照射を行った場合に比し、実施例1では、
20bが短くなるとともに、表面と中心部で氷結率の差
が小さい、すなわち、凍結進行状態が均一であることが
わかる。Further, from the refrigeration curve of Example 1 shown in FIG. 17 and the refrigeration curve of Comparative Example 3 shown in FIG. 18, the upper and lower limits of the maximum ice crystal formation zone between the surface and the inside of the object to be frozen were determined. Time difference, that is, the shift of the effective freezing period in the figure 2
1a and 21b were compared. Further, the freezing rate when the surface temperature of the frozen object 7 reached the lower limit of the maximum ice crystal formation zone (D in the figure) was estimated and compared. Table 3 shows the results. Comparative Example 3
In Example 1, as compared with the case where microwave irradiation of
20b becomes shorter, and the difference in the freezing rate between the surface and the center is small, that is, the freezing progress state is uniform.
【0089】[0089]
【表3】 [Table 3]
【0090】実施例11.マグロの切り身(重さ約30
0g、厚み約3cm)を、シートで被覆せず、上記実施
の形態7の冷凍装置内に入れ、発信周波数40.68M
Hzにセットし、インダクタンス3とキャパシタンス4
を調整して、SWRが3以下になるように制御しなが
ら、アンプ出力を約15W(電界約2000V/m)
で、被冷凍体の表面温度が約5℃に降下した時点から電
磁波照射を開始し、照射期間B以降は、負荷変動にあわ
せてアンプ出力を調整しながら、冷却した。被冷凍体の
表面温度が(−15℃)を超えた時点で電磁波照射を終
了し、被冷凍体の中心温度が約−20℃まで冷凍した。Embodiment 11 FIG. Tuna fillet (weight about 30
0 g, thickness of about 3 cm) was placed in the refrigeration apparatus of Embodiment 7 without covering with a sheet, and the transmission frequency was 40.68M.
Hz, inductance 3 and capacitance 4
Is adjusted so that the SWR becomes 3 or less, and the output of the amplifier is about 15 W (electric field is about 2000 V / m).
Then, the electromagnetic wave irradiation was started when the surface temperature of the frozen object dropped to about 5 ° C. After the irradiation period B, cooling was performed while adjusting the amplifier output according to the load fluctuation. When the surface temperature of the object to be frozen exceeded (−15 ° C.), the irradiation of the electromagnetic wave was terminated, and the object to be frozen was frozen to a temperature of about −20 ° C.
【0091】実施例12.上記実施例11と同様にし
て、発振周波数は13.56MHzで電磁波照射を行っ
た。電磁波周波数を除けば、他の条件は、上記実施例1
1と同じである。Embodiment 12 FIG. In the same manner as in Example 11, irradiation with electromagnetic waves was performed at an oscillation frequency of 13.56 MHz. Except for the electromagnetic wave frequency, other conditions are the same as those in the first embodiment.
Same as 1.
【0092】実施例13.上記実施例11と同様にし
て、発振周波数は27.12MHzで電磁波照射を行っ
た。電磁波周波数を除けば、他の条件は、上記実施例1
1と同じである。Embodiment 13 FIG. Electromagnetic wave irradiation was performed at an oscillation frequency of 27.12 MHz in the same manner as in Example 11 above. Except for the electromagnetic wave frequency, other conditions are the same as those in the first embodiment.
Same as 1.
【0093】実施例14.上記実施例11と同様にし
て、発振周波数は100MHzで電磁波照射を行った。
電磁波周波数を除けば、他の条件は、上記実施例11と
同じである。Embodiment 14 FIG. Electromagnetic wave irradiation was performed at an oscillation frequency of 100 MHz in the same manner as in Example 11 above.
Except for the electromagnetic wave frequency, other conditions are the same as those in the eleventh embodiment.
【0094】実施例15.上記実施例11と同様にし
て、発振周波数は300MHzで電磁波照射を行った。
電磁波周波数を除けば、他の条件は、上記実施例11と
同じである。Embodiment 15 FIG. Electromagnetic wave irradiation was performed at an oscillation frequency of 300 MHz in the same manner as in Example 11 above.
Except for the electromagnetic wave frequency, other conditions are the same as those in the eleventh embodiment.
【0095】比較例5.発振周波数2.45GHzのマ
グネトロンを用いて、電磁波照射を行った。電磁波周波
数と電磁波発生手段を除けば、他の条件は、上記実施例
11と同じである。アンプ出力を約15W(電界約30
V/m)で、被冷凍体の表面温度が約5℃に降下した時
点から電磁波照射を開始し、照射期間B以降は、負荷変
動にあわせてアンプ出力を調整しながら、冷却する。被
冷凍体の表面温度が(−15℃)を超えた時点で電磁波
照射を終了し、被冷凍体の中心温度が約−20℃まで冷
凍した。Comparative Example 5 Electromagnetic wave irradiation was performed using a magnetron having an oscillation frequency of 2.45 GHz. Except for the electromagnetic wave frequency and the electromagnetic wave generation means, other conditions are the same as those in the eleventh embodiment. Approximately 15 W of amplifier output (approx.
(V / m), the electromagnetic wave irradiation is started when the surface temperature of the frozen object drops to about 5 ° C. After the irradiation period B, cooling is performed while adjusting the amplifier output according to the load fluctuation. When the surface temperature of the object to be frozen exceeded (−15 ° C.), the irradiation of the electromagnetic wave was terminated, and the object to be frozen was frozen to a temperature of about −20 ° C.
【0096】比較例6.上記比較例5と同様にして、発
振周波数は2.45GHz、アンプ出力約15W(電界
約30V/m)で電磁波照射を行った。被冷凍体の温度
が約5℃に降下した時点から電磁波照射を開始し、照射
期間はAのみで終了した。Comparative Example 6 In the same manner as in Comparative Example 5, irradiation with electromagnetic waves was performed at an oscillation frequency of 2.45 GHz and an amplifier output of about 15 W (electric field of about 30 V / m). Electromagnetic wave irradiation was started when the temperature of the frozen object dropped to about 5 ° C., and the irradiation period ended only with A.
【0097】比較例7.電磁波照射を行わないで冷凍し
た。電磁波照射を行わないことを除けば、他の条件は、
上記実施例11と同じである。Comparative Example 7 Frozen without irradiation with electromagnetic waves. Other than excluding no electromagnetic radiation, the other conditions are:
This is the same as Embodiment 11 described above.
【0098】上記実施例11〜15、および比較例7
で、解凍後にマグロ切り身のドリップ量、型崩れ、食感
を評価した。ドリップ量は冷凍開始から24hr経過
後、約10℃の暗所で自然解凍して測定した。結果は表
4に示すとおりであり、実施例11〜15のいずれにお
いても、マイクロ波を照射した比較例5、6、および電
磁波を照射しない比較例7より良好な結果が得られた。
ただし同様の条件で、10%ショ糖を添加したポリエチ
レンシートで覆った状態で冷凍した実施例1よりは、ド
リップ量が増加しており、電磁波照射と冷凍保護物質の
両方を用いることがより好ましいことがわかった。Examples 11 to 15 and Comparative Example 7
After thawing, the amount of drip, shape loss and texture of the tuna fillet were evaluated. The amount of drip was measured by thawing naturally in a dark place at about 10 ° C. after 24 hours from the start of freezing. The results are as shown in Table 4, and in each of Examples 11 to 15, better results were obtained than Comparative Examples 5 and 6 irradiated with microwaves and Comparative Example 7 not irradiated with electromagnetic waves.
However, the amount of drip is greater than that of Example 1 in which the same is covered with a polyethylene sheet to which 10% sucrose has been added, and the amount of drip is increased, and it is more preferable to use both the electromagnetic wave irradiation and the cryoprotectant. I understand.
【0099】[0099]
【表4】 [Table 4]
【0100】実施例16.被冷凍体として約200g
(1個あたり20g〜40g)の里芋を用い、種々の凍
結保護物質の水溶液に含浸させ、周波数40.68MH
zの電磁波をアンプ出力約10Wで照射をしながら冷凍
したものを、上記実施例1と同様の方法で解凍して、状
態と食感を評価した。また電磁波照射しないもの、凍結
保護物質を用いないものもあわせて評価した。結果を表
5に示す。凍結保護物質を用いて、電磁波照射した場合
には顕著な効果があることがわかった。また凍結保護物
質を用いたものは、電磁波照射をしなくても効果がある
ことがわかった。Embodiment 16 FIG. Approximately 200 g as frozen body
(20 g to 40 g per piece) of taro, impregnated with aqueous solutions of various cryoprotectants, at a frequency of 40.68 MH
Those frozen while irradiating them with the electromagnetic wave of z at an amplifier output of about 10 W were thawed in the same manner as in Example 1 to evaluate the state and texture. In addition, those not irradiated with electromagnetic waves and those not using a cryoprotectant were also evaluated. Table 5 shows the results. It has been found that when a cryoprotectant is used, irradiation with electromagnetic waves has a remarkable effect. In addition, it was found that those using a cryoprotectant were effective even without irradiation with electromagnetic waves.
【0101】[0101]
【表5】 [Table 5]
【0102】実施例16.約300gのマグロの切り身
を上記実施例1と同じ方法で冷凍し、24hr保存した
後、40.68MHzの周波数、アンプ出力約200W
で、被冷凍体の表面温度が−20℃程度から0℃に達す
るまで電磁波加熱し、その後約10℃の暗所で自然解凍
した。Embodiment 16 FIG. Approximately 300 g of tuna fillets were frozen in the same manner as in Example 1 and stored for 24 hours, after which a frequency of 40.68 MHz and an amplifier output of approximately 200 W were used.
Then, electromagnetic wave heating was performed until the surface temperature of the object to be frozen reached about -20 ° C to 0 ° C, and then it was naturally thawed in a dark place at about 10 ° C.
【0103】実施例17.約300gのマグロの切り身
を上記実施例1と同じ方法で冷凍し、24hr保存した
後、13.56MHzの周波数、アンプ出力約500W
で、被冷凍体の表面温度が−20℃程度から0℃に達す
るまで電磁波加熱し、その後約10℃の暗所で自然解凍
した。Embodiment 17 FIG. Approximately 300 g of tuna fillets were frozen in the same manner as in Example 1 and stored for 24 hours, after which a frequency of 13.56 MHz and an amplifier output of approximately 500 W were used.
Then, electromagnetic wave heating was performed until the surface temperature of the object to be frozen reached about -20 ° C to 0 ° C, and then it was naturally thawed in a dark place at about 10 ° C.
【0104】実施例18.約300gのマグロの切り身
を上記実施例1と同じ方法で冷凍し、24hr保存した
後、27.12MHzの周波数、アンプ出力約500W
で、被冷凍体の表面温度が−20℃程度から0℃に達す
るまで電磁波加熱し、その後約10℃の暗所で自然解凍
した。Embodiment 18 FIG. Approximately 300 g of tuna fillets were frozen in the same manner as in Example 1 and stored for 24 hours, after which a frequency of 27.12 MHz and an amplifier output of approximately 500 W were used.
Then, electromagnetic wave heating was performed until the surface temperature of the object to be frozen reached about -20 ° C to 0 ° C, and then it was naturally thawed in a dark place at about 10 ° C.
【0105】実施例19.約300gのマグロの切り身
を上記実施例1と同じ方法で冷凍し、24hr保存した
後、100MHzの周波数、アンプ出力約500Wで、
被冷凍体の表面温度が−20℃程度から0℃に達するま
で電磁波加熱し、その後約10℃の暗所で自然解凍し
た。Embodiment 19 FIG. Approximately 300 g of tuna fillets were frozen in the same manner as in Example 1 and stored for 24 hours. Then, at a frequency of 100 MHz and an amplifier output of approximately 500 W,
Electromagnetic wave heating was performed until the surface temperature of the object to be frozen reached about −20 ° C. to 0 ° C., and then it was naturally thawed in a dark place at about 10 ° C.
【0106】実施例20.約300gのマグロの切り身
を上記実施例1と同じ方法で冷凍し、24hr保存した
後、300MHzの周波数、アンプ出力約500Wで、
被冷凍体の表面温度が−20℃程度から0℃に達するま
で電磁波加熱し、その後約10℃の暗所で自然解凍し
た。Embodiment 20 FIG. Approximately 300 g of tuna fillet was frozen in the same manner as in Example 1 and stored for 24 hours. Then, at a frequency of 300 MHz and an amplifier output of approximately 500 W,
Electromagnetic wave heating was performed until the surface temperature of the object to be frozen reached about −20 ° C. to 0 ° C., and then it was naturally thawed in a dark place at about 10 ° C.
【0107】比較例8.約300gのマグロの切り身を
上記実施例1と同じ方法で冷凍し、24hr保存した
後、2.45GHzの周波数、アンプ出力約500W
で、被冷凍体の表面温度が−20℃程度から0℃に達す
るまで電磁波加熱し、その後冷蔵庫内で自然解凍した。Comparative Example 8 Approximately 300 g of tuna fillets were frozen in the same manner as in Example 1 and stored for 24 hours, after which a frequency of 2.45 GHz and an amplifier output of approximately 500 W were used.
Then, the surface of the object to be frozen was heated by electromagnetic waves until the surface temperature reached about -20 ° C to 0 ° C, and then naturally thawed in the refrigerator.
【0108】比較例9.約300gのマグロの切り身を
上記実施例1と同じ方法で冷凍し、24hr保存した
後、約10℃の暗所で自然解凍した。Comparative Example 9 Approximately 300 g of tuna fillets were frozen in the same manner as in Example 1 above, stored for 24 hours, and then naturally thawed in a dark place at approximately 10 ° C.
【0109】上記実施例16〜20、および比較例8で
解凍したマグロの切り身のドリップ量、型崩れ、食感を
評価した。結果を表6に示す。40.68MHzの周波
数の電磁波を照射して解凍した場合に顕著な効果がある
ことがわかった。13.56MHz、27.12MH
z、100MHz、300MHzの周波数の電磁波を照
射して解凍した場合にも、マイクロ波(2.45GH
z)加熱よりドリップ量が減少している。自然解凍との
大差はないが、自然解凍よりも早く解凍できる効果があ
る。The drip amount, shape loss and texture of the tuna cuts defrosted in Examples 16 to 20 and Comparative Example 8 were evaluated. Table 6 shows the results. It was found that there was a remarkable effect when thawing by irradiating an electromagnetic wave having a frequency of 40.68 MHz. 13.56 MHz, 27.12 MH
When microwaves are irradiated with electromagnetic waves having a frequency of z, 100 MHz, or 300 MHz and thawed, microwaves (2.45 GHz) can be used.
z) The amount of drip is reduced by heating. There is not much difference from natural thawing, but it has the effect of thawing faster than natural thawing.
【0110】[0110]
【表6】 [Table 6]
【0111】上記実施例1〜16では、被冷凍体として
マグロの切り身や里芋を用いたが、被冷凍体が大きけれ
ばさらに顕著な差が期待できる。また、被冷凍体は、豚
肉、野菜などの細胞組織体でも、生クリームやあんこな
どの生菓子などの糖類を用いたものでもよい。特にPE
Gやグリセリンなどの凍結保護物質は、精子、血液、臓
器などの医療用途の凍結保存に適している。In Examples 1 to 16, tuna fillets and taro were used as the frozen object, but a more remarkable difference can be expected if the frozen object is large. The body to be frozen may be a cell tissue body such as pork or vegetables, or a body using sugars such as fresh cream or fresh confectionery such as anko. Especially PE
Cryoprotective substances such as G and glycerin are suitable for cryopreservation of medical uses such as sperm, blood and organs.
【0112】また、照射する電磁波の適正な周波数は、
被冷凍体温度や被冷凍体に含まれる塩分、油など不純物
によって若干変動するので、被冷凍体に合わせて最適周
波数を選ぶことが望ましい。The appropriate frequency of the radiated electromagnetic wave is
Since the temperature fluctuates slightly depending on the temperature of the object to be frozen or impurities such as salt and oil contained in the object to be frozen, it is desirable to select an optimum frequency according to the object to be frozen.
【0113】[0113]
【発明の効果】この発明は、以上説明したように構成さ
れているので、以下に示すような効果を奏する。誘電体
からなる凍結保護物質を、被冷凍体の表面に被覆、ある
いは内部に添加し、前記被冷凍体に電磁波を照射して、
前記電磁波照射により前記被冷凍体に吸収されるエネル
ギーよりも大きなエネルギーで冷却して、前記被冷凍体
を凍結させるので、凍結濃縮が抑制されてドリップ量を
低下でき、高いレベルで味や栄養を保持できる。Since the present invention is configured as described above, it has the following effects. A cryoprotective substance consisting of a dielectric material is coated on the surface of the frozen object, or added to the inside, and the frozen object is irradiated with electromagnetic waves,
Since the object to be frozen is cooled by energy larger than the energy absorbed by the object to be frozen by the electromagnetic wave irradiation, and the object to be frozen is frozen, freeze concentration can be suppressed and the amount of drip can be reduced. Can hold.
【0114】また、電磁波を、凍結保護物質を含む水溶
液の固体の比誘電損率が、前記水溶液の比誘電損率を上
回る周波数を備えるものとしたので、前記凍結保護物質
を被冷凍体の表面に被覆あるいは内部に添加し、前記特
異な周波数帯の電磁波を照射すれば、氷結晶の微細化が
図れるだけでなく、凍結進行状態を均一化できるため、
凍結濃縮が抑制されてドリップ量を低下でき、さらに高
いレベルで味や栄養を保持できる。Further, since the electromagnetic wave is provided with a frequency at which the relative dielectric loss factor of the solid of the aqueous solution containing the cryoprotectant is higher than the relative dielectric loss factor of the aqueous solution, the cryoprotective material is applied to the surface of the frozen object. If coated or added to the inside, and irradiating the electromagnetic wave of the specific frequency band, not only can the ice crystal be miniaturized, but also the freezing progress can be uniform,
Freeze concentration can be suppressed, drip amount can be reduced, and taste and nutrition can be maintained at a higher level.
【0115】また、電磁波を、10MHzから300MHzの
範囲のいずれかの周波数を備えるものとしたので、マイ
クロ波のように氷成長を抑制する効果があるだけでな
く、被冷凍体の液相部分に偏って誘電加熱しないため、
被冷凍体の表面と内部、および被冷凍体全体にわたり凍
結進行状態を均一化でき、凍結濃縮を助長しないで冷凍
できる。Since the electromagnetic wave has a frequency in the range of 10 MHz to 300 MHz, the electromagnetic wave not only has an effect of suppressing ice growth like a microwave but also has an effect on the liquid phase portion of the object to be frozen. Because there is no biased dielectric heating,
The state of freezing progress can be made uniform over the surface and inside of the frozen object and over the entire frozen object, and freezing can be performed without promoting freeze concentration.
【0116】また、電磁波の照射手段をアンテナにした
ので、電磁波を広範囲に照射することができ、被冷凍体
が大物であったり、積み重ねられた状態でも、被冷凍体
を均一に加熱することができる。Further, since the electromagnetic wave irradiating means is an antenna, it is possible to irradiate the electromagnetic wave over a wide range, and even if the frozen objects are large or stacked, the frozen objects can be uniformly heated. it can.
【0117】また、電磁波の照射手段をTEMセルにし
たので、強電界の電磁波を外部に漏らさず、安全に誘電
加熱することができる。Further, since the means for irradiating the electromagnetic wave is a TEM cell, it is possible to safely perform dielectric heating without leaking the electromagnetic wave of a strong electric field to the outside.
【0118】また、凍結保護物質あるいは前記凍結保護
物質を含む水溶液を、被冷凍体の凍結保存温度における
比誘電損率が、前記被冷凍体の氷結点における比誘電損
率より高くなる周波数帯域を有するものとしたので、凍
結進行状態を均一化でき、凍結濃縮が抑制されてドリッ
プ量を低下できる。The cryoprotectant or an aqueous solution containing the cryoprotectant may be used in a frequency band in which the relative dielectric loss factor at the frozen storage temperature of the frozen object is higher than the relative dielectric loss factor at the freezing point of the frozen object. As a result, the progress of freezing can be made uniform, freezing and concentration can be suppressed, and the amount of drip can be reduced.
【0119】また、凍結保護物質を、糖類、糖たん白
質、糖脂質、多価アルコール類、多価アルコール類の重
合体、脂質のいずれかを含むものとしたので、容易に食
品等に添加、あるいは被覆できる。Further, since the cryoprotectant contains any one of saccharides, glycoproteins, glycolipids, polyhydric alcohols, polymers of polyhydric alcohols, and lipids, it can be easily added to foods and the like. Alternatively, it can be coated.
【0120】また、凍結保護物質を、グルコース、果
糖、ショ糖、トレハロース、マルトース、ラクトース、
フルクトオリゴ糖、糖たんぱく質、糖脂質、エチレング
リコール、グリセリン、グリセリドのいずれか、あるい
はこれらの重合体のいずれかを含むものとしたので、容
易に食品等に添加、あるいは被覆できる。[0120] Cryoprotective substances include glucose, fructose, sucrose, trehalose, maltose, lactose,
Since it contains any of fructooligosaccharides, glycoproteins, glycolipids, ethylene glycol, glycerin, and glycerides, or any of these polymers, it can be easily added to or coated on foods and the like.
【0121】また、被覆を、凍結保護物質を塗布、ある
いは介在させたシートで行うようにしたので、簡易に被
冷凍体表面を凍結保護物質で覆うことができる。Further, since the coating is performed with a sheet coated with or interposed with a cryoprotectant, the surface of the frozen object can be easily covered with the cryoprotectant.
【0122】また、電磁波の照射を、被冷凍体が氷結点
に達する以前から、最大氷結晶生成帯の下限を過ぎるま
で行うようにしたので、さらに高度に凍結濃縮を抑制で
きドリップ量を低下できる。In addition, since the irradiation of the electromagnetic wave is performed before the frozen object reaches the freezing point and until it passes the lower limit of the maximum ice crystal formation zone, the freeze concentration can be suppressed to a higher degree, and the drip amount can be reduced. .
【0123】また、凍結保護物質を含む水溶液の比誘電
損率と、前記水溶液の固体の比誘電損率とがほぼ一致す
る、あるいは前記固体の比誘電損率が前記水溶液の比誘
電損率を上回る周波数、あるいは10MHzから300MHz
の範囲のいずれかの周波数を用いて冷凍体を解凍するの
で、さらに高度に凍結濃縮を抑制できドリップ量を低下
して解凍できる。Further, the relative permittivity of the aqueous solution containing the cryoprotectant substantially matches the relative permittivity of the solid of the aqueous solution, or the relative permittivity of the solid is lower than the relative permittivity of the aqueous solution. Higher frequency, or 10MHz to 300MHz
Since the frozen body is thawed using any frequency in the range, the freeze concentration can be suppressed to a higher degree, and the thaw can be thawed with a reduced drip amount.
【0124】また、凍結保護物質を含む水溶液の比誘電
損率と、前記水溶液の固体の比誘電損率とがほぼ一致す
る、あるいは前記固体の比誘電損率が前記水溶液の比誘
電損率を上回る周波数、あるいは10MHzから300MHz
の範囲のいずれかの周波数の電磁波を発生する手段、も
しくはアンテナあるいはTEMセルなどの電磁波発生手
段と、前記電磁波を生鮮食品等の被冷凍体に照射して加
熱する手段と、前記加熱により前記被冷凍体に吸収され
るエネルギーよりも大きなエネルギーで冷却して被冷凍
体を凍結させる手段とを備えたので、氷の結晶成長を抑
制して冷凍することができ、ドリップ量の低減、型崩れ
を防止でき、被冷凍体の鮮度を維持することができる。Further, the relative permittivity of the aqueous solution containing the cryoprotectant substantially matches the relative permittivity of the solid of the aqueous solution, or the relative permittivity of the solid is lower than the relative permittivity of the aqueous solution. Higher frequency, or 10MHz to 300MHz
A means for generating an electromagnetic wave of any frequency in the range of, or an electromagnetic wave generating means such as an antenna or a TEM cell; a means for irradiating the object to be frozen such as fresh food with a heating means; Means for cooling the body to be frozen by cooling with energy larger than the energy absorbed by the frozen body, so that ice crystal growth can be suppressed and freezing can be performed, reducing the amount of drip and reducing shape loss. It is possible to maintain the freshness of the object to be frozen.
【0125】また、凍結保護物質を含む水溶液の比誘電
損率と、前記水溶液の固体の比誘電損率とがほぼ一致す
る、あるいは前記固体の比誘電損率が前記水溶液の比誘
電損率を上回る周波数、あるいは10MHzから300MHz
の範囲のいずれかの周波数の電磁波を発生する手段、も
しくはアンテナあるいはTEMセルなどの電磁波発生手
段と、前記電磁波を生鮮食品等の冷凍体に照射して加熱
する手段とを備えたので、ドリップ量を低下させ、型崩
れを防止して解凍できる。Further, the relative permittivity of the aqueous solution containing the cryoprotectant substantially matches the relative permittivity of the solid of the aqueous solution, or the relative permittivity of the solid is lower than the relative permittivity of the aqueous solution. Higher frequency, or 10MHz to 300MHz
Means for generating an electromagnetic wave of any frequency in the range of, or an electromagnetic wave generating means such as an antenna or a TEM cell, and a means for irradiating the electromagnetic wave to a frozen body such as fresh food and heating the same, so that the drip amount Lowers the shape and prevents thawing.
【図1】 この発明の実施の形態1による水と氷の比誘
電率および比誘電損率と周波数の関係を示す特性図であ
る。FIG. 1 is a characteristic diagram showing a relative dielectric constant of water and ice and a relationship between a relative dielectric loss factor and a frequency according to the first embodiment of the present invention.
【図2】 この発明の実施の形態2を説明する0.00
1N食塩水溶液の40.68MHzにおける比誘電損率
と温度との関係を示す特性図である。FIG. 2 illustrates a second embodiment of the present invention.
It is a characteristic view which shows the relationship between the relative dielectric loss factor in 40.68 MHz of 1N salt solution, and temperature.
【図3】 この発明の実施の形態2を説明する10%シ
ョ糖水溶液の40.68MHzにおける比誘電損率と温
度との関係を示す特性図である。FIG. 3 is a characteristic diagram illustrating the relationship between the relative dielectric loss factor and the temperature at 40.68 MHz of a 10% aqueous sucrose solution for explaining Embodiment 2 of the present invention.
【図4】 この発明の実施の形態2を説明する30%ポ
リエチレングリコール水溶液の40.68MHzにおけ
る比誘電損率と温度との関係を示す特性図である。FIG. 4 is a characteristic diagram illustrating the relationship between the relative dielectric loss factor and the temperature at 40.68 MHz of a 30% aqueous polyethylene glycol solution for explaining Embodiment 2 of the present invention.
【図5】 この発明の実施の形態2を説明するエコナオ
イルの13.56MHzにおける比誘電損率と温度との
関係を示す特性図である。FIG. 5 is a characteristic diagram illustrating the relationship between the relative dielectric loss factor and the temperature at 13.56 MHz of econa oil for explaining Embodiment 2 of the present invention.
【図6】 この発明の実施の形態2を説明する濃度の異
なるショ糖水溶液の液体と固体の比誘電損率(εr")と
周波数との関係を示す特性図である。FIG. 6 is a characteristic diagram illustrating a relationship between a specific dielectric loss factor (ε r ) of a liquid and a solid of a sucrose aqueous solution having different concentrations and a frequency, which explains Embodiment 2 of the present invention.
【図7】 この発明の実施の形態2を説明するショ糖水
溶液で液体(凝固点)のεr"に対する固体のεr"の比と
周波数との関係を示す特性図である。7 is a characteristic diagram showing the relationship between the ratio and the frequency of the "epsilon r of the solid for" epsilon r of the liquid (freezing point) sucrose solution for explaining the second embodiment of the present invention.
【図8】 この発明の実施の形態2を説明する5%トレ
ハロース水溶液で液体(凝固点)のεr"に対する固体の
εr"の比と周波数との関係を示す特性図である。8 is a characteristic diagram showing the relationship between the ratio and the frequency of the "epsilon r of the solid for" epsilon r of the liquid (freezing point) with a 5% aqueous trehalose solution for explaining the second embodiment of the present invention.
【図9】 この発明の実施の形態2を説明する10%グ
ルコース水溶液で液体(凝固点)のεr"に対する固体の
εr"の比と周波数との関係を示す特性図である。9 is a characteristic diagram showing the relationship between the ratio and the frequency of the "epsilon r of the solid for" epsilon r of the liquid (freezing point) with a 10% glucose solution for explaining the second embodiment of the present invention.
【図10】 この発明の実施の形態2を説明する30%
PEG600水溶液で液体(凝固点)のεr"に対する固
体のεr"の比と周波数との関係を示す特性図である。FIG. 10 is a view illustrating 30% of Embodiment 2 of the present invention;
In PEG600 solution is a characteristic diagram showing the relationship between the ratio and the frequency of the liquid "solid epsilon r for" epsilon r of (freezing point).
【図11】 この発明の実施の形態3による生鮮食品等
の冷凍方法を温度と時間との関係で表した説明図であ
る。FIG. 11 is an explanatory diagram showing a method of freezing fresh food and the like according to Embodiment 3 of the present invention in relation to temperature and time.
【図12】 この発明の実施の形態4による生鮮食品等
の冷凍方法を温度と時間との関係で表した説明図であ
る。FIG. 12 is an explanatory diagram showing a method of freezing fresh food and the like according to a fourth embodiment of the present invention in terms of a relationship between temperature and time.
【図13】 この発明の実施の形態5による生鮮食品等
の冷凍方法を示す図である。FIG. 13 is a diagram showing a method for freezing fresh food and the like according to Embodiment 5 of the present invention.
【図14】 この発明の実施の形態7による生鮮食品等
の冷凍装置を示す構成図である。FIG. 14 is a configuration diagram showing an apparatus for freezing fresh food or the like according to Embodiment 7 of the present invention.
【図15】 この発明の実施の形態8による生鮮食品等
の冷凍装置を示す構成図である。FIG. 15 is a configuration diagram showing an apparatus for freezing fresh food or the like according to Embodiment 8 of the present invention.
【図16】 この発明の実施の形態9による生鮮食品等
の冷凍装置を示す構成図である。FIG. 16 is a configuration diagram showing an apparatus for freezing fresh food or the like according to Embodiment 9 of the present invention.
【図17】 この発明の実施例1による冷凍曲線および
氷結率と時間との関係図である。FIG. 17 is a graph showing the relationship between the freezing curve and the freezing rate and time according to the first embodiment of the present invention.
【図18】 この発明の比較例1による冷凍曲線および
氷結率と時間との関係図である。FIG. 18 is a graph showing the relationship between the freezing curve and the freezing rate and time according to Comparative Example 1 of the present invention.
1 高周波誘電加熱機、2 高周波発生電源、3 イン
ダクタンス、4 キャパシタンス、5 印加電極、6
整合器、7 被冷凍体、8 冷凍機、9 冷却用熱交換
器、10 圧縮機、11 電磁波遮断シールド、12
断熱シールド、13 冷凍庫内部、15 凍結保護物
質、16 シート、21 樹脂フィルムシート、22
多孔性フィルムシート、31 高周波発振器、32 高
周波用アンプ、33 アンテナ、34 電磁波、36
TEMセル、37 絶縁台、38外部方形導体、39
中心導体板、40 同軸コネクタ、41 同軸終端負荷1 high frequency induction heater, 2 high frequency generation power supply, 3 inductance, 4 capacitance, 5 applied electrode, 6
Matching device, 7 body to be frozen, 8 refrigerator, 9 heat exchanger for cooling, 10 compressor, 11 electromagnetic wave shielding shield, 12
Insulation shield, 13 Inside of freezer, 15 Freezing protection substance, 16 sheets, 21 Resin film sheet, 22
Porous film sheet, 31 high frequency oscillator, 32 high frequency amplifier, 33 antenna, 34 electromagnetic wave, 36
TEM cell, 37 insulation base, 38 outer rectangular conductor, 39
Center conductor plate, 40 coaxial connector, 41 coaxial termination load
───────────────────────────────────────────────────── フロントページの続き (72)発明者 光田 憲朗 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 梶山 浩二 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 3L045 AA00 BA03 BA05 CA03 DA02 EA01 KA09 PA01 PA04 PA06 4B022 LA06 LB01 LJ02 LJ04 LN10 LQ07 LT02 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Norio Mitsuda 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Inside Mitsubishi Electric Corporation (72) Inventor Koji Kajiyama 2-3-2 Marunouchi, Chiyoda-ku, Tokyo F term (reference) in Mitsubishi Electric Corporation 3L045 AA00 BA03 BA05 CA03 DA02 EA01 KA09 PA01 PA04 PA06 4B022 LA06 LB01 LJ02 LJ04 LN10 LQ07 LT02
Claims (13)
体の表面に被覆、あるいは内部に添加し、前記被冷凍体
に電磁波を照射して、前記電磁波照射により前記被冷凍
体に吸収されるエネルギーよりも大きなエネルギーで冷
却して、前記被冷凍体を凍結させることを特徴とする冷
凍方法。1. A cryoprotectant made of a dielectric material is coated on or added to the surface of an object to be frozen, and the object to be frozen is irradiated with electromagnetic waves. A refrigeration method comprising cooling the object to be frozen by cooling with an energy greater than the energy to be frozen.
固体の比誘電損率が、前記水溶液の比誘電損率を上回る
周波数を備えることを特徴とする請求項1に記載の冷凍
方法。2. The refrigeration method according to claim 1, wherein the electromagnetic wave has a frequency at which the relative dielectric loss factor of the solid of the aqueous solution containing the cryoprotectant exceeds the relative dielectric loss factor of the aqueous solution.
のいずれかの周波数を備えることを特徴とする請求項1
に記載の冷凍方法。3. The electromagnetic wave according to claim 1, wherein the electromagnetic wave has a frequency in a range of 10 MHz to 300 MHz.
The refrigeration method according to 1.
とを特徴とする請求項1に記載の冷凍方法。4. The refrigeration method according to claim 1, wherein the electromagnetic wave irradiation means is an antenna.
ことを特徴とする請求項1に記載の冷凍方法。5. The refrigeration method according to claim 1, wherein the electromagnetic wave irradiation means is a TEM cell.
を含む水溶液は、被冷凍体の凍結保存温度における比誘
電損率が、前記被冷凍体の氷結点における比誘電損率よ
り高くなる周波数帯域を有することを特徴とする請求項
1に記載の冷凍方法。6. The cryoprotectant or the aqueous solution containing the cryoprotectant may be used in a frequency band in which the relative dielectric loss factor at the frozen storage temperature of the frozen object is higher than the relative dielectric loss factor at the freezing point of the frozen object. The refrigeration method according to claim 1, comprising:
たん白質、糖脂質、多価アルコール類、多価アルコール
類の重合体、脂質のいずれかを含むことを特徴とする請
求項1に記載の冷凍方法。7. The cryoprotectant according to claim 1, wherein the cryoprotectant contains at least one of saccharides, glycoproteins, glycolipids, polyhydric alcohols, polymers of polyhydric alcohols, and lipids. Freezing method.
ス、果糖、ショ糖、トレハロース、マルトース、ラクト
ース、フルクトオリゴ糖、糖たんぱく質、糖脂質、エチ
レングリコール、グリセリン、グリセリドのいずれか、
あるいはこれらの重合体のいずれかを含むことを特徴と
する請求項7に記載の冷凍方法。8. The cryoprotectant is at least one of glucose, fructose, sucrose, trehalose, maltose, lactose, fructooligosaccharide, glycoprotein, glycolipid, ethylene glycol, glycerin, and glyceride;
Alternatively, the refrigeration method according to claim 7, comprising any one of these polymers.
介在させたシートで行うことを特徴とする請求項1に記
載の冷凍方法。9. The refrigeration method according to claim 1, wherein the coating is performed with a sheet on which a cryoprotectant is applied or interposed.
達する以前から、最大氷結晶生成帯の下限を過ぎるまで
行うことを特徴とする請求項1に記載の冷凍方法。10. The refrigeration method according to claim 1, wherein the irradiation of the electromagnetic wave is performed before the object to be frozen reaches the freezing point and until the lower limit of the maximum ice crystal formation zone is exceeded.
電磁波を用いて冷凍体を解凍することを特徴とする解凍
方法。11. A thawing method characterized by thawing a frozen body using the electromagnetic wave of the frequency according to claim 2 or 3.
電磁波を発生する手段もしくは請求項4あるいは5に記
載の電磁波発生手段と、前記電磁波を被冷凍体に照射し
て加熱する手段と、前記加熱により前記被冷凍体に吸収
されるエネルギーよりも大きなエネルギーで冷却して被
冷凍体を凍結させる手段とを備えたことを特徴とする冷
凍装置。12. A means for generating an electromagnetic wave having a frequency according to claim 2 or 3, or an electromagnetic wave generating means according to claim 4 or 5, a means for irradiating the object to be frozen with said electromagnetic wave and heating said object. Means for cooling the object to be cooled by cooling with energy larger than the energy absorbed by the object to be frozen by heating.
電磁波を発生する手段、もしくは請求項4あるいは5に
記載の電磁波発生手段と、前記電磁波を冷凍体に照射し
て加熱する手段とを備えたことを特徴とする解凍装置。13. A means for generating an electromagnetic wave having the frequency according to claim 2 or 3, or a means for generating an electromagnetic wave according to claim 4 or 5, and a means for irradiating the refrigerator with the electromagnetic wave and heating it. A thawing device characterized by the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001085563A JP2002272436A (en) | 2001-03-23 | 2001-03-23 | Freezing method and thawing method, and refrigeration apparatus and thawing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001085563A JP2002272436A (en) | 2001-03-23 | 2001-03-23 | Freezing method and thawing method, and refrigeration apparatus and thawing apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002272436A true JP2002272436A (en) | 2002-09-24 |
Family
ID=18941055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001085563A Pending JP2002272436A (en) | 2001-03-23 | 2001-03-23 | Freezing method and thawing method, and refrigeration apparatus and thawing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002272436A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008139850A1 (en) * | 2007-05-08 | 2008-11-20 | Calbee Foods Co., Ltd. | Method of freezing material piece, method of transporting or storing material piece, method of processing material piece and frozen material piece |
JP2011222279A (en) * | 2010-04-08 | 2011-11-04 | Toyo Eng Works Ltd | Microwave heating device and microwave heating method |
JP2011232299A (en) * | 2010-04-30 | 2011-11-17 | Katsuyoshi Tabuse | Frozen thin-section manufacturing apparatus |
JP2011244696A (en) * | 2010-05-21 | 2011-12-08 | Yoneda Koki Kk | Quick freezing apparatus |
JP2011252635A (en) * | 2010-06-01 | 2011-12-15 | Panasonic Corp | Preservation device, and method of preserving of the same |
JP4906979B1 (en) * | 2011-09-20 | 2012-03-28 | オリエンタル酵母工業株式会社 | Method for producing frozen fresh cream for whipping |
CN102472549A (en) * | 2009-07-10 | 2012-05-23 | 松下电器产业株式会社 | Storage apparatus, and storage method |
JP2013255453A (en) * | 2012-06-12 | 2013-12-26 | Tablemark Co Ltd | Method for checking freezer burn of frozen food |
WO2015016171A1 (en) * | 2013-07-29 | 2015-02-05 | Sato Minoru | Method for thawing frozen food |
EP3614078A4 (en) * | 2017-04-21 | 2021-01-06 | Daikin Industries, Ltd. | COOLING DEVICE |
EP3614079A4 (en) * | 2017-04-21 | 2021-01-06 | Daikin Industries, Ltd. | COOLING DEVICE |
JP2021508364A (en) * | 2017-11-16 | 2021-03-04 | アールエルエムビー グループ リミテッド ライアビリティ カンパニー | Systems and methods for supercooling products |
EP3891452A4 (en) * | 2018-12-06 | 2022-08-24 | LG Electronics Inc. | Refrigerator |
JP2022189869A (en) * | 2018-10-23 | 2022-12-22 | パナソニックIpマネジメント株式会社 | refrigerator |
WO2023190337A1 (en) * | 2022-03-31 | 2023-10-05 | 原田 英信 | Method for thawing biologically-derived frozen material by very high frequency electromagnetic wave irradiation, cryoprecipitate producing method, and thawing device |
-
2001
- 2001-03-23 JP JP2001085563A patent/JP2002272436A/en active Pending
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2008139850A1 (en) * | 2007-05-08 | 2010-07-29 | カルビー株式会社 | Material piece freezing method, material piece transportation or storage method, material piece processing method, and frozen material piece |
WO2008139850A1 (en) * | 2007-05-08 | 2008-11-20 | Calbee Foods Co., Ltd. | Method of freezing material piece, method of transporting or storing material piece, method of processing material piece and frozen material piece |
KR101136699B1 (en) | 2007-05-08 | 2012-04-19 | 칼비 후드즈 컴퍼니 리미티드 | How to Make Fryer Products |
CN102472549A (en) * | 2009-07-10 | 2012-05-23 | 松下电器产业株式会社 | Storage apparatus, and storage method |
JP2011222279A (en) * | 2010-04-08 | 2011-11-04 | Toyo Eng Works Ltd | Microwave heating device and microwave heating method |
JP2011232299A (en) * | 2010-04-30 | 2011-11-17 | Katsuyoshi Tabuse | Frozen thin-section manufacturing apparatus |
JP2011244696A (en) * | 2010-05-21 | 2011-12-08 | Yoneda Koki Kk | Quick freezing apparatus |
JP2011252635A (en) * | 2010-06-01 | 2011-12-15 | Panasonic Corp | Preservation device, and method of preserving of the same |
JP4906979B1 (en) * | 2011-09-20 | 2012-03-28 | オリエンタル酵母工業株式会社 | Method for producing frozen fresh cream for whipping |
WO2013042186A1 (en) * | 2011-09-20 | 2013-03-28 | オリエンタル酵母工業株式会社 | Frozen whipping cream, method for producing same, whipped cream and method for producing same |
KR101400748B1 (en) | 2011-09-20 | 2014-05-29 | 오리엔탈고우보고오교가부시끼가이샤 | Frozen fresh cream to be whipped, method for producing the frozen fresh cream, whipped cream, and method for producing the whipped cream |
US9339046B2 (en) | 2011-09-20 | 2016-05-17 | Oriental Yeast Co., Ltd. | Frozen fresh cream to be whipped, method for producing the frozen fresh cream, whipped cream, and method for producing the whipped cream |
JP2013255453A (en) * | 2012-06-12 | 2013-12-26 | Tablemark Co Ltd | Method for checking freezer burn of frozen food |
WO2015016171A1 (en) * | 2013-07-29 | 2015-02-05 | Sato Minoru | Method for thawing frozen food |
JPWO2015016171A1 (en) * | 2013-07-29 | 2017-03-02 | 国立大学法人東北大学 | Method for thawing frozen food |
EP3614078A4 (en) * | 2017-04-21 | 2021-01-06 | Daikin Industries, Ltd. | COOLING DEVICE |
EP3614079A4 (en) * | 2017-04-21 | 2021-01-06 | Daikin Industries, Ltd. | COOLING DEVICE |
JP2021508364A (en) * | 2017-11-16 | 2021-03-04 | アールエルエムビー グループ リミテッド ライアビリティ カンパニー | Systems and methods for supercooling products |
JP2022189869A (en) * | 2018-10-23 | 2022-12-22 | パナソニックIpマネジメント株式会社 | refrigerator |
JP7478990B2 (en) | 2018-10-23 | 2024-05-08 | パナソニックIpマネジメント株式会社 | refrigerator |
JP7634213B2 (en) | 2018-10-23 | 2025-02-21 | パナソニックIpマネジメント株式会社 | refrigerator |
EP3891452A4 (en) * | 2018-12-06 | 2022-08-24 | LG Electronics Inc. | Refrigerator |
US11885538B2 (en) | 2018-12-06 | 2024-01-30 | Lg Electronics Inc. | Refrigerator |
WO2023190337A1 (en) * | 2022-03-31 | 2023-10-05 | 原田 英信 | Method for thawing biologically-derived frozen material by very high frequency electromagnetic wave irradiation, cryoprecipitate producing method, and thawing device |
JP7560704B2 (en) | 2022-03-31 | 2024-10-03 | 株式会社スマートハンドレッド | Method for thawing frozen plasma to produce cryoprecipitate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002272436A (en) | Freezing method and thawing method, and refrigeration apparatus and thawing apparatus | |
JP5281691B2 (en) | Storage device and storage method | |
CN110671876B (en) | Supercooling freezing method, refrigerator and refrigerator control method | |
EP1997349B1 (en) | Electromagnetic heating | |
US8653482B2 (en) | RF controlled freezing | |
EP1447632B1 (en) | Highly-efficient freezing apparatus and highly-efficient freezing method | |
JP4988617B2 (en) | Brine composition for frozen food and method for producing frozen food | |
JP4640990B2 (en) | freezer | |
JP3570330B2 (en) | Refrigeration method and apparatus | |
JP5304729B2 (en) | Storage device and storage method thereof | |
JP5805375B2 (en) | Quick freezing equipment | |
JP2001292753A (en) | Food freezing method and freezing device | |
CN210832688U (en) | Supercooling freezing refrigerator | |
CN115428823B (en) | A step-by-step adjustment magnetic field-assisted quick-freezing and fresh-keeping method and device | |
JP3870230B2 (en) | Manufacturing method and manufacturing apparatus for hydrous frozen product | |
JP4813697B2 (en) | Electric field thawing device and its thawing method | |
CN1224321C (en) | Freezing method and device for food | |
KR102194868B1 (en) | Rf thawing apparatus and thawing method thereof | |
JP4209157B2 (en) | Production method and apparatus for edible rice | |
CN113503667A (en) | Liquid quick-freezing equipment | |
JP7378555B1 (en) | Frozen food thawing device and frozen food thawing method | |
JPH10309162A (en) | Storage of perishable food | |
KR20170046889A (en) | A method for quick freezing with electromagnetic heating and device | |
JPS6360989B2 (en) | ||
JP2896857B2 (en) | Temperature compensator spacer for thawing plate combination |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20040708 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070501 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080520 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081007 |