[go: up one dir, main page]

JP2002263672A - Method and facility for treating high concentration organic waste water - Google Patents

Method and facility for treating high concentration organic waste water

Info

Publication number
JP2002263672A
JP2002263672A JP2001070470A JP2001070470A JP2002263672A JP 2002263672 A JP2002263672 A JP 2002263672A JP 2001070470 A JP2001070470 A JP 2001070470A JP 2001070470 A JP2001070470 A JP 2001070470A JP 2002263672 A JP2002263672 A JP 2002263672A
Authority
JP
Japan
Prior art keywords
tank
treatment
treatment method
stage
activated sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001070470A
Other languages
Japanese (ja)
Other versions
JP3841394B2 (en
Inventor
Mitsuhiro Tokuno
光宏 徳野
Atsushi Kobayashi
厚史 小林
Yuichi Muranaka
雄一 村中
Kazuo Fujita
和雄 藤田
Akira Kawakami
彰 川上
Yuichi Fuchu
裕一 府中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001070470A priority Critical patent/JP3841394B2/en
Publication of JP2002263672A publication Critical patent/JP2002263672A/en
Application granted granted Critical
Publication of JP3841394B2 publication Critical patent/JP3841394B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high concentration organic waste water treatment system which requires only a small floor space, small cost of operation and equipment, etc., and which brings about performance equivalent or superior to that of a conventional two-step activated sludge treatment approach by an easy driving operation. SOLUTION: A high concentration organic waste water treatment method is provided with a combination of: a 1st stage for treating high concentration organic waste water by the fluidized bed biological treatment method; and a 2nd stage for directly treating 1st process effluent by the activated sludge treatment method, carrying out the solid-liquid separation of the treated water and separating the sludge. It is preferable to stabilize the treatment by dividing the water treatment tank of the fluidized bed biological treatment method to a plurality of tanks and to make the load of the later stage tanks lower than that of the preceding stage, or to set the BOD load in each tank nearly identical by dividing the water treatment tank of the fluidized bed biological treatment method into a plurality of tanks and increasingly reducing the size of the tanks of the later stages by a fixed ratio.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高濃度有機性排水
の処理方法に係り、流動床式生物処理法と活性汚泥法を
組み合わせることにより、処理スペースの縮小と省エネ
ルギー化を伴う、高能率で処理し得る処理方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating high-concentration organic wastewater, and by combining a fluidized-bed type biological treatment method and an activated sludge method, a reduction in treatment space and energy saving, and a high efficiency. It relates to a processing method that can be processed.

【0002】[0002]

【従来の技術】有機性排水を生物処理する方法として
は、活性汚泥処理法が広く用いられており、特に高濃度
有機性排水の処理方法としては、第1段目を高負荷に設
定して処理する2段活性汚泥処理法(吸着−活性汚泥
法:AB法)が広く知られている。この2段活性汚泥処
理法においては、前段と後段との負荷が異なるため、各
段それぞれ別々の生物相の働きにより処理が行われてい
る。さらに、2段活性汚泥処理法について詳述すると、
有機性排水を、第1段目で主に細菌類を主体とした微生
物処理により、排水中の有機物を酸化分解すると共に、
非凝集性の細菌に変換させた後、第2段目で当該非凝集
性細菌を、原生動物を主体とした微生物処理により捕食
除去させることによって、生物処理効率を向上させる処
理方法である。これにより、第1段目で高負荷運転が可
能になり、活性汚泥処理法による処理効率が向上すると
同時に、余剰汚泥の生成量を少なくすることができる。
2. Description of the Related Art Activated sludge treatment is widely used as a biological treatment method for organic wastewater. Particularly, as a method for treating high-concentration organic wastewater, the first stage is set to a high load. A two-stage activated sludge treatment method (adsorption-activated sludge method: AB method) for treatment is widely known. In this two-stage activated sludge treatment method, the load of the former stage is different from that of the latter stage. Furthermore, when the two-step activated sludge treatment method is described in detail,
The organic wastewater is oxidized and decomposed in the first stage by microbial treatment mainly of bacteria in the first stage,
This is a treatment method for improving biological treatment efficiency by converting the non-aggregating bacteria into non-aggregating bacteria in a second stage, and predating and removing the non-aggregating bacteria by microbial treatment mainly using protozoa. Thereby, high-load operation can be performed in the first stage, and the treatment efficiency by the activated sludge treatment method is improved, and at the same time, the amount of excess sludge generated can be reduced.

【0003】また、近年では2段活性汚泥処理の第1段
目を流動床式生物処理法とする処理が注目されている。
具体的には、廃水をまず微生物担体を懸濁させた系で生
物学的に処理し、第一沈殿槽で汚泥を沈殿分離し、そこ
で得られた一次処理水を第2工程の活性汚泥を入れた曝
気槽に送って生物学的に処理し、曝気槽からの流出水を
第二沈殿槽で汚泥を沈殿分離することにより処理水を得
る方法が知られている。
[0003] In recent years, attention has been paid to a treatment in which the first stage of the two-stage activated sludge treatment is a fluidized bed biological treatment method.
Specifically, wastewater is biologically treated first in a system in which a microbial carrier is suspended, and sludge is separated and separated in a first settling tank, and the primary treated water obtained there is converted into activated sludge in the second step. There is known a method of obtaining treated water by sending it to an aeration tank in which it is put and biologically treating the sludge, and sedimenting and separating sludge from effluent from the aeration tank in a second sedimentation tank.

【0004】さらに、この方法では第二沈殿槽で沈殿分
離した汚泥を微生物担体を懸濁させた系からの流出水に
添加することにより、第一沈殿槽での汚泥の沈殿分離を
促進させる作用を行わせるようにしている。この方法
は、高能率ではあるが、処理槽及び沈殿槽の組合せが各
2段ずつ必要であり、比較的広い表面積を要する沈殿槽
を2つも要するため、装置の容積は2段活性汚泥処理法
とほとんど違わない大きさを必要としている。
Further, in this method, the sludge precipitated and separated in the second sedimentation tank is added to the effluent from the system in which the microorganism carrier is suspended, thereby promoting the sedimentation and separation of the sludge in the first sedimentation tank. Is to be performed. Although this method is highly efficient, it requires two stages each of a treatment tank and a sedimentation tank, and requires two sedimentation tanks requiring a relatively large surface area. It needs a size that is almost the same as

【0005】さらに、前記の流動床式生物処理法を用い
た2段活性汚泥処理法では、BOD等の除去に加えて窒
素を同時に除去するために、流動床曝気槽の流出水を嫌
気性ろ床槽へ導入し、次いで接触式曝気槽、沈殿槽の順
に通すことにより、流動床曝気槽から流出する汚泥の混
入した流出水を嫌気性ろ床槽へ導入して、汚泥の嫌気分
解消化を進行させるとともに、嫌気性ろ床槽内に充填し
たろ材に汚泥を捕捉させ、汚泥の流出を止めるととも
に、汚泥を捕捉したろ材に排水を接触させることにより
排水中の残留有機物をさらに除去し、かつ排水中の窒素
分やアンモニア性窒素を亜硝酸や硝酸性窒素に硝化され
た排水を、嫌気性環境下において有機物の存在下で窒素
ガスに還元し、脱窒を行う方法が提案されている。しか
し、この方法では、嫌気性処理槽として嫌気性ろ床槽を
用いる関係で、同槽が目詰りしやすく、悪臭の発生が激
しいなどの種々の欠点を有する。
Further, in the two-stage activated sludge treatment method using the fluidized bed biological treatment method, the effluent of the fluidized bed aeration tank is subjected to anaerobic filtration in order to simultaneously remove nitrogen in addition to removing BOD and the like. Introduce into the anaerobic filter bed tank the sludge outflow from the fluidized bed aeration tank by introducing into the bed tank and then through the contact type aeration tank and the sedimentation tank in order to perform the anaerobic decomposition and digestion of the sludge. Along with proceeding, the sludge is captured by the filter medium filled in the anaerobic filter bed tank, and the outflow of the sludge is stopped. There has been proposed a method of denitrification by reducing wastewater obtained by nitrifying nitrogen or ammonia nitrogen in wastewater to nitrite or nitrate nitrogen in an anaerobic environment in the presence of organic substances in the presence of organic matter. However, this method has various drawbacks, such as the fact that the anaerobic filter tank is used as the anaerobic treatment tank, the tank is easily clogged, and bad odor is generated.

【0006】[0006]

【発明が解決しようとする課題】前述の従来の2段活性
汚泥処理法においては、各段の活性汚泥処理において、
沈殿槽の設置と汚泥の返送、引き抜きが必要であった。
このため、処理プラントが大きくなり、建設費用が高く
なる上に、運転管理が煩雑になるという難点があった。
また、流動床式生物処理法を先に行う方法では、装置の
床面積が大きく、あるいは嫌気性ろ床槽を用いる場合に
は同槽が目詰りしやすく、操業がむつかしいなどの種々
の欠点を有すことは前述したとおりである。本発明は、
上記の従来の2段活性汚泥処理法の問題点に鑑みて成さ
れたものであり、高濃度有機性排水の処理において、2
段活性汚泥処理法の第1段目の高負荷槽1段目と2段目
の間に必要であった沈殿槽に設置と汚泥の返送、引き抜
きによる負担をなくし、運転経費や設備費などが低廉
で、容易な運転操作で従来の2段活性汚泥処理法と同等
以上の性能を有する処理システムを提供することを目的
とするものである。
In the above-described conventional two-stage activated sludge treatment method, the activated sludge treatment in each stage involves the following steps.
It was necessary to set up a sedimentation tank, return sludge, and pull out.
For this reason, there are problems that the processing plant becomes large, the construction cost becomes high, and the operation management becomes complicated.
In addition, the method of first performing the fluidized bed biological treatment method has various disadvantages such as a large floor area of the apparatus, or when an anaerobic filter tank is used, the tank is easily clogged, and the operation is difficult. This is as described above. The present invention
The present invention has been made in view of the above-mentioned problems of the conventional two-stage activated sludge treatment method.
The high load tank of the first stage of the activated activated sludge treatment method eliminates the burden of installing, returning and extracting sludge in the settling tank that was required between the first and second stages, reducing operating costs and equipment costs. It is an object of the present invention to provide a treatment system which is inexpensive and has a performance equal to or higher than that of a conventional two-stage activated sludge treatment method by a simple operation.

【0007】[0007]

【課題を解決するための手段】本発明は、下記の手段に
より前記課題を解決することができた。 (1)高濃度有機性排水を流動床式生物処理法により処
理する第1工程と、第1工程流出水を直接活性汚泥処理
法により処理し、その処理水を固液分離により汚泥を分
離する第2工程とを組み合わせてなることを特徴とする
高濃度有機性排水の処理方法。 (2)第1工程である流動床式生物処理法の処理水槽を
多槽に区切り、後段側の負荷を前段よりも低くとること
によって処理を安定化させることを特徴とする前記
(1)記載の高濃度有機性排水の処理方法。 (3)第1工程である流動床式生物処理法の処理水槽を
多槽に区切り、各槽の区切り方を一定の比率で後段側を
小さくすることにより、各槽におけるBOD負荷をほぼ
同一に設定して、処理効率を向上させることを特徴とす
る前記(1)記載の高濃度有機性排水の処理方法。 (4)流動床式生物処理槽からなる第1工程と、前記流
動式生物処理槽からの流出水を導入する活性汚泥法処理
槽及び固液分離装置とからなる第2工程とを組み合わせ
たことを特徴とする高濃度有機性排水の処理装置。
According to the present invention, the above objects can be attained by the following means. (1) The first step in which high-concentration organic wastewater is treated by a fluidized-bed biological treatment method, and the effluent in the first step is directly treated by an activated sludge treatment method, and the treated water is separated into sludge by solid-liquid separation. A method for treating high-concentration organic wastewater, comprising combining the second step. (2) The process described in (1) above, wherein the treatment water tank of the fluidized bed biological treatment method, which is the first step, is divided into multiple tanks, and the load on the subsequent stage is set lower than that of the preceding stage to stabilize the treatment. Of high-concentration organic wastewater. (3) The treatment water tank of the fluidized bed biological treatment method, which is the first step, is divided into multiple tanks, and the separation method of each tank is reduced at a fixed ratio in the latter stage so that the BOD load in each tank is substantially the same. The method for treating high-concentration organic wastewater according to the above (1), wherein the treatment efficiency is improved by setting. (4) Combination of the first step consisting of a fluidized bed biological treatment tank and the second step consisting of an activated sludge treatment tank for introducing effluent from the fluidized biological treatment tank and a solid-liquid separator. A high-concentration organic wastewater treatment apparatus characterized by the following features.

【0008】前記構成のシステムにおいて、高濃度有機
性排水を処理する作用について述べると、原水導入手段
から流動床式生物処理槽(流動床接触槽ともいう)に供
給された原水中の有機物は、処理槽内に入れられた流動
可能な担体の表面に付着している微生物の生物学的酸化
作用で酸化分解処理される。さらに、流動床式生物処理
槽で処理された処理水は、そのまま直接後段処理として
活性汚泥処理を実施することによって、残留している有
機物が分解され、また曝気液のSSは粒径が均一とな
り、沈殿池では沈降性に優れた汚泥と清澄度の高い上澄
水とに分離して、良好な処理水水質が得られる。なお、
本発明における流動床式生物処理槽は、生物処理をする
有機性排水中に微生物を担持する粒状等の担体が多数分
散していて、前記排水中で流動化している状態にあるも
のを言い、通常の塔内の上昇気流中に多数の固体粒子が
分散流動していて一定の界面以下に固体粒子の流動床を
形成しているものとは作用が異なるが、分かり易くする
ため「流動床式」という。
In the system having the above-described structure, the operation of treating high-concentration organic wastewater is described. Organic matter in raw water supplied from a raw water introducing means to a fluidized-bed biological treatment tank (also referred to as a fluidized-bed contact tank) is as follows. Oxidative decomposition treatment is carried out by the biological oxidizing action of microorganisms attached to the surface of the flowable carrier placed in the treatment tank. Furthermore, the treated water treated in the fluidized-bed biological treatment tank is directly subjected to activated sludge treatment as a post-stage treatment, whereby the remaining organic substances are decomposed, and the SS of the aeration liquid has a uniform particle size. In the sedimentation basin, the sludge having excellent sedimentation property and the supernatant water having high clarity are separated to obtain good treated water quality. In addition,
The fluidized bed type biological treatment tank in the present invention refers to a state in which a large number of particulate carriers or the like carrying microorganisms are dispersed in an organic wastewater for biological treatment, and in a state of being fluidized in the wastewater, A large number of solid particles are dispersed and flowed in a rising airflow in a normal tower, and the function is different from that in which a fluidized bed of solid particles is formed below a certain interface. "

【0009】このように、流動式生物処理槽の処理水
を、そのまま直接活性汚泥処理法の曝気法で処理するこ
とにより、第1工程の流動床式槽と第2工程の曝気槽の
間に第1沈殿槽を設ける廃水処理法や、流動床式曝気槽
と接触曝気槽の間に嫌気ろ床槽を設ける含有機排水の処
理方法に比べても、全処理工程の処理スペースの大幅な
コンパクト化と省エネルギー化が実現できる。
As described above, by directly treating the treated water in the fluidized biological treatment tank by the aeration method of the activated sludge treatment method, the water between the fluidized bed tank in the first step and the aeration tank in the second step is treated. Compared with the wastewater treatment method with the first settling tank and the wastewater treatment method with the anaerobic filter bed tank between the fluidized bed type aeration tank and the contact aeration tank, the processing space of the entire treatment process is significantly compact. And energy saving can be realized.

【0010】[0010]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて図面に基づいて説明する。第1表及び図5は、従来
の2段活性汚泥処理法に関するものであり、第2表〜第
4表、図1〜4は、本発明の諸実施の形態である、流動
床式生物処理法と活性汚泥処理法の組み合わせによる2
段生物学的処理法に関するものである。
Embodiments of the present invention will be described below with reference to the drawings. Table 1 and FIG. 5 relate to a conventional two-stage activated sludge treatment method, and Tables 2 to 4 and FIGS. 1 to 4 show fluidized bed biological treatment according to embodiments of the present invention. 2 by the combination of the activated sludge treatment method
It relates to a step biological treatment method.

【0011】以下に、本発明の諸実施の形態である2段
生物学的処理法について述べる。なお、実施例及び比較
例を説明するための全図において、同一機能を有するも
のは同一符号を付け、その繰り返しの説明は省略する。
図1は、本発明の実施例1に用いられる処理装置の概略
構成図である。この処理装置は、流動床式生物処理槽
(流動床接触槽)2からなる第1工程に、曝気槽6と沈
殿槽8とからなる第2工程が連設されてなるものであ
る。この処理装置においては、第1工程で微生物を担持
した担体3を液中に懸濁した懸濁(流動接触)処理法に
よる廃水処理が行われ、第2工程で活性汚泥法による廃
水処理が行われる。なお図1中で、原水1は、流動床式
生物処理槽2に入り、その中に分散した担体3と、空気
4の導入により流動状態で生物処理され、高い負荷量で
処理が行われ、その活性汚泥混合液5は第2工程の曝気
槽6に入り、好気性生物処理され、活性汚泥混合液7は
沈殿槽8に入り、汚泥が沈殿し、上澄水は処理水9とし
て得られ、沈殿した汚泥の大部分は返送汚泥10として
曝気槽6に戻される。
Hereinafter, a two-stage biological treatment method according to embodiments of the present invention will be described. In all the drawings for explaining the examples and comparative examples, those having the same functions are denoted by the same reference numerals, and their repeated description will be omitted.
FIG. 1 is a schematic configuration diagram of a processing apparatus used in Embodiment 1 of the present invention. In this treatment apparatus, a first step including a fluidized bed biological treatment tank (fluidized bed contact tank) 2 is connected to a second step including an aeration tank 6 and a sedimentation tank 8. In this treatment apparatus, wastewater treatment is performed by a suspension (fluid contact) treatment method in which a carrier 3 supporting microorganisms is suspended in a liquid in a first step, and wastewater treatment by an activated sludge method is performed in a second step. Will be In FIG. 1, raw water 1 enters a fluidized-bed biological treatment tank 2, and is biologically treated in a fluidized state by introducing a carrier 3 dispersed therein and air 4, and is treated with a high load. The activated sludge mixture 5 enters the aeration tank 6 of the second step and is subjected to aerobic biological treatment, and the activated sludge mixture 7 enters the sedimentation tank 8 where the sludge is settled, and the supernatant water is obtained as treated water 9. Most of the settled sludge is returned to the aeration tank 6 as returned sludge 10.

【0012】図2は、実施例2に用いられる2槽式流動
床式生物処理と活性汚泥処理を組み合わせた処理装置の
概略構成図である。図2中で、2Aは第1槽であり、2
Bは第2槽であり、第1槽流出水が第2槽に入るように
直列に接続されている。図3は、実施例3に用いられる
4槽式流動床式生物処理と活性汚泥処理を組み合わせた
処理装置の概略構成図である。図3中で、2Aは第1
槽、2Bは第2槽、2Cは第3槽、2Dは第4槽であ
り、第1槽から第4槽まで直列に接続されている。
FIG. 2 is a schematic configuration diagram of a treatment apparatus used in Example 2 which combines a two-tank fluidized bed biological treatment and an activated sludge treatment. In FIG. 2, 2A is the first tank,
B is a second tank, which is connected in series so that the first tank effluent enters the second tank. FIG. 3 is a schematic configuration diagram of a treatment apparatus that combines a 4-tank fluidized bed biological treatment and an activated sludge treatment used in Example 3. In FIG. 3, 2A is the first
The tank 2B is a second tank, 2C is a third tank, 2D is a fourth tank, and is connected in series from the first tank to the fourth tank.

【0013】図4は、図3の4槽式流動床式生物処理槽
1の変形例を示す概略説明図である。図4においては、
第1槽2Aは、3つの槽に分割され、第2槽2Bは、2
つの槽に分割されて、それぞれ処理中の原水が並列に流
れるようになっており、第3槽2Cと第4槽2Dは直列
に流れるように直列に接続されている。この流動接触槽
2においては、原水1は、図3の第1槽2Aを構成する
3つの槽のそれぞれに分割して供給され、各槽でそれぞ
れ並列に懸濁処理法による廃水処理が行われた処理水
は、次いで各槽から集められ、その処理水は第2槽2B
を構成する2つの槽のそれぞれに分割して供給され、各
槽でそれぞれ並列に懸濁処理法による排水処理が行われ
た処理水は、次いで各槽から集められ、その処理水は第
3槽2Cに流入し、ここでも同様に排水処理を受けた
後、第4槽2Dへ流入し、ここでも同様に排水処理を受
けた後、第2工程へ供給される。
FIG. 4 is a schematic explanatory view showing a modified example of the four-tank fluidized-bed biological treatment tank 1 shown in FIG. In FIG.
The first tank 2A is divided into three tanks, and the second tank 2B is divided into two tanks.
The raw water under treatment is divided into two tanks, and the raw water being treated flows in parallel, and the third tank 2C and the fourth tank 2D are connected in series so as to flow in series. In the fluidized contact tank 2, the raw water 1 is separately supplied to each of the three tanks constituting the first tank 2A in FIG. 3, and the wastewater treatment by the suspension treatment method is performed in each tank in parallel. The treated water is then collected from each tank, and the treated water is collected in the second tank 2B.
Is supplied separately to each of the two tanks constituting the tank, and the treated water subjected to the wastewater treatment by the suspension treatment method in each tank in parallel is then collected from each tank, and the treated water is supplied to the third tank. After flowing into the second tank 2C, the wastewater is also subjected to the same wastewater treatment, and then flows into the fourth tank 2D. The wastewater is similarly subjected to the wastewater treatment, and is supplied to the second step.

【0014】図5は、従来の2段活性汚泥処理装置の概
略構成図である。図5の排水処理装置は、図1の第2工
程の活性汚泥処理法を、2段直列に連結したものと見做
しうるものである。原水1は、曝気槽21に入り、生物
学的処理を受け、活性汚泥混合液22は沈殿槽23に入
り、上澄水24は第2工程の曝気槽26に送られ、沈殿
槽23で沈殿した汚泥は返送汚泥25として曝気槽21
に戻り、第2工程においては、前記の上澄水24は曝気
槽26でさらに処理され、活性汚泥混合液27は沈殿槽
28に入り、上澄水は処理水29として取り出され、沈
殿槽28で沈殿した汚泥は返送汚泥30として曝気槽2
6に戻る。図1〜4においては、第1工程に流入する原
水濃度は、酸素供給に必要な通気攪拌動力が極端に高く
ならない範囲内において、高い方が省スペースの点から
有利であり、BOD濃度にして1000mg/リットル
以上が望ましい。
FIG. 5 is a schematic configuration diagram of a conventional two-stage activated sludge treatment apparatus. The wastewater treatment apparatus of FIG. 5 can be regarded as a two-stage series connection of the activated sludge treatment method of the second step of FIG. The raw water 1 enters the aeration tank 21 and undergoes biological treatment. The activated sludge mixture 22 enters the sedimentation tank 23, and the supernatant water 24 is sent to the aeration tank 26 in the second step, and is precipitated in the sedimentation tank 23. The sludge is returned to the aeration tank 21 as sludge 25.
In the second step, the supernatant water 24 is further treated in an aeration tank 26, the activated sludge mixture 27 enters a settling tank 28, and the supernatant water is taken out as treated water 29 and settled in a settling tank 28. The returned sludge is returned to the aeration tank 2 as sludge 30
Return to 6. In FIGS. 1 to 4, the higher the raw water concentration flowing into the first step is, from the viewpoint of space saving, within a range where the aeration and stirring power required for oxygen supply does not become extremely high, from the viewpoint of space saving. 1000 mg / liter or more is desirable.

【0015】第1工程である流動床式生物処理槽に入れ
られる担体は、微生物の付着増殖性、保持性や流動性が
得られれば特に限定されない。ただし、容積負荷をでき
るだけ高く維持できて、しかも有機物の除去性能が高い
担体を用いる方が、省スペースの点から有利であること
は言うまでもない。使用される担体として、例えば、砂
粒、又はプラスチック、ポリウレタン、樹脂、ゴム等の
粒状体が挙げられる。微生物の付着性から言って多孔性
であることが好ましく、流動性が良くするには比重が1
に近いものが好ましい。担体の大きさとしては、微生物
の保持性や流動性からいって直径が0.3〜30mmの
範囲程度が好ましい。
The carrier to be put into the fluidized-bed biological treatment tank, which is the first step, is not particularly limited as long as it has the ability to adhere and grow microorganisms, maintain and flow. However, it is needless to say that it is more advantageous to use a carrier which can maintain the volume load as high as possible and has a high organic matter removal performance from the viewpoint of space saving. The carrier to be used includes, for example, sand particles or granules such as plastic, polyurethane, resin, rubber and the like. It is preferably porous from the viewpoint of the adhesion of microorganisms.
Is preferable. The size of the carrier is preferably about 0.3 to 30 mm in diameter from the viewpoint of the retention and fluidity of the microorganism.

【0016】本発明の排水処理システムにおいては、第
1工程と第2工程の曝気槽の間に沈殿池(槽)を設ける
必要がなく、また第1工程流出水を第1工程上流部へ返
送させる必要もない。さらに、第2工程で発生した余剰
汚泥を第1工程へ戻す必要もない。第1工程の空気供給
手段においては、散気式や機械攪拌式のエアレーション
装置が挙げられるが、担体に付着した微生物の保持性や
流動性が得られれば特に限定されない。
In the wastewater treatment system of the present invention, there is no need to provide a sedimentation basin (tank) between the aeration tanks of the first step and the second step, and the effluent of the first step is returned to the upstream part of the first step. You don't have to. Further, there is no need to return the excess sludge generated in the second step to the first step. Examples of the air supply means in the first step include aeration type and mechanical stirring type aeration devices, but are not particularly limited as long as the retention and fluidity of microorganisms attached to the carrier can be obtained.

【0017】[0017]

【実施例】以下に、従来の2段活性汚泥処理法による処
理装置(比較例)、および本発明の流動床式生物処理法
と活性汚泥処理法の組み合わせによる2段生物学的処理
装置(実施例)を用いて、高濃度有機性排水を処理した
実施例について更に詳述する。ただし、本発明はこれら
の実施例のみに限定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a conventional two-stage activated sludge treatment apparatus (comparative example) and a two-stage biological treatment apparatus using a combination of the fluidized-bed biological treatment method and the activated sludge treatment method of the present invention (implementation). An example in which high-concentration organic wastewater is treated using Example) will be described in more detail. However, the present invention is not limited to only these examples.

【0018】比較例1 図5の装置を用いて、第1工程である活性汚泥処理装置
(曝気槽10リットル、沈殿槽15リットル)に対し
て、食品系有機排水(BOD=1000mg/リット
ル)を、BOD容積負荷10kg/m3 ・日で運転して
処理した。その結果、BOD=400mg/リットルの
第1工程流出水が得られた。さらに、第1工程流出水
を、第2工程である活性汚泥処理装置(曝気槽40リッ
トル、沈殿槽15リットル)に対して、BOD容積負荷
1kg/m3 ・日で運転して処理した結果、BOD=4
0mg/リットルの第2工程流出水が得られた。処理結
果を第1表に示す。
Comparative Example 1 Using the apparatus shown in FIG. 5, food-based organic wastewater (BOD = 1000 mg / liter) was supplied to the activated sludge treatment apparatus (aeration tank 10 liter, sedimentation tank 15 liter) as the first step. The operation was carried out at a BOD volume load of 10 kg / m 3 · day. As a result, a first step effluent having a BOD of 400 mg / liter was obtained. Further, as a result of treating the effluent of the first step with the activated sludge treatment apparatus (aeration tank 40 liters, sedimentation tank 15 liters) of the second step by operating at a BOD volume load of 1 kg / m 3 · day, BOD = 4
A second step effluent of 0 mg / l was obtained. Table 1 shows the processing results.

【0019】[0019]

【表1】 [Table 1]

【0020】実施例1 図1の装置を用いて、第1工程である1槽式流動床式生
物処理装置(槽容積10リットル)に対して、食品系有
機排水(BOD=1000mg/リットル)を、BOD
容積負荷10kg/m3 ・日で運転して処理した。な
お、生物担体としては、ポリウレタン製の担体を、処理
水槽の槽容積に対して30%入れた。その結果、BOD
=400mg/リットルの第1工程流出水が得られた。
さらに、第1工程流出水を第2工程である活性汚泥処理
装置(曝気槽40リットル、沈殿槽15リットル)に対
して、BOD容積負荷1kg/m3 ・日で運転して処理
した結果、BOD=40mg/リットルの第2工程流出
水が得られた。処理結果を第2表に示す。以上の処理を
実施した結果、従来の2段活性汚泥処理法(比較例1)
に比べて、槽容積が19%小さい槽で同等以上の処理能
力が得られた。
EXAMPLE 1 Using the apparatus shown in FIG. 1, a food-based organic wastewater (BOD = 1000 mg / liter) was fed to the first step, a one-tank type fluidized-bed biological treatment apparatus (tank volume: 10 liters). , BOD
The treatment was performed by operating at a volume load of 10 kg / m 3 · day. In addition, as a biological carrier, a carrier made of polyurethane was added at 30% with respect to the tank volume of the treatment water tank. As a result, BOD
= 400 mg / litre first stage effluent was obtained.
Further, the effluent from the first step was treated in an activated sludge treatment apparatus (aeration tank 40 liters, sedimentation tank 15 liters) in the second step by operating at a BOD volume load of 1 kg / m 3 · day. = 40 mg / l of the second step effluent was obtained. Table 2 shows the processing results. As a result of performing the above treatment, the conventional two-stage activated sludge treatment method (Comparative Example 1)
In comparison with the above, a processing capacity equal to or higher than that of a tank having a tank volume 19% smaller was obtained.

【0021】[0021]

【表2】 [Table 2]

【0022】実施例2 図2の装置を用いて、各処理水槽を同一容積(第1槽1
0リットル)となるように区切った、2槽式流動床式生
物処理装置(第1工程)の第1槽目に対して、食品系有
機排水(BOD=1000mg/リットル)を、BOD
容積負荷10kg/m3 ・日で運転し、第2槽目に対し
て第1槽目流出水(BOD=100mg/リットル)
を、BOD容積負荷4kg/m3 ・日で運転して処理し
た。なお、生物担体としては、ポリウレタン製の担体
を、各処理水槽の槽容積に対して30%充填した。その
結果、BOD=40mg/リットルの第1工程流出水が
得られた。さらに、同第1工程流出水を第2工程である
活性汚泥処理装置(曝気槽4リットル、沈殿槽15リッ
トル)に対して、BOD容積負荷1kg/m3 ・日で運
転して処理した結果、BOD=4mg/リットルの第2
工程流出水が得られた。結果を第3表に示す。
Example 2 Using the apparatus shown in FIG. 2, each of the treated water tanks had the same volume (the first tank 1).
0 liter), the food-based organic wastewater (BOD = 1000 mg / liter) was added to the first tank of the two-tank fluidized-bed type biological treatment apparatus (first step).
Operated at a volume load of 10 kg / m 3 · day, effluent from the first tank against the second tank (BOD = 100 mg / liter)
Was treated with a BOD volume load of 4 kg / m 3 · day. In addition, as a biological carrier, a carrier made of polyurethane was filled by 30% with respect to the tank volume of each treatment water tank. As a result, a first step effluent having a BOD of 40 mg / liter was obtained. Further, as a result of operating the effluent of the first step in the activated sludge treatment apparatus (aeration tank 4 liters, sedimentation tank 15 liters) of the second step by operating at a BOD volume load of 1 kg / m 3 · day, BOD = second of 4 mg / liter
Process effluent was obtained. The results are shown in Table 3.

【0023】[0023]

【表3】 [Table 3]

【0024】以上の処理を実施した結果、槽容積を従来
の2段活性汚泥処理法(比較例1)に比べて51%、1
槽式流動床式生物処理法と活性汚泥処理法の組み合わせ
による2段生物学的処理装置(実施例1)に比べて、4
0%小さい槽で同等以上の処理能力が得られた。
As a result of the above treatment, the tank volume was reduced by 51% and 1% compared to the conventional two-stage activated sludge treatment method (Comparative Example 1).
Compared to a two-stage biological treatment apparatus (Example 1) using a combination of a tank-type fluidized-bed biological treatment method and an activated sludge treatment method,
Comparable or better throughput was obtained with a 0% smaller tank.

【0025】実施例3 図3の装置を用いて、各処理水槽の容積を第1槽目10
リットル、第2槽目4リットル、第3槽目1.6リット
ル、第4槽目0.64リットルとなるように区切った、
4槽式流動床生物処理装置(第1工程)に対して、食品
系有機排水(BOD=1000mg/リットル)を第1
槽より流入させて、各処理水槽の容積負荷を10kg/
3 ・日で運転して処理した。なお、生物担体として
は、ポリウレタン製の担体を、各処理水槽の槽容積に対
して30%入れた。その結果、BOD=26mg/リッ
トルの第1工程流出水が得られた。さらに、同第1工程
流出水を第2工程である活性汚泥処理装置(曝気槽2.
56リットル、沈殿槽15リットル)に対して、BOD
容積負荷1kg/m3 ・日で運転して処理した結果、B
OD=2.6mg/リットルの第2工程流出水が得られ
た。処理結果を第4表に示す。
Example 3 Using the apparatus shown in FIG.
Liters, 4 liters in the second tank, 1.6 liters in the third tank, and 0.64 liters in the fourth tank.
Food-based organic wastewater (BOD = 1000 mg / liter) was fed into the 4-tank fluidized-bed biological treatment device (first step).
The volume load of each treated water tank was 10 kg /
The operation was performed in m 3 days. In addition, as a biological carrier, a carrier made of polyurethane was added in an amount of 30% based on the tank volume of each treatment water tank. As a result, a first step effluent having a BOD of 26 mg / liter was obtained. Further, the effluent from the first step is subjected to an activated sludge treatment apparatus (aeration tank 2.
56 liters, settling tank 15 liters)
As a result of operating at a volume load of 1 kg / m 3 · day, B
A second step effluent with an OD = 2.6 mg / l was obtained. Table 4 shows the processing results.

【0026】[0026]

【表4】 [Table 4]

【0027】以上の処理を実施した結果、槽容積を従来
の2段活性汚泥処理法(比較例1)に比べて58%、1
槽式流動床式生物処理法と活性汚泥処理法の組み合わせ
による2段生物学的処理装置(実施例1)に比べて48
%、さらに2槽式流動床式生物処理法と活性汚泥処理法
の組み合わせによる2段生物学的処理装置(実施例2)
に比べて、13%小さい槽で同等以上の処理能力が得ら
れた。
As a result of the above treatment, the tank volume was reduced by 58% and 1% compared to the conventional two-stage activated sludge treatment method (Comparative Example 1).
48 compared to a two-stage biological treatment apparatus (Example 1) using a combination of a tank type fluidized bed biological treatment method and an activated sludge treatment method.
%, And a two-stage biological treatment apparatus using a combination of a two-tank fluidized-bed biological treatment method and an activated sludge treatment method (Example 2)
As compared with the above, the same or higher processing capacity was obtained in a tank 13% smaller.

【0028】[0028]

【発明の効果】本発明によれば、高濃度有機性排水を流
動床式生物処理法により処理する第1工程と、第1工程
流出水を活性汚泥処理法により処理する第2工程とを組
み合わせた2相生物学的処理法により、全処理工程の処
理スペースの大幅なコンパクト化と省エネルギー化が実
現できる。
According to the present invention, the first step of treating high-concentration organic wastewater by the fluidized bed biological treatment method and the second step of treating the effluent of the first step by the activated sludge treatment method are combined. By the two-phase biological treatment method, the processing space of all treatment steps can be significantly reduced in size and energy can be saved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1に用いられる処理装置の概略
構成図である。
FIG. 1 is a schematic configuration diagram of a processing apparatus used in a first embodiment of the present invention.

【図2】本発明の実施例2に用いられる処理装置の概略
構成図である。
FIG. 2 is a schematic configuration diagram of a processing apparatus used in Embodiment 2 of the present invention.

【図3】本発明の実施例3に用いられる処理装置の概略
構成図である。
FIG. 3 is a schematic configuration diagram of a processing apparatus used in Embodiment 3 of the present invention.

【図4】図3の4槽式流動床式生物処理槽の一変形列の
概略説明図である。
FIG. 4 is a schematic explanatory view of a modified row of the 4-tank fluidized-bed biological treatment tank of FIG. 3;

【図5】従来の2段活性汚泥処理装置の概略構成図であ
る。
FIG. 5 is a schematic configuration diagram of a conventional two-stage activated sludge treatment apparatus.

【符号の説明】[Explanation of symbols]

1 原水 2 流動床式生物処理槽 2A 第1槽 2B 第2槽 2C 第3槽 2D 第4槽 3 担体 4 空気 5 活性汚泥混合液 6 曝気槽 7 活性汚泥混合液 8 沈殿槽 9 処理水 10 返送汚泥 21、26 曝気槽 22、27 活性汚泥混合液 23、28 沈殿槽 24 上澄水 25、30 返送汚泥 29 処理水 Reference Signs List 1 raw water 2 fluidized bed biological treatment tank 2A first tank 2B second tank 2C third tank 2D fourth tank 3 carrier 4 air 5 activated sludge mixed liquid 6 aeration tank 7 activated sludge mixed liquid 8 sedimentation tank 9 treated water 10 return Sludge 21, 26 Aeration tank 22, 27 Activated sludge mixture 23, 28 Settling tank 24 Supernatant water 25, 30 Returned sludge 29 Treated water

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村中 雄一 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 藤田 和雄 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 川上 彰 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 府中 裕一 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 4D003 AA12 AB02 BA02 CA03 CA07 EA01 EA19 EA23 EA30 4D028 AB00 BB02 BB06 BC13 BC14 BC18 BD06 BD16  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yuichi Muranaka 11-1 Haneda Asahimachi, Ota-ku, Tokyo Inside Ebara Works Co., Ltd. (72) Inventor Kazuo Fujita 111-1 Haneda Asahi-cho, Ota-ku, Tokyo Stock (72) Inventor Akira Kawakami 11-1 Haneda Asahimachi, Ota-ku, Tokyo Inside Ebara Corporation (72) Inventor Yuichi Fuchu 11-1 Haneda Asahi-cho, Ota-ku, Tokyo Inside Ebara Corporation F term (reference) 4D003 AA12 AB02 BA02 CA03 CA07 EA01 EA19 EA23 EA30 4D028 AB00 BB02 BB06 BC13 BC14 BC18 BD06 BD16

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高濃度有機性排水を流動床式生物処理法
により処理する第1工程と、第1工程流出水を直接活性
汚泥処理法により処理し、その処理水を固液分離により
汚泥を分離する第2工程とを組み合わせてなることを特
徴とする高濃度有機性排水の処理方法。
1. A first step in which high-concentration organic wastewater is treated by a fluidized-bed biological treatment method, and the effluent in the first step is directly treated by an activated sludge treatment method, and the treated water is subjected to solid-liquid separation to form sludge. A method for treating high-concentration organic wastewater, comprising combining a second step of separation.
【請求項2】 第1工程である流動床式生物処理法の処
理水槽を多槽に区切り、後段側の負荷を前段よりも低く
とることによって処理を安定化させることを特徴とする
請求項1記載の高濃度有機性排水の処理方法。
2. The treatment step in the fluidized bed biological treatment method, which is the first step, is divided into multiple tanks, and the treatment is stabilized by reducing the load on the subsequent stage from that of the preceding stage. The method for treating high-concentration organic wastewater according to the above.
【請求項3】 第1工程である流動床式生物処理法の処
理水槽を多槽に区切り、各槽の区切り方を一定の比率で
後段側を小さくすることにより、各槽におけるBOD負
荷をほぼ同一に設定して、処理効率を向上させることを
特徴とする請求項1記載の高濃度有機性排水の処理方
法。
3. The BOD load in each tank is substantially reduced by dividing a treatment water tank of the fluidized bed biological treatment method, which is the first step, into multiple tanks and dividing each tank by a fixed ratio at a later stage. 2. The method for treating high-concentration organic wastewater according to claim 1, wherein the treatment efficiency is improved by setting the same.
【請求項4】 流動床式生物処理槽からなる第1工程
と、前記流動式生物処理槽からの流出水を導入する活性
汚泥法処理槽及び固液分離装置とからなる第2工程とを
組み合わせたことを特徴とする高濃度有機性排水の処理
装置。
4. A combination of a first step comprising a fluidized bed biological treatment tank, and a second step comprising an activated sludge treatment tank for introducing effluent from the fluidized biological treatment tank and a solid-liquid separation device. A high-concentration organic wastewater treatment device characterized by the following:
JP2001070470A 2001-03-13 2001-03-13 High concentration organic wastewater treatment method and equipment Expired - Fee Related JP3841394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001070470A JP3841394B2 (en) 2001-03-13 2001-03-13 High concentration organic wastewater treatment method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001070470A JP3841394B2 (en) 2001-03-13 2001-03-13 High concentration organic wastewater treatment method and equipment

Publications (2)

Publication Number Publication Date
JP2002263672A true JP2002263672A (en) 2002-09-17
JP3841394B2 JP3841394B2 (en) 2006-11-01

Family

ID=18928341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001070470A Expired - Fee Related JP3841394B2 (en) 2001-03-13 2001-03-13 High concentration organic wastewater treatment method and equipment

Country Status (1)

Country Link
JP (1) JP3841394B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082024A (en) * 2004-09-16 2006-03-30 Kurita Water Ind Ltd Biological treatment equipment
WO2007029509A1 (en) * 2005-09-09 2007-03-15 Net Co., Ltd. Method of biological treatment for organic sewage and apparatus therefor
JP2007105580A (en) * 2005-10-12 2007-04-26 Kurita Water Ind Ltd Biological treatment method and apparatus for organic wastewater
JP2007196105A (en) * 2006-01-25 2007-08-09 Maezawa Kasei Ind Co Ltd Wastewater treatment equipment such as dye wastewater
JP2008142632A (en) * 2006-12-11 2008-06-26 Unitika Ltd Method for treating waste water biologically
JP2009090161A (en) * 2007-10-04 2009-04-30 N Ii T Kk Wastewater treatment apparatus and method
JP2013081891A (en) * 2011-10-07 2013-05-09 Mitsubishi Heavy Industries Mechatronics Systems Ltd Wastewater treatment apparatus and wastewater treatment method
CN106430866A (en) * 2016-12-22 2017-02-22 上海复旦水务工程技术有限公司 Synthetic rubber processing waste water treatment device and method
US10207942B2 (en) 2013-12-24 2019-02-19 Mitsubishi Heavy Industries Engineering, Ltd. Seawater pretreatment device
CN112912345A (en) * 2018-10-17 2021-06-04 荏原实业株式会社 Biological treatment device and biological treatment method for organic wastewater

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082024A (en) * 2004-09-16 2006-03-30 Kurita Water Ind Ltd Biological treatment equipment
WO2007029509A1 (en) * 2005-09-09 2007-03-15 Net Co., Ltd. Method of biological treatment for organic sewage and apparatus therefor
JP2007105580A (en) * 2005-10-12 2007-04-26 Kurita Water Ind Ltd Biological treatment method and apparatus for organic wastewater
JP2007196105A (en) * 2006-01-25 2007-08-09 Maezawa Kasei Ind Co Ltd Wastewater treatment equipment such as dye wastewater
JP2008142632A (en) * 2006-12-11 2008-06-26 Unitika Ltd Method for treating waste water biologically
JP2009090161A (en) * 2007-10-04 2009-04-30 N Ii T Kk Wastewater treatment apparatus and method
JP2013081891A (en) * 2011-10-07 2013-05-09 Mitsubishi Heavy Industries Mechatronics Systems Ltd Wastewater treatment apparatus and wastewater treatment method
US10207942B2 (en) 2013-12-24 2019-02-19 Mitsubishi Heavy Industries Engineering, Ltd. Seawater pretreatment device
CN106430866A (en) * 2016-12-22 2017-02-22 上海复旦水务工程技术有限公司 Synthetic rubber processing waste water treatment device and method
CN112912345A (en) * 2018-10-17 2021-06-04 荏原实业株式会社 Biological treatment device and biological treatment method for organic wastewater
CN112912345B (en) * 2018-10-17 2024-04-12 荏原实业株式会社 Biological treatment device and biological treatment method for organic wastewater

Also Published As

Publication number Publication date
JP3841394B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
JP3358066B2 (en) Wastewater treatment method and plant
KR101274721B1 (en) Method for biological disposal of organic wastewater and biological disposal apparatus
JPS637839B2 (en)
CN114291964B (en) Sewage treatment system and method for denitrification and phosphorus recovery
CN101525207A (en) Integrated pre-denitrification and denitrogenation biological filter sewerage treatment process
CN112194251A (en) Magnetized MBBR sewage treatment method and system
JP2002263672A (en) Method and facility for treating high concentration organic waste water
CN104193005A (en) Small fluidized bed sewage treatment system and operating method thereof
CN204185298U (en) A kind of small-sized fluidized bed Sewage treatment systems
KR101421800B1 (en) Compact Energy-saving wastewater treatment system hybridizing sieving-membrane bioreactor and highly thickened sludge anaerobic digester by biosorption
CN215102679U (en) Sewage treatment system that standard transformation was carried in town sewage factory
CN111517586B (en) Device and process for treating low-carbon-nitrogen-ratio sewage based on short-cut denitrification
CN104743751A (en) A/O (anaerobic/aerobiotic) sewage treatment process device and technique thereof
CN111995182A (en) Resourceful treatment system and method for using potato starch wastewater as carbon source for sewage plant supply
CN214244120U (en) Sewage biological treatment strengthening system
JP3797554B2 (en) Organic wastewater treatment method and equipment
CN204661495U (en) A/O waste water processes equipment
KR20020075046A (en) The treating method of high concentration organic waste water
JP3843540B2 (en) Biological treatment method of effluent containing organic solids
CN202754840U (en) Biological aerated filters in two-stage serial connection
CN207405031U (en) A kind of high-concentration organic wastewater treatment system
JP3815977B2 (en) Treatment method for wastewater containing high concentration nitrogen
KR100342106B1 (en) Waste water treatment system of cross-flow anaerobic filter reactor by using recycled tire media and method using it
JP2001212593A (en) Post-treatment method for ascending current anaerobic treatment apparatus
CN217173511U (en) Novel biological treatment device for aircraft paint removal wastewater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050520

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3841394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees