JP2002267820A - Graded index mirror and method for manufacturing the same - Google Patents
Graded index mirror and method for manufacturing the sameInfo
- Publication number
- JP2002267820A JP2002267820A JP2001071322A JP2001071322A JP2002267820A JP 2002267820 A JP2002267820 A JP 2002267820A JP 2001071322 A JP2001071322 A JP 2001071322A JP 2001071322 A JP2001071322 A JP 2001071322A JP 2002267820 A JP2002267820 A JP 2002267820A
- Authority
- JP
- Japan
- Prior art keywords
- refractive index
- index distribution
- glass
- mirror
- glass substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 24
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000011521 glass Substances 0.000 claims abstract description 56
- 238000009826 distribution Methods 0.000 claims abstract description 50
- 239000000758 substrate Substances 0.000 claims abstract description 31
- 239000000499 gel Substances 0.000 claims description 16
- 239000011148 porous material Substances 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 238000005191 phase separation Methods 0.000 claims description 8
- 239000005373 porous glass Substances 0.000 claims description 8
- 150000004703 alkoxides Chemical class 0.000 claims description 6
- 238000003980 solgel method Methods 0.000 claims description 6
- 239000011240 wet gel Substances 0.000 claims description 6
- 238000010304 firing Methods 0.000 claims description 5
- 238000005245 sintering Methods 0.000 claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 238000005498 polishing Methods 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 3
- 230000003301 hydrolyzing effect Effects 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 238000005470 impregnation Methods 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 6
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 6
- 230000001678 irradiating effect Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical group [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- -1 silica alkoxide Chemical class 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000006004 Quartz sand Substances 0.000 description 1
- 229910002808 Si–O–Si Inorganic materials 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 150000004075 acetic anhydrides Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/06—Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/90—Other aspects of coatings
- C03C2217/91—Coatings containing at least one layer having a composition gradient through its thickness
Landscapes
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
- Surface Treatment Of Glass (AREA)
- Glass Compositions (AREA)
- Optical Elements Other Than Lenses (AREA)
- Glass Melting And Manufacturing (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光学回路等に用い
ることが可能な屈折率分布鏡およびその製造方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refractive index distribution mirror that can be used for an optical circuit and the like, and a method for manufacturing the same.
【0002】[0002]
【従来の技術】現在、光学の様々な分野で鏡は非常に重
要な部品として広く使用されている。例えば、光学系回
路の組み立てにおいては、レーザー光を鏡に反射させて
目的の部位に光を照射することが行われている。また、
光線を絞って光強度を増幅するための回路は、例えば、
凸レンズ、凹レンズを組み合わせて、鏡で目的の部位を
照射するなどの手段がとられている。このような光学回
路を集積化するにあたっては、使用する部品が少ない方
が好ましく、例えば、特開2000−225483号公
報では、凹レンズで集光した光を凸面鏡に反射させ平行
光線とし、目的の部位に照射する方法が提案されてい
る。2. Description of the Related Art At present, mirrors are widely used as very important components in various fields of optics. For example, in assembling an optical system circuit, a laser beam is reflected on a mirror to irradiate a target portion with light. Also,
A circuit for amplifying light intensity by focusing light rays, for example,
Means such as combining a convex lens and a concave lens and irradiating a target portion with a mirror are employed. When such an optical circuit is integrated, it is preferable that a small number of components be used. For example, in Japanese Patent Application Laid-Open No. 2000-225483, light condensed by a concave lens is reflected by a convex mirror to be converted into a parallel light, and a target portion is formed. There has been proposed a method of irradiating the light.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、前記の
レーザー光を鏡に反射させて目的の部位に光を照射する
光学回路の場合には、位置精度は非常に高いことが要求
されており、外部からの振動等で鏡がずれると目的の部
位に光を照射することができなくなる等の問題がある。
また、凹レンズで集光した光を凸面鏡に反射させること
で平行光線にする方法の場合には、該凸面鏡の材質とし
てレーザー光などの強度の強い光に耐性のあるガラス系
材料が好ましいが、精度を高く凸面鏡に加工することが
著しく難しいとともにコストが非常にかかるなどの問題
がある。However, in the case of an optical circuit for irradiating a target portion with light by reflecting the laser light to a mirror, the position accuracy is required to be very high, and the If the mirror is displaced due to vibrations from the outside or the like, there is a problem that it becomes impossible to irradiate light to a target portion.
In the case of a method in which light condensed by a concave lens is converted into a parallel ray by reflecting the light on a convex mirror, a glass-based material that is resistant to high-intensity light such as laser light is preferable as the material of the convex mirror. Are extremely difficult to process into a convex mirror, and the cost is very high.
【0004】[0004]
【課題を解決するための手段】本発明は、前記の問題点
に鑑みてなされたものであり、平面形状でもって光を集
光すること等が可能な屈折率分布鏡およびその製造方法
を提供するものである。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides a refractive index distribution mirror capable of condensing light in a planar shape and a method of manufacturing the same. Is what you do.
【0005】すなわち、本発明の屈折率分布鏡は、ガラ
ス基板の裏面に反射層を設けた鏡において、該反射層と
並行する層が屈折率分布を有していることを特徴とす
る。That is, the refractive index distribution mirror of the present invention is characterized in that, in a mirror provided with a reflection layer on the back surface of a glass substrate, a layer parallel to the reflection layer has a refractive index distribution.
【0006】また、本発明の屈折率分布鏡は、屈折率分
布が、基板の中央部から側縁部にかけて屈折率が漸次大
きくなることを特徴とし、さらに該屈折率分布は、屈折
率調整成分の濃度分布により形成されてなることを特徴
とする。The refractive index distribution mirror according to the present invention is characterized in that the refractive index distribution gradually increases from the center to the side edges of the substrate, and the refractive index distribution further includes a refractive index adjusting component. Characterized by the following:
【0007】また、本発明の屈折率分布鏡は、ガラス基
板は、SiO2系、B2O3系、P2O 5系、TeO2系ガラ
スのうち少なくとも1種のガラス組成よりなることを特
徴とする。[0007] The refractive index distribution mirror of the present invention is a glass based mirror.
The plate is made of SiOTwoSystem, BTwoOThreeSystem, PTwoO FiveSystem, TeOTwoSystem gala
At least one of the glass compositions
Sign.
【0008】さらに、本発明の屈折率分布鏡の製造方法
は、下記の工程により製造することを特徴とする。 (1)連通細孔を有するガラス多孔質体を作製する工
程、(2)該多孔質体の側縁部より屈折率調整成分を含
浸させる工程、(3)焼成し焼結させガラス体を製造す
る工程、(4)ガラス体をスライス切断したのち研磨し
てガラス基板を成形する工程(5)ガラス基板の裏面に
反射層を形成する工程。Further, a method of manufacturing a refractive index distribution mirror according to the present invention is characterized in that the mirror is manufactured by the following steps. (1) a step of producing a porous glass body having communicating pores, (2) a step of impregnating a refractive index adjusting component from a side edge of the porous body, and (3) firing and sintering to produce a glass body (4) a step of forming a glass substrate by slicing and then polishing the glass body, and (5) a step of forming a reflective layer on the back surface of the glass substrate.
【0009】また、本発明の屈折率分布鏡の製造方法
は、ガラス多孔質体はゾルゲル法により作製することを
特徴とし、さらに、下記の工程により製造することを特
徴とする。 (1)金属アルコキシドを加水分解し湿潤ゲルを得る工
程、(2)該湿潤ゲルを乾燥処理することにより多孔質
ゲルを得る工程、さらに、本発明の屈折率分布鏡の製造
方法は、ガラス多孔質体は、分相法により作製すること
を特徴とするFurther, a method of manufacturing a refractive index distribution mirror according to the present invention is characterized in that the porous glass body is manufactured by a sol-gel method, and further manufactured by the following steps. (1) a step of obtaining a wet gel by hydrolyzing a metal alkoxide; (2) a step of obtaining a porous gel by subjecting the wet gel to a drying treatment; The solid body is produced by a phase separation method.
【0010】[0010]
【発明の実施の形態】本発明の屈折率分布鏡は、ガラス
基板の裏面に反射層を設けた鏡において、該反射層と並
行する層が屈折率分布を有することを特徴とするもので
ある。この屈折率分布は、ガラス基板の中央部から側縁
部にかけて屈折率を漸次大きくでき、それらは目的に応
じて自由に選択し得る。例えば、ガラス基板の中央部か
ら側縁部にかけて屈折率が漸次大きくなっている場合に
ついて図で説明する。BEST MODE FOR CARRYING OUT THE INVENTION The refractive index distribution mirror of the present invention is a mirror having a reflection layer provided on the back surface of a glass substrate, wherein a layer parallel to the reflection layer has a refractive index distribution. . This refractive index distribution can gradually increase the refractive index from the center to the side edge of the glass substrate, and they can be freely selected according to the purpose. For example, a case where the refractive index gradually increases from the center to the side edge of the glass substrate will be described with reference to the drawings.
【0011】図1は、本発明の屈折率分布鏡1の縦断面
図を示し、図2は本発明の屈折率分布鏡1の反射層2に
並行な任意の面(A−A’)で切断した面3における屈
折率分布(屈折率差)を示す。図1および図2におい
て、屈折率分布鏡1は、ガラス基板4の裏面にAgなど
の金属層よりなる反射層2が被覆されている。屈折率分
布鏡1の反射層2に並行な面で切断した面3の屈折率分
布は、ガラス基材4の中心部5から側縁部6、7にかけ
て漸次直線上に屈折率8が大きくなっている。FIG. 1 is a longitudinal sectional view of the refractive index distribution mirror 1 of the present invention, and FIG. 2 is an arbitrary plane (AA ′) parallel to the reflection layer 2 of the refractive index distribution mirror 1 of the present invention. The refractive index distribution (refractive index difference) on the cut surface 3 is shown. 1 and 2, the refractive index distribution mirror 1 has a glass substrate 4 having a back surface coated with a reflective layer 2 made of a metal layer such as Ag. The refractive index distribution of the surface 3 of the refractive index distribution mirror 1 cut in a plane parallel to the reflection layer 2 is such that the refractive index 8 gradually increases on a straight line from the center 5 of the glass substrate 4 to the side edges 6 and 7. ing.
【0012】次に、これらの屈折率分布鏡1に入射した
光の作用を説明する。図3は出射光を集光させる場合の
一例であり、平行で入射させた入射光10は、ガラス基
板4に入射し屈折したのち反射層2で反射しガラス基板
2内を透過して外部へ出射光11として出てゆく。この
時、該出射光11は集光12する。また、図4は出射光
が平行光線として出ていく場合の一例であり、非平行で
入射した入射光13は、ガラス基板4に入射し屈折した
のち、反射層2で反射しガラス基板2内を透過して外部
へ出射光14は平行光15として出ていく。すなわち、
入射位置の屈折率が出射位置の屈折率より大きければ、
出射光は収束その反対であれば、発散する関係となる。Next, the function of light incident on the refractive index distribution mirror 1 will be described. FIG. 3 shows an example in which the emitted light is condensed. The incident light 10 incident in parallel enters the glass substrate 4 and is refracted, then reflected by the reflection layer 2 and transmitted through the glass substrate 2 to the outside. It emerges as outgoing light 11. At this time, the emitted light 11 is condensed 12. FIG. 4 shows an example in which the outgoing light exits as a parallel light beam. The incident light 13 incident non-parallel enters the glass substrate 4 and is refracted. And the outgoing light 14 goes outside as parallel light 15. That is,
If the refractive index at the entrance position is larger than the refractive index at the exit position,
If the emitted light converges in the opposite direction, it becomes divergent.
【0013】前記で説明したように、ガラス基材4の中
心部5から側縁部6、7にかけて漸次直線上に屈折率8
が大きくなっている場合には、入射光の入射方向を適宜
選択することにより、出射光を集光させたり或いは発散
させたり目的に応じて適宜選択し得る。すなわち、入射
光がガラス基板4内へ入射する入射位置の屈折率が反射
層2で反射したのちガラス基板2より出射する位置の屈
折率より大きければ、出射光は収束し、また、その反対
に、入射光がガラス基板4内へ入射する入射位置の屈折
率が反射層2で反射したのちガラス基板2より出射する
位置の屈折率より小さければ、ガラス基板より出射する
出射光は発散し、目的に応じてこれらは適宜選択し得
る。なお、本発明で用いられる基材としてのガラスは、
耐薬品性が高く、耐熱性に優れ、長期使用上安定である
ので種々の分野で広く使用することが可能である。As described above, the refractive index of the glass substrate 4 is gradually increased from the center 5 to the side edges 6 and 7 on a straight line.
Is larger, the direction of incidence of the incident light can be appropriately selected, so that the emitted light can be condensed or diverged, or can be appropriately selected according to the purpose. That is, if the refractive index at the incident position where the incident light enters the glass substrate 4 is greater than the refractive index at the position where the incident light exits the glass substrate 2 after being reflected by the reflective layer 2, the emitted light converges, and vice versa. If the refractive index at the incident position where the incident light enters the glass substrate 4 is smaller than the refractive index at the position where the incident light exits the glass substrate 2 after being reflected by the reflective layer 2, the emitted light exiting the glass substrate diverges, These can be appropriately selected depending on the conditions. In addition, glass as a substrate used in the present invention,
Since it has high chemical resistance, excellent heat resistance, and is stable for long-term use, it can be widely used in various fields.
【0014】次に、本発明の屈折率分布鏡の製造方法に
ついて説明する。本発明の屈折率分布鏡は、下記の工程
により製造することができる。 (1)連通細孔を有するガラス多孔質体を作製する工
程、(2)該多孔質体の側縁部より屈折率調整成分を含
浸させる工程、(3)焼成し焼結させガラス体を製造す
る工程、(4)ガラス体をスライス切断したのち研磨し
てガラス基板を成形する工程(5)ガラス基板の裏面に
反射層を形成する工程。Next, a method of manufacturing the refractive index distribution mirror of the present invention will be described. The refractive index distribution mirror of the present invention can be manufactured by the following steps. (1) a step of producing a porous glass body having communicating pores, (2) a step of impregnating a refractive index adjusting component from a side edge of the porous body, and (3) firing and sintering to produce a glass body (4) a step of forming a glass substrate by slicing and then polishing the glass body, and (5) a step of forming a reflective layer on the back surface of the glass substrate.
【0015】連通細孔を有する多孔質体は、例えば、ゾ
ルゲル法、分相法、気相法等で得ることが出来る。The porous body having communicating pores can be obtained by, for example, a sol-gel method, a phase separation method, a gas phase method, or the like.
【0016】ゾルゲル法を利用したガラス多孔質体は次
のような方法で作製することが出来る。 (1)金属アルコキシドを加水分解し湿潤ゲルを得る工
程、(2)該湿潤ゲルを乾燥処理することにより多孔質
ゲルを得る工程、ガラスの原料としての金属アルコキシ
ドとしては、シリカアルコキシドとして、例えば、テト
ラメトキシシラン、テトラエトキシシラン、モノメチル
トリエトキシシラン、モノメチルトリメトキシシラン、
ジメチルジエトキシシラン、その他のテトラアルコキシ
シラン化合物、その他のアルキルアルコキシシラン化合
物などを用いることができ、シリカ以外の成分について
も前記と同様な金属アルコキシド化合物を用いることが
できる。The glass porous body using the sol-gel method can be produced by the following method. (1) a step of obtaining a wet gel by hydrolyzing a metal alkoxide, (2) a step of obtaining a porous gel by drying the wet gel, and a metal alkoxide as a raw material of glass, for example, a silica alkoxide, Tetramethoxysilane, tetraethoxysilane, monomethyltriethoxysilane, monomethyltrimethoxysilane,
Dimethyldiethoxysilane, other tetraalkoxysilane compounds, other alkylalkoxysilane compounds, and the like can be used, and the same metal alkoxide compounds as described above can be used for components other than silica.
【0017】例えば、テトラメトキシシランを例にとる
と、まず、金属アルコキシドであるテトラメトキシシラ
ン、水、アルコールを所定の割合で混合し、該混合液を
一定形状(円筒状等)の容器に鋳込む。時間経過ととも
にテトラメトキシシランは水と反応して(OH)Si
(OCH3)3を生じ、その反応で生じたシラノール基
は、原料のテトラメトキシシランと縮合し(OCH3)3
Si−O−Si(OCH3)3の2量体が生成する。さら
に、2量体から3量体へと次々に高分子反応が起こり、
混合後、一定時間経過するとシリカ粒子が成長し、混合
液の粘度が急激に高くなり、ゲル化する。このようにし
て得られたゲルは、シリカガラスの超微粒子集合体から
なる多孔質ゲルであり、加水分解反応で生じたアルコー
ルや余分の水が多量に含浸された状態にある。次に、得
られた多孔質ゲルを約150℃以下の温度で乾燥する。
多孔質ゲルは乾燥するに伴って鋳型と相似形を保ちつつ
収縮し、約数日から1週間程度で乾燥ゲルとなる。乾燥
ゲルも前記の多孔質ゲルと同様にシリカ微粒子集合体か
らなる多孔質体である。次に、該乾燥ゲルを高温度に昇
温して焼結する。約1000〜1300℃程度で焼成す
ることにより乾燥ゲルは前記鋳型と相似形の透明なシリ
カガラス体を得ることができる。For example, taking tetramethoxysilane as an example, first, tetramethoxysilane, which is a metal alkoxide, water and alcohol are mixed at a predetermined ratio, and the mixed solution is cast into a container having a fixed shape (cylindrical shape or the like). Put in. As time passes, tetramethoxysilane reacts with water to form (OH) Si
(OCH 3 ) 3 is generated, and the silanol group generated by the reaction is condensed with tetramethoxysilane as a raw material, and (OCH 3 ) 3
Dimer of Si-O-Si (OCH 3 ) 3 is generated. Furthermore, a polymer reaction occurs one after another from a dimer to a trimer,
After a certain period of time after the mixing, silica particles grow, and the viscosity of the mixed solution sharply increases, causing gelation. The gel thus obtained is a porous gel composed of an aggregate of ultrafine particles of silica glass, and is in a state of being impregnated with a large amount of alcohol or excess water generated by the hydrolysis reaction. Next, the obtained porous gel is dried at a temperature of about 150 ° C. or less.
As the porous gel dries, it shrinks while maintaining a similar shape to the template, and becomes a dry gel in about several days to about one week. The dried gel is also a porous body composed of an aggregate of silica fine particles, similarly to the above-mentioned porous gel. Next, the dried gel is heated to a high temperature and sintered. By firing at about 1000 to 1300 ° C., the dried gel can obtain a transparent silica glass body similar in shape to the mold.
【0018】次に、分相を利用したガラス多孔質体は、
例えば次のような方法で作製することが出来る。珪砂、
硼酸、ソーダ灰を主原料として溶融してNa2O−B2O3
−SiO2系の硼珪酸ガラスを得たのち、該ガラスを柱
状体に成形する。次に、該ガラス柱状体を500〜65
0℃で熱処理して分相させる。この分相処理により、ガ
ラスの内部で数十オングストロームのオーダーで化学組
成の相異なるSiO2リッチのガラス相とNa2O−B2
O3リッチのガラス相のからみあった状態の分離(数十
オングストロームのオーダーでの分相)が起こる。な
お、このミクロに分離したガラス相の大きさは、熱処理
(分相熱処理)の温度と時間によって変化する。次にこ
の分相したガラスを酸処理すると、酸溶液にはNa2O
−B2O3相だけが容易に溶解するので、成形したガラス
の元の型(柱状)を保ったまま、SiO2成分に富んだ
連通細孔を有する多孔質ガラスが得られる。Next, the glass porous material utilizing the phase separation is as follows:
For example, it can be manufactured by the following method. Quartz sand,
Boric acid, soda ash by melting a main raw material Na 2 O-B 2 O 3
After obtaining a SiO 2 -based borosilicate glass, the glass is formed into a columnar body. Next, the glass columnar body was placed in a range of 500 to 65.
Heat treated at 0 ° C. to separate phases. Due to this phase separation treatment, a SiO 2 -rich glass phase and a Na 2 O—B 2 having different chemical compositions in the order of several tens of angstroms inside the glass
Entangled separation of the O 3 -rich glass phase (separation on the order of tens of angstroms) occurs. The size of the microscopically separated glass phase changes depending on the temperature and time of the heat treatment (phase separation heat treatment). Next, when the phase-separated glass is subjected to acid treatment, Na 2 O is added to the acid solution.
Since only -B 2 O 3 phase is readily soluble, while keeping the molded glass of the original type (columnar), porous glass having a communicating pore-rich SiO 2 ingredient.
【0019】なお、前記のゾルゲル法、分相法により得
られるガラス多孔質体は、細孔径、細孔分布、細孔容
積、比表面積等を目的に応じて変化させ、制御すること
が可能である。細孔径はゾルゲル法における熱処理、分
相法における酸処理の時間等によりおよそ数十オングス
トロームから数千オングストロームまで可能であり、比
表面積もおよそ数m2/gから数百m2/gと制御可能で
ある。本発明の細孔の大きさは特に限定するものではな
いが、細孔径は数十オングストローム程度で気孔率が2
0〜30体積%程度のものが好ましい。The porous glass obtained by the sol-gel method and the phase separation method can be controlled by changing the pore diameter, pore distribution, pore volume, specific surface area and the like according to the purpose. is there. The pore size can be from tens of angstroms to thousands of angstroms depending on the time of heat treatment in the sol-gel method and acid treatment in the phase separation method, etc., and the specific surface area can be controlled from about several m 2 / g to several hundred m 2 / g. It is. Although the size of the pores of the present invention is not particularly limited, the pore diameter is about several tens of angstroms and the porosity is 2
Those having about 0 to 30% by volume are preferred.
【0020】次に、上記で得られたガラス多孔質体の連
通細孔に屈折率調整成分を含浸させる。含浸方法として
は、多孔質柱状体を屈折率調整成分を含有する溶液や気
体に接触させることにより行うことができる。例えば、
溶液により含浸させる場合には、低粘性溶液中に浸せき
するか、あるいは塗布することにより含浸することがで
きる。その場合、減圧操作を行って、空気と含浸液の置
換を容易にし、含浸を進行させる減圧含浸法(真空含浸
法)、または、含浸タンクの上部から圧搾空気を導入し
加圧する加圧含浸法、或いは減圧吸入して含浸させる吸
入含浸法等を用いることが可能である。Next, the communicating pores of the glass porous body obtained above are impregnated with a refractive index adjusting component. The impregnation method can be performed by bringing the porous columnar body into contact with a solution or gas containing a refractive index adjusting component. For example,
When impregnating with a solution, it can be impregnated by dipping in a low-viscosity solution or by applying. In this case, a reduced pressure operation is performed to facilitate replacement of the impregnating liquid with air, and a reduced pressure impregnation method (vacuum impregnation method) in which impregnation proceeds or a pressure impregnation method in which compressed air is introduced from the upper part of the impregnation tank and pressurized. Alternatively, it is possible to use an inhalation impregnation method of inhaling under reduced pressure.
【0021】なお、連通細孔内に含浸させ屈折率分布を
調整するための屈折率調製成分としては、Ti、Bi、
Ba、Ca、Zn、Pb,Te、Geなどの酸化物の1
成分以上が利用できる。これらの原料源としては、該成
分のアルコキシド、酢酸塩、アセチル酢酸塩、硝酸塩な
どを用いることができる。また、該屈折率調整成分は、
柱状に成形された多孔質体の側縁部から含浸・浸透し、
該柱状体の中央部から側縁部にかけて屈折率が漸次大き
くなる屈折率分布を有するようにすることが容易であり
好ましいが、特にそれに限定するものではない。The refractive index adjusting components for adjusting the refractive index distribution by impregnating the pores are Ti, Bi,
One of oxides such as Ba, Ca, Zn, Pb, Te, and Ge
More than the ingredients are available. As the raw material sources, alkoxides, acetates, acetyl acetates, nitrates and the like of the components can be used. Further, the refractive index adjusting component,
Impregnated and penetrated from the side edge of the porous body formed into a columnar shape,
It is easy and preferable to have a refractive index distribution in which the refractive index gradually increases from the center to the side edges of the columnar body, but it is not particularly limited thereto.
【0022】次に、屈折率調整成分を含浸させた多孔質
体を高温度で焼成し焼結させる。多孔質体を焼結させる
ための焼成温度としては、800℃以上、好ましくは1
000℃以上が好ましい。この高温度での焼成により、
多孔質体が焼結した等方体で均質であるガラス体が得ら
れる。また、その場合に、多孔質体に含浸させた屈折率
調整成分は、ガラス中にTi、Bi、Ba、Ca、Z
n、Pb,Te、Ge等の酸化物として残留し、該屈折
率調整成分の濃度分布が屈折率分布となり、濃度の高い
場合には高屈折率に、一方濃度が低い場合には低屈折率
となる。Next, the porous body impregnated with the refractive index adjusting component is fired and sintered at a high temperature. The sintering temperature for sintering the porous body is 800 ° C. or higher, preferably 1 ° C.
000 ° C. or higher is preferred. By firing at this high temperature,
A sintered, isotropic and homogeneous glass body is obtained. In this case, the refractive index adjusting component impregnated in the porous body contains Ti, Bi, Ba, Ca, Z in the glass.
n, Pb, Te, Ge, etc., remain as oxides, and the concentration distribution of the refractive index adjusting component becomes a refractive index distribution. When the concentration is high, the refractive index is high, and when the concentration is low, the refractive index is low. Becomes
【0023】次に、上記で得られた柱状の焼結体を輪切
りにスライス切断したのち、スライスした切断面の両面
を光学研磨し、上下面に鏡面状を有する所定厚みを有す
るガラス基板を得る。なお、切断法および光学研磨法は
特に限定されるものでなない。Next, the columnar sintered body obtained above is sliced into slices, and both sides of the sliced cut surface are optically polished to obtain a glass substrate having a mirror-like upper and lower surface and a predetermined thickness. . Note that the cutting method and the optical polishing method are not particularly limited.
【0024】次に、該基板の裏面に、金属層等よりなる
反射層を被覆し、鏡を得る。なお、反射層としては、反
射率の高い銀層が好ましいが、特に銀層に限定するもの
ではない。Next, the back surface of the substrate is coated with a reflective layer made of a metal layer or the like to obtain a mirror. The reflective layer is preferably a silver layer having a high reflectance, but is not particularly limited to the silver layer.
【0025】[0025]
【実施例】以下に本発明の実施例について説明する。な
お、本発明はこれらの実施例に限定されるものではな
い。Embodiments of the present invention will be described below. Note that the present invention is not limited to these examples.
【0026】実施例 テトラメトキシシラン/水/メタノール/ジメチルホル
ムアミド/アンモニアをモル比で1/10/2.2/1
/0.0004で混合し加水分解させ、ゲル化させ多孔
質ゲルを得た後、80℃で120時間および150℃で
24時間乾燥させ、SiO2乾燥ゲルを柱状体に成形し
た。次に、重量比がTi(O−i−C3H 7)4:エキネ
ン(溶媒):H2O=1:9:0.05よりなる屈折率
調整成分の混合液に10分間浸漬し、該液を該柱状体の
周縁部より連通細孔内に含浸させた。 次いで、屈折率
調整成分を含浸させた柱状体ゲルを室温から1050℃
まで毎時20℃で昇温し、1050℃に達した後2時間
保持し乾燥ゲルを焼結することで中心から外側に向かっ
て屈折率が高くなる分布を有する直径12mmΦ、長さ
120mmの無孔化の円柱状ガラス体を得た。次いで、
該円柱状ガラス体から2mm厚の円板を切り出し、両面
を光学研磨したのち、片面にAgをコートし、前記した
図1および図2に示すような屈折率分布8を有する屈折
率分布鏡1を得た。側縁部6,7の屈折率は1.8、中
心部5の屈折率は1.5であった。この屈折率分布鏡1
において、例えば、屈折率1.75の位置に入射角60
°の光を反射光が中心側になるように照射すると出射光
角は54.1°、屈折率1.65の地点に対しては出射
光は53°となる。[0026]Example Tetramethoxysilane / water / methanol / dimethylphor
Muamide / ammonia in a molar ratio of 1/10 / 2.2 / 1
/0.0004 mixed, hydrolyzed, gelled and porous
After obtaining a porous gel, at 80 ° C. for 120 hours and at 150 ° C.
Dried for 24 hours, SiOTwoForm the dried gel into pillars
Was. Next, when the weight ratio is Ti (OiC)ThreeH 7)Four: Ekine
(Solvent): HTwoO = 1: 9: 0.05 Refractive index
Immerse in the mixture of the adjusting components for 10 minutes,
It was impregnated into the communicating pores from the periphery. Then the refractive index
The columnar gel impregnated with the adjusting component is heated from room temperature to 1050 ° C.
2 hours after reaching 1050 ° C
Hold and sinter the dried gel to move from the center to the outside
12mmΦ, length with distribution of high refractive index
A 120 mm non-porous cylindrical glass body was obtained. Then
A 2 mm thick disk is cut out from the cylindrical glass body,
Was optically polished, and then coated on one side with Ag.
Refraction having a refractive index distribution 8 as shown in FIGS. 1 and 2
A rate distribution mirror 1 was obtained. The refractive index of the side edges 6, 7 is 1.8, medium
The refractive index of the core 5 was 1.5. This refractive index distribution mirror 1
In the above, for example, the incident angle 60
° light is emitted so that the reflected light is on the center side.
The angle is 54.1 ° and the light exits at a point with a refractive index of 1.65.
The light becomes 53 °.
【0027】この性質を利用し、前記した図3のように
光を照射すると、凸レンズに光を通した時のように光の
焦点を絞ることができる。また、前記した図4のように
焦点が絞られた光線を反射光が中心側から離れるように
照射すると、絞られて光を平行光線として反射すること
ができる。また、図5に示すように、本実施例で得られ
た屈折率分布鏡1と通常の鏡16とを平行に配置し、図
5のように入射光17(例えば、Nd:YAGレーザー
からの光)を入射すると、一旦屈折率分布鏡1から出た
光は該鏡16で反射したのち、再びガラス基板4内に入
射したのち、反射層2で反射したのち図のように出射し
出射光18の光強度を高めることができる。By utilizing this property and irradiating light as shown in FIG. 3, the focus of light can be narrowed as when light passes through a convex lens. When the focused light beam is radiated so that the reflected light is away from the center side as shown in FIG. 4, the light beam can be focused and reflected as a parallel light beam. Also, as shown in FIG. 5, the refractive index distribution mirror 1 obtained in the present embodiment and the ordinary mirror 16 are arranged in parallel, and as shown in FIG. 5, the incident light 17 (for example, from a Nd: YAG laser). Light), the light once exiting from the refractive index distribution mirror 1 is reflected by the mirror 16, then enters the glass substrate 4 again, is reflected by the reflection layer 2, and emerges as shown in the figure. 18 light intensity can be increased.
【0028】[0028]
【発明の効果】本発明によれば、平面形状の鏡でもって
光を集光、発散すること等が可能であるので、光学回路
の組立等に際して、部品数を減少できるとともに、その
バリエーションを広げることができる等の効果を奏す
る。According to the present invention, it is possible to condense and diverge light with a planar mirror, so that the number of parts can be reduced and the variation can be expanded when assembling an optical circuit. It has effects such as being able to do.
【図1】本発明の屈折率分布鏡の縦断面を示す図であるFIG. 1 is a view showing a longitudinal section of a refractive index distribution mirror of the present invention.
【図2】本発明の屈折率分布鏡の屈折率分布を示す図で
ある。FIG. 2 is a diagram showing a refractive index distribution of a refractive index distribution mirror of the present invention.
【図3】本発明の屈折率分布鏡を出射した光線を集光さ
せる場合の図を示す。FIG. 3 is a diagram showing a case where light rays emitted from the refractive index distribution mirror of the present invention are collected.
【図4】本発明の屈折率分布鏡を出射した光線を平行光
線とする場合の図を示す。FIG. 4 is a view showing a case where a light beam emitted from a refractive index distribution mirror of the present invention is a parallel light beam.
【図5】本発明の屈折率分布鏡を出射した光線を平行光
線とする場合の図を示す。FIG. 5 is a diagram showing a case where a light beam emitted from the refractive index distribution mirror of the present invention is a parallel light beam.
1 屈折率分布鏡 2 反射層 3 切断面 4 ガラス基板 5 中心部 6、7 側縁部 8 屈折率 10 入射光 11 出射光 12 集光 13 入射光 14 出射光 15 平行光 16 通常の鏡 17 入射光 18 出射光 DESCRIPTION OF SYMBOLS 1 Refractive index distribution mirror 2 Reflective layer 3 Cut surface 4 Glass substrate 5 Central part 6, 7 Side edge part 8 Refractive index 10 Incident light 11 Outgoing light 12 Condensing 13 Incident light 14 Outgoing light 15 Parallel light 16 Normal mirror 17 Incident Light 18 Outgoing light
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C03B 32/02 C03B 32/02 C03C 3/16 C03C 3/16 15/00 15/00 G 17/10 17/10 G02B 3/00 G02B 3/00 B Fターム(参考) 2H042 DA04 DA12 DB14 DC08 DC09 DE00 4G014 AH02 AH04 AH06 4G015 EA01 4G059 AA17 AB01 AB09 AC05 AC09 BB04 DA01 DB04 4G062 AA04 BB02 BB08 BB09 BB11 CC04 CC05 MM04 NN35 NN40Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C03B 32/02 C03B 32/02 C03C 3/16 C03C 3/16 15/00 15/00 G 17/10 17/10 G02B 3/00 G02B 3/00 B F-term (reference) 2H042 DA04 DA12 DB14 DC08 DC09 DE00 4G014 AH02 AH04 AH06 4G015 EA01 4G059 AA17 AB01 AB09 AC05 AC09 BB04 DA01 DB04 4G062 AA04 BB02 BB08 BB09 BB04 NN40
Claims (8)
いて、該反射層と並行する層が屈折率分布を有している
ことを特徴とする屈折率分布鏡。1. A mirror having a reflective layer provided on the back surface of a glass substrate, wherein a layer parallel to the reflective layer has a refractive index distribution.
縁部にかけて屈折率が漸次大きくなっていることを特徴
とする請求項1記載の屈折率分布鏡。2. A refractive index distribution mirror according to claim 1, wherein the refractive index gradually increases from the center to the side edge of the glass substrate.
により形成されてなることを特徴とする請求項1または
2記載の屈折率分布鏡。3. The refractive index distribution mirror according to claim 1, wherein the refractive index distribution is formed by a concentration distribution of a refractive index adjusting component.
O5系、TeO2系ガラスのうちの少なくとも1種のガラ
ス組成よりなることを特徴とする請求項1乃至3のいず
れかに記載の屈折率分布鏡。4. A glass substrate, SiO 2 system, B 2 O 3 system, P 2
O 5 system, the refractive index distribution lens according to any one of claims 1 to 3, characterized in that comprises at least one glass composition of TeO 2 type glass.
る屈折率分布鏡の製造方法。 (1)連通細孔を有するガラス多孔質体を作製する工
程、(2)該多孔質体の側縁部より屈折率調整成分を含
浸させる工程、(3)焼成し焼結させガラス体を製造す
る工程、(4)ガラス体をスライス切断したのち研磨し
てガラス基板を成形する工程(5)ガラス基板の裏面に
反射層を形成する工程。5. A method for manufacturing a refractive index distribution mirror, which is manufactured by the following steps. (1) a step of producing a porous glass body having communicating pores, (2) a step of impregnating a refractive index adjusting component from a side edge of the porous body, and (3) firing and sintering to produce a glass body (4) a step of forming a glass substrate by slicing and then polishing the glass body, and (5) a step of forming a reflective layer on the back surface of the glass substrate.
することを特徴とする請求項5記載の屈折率分布鏡の製
造方法。6. The method for manufacturing a refractive index distribution mirror according to claim 5, wherein the porous glass body is produced by a sol-gel method.
る請求項6記載の屈折率分布鏡の製造方法。 (1)金属アルコキシドを加水分解し湿潤ゲルを得る工
程、(2)該湿潤ゲルを乾燥することにより多孔質ゲル
を得る工程、7. The method of manufacturing a refractive index distribution mirror according to claim 6, wherein the method is performed by the following steps. (1) a step of obtaining a wet gel by hydrolyzing a metal alkoxide, (2) a step of obtaining a porous gel by drying the wet gel,
ことを特徴とする請求項5記載の屈折率分布鏡の製造方
法。8. The method according to claim 5, wherein the porous glass body is manufactured by a phase separation method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001071322A JP2002267820A (en) | 2001-03-14 | 2001-03-14 | Graded index mirror and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001071322A JP2002267820A (en) | 2001-03-14 | 2001-03-14 | Graded index mirror and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002267820A true JP2002267820A (en) | 2002-09-18 |
Family
ID=18929062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001071322A Pending JP2002267820A (en) | 2001-03-14 | 2001-03-14 | Graded index mirror and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002267820A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004226438A (en) * | 2003-01-20 | 2004-08-12 | Tomoegawa Paper Co Ltd | Optical transmission component connection structure and optical connection method |
CN110608728A (en) * | 2019-08-15 | 2019-12-24 | 中铁大桥局第七工程有限公司 | Switch type reflector and reflector-based measuring method |
KR20200029925A (en) * | 2018-09-11 | 2020-03-19 | 삼성전자주식회사 | Optical modulating device, method of operating the same and apparatus including the optical modulating device |
-
2001
- 2001-03-14 JP JP2001071322A patent/JP2002267820A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004226438A (en) * | 2003-01-20 | 2004-08-12 | Tomoegawa Paper Co Ltd | Optical transmission component connection structure and optical connection method |
KR20200029925A (en) * | 2018-09-11 | 2020-03-19 | 삼성전자주식회사 | Optical modulating device, method of operating the same and apparatus including the optical modulating device |
KR102710728B1 (en) * | 2018-09-11 | 2024-09-27 | 삼성전자주식회사 | Optical modulating device, method of operating the same and apparatus including the optical modulating device |
CN110608728A (en) * | 2019-08-15 | 2019-12-24 | 中铁大桥局第七工程有限公司 | Switch type reflector and reflector-based measuring method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6802188B1 (en) | Method of making photosensitive monolithic glass apparatus | |
US4535026A (en) | Antireflective graded index silica coating, method for making | |
Dislich | Sol-Gel 1984→ 2004 (?) | |
JP5008198B2 (en) | Member having reflector layer and method for manufacturing the same | |
US6158245A (en) | High efficiency monolithic glass light shaping diffuser and method of making | |
JP5629912B2 (en) | Structure and manufacturing method thereof | |
US4680049A (en) | Process for molding optical components of silicate glass to a near net shape optical precision | |
Hench et al. | Gel-silica optics | |
US4686195A (en) | Method and composition for the manufacture of gradient index glass | |
JP2002267820A (en) | Graded index mirror and method for manufacturing the same | |
US4731348A (en) | Aluminosilicate optical glass | |
US4776867A (en) | Process for molding optical components of silicate glass to a near net shape optical precision | |
JPS59146946A (en) | Manufacture of slab-shaped lens having refractive index gradient only in thickness direction | |
CN112462454B (en) | Micro-optical element with high bonding strength between glass substrate and microstructure layer | |
US5160358A (en) | Process for producing silica glass plate having controlled refractive index distribution | |
JP4574878B2 (en) | Light scattering glass material | |
Floch et al. | Optical thin films from the sol-gel process | |
Klein | Sol-Gel Glasses | |
US7921672B2 (en) | Method for manufacturing GRIN lens | |
Marques | Sol–Gel Process: An Overview | |
Zheng | Refractive index gradient (grin) lens via the sol-gel process. | |
Yoshida et al. | Sol-gel derived polyvinylpyrrolidone/silicon oxide composite materials and novel fabrication technique for channel waveguide | |
Nogues et al. | Processing, properties and applications of sol-gel silica optics | |
Chia et al. | Laser Densification of Micro-Optical Arrays | |
JPH044261B2 (en) |