JP2002261302A - Thin-film crystalline Si solar cell - Google Patents
Thin-film crystalline Si solar cellInfo
- Publication number
- JP2002261302A JP2002261302A JP2001053290A JP2001053290A JP2002261302A JP 2002261302 A JP2002261302 A JP 2002261302A JP 2001053290 A JP2001053290 A JP 2001053290A JP 2001053290 A JP2001053290 A JP 2001053290A JP 2002261302 A JP2002261302 A JP 2002261302A
- Authority
- JP
- Japan
- Prior art keywords
- metal layer
- film
- solar cell
- metal
- thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/40—Optical elements or arrangements
- H10F77/42—Optical elements or arrangements directly associated or integrated with photovoltaic cells, e.g. light-reflecting means or light-concentrating means
- H10F77/48—Back surface reflectors [BSR]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Landscapes
- Photovoltaic Devices (AREA)
Abstract
(57)【要約】
【課題】 高反射率特性を有し、接着性及び金属拡散防
止に優れた裏電極を有した高効率かつ高信頼性の薄膜結
晶質Si太陽電池を形成することを目的とする。
【解決手段】 ガラス基板上に、裏電極となる金属層、
光活性層部を結晶質Siで構成した半導体接合を有する
半導体膜、表透明導電膜、表電極となる金属を主体とす
る集電極がこの順に積層された薄膜結晶質Si太陽電池
において、前記裏電極金属層が、基板側から、酸化物を
形成しやすい第1の金属層、Agを主成分とする第2の
金属層、シリサイドを形成しうる第3の金属層の順に構
成された3層構造からなっており、この第1の金属層の
厚さを0.5〜200nm、第2の金属層の厚さを20
〜1000nm、第3の金属層の厚さを0.2〜10n
mの範囲とした。
PROBLEM TO BE SOLVED: To form a highly efficient and highly reliable thin film crystalline Si solar cell having a back electrode having high reflectance characteristics, excellent adhesiveness and excellent metal diffusion prevention. And SOLUTION: A metal layer to be a back electrode on a glass substrate,
In a thin-film crystalline Si solar cell in which a semiconductor film having a semiconductor junction in which a photoactive layer portion is made of crystalline Si, a front transparent conductive film, and a collector mainly composed of a metal serving as a front electrode are stacked in this order, The three electrode metal layers are formed in this order from the substrate side: a first metal layer that easily forms an oxide, a second metal layer mainly composed of Ag, and a third metal layer that can form a silicide. The first metal layer has a thickness of 0.5 to 200 nm, and the second metal layer has a thickness of 20 to 200 nm.
10001000 nm, the thickness of the third metal layer is 0.2〜1010 n
m.
Description
【0001】[0001]
【発明の属する技術分野】本発明は薄膜結晶質Si太陽
電池に関する。The present invention relates to a thin-film crystalline Si solar cell.
【0002】[0002]
【従来技術とその課題】薄膜太陽電池の裏面電極につい
ては、高い光反射特性を有し、Si膜中への金属成分の
拡散が充分に抑えられることが高効率化のための必要条
件であるが、特に光入射面が基板側とは反対側にあるサ
ブストレート型の薄膜太陽電池においては、高光反射率
特性と金属成分拡散防止特性に加えて、基板及び半導体
膜の両者に対して強い接着力を有することが、高い信頼
性を得るために必要となる。2. Description of the Related Art It is a necessary condition for high efficiency that a back electrode of a thin film solar cell has high light reflection characteristics and sufficiently suppresses diffusion of a metal component into a Si film. However, especially in a substrate type thin film solar cell in which the light incident surface is on the opposite side to the substrate side, in addition to the high light reflectance characteristic and the metal component diffusion preventing characteristic, strong adhesion to both the substrate and the semiconductor film. Having power is necessary to obtain high reliability.
【0003】Si半導体を光電変換層とした薄膜Si太
陽電池の裏電極金属材料としては、Si媒質中でも高い
光反射率特性が得られるAgが特に有効である。ところ
が、AgはSiとの接着力が弱いため、素子形成プロセ
ス中や、製品化後の使用温湿度環境によって、Ag/S
i界面での剥離が生じやすく、また、Si膜中への拡散
が生じやすいためSi膜品質の低下による素子特性の低
下を招いてしまうという課題があった。As a back electrode metal material of a thin film Si solar cell having a Si semiconductor as a photoelectric conversion layer, Ag, which can provide high light reflectance characteristics even in a Si medium, is particularly effective. However, since Ag has a weak adhesive force with Si, the Ag / S ratio may vary depending on the temperature and humidity environment during the element formation process and after commercialization.
Separation at the i interface is likely to occur, and diffusion into the Si film is liable to occur, resulting in a problem that the quality of the Si film is deteriorated and the device characteristics are deteriorated.
【0004】これらの課題に対して、これまではAg/
Si界面に接着層兼拡散防止層を設けることで問題が解
決されてきた。この接着層兼拡散防止層の具体例として
は、ITOなどの酸化物透明導電膜を用いる例が特公昭
60−41878号に、シリサイドを用いる例が特公平
5−64868号、特公平6−5770号、特開平3−
68176号に、Ag以外の金属を用いる例が特許29
11272号、特開平5−129642号に示されてい
る。ここで、接着層兼拡散防止層にシリサイドやAg以
外の金属を用いる場合は、その膜厚を極薄くすることで
この接着層兼拡散防止層での光吸収を抑制し、Agの持
つ高光反射率特性を実質的に維持することができる。In response to these problems, Ag /
The problem has been solved by providing an adhesive layer and a diffusion prevention layer at the Si interface. Specific examples of the adhesive layer and the diffusion preventing layer include an example using an oxide transparent conductive film such as ITO in Japanese Patent Publication No. 60-41878, and an example using a silicide in Japanese Patent Publication Nos. 5-64868 and 6-5770. No., JP-A-3-
Japanese Patent No. 68176 discloses an example in which a metal other than Ag is used.
11272 and JP-A-5-129624. Here, when a metal other than silicide or Ag is used for the adhesive / diffusion preventing layer, light absorption by the adhesive / diffusion preventing layer is suppressed by making the thickness extremely thin, and the high light reflection of Ag The rate characteristics can be substantially maintained.
【0005】しかしながら、これらの先行技術は、Si
半導体として主にアモルファスシリコンを用いた、いず
れもガラスなどの透光性基板側を光入射側としたスーパ
ーストレート型素子についてのものであり、裏電極と基
板との接着性についても問題となるサブストレート型素
子が抱える課題の解決までには及ばないものであった。[0005] However, these prior arts do not use Si.
This is for a super-straight type device that mainly uses amorphous silicon as a semiconductor and has a light-transmitting substrate side such as glass as the light incident side. It was not enough to solve the problems of straight type devices.
【0006】本発明は、このような従来技術の問題点に
鑑みてなされたものであり、基板としてガラスを用い、
光入射面が基板側とは反対側にあるサブストレート型素
子における上述のような課題を解決することを目的とす
るものである。[0006] The present invention has been made in view of such problems of the prior art, and uses glass as a substrate.
It is an object of the present invention to solve the above-described problems in a substrate-type element having a light incident surface opposite to a substrate.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る薄膜結晶質Si太陽電池では、ガラ
ス基板上に、裏電極となる金属層、光活性層部を結晶質
Siで構成した半導体接合を有する半導体膜、表透明導
電膜、表電極となる金属を主体とする集電極がこの順に
積層された薄膜結晶質Si太陽電池において、前記裏電
極金属層が、基板側から、酸化物を形成しやすい第1の
金属層、Agを主成分とする第2の金属層、シリサイド
を形成しうる第3の金属層の順に構成された3層構造か
らなっており、この第1の金属層の厚さを0.5〜20
0nm、第2の金属層の厚さを20〜1000nm、第
3の金属層の厚さを0.2〜10nmの範囲としたこと
を特徴とする。According to a first aspect of the present invention, there is provided a thin-film crystalline Si solar cell according to the first aspect, wherein a metal layer serving as a back electrode and a photoactive layer are formed on a glass substrate. In a thin-film crystalline Si solar cell in which a semiconductor film having a semiconductor junction, a front transparent conductive film, and a collector mainly composed of a metal serving as a front electrode are stacked in this order, the back electrode metal layer is formed from the substrate side. , A first metal layer on which an oxide is easily formed, a second metal layer containing Ag as a main component, and a third metal layer on which a silicide can be formed in this order. 0.5 to 20 metal layers
0 nm, the thickness of the second metal layer is in the range of 20 to 1000 nm, and the thickness of the third metal layer is in the range of 0.2 to 10 nm.
【0008】上記薄膜結晶質Si太陽電池では、前記第
1の金属層がTi、Al、Cr、Mg、Zr、Hf、N
dのうち、少なくともひとつを主成分とする材料からな
っていることが望ましい。In the above thin film crystalline Si solar cell, the first metal layer is made of Ti, Al, Cr, Mg, Zr, Hf, N
It is desirable that the material be made of a material containing at least one of d as a main component.
【0009】上記薄膜結晶質Si太陽電池では、前記第
3の金属層が、Ti、V、Cr、Fe、Co、Ni、Z
r、Nb、Mo、Ru、Rh、Pd、Hf、Ta、W、
Os、Ir、Ptのうち、少なくともひとつを主成分と
することが望ましい。In the above thin-film crystalline Si solar cell, the third metal layer is made of Ti, V, Cr, Fe, Co, Ni, Z
r, Nb, Mo, Ru, Rh, Pd, Hf, Ta, W,
It is desirable that at least one of Os, Ir, and Pt be the main component.
【0010】上記薄膜結晶質Si太陽電池では、前記ガ
ラス基板の裏電極金属層と接する面が凹凸形状を有して
おり、その凹凸形状の横方向の平均的凹凸ピッチが0.
01〜5μm、縦方向の平均的凹凸高低差が0.01〜
1μmの範囲にあることが望ましい。In the above-mentioned thin-film crystalline Si solar cell, the surface of the glass substrate in contact with the back electrode metal layer has an uneven shape, and the average uneven pitch in the horizontal direction of the uneven shape is 0.1 mm.
01 to 5 μm, the average vertical unevenness height difference is 0.01 to
It is desirable to be in the range of 1 μm.
【0011】上記のように構成することにより、高反射
率特性を有し、接着性及び金属拡散防止に優れた裏電極
を有した高効率かつ高信頼性の薄膜結晶質Si太陽電池
を形成することができる。With the above-described structure, a highly efficient and highly reliable thin-film crystalline Si solar cell having a back electrode having high reflectance characteristics and excellent adhesion and metal diffusion prevention is formed. be able to.
【0012】[0012]
【発明の実施の形態】以下、本発明の実施形態を図1を
用いて説明する。ここで、図1において、1はガラス基
板、2は裏電極、21、22、23はそれぞれ裏電極2
を構成する第1の金属層、第2の金属層、第3の金属
層、3は光活性部を結晶質Siで構成した半導体接合を
有する半導体膜、4は表透明導電膜、5は表集電極であ
る。An embodiment of the present invention will be described below with reference to FIG. Here, in FIG. 1, 1 is a glass substrate, 2 is a back electrode, 21, 22, and 23 are back electrodes 2 respectively.
, A second metal layer, a third metal layer, 3 a semiconductor film having a semiconductor junction in which the photoactive portion is made of crystalline Si, 4 a front transparent conductive film, and 5 a table Collector electrode.
【0013】まず、ガラス基板1を用意する。このガラ
ス基板1の素子形成側表面は、より高い素子変換効率を
望む場合は必要に応じて凹凸形状に加工することができ
るが、もちろんこの加工を省略しても本件の目的である
高反射率かつ高信頼性の裏電極2を有した薄膜結晶質S
i太陽電池を形成することはできる。First, a glass substrate 1 is prepared. If a higher device conversion efficiency is desired, the surface of the glass substrate 1 on which the device is to be formed can be processed into an uneven shape if necessary. And crystalline thin film S having a highly reliable back electrode 2
i solar cells can be formed.
【0014】ガラス基板1の表面に凹凸形状を形成する
場合は、横方向の平均的凹凸ピッチについては0.01
〜5μmの範囲、縦方向の平均的高低差については0.
01〜1μmの範囲とし、より好ましくは、横方向の平
均的凹凸ピッチについては0.1〜2μmの範囲、縦方
向の平均的高低差については0.05〜0.5μmの範
囲とする。When forming an uneven shape on the surface of the glass substrate 1, the average uneven pitch in the horizontal direction is 0.01.
.About.5 .mu.m, and about an average height difference in the vertical direction.
The average pitch in the horizontal direction is 0.1-2 μm, and the average height difference in the vertical direction is 0.05-0.5 μm.
【0015】ここで、横方向ピッチが0.01μm以下
であると、後述する裏電極金属膜2を形成した際に裏電
極表面が実質的に平坦化されてしまい良好な光閉じ込め
効果が得られず、また、横方向ピッチが5μm以上であ
ると凹凸形状そのものが実質的に平坦に近い形状となる
ため良好な光閉じ込め効果が得られない。一方、縦方向
の平均的高低差が0.01μm以下であると、後述する
裏電極金属膜2を形成した際に裏電極表面が実質的に平
坦化されてしまい良好な光閉じ込め効果が得られず、ま
た、縦方向の平均的高低差を1μm以上とすることはコ
スト的に非現実的である。Here, if the lateral pitch is 0.01 μm or less, the back electrode surface is substantially flattened when the back electrode metal film 2 described later is formed, and a good light confinement effect can be obtained. If the lateral pitch is 5 μm or more, the concavo-convex shape itself becomes substantially flat, so that a good light confinement effect cannot be obtained. On the other hand, if the average height difference in the vertical direction is 0.01 μm or less, the back electrode surface is substantially flattened when the back electrode metal film 2 described later is formed, and a good light confinement effect can be obtained. In addition, it is not realistic in terms of cost to make the average height difference in the vertical direction 1 μm or more.
【0016】なお、この凹凸形状の形成にあたっては、
サンドブラスト法、ウェットエッチング法、ドライエッ
チング法など様々な公知の技術を用いることができる
が、特にドライエッチング法の一種であるRIE法を用
いれば、ガス種、ガス圧等のエッチング条件によって、
所望の微細かつランダムな凹凸形状を得られる。In forming the uneven shape,
Various known techniques such as a sand blast method, a wet etching method, and a dry etching method can be used.In particular, if an RIE method, which is a kind of the dry etching method, is used, depending on etching conditions such as a gas type and a gas pressure,
A desired fine and random uneven shape can be obtained.
【0017】次に、裏電極2となる金属層を形成する。
この金属層は、基板側から順に、第1の金属層21、第
2の金属層22、第3の金属層23の3層構造からな
る。Next, a metal layer to be the back electrode 2 is formed.
This metal layer has a three-layer structure of a first metal layer 21, a second metal layer 22, and a third metal layer 23 in this order from the substrate side.
【0018】第1の金属層21の材料としては、ガラス
基板と第2の金属層22の両者に対して良好な接着強度
が得られるものを選ぶ。具体的には、酸化物を形成しや
すい、Ti、Al、Cr、Mg、Zr、Hf、Ndのう
ち、少なくともひとつを主成分とする材料とする。この
ようにすることで、第1の金属層21は、酸化物である
ガラス基板1とは主に酸素とのイオン結合により強固に
接着することができ、一方、第2の金属層22とは金属
結合により強固に接着することができる。製膜方法とし
ては、蒸着法、スパッタリング法、イオンプレーティン
グ法などの公知の技術を使用できる。膜厚は、0.5〜
200nmの範囲とし、より好ましくは2〜100nm
の範囲とする。ここで、膜厚が0.5nm以下では充分
な接着強度は得られず、200nm以上では特に接着強
度が増大するということもなくコスト的にメリットがな
い。As the material of the first metal layer 21, a material that can provide good adhesive strength to both the glass substrate and the second metal layer 22 is selected. Specifically, it is a material that easily forms an oxide and is mainly composed of at least one of Ti, Al, Cr, Mg, Zr, Hf, and Nd. By doing so, the first metal layer 21 can be firmly bonded to the glass substrate 1, which is an oxide, mainly by an ionic bond with oxygen, while the second metal layer 22 is Strong bonding can be achieved by metal bonding. Known techniques such as a vapor deposition method, a sputtering method, and an ion plating method can be used as a film forming method. The film thickness is 0.5 to
200 nm, more preferably 2 to 100 nm
Range. Here, if the film thickness is less than 0.5 nm, sufficient adhesive strength cannot be obtained, and if it is more than 200 nm, there is no merit in terms of cost without particularly increasing the adhesive strength.
【0019】第2の金属層22の材料としては、光反射
率特性の高いAgを主成分とする材料を選ぶ。製膜方法
としては、蒸着法、スパッタリング法、イオンプレーテ
ィング法などの公知の技術を使用できる。膜厚は、20
〜1000nmの範囲とし、より好ましくは50〜50
0nmの範囲とする。ここで、膜厚が20nm以下であ
ると光透過が無視しえなくなり良好な反射特性が失わ
れ、1000nm以上ではコスト的にメリットがない。As a material of the second metal layer 22, a material mainly composed of Ag having a high light reflectance characteristic is selected. Known techniques such as a vapor deposition method, a sputtering method, and an ion plating method can be used as a film forming method. The film thickness is 20
To 1000 nm, more preferably 50 to 50 nm.
The range is 0 nm. Here, when the film thickness is 20 nm or less, light transmission cannot be ignored, and good reflection characteristics are lost. When the film thickness is 1000 nm or more, there is no cost advantage.
【0020】第3の金属層23の材料としては、第2の
金属層22とSi半導体膜3の両者に対して良好な接着
強度が得られ、かつ第2の金属層22の成分がSi半導
体膜3中へ拡散するのを充分に抑制できるものを選ぶ。
具体的には、シリサイドを形成できるTi、V、Cr、
Fe、Co、Ni、Zr、Nb、Mo、Ru、Rh、P
d、Hf、Ta、W、Os、Ir、Ptのうち、少なく
ともひとつを主成分とする材料とする。このようにする
ことで、第3の金属層23は、第2の金属層22とは金
属結合によって強固に接着することができ、一方、Si
半導体膜3とはシリサイド化合物を形成できる能力に起
因して強固に接着することができ、また、第2の金属層
22の成分のSi半導体膜3への拡散を充分に抑制する
ことができる。製膜方法としては、蒸着法、スパッタリ
ング法、イオンプレーティング法などの公知の技術を使
用できる。膜厚は、0.2〜10nmの範囲とし、より
好ましくは0.4〜5nmの範囲とする。ここで、膜厚
が0.2nm以下では充分な接着強度と金属成分拡散防
止効果が得られず、5nm以上では第3の金属層23で
の光吸収が大きくなり、第2の金属層22の高反射率特
性を充分に生かすことができない。As a material of the third metal layer 23, a good adhesive strength is obtained for both the second metal layer 22 and the Si semiconductor film 3, and the component of the second metal layer 22 is a Si semiconductor. A material that can sufficiently suppress diffusion into the film 3 is selected.
Specifically, Ti, V, Cr, which can form silicide,
Fe, Co, Ni, Zr, Nb, Mo, Ru, Rh, P
A material mainly containing at least one of d, Hf, Ta, W, Os, Ir, and Pt is used. In this way, the third metal layer 23 can be firmly bonded to the second metal layer 22 by metal bonding, while
Due to the ability to form a silicide compound, the semiconductor film 3 can be firmly bonded to the semiconductor film 3, and the diffusion of the component of the second metal layer 22 into the Si semiconductor film 3 can be sufficiently suppressed. Known techniques such as a vapor deposition method, a sputtering method, and an ion plating method can be used as a film forming method. The thickness is in the range of 0.2 to 10 nm, more preferably in the range of 0.4 to 5 nm. Here, if the film thickness is less than 0.2 nm, sufficient adhesive strength and metal component diffusion preventing effect cannot be obtained. If the film thickness is more than 5 nm, light absorption in the third metal layer 23 increases, High reflectivity characteristics cannot be fully utilized.
【0021】次に、半導体接合を有した光電変換層とな
る半導体層3を形成する。この半導体層3は、基板側か
ら順に、下地層(不図示)、光活性層(不図示)、接合
形成層(不図示)からなる。Next, a semiconductor layer 3 serving as a photoelectric conversion layer having a semiconductor junction is formed. The semiconductor layer 3 includes a base layer (not shown), a photoactive layer (not shown), and a bonding layer (not shown) in this order from the substrate side.
【0022】下地層(不図示)としては、非単結晶Si
膜を、触媒CVD法やプラズマCVD法などの方法で形
成する。膜厚は、10〜500nm程度とする。ドーピ
ング元素濃度については1×1E18〜1E21ato
ms/cm3程度としてp+型(またはn+型)とする。
このとき、あるいはこれに続くプロセス中で第3の金属
層23とSi膜下地層(不図示)との界面にシリサイド
が形成されることがあっても、良好な接着特性と拡散防
止効果が維持されることには変わりがない。A non-single-crystal Si
The film is formed by a method such as a catalytic CVD method or a plasma CVD method. The film thickness is about 10 to 500 nm. Doping element concentration is 1 × 1E18 to 1E21ato
It is p + type (or n + type) at about ms / cm 3 .
At this time or during the subsequent process, even if silicide is formed at the interface between the third metal layer 23 and the Si film base layer (not shown), good adhesion properties and diffusion prevention effects are maintained. There is no difference in what is done.
【0023】光活性層(不図示)としては、結晶質Si
膜を、触媒CVD法やプラズマCVD法などの方法で形
成する。膜厚は、0.5〜10μm程度とする。なお、
導電型は、下地層(不図示)よりはドーピング濃度が低
い同じ導電型とするか、あるいは実質的なi型とする。As the photoactive layer (not shown), crystalline Si
The film is formed by a method such as a catalytic CVD method or a plasma CVD method. The thickness is about 0.5 to 10 μm. In addition,
The conductivity type is the same conductivity type with a lower doping concentration than the underlying layer (not shown) or substantially i-type.
【0024】接合形成層(不図示)としては、非単結晶
Si膜を、触媒CVD法やプラズマCVD法などの方法
で形成する。膜厚は5〜500nm程度とする。ドーピ
ング元素濃度は1×1E18〜1E21atoms/c
m3程度とし、前述した下地層(不図示)とは反対導電
型であるn+型(またはp+型)とする。これにより光活
性層中に有効な内蔵電界が形成され半導体接合が実現さ
れる。なお、接合特性をより改善するために光活性層
(不図示)と接合層(不図示)との間に実質的にi型の
非単結晶Si層(不図示)を挿入してもよい。このとき
挿入層の厚さは、結晶質Si層の場合は10〜500n
m程度、非晶質Siの場合は1〜20nm程度とする。As a bonding layer (not shown), a non-single-crystal Si film is formed by a method such as a catalytic CVD method or a plasma CVD method. The thickness is about 5 to 500 nm. Doping element concentration is 1 × 1E18 to 1E21 atoms / c
m 3, and an n + type (or p + type), which is a conductivity type opposite to that of the above-described underlayer (not shown). Thereby, an effective built-in electric field is formed in the photoactive layer, and a semiconductor junction is realized. In order to further improve the bonding characteristics, a substantially i-type non-single-crystal Si layer (not shown) may be inserted between the photoactive layer (not shown) and the bonding layer (not shown). At this time, the thickness of the insertion layer is 10 to 500 n in the case of a crystalline Si layer.
m, and about 1 to 20 nm in the case of amorphous Si.
【0025】次に、表透明導電膜4を形成する。透明導
電膜材料としては、SnO2、ITO、ZnOなど公知
の材料を用いることができる。製膜方法としては、蒸着
法、イオンプレーティング法、スパッタリング法など公
知の技術を用いることができる。このとき、膜厚は、反
射防止効果を得るために60〜100nm程度にする。Next, the front transparent conductive film 4 is formed. Known materials such as SnO 2 , ITO, and ZnO can be used as the transparent conductive film material. As a film forming method, a known technique such as a vapor deposition method, an ion plating method, and a sputtering method can be used. At this time, the film thickness is set to about 60 to 100 nm in order to obtain an antireflection effect.
【0026】最後に、表集電極5となる金属膜を形成す
る。金属膜材料としては、導電性に優れるAl、Agな
どを用いるのが望ましい。形成方法としては、蒸着法、
スパッタリング法、イオンプレーティング法、スクリー
ン印刷法などの公知の技術を使用できる。電極パターン
については、マスキング法、リフトオフ法などを用いて
所望のパターンに形成することができる。なお、表透明
導電膜4との接着力強化のためには、表透明導電膜4と
導電性に優れた前記金属膜との間に、Ti等の酸化物材
料との接着力に優れる金属材料を挿入すると効果的であ
る。Finally, a metal film to be the collecting electrode 5 is formed. As the metal film material, it is desirable to use Al, Ag, or the like having excellent conductivity. As a forming method, a vapor deposition method,
Known techniques such as a sputtering method, an ion plating method, and a screen printing method can be used. The electrode pattern can be formed into a desired pattern by using a masking method, a lift-off method, or the like. In order to enhance the adhesive strength between the front transparent conductive film 4 and the metal film having excellent conductivity, a metal material having excellent adhesive strength with an oxide material such as Ti is provided between the front transparent conductive film 4 and the metal film having excellent conductivity. Inserting is effective.
【0027】以上によって、高反射率特性を有し、基板
及び半導体膜との接着性に優れ、金属成分の半導体膜中
への拡散を充分に抑制できる裏電極構造を有した、高効
率かつ高信頼性の薄膜結晶質Si太陽電池を形成するこ
とができる。As described above, the back electrode structure having high reflectance characteristics, excellent adhesion to the substrate and the semiconductor film, and capable of sufficiently suppressing the diffusion of the metal component into the semiconductor film, has a high efficiency and high efficiency. A reliable thin-film crystalline Si solar cell can be formed.
【0028】[0028]
【発明の効果】本発明によれば、高い光反射特性を有
し、基板及び半導体膜との接着性に優れ、金属成分の半
導体膜中への拡散を充分に抑制できる裏電極構造を形成
できるので、高い変換効率を有し、信頼性に優れた薄膜
結晶質Si太陽電池を形成することができる。According to the present invention, it is possible to form a back electrode structure having high light reflection characteristics, excellent adhesion to a substrate and a semiconductor film, and capable of sufficiently suppressing diffusion of a metal component into the semiconductor film. Therefore, a thin-film crystalline Si solar cell having high conversion efficiency and excellent reliability can be formed.
【図1】本発明に係る薄膜結晶質Si太陽電池の一実施
形態を示す断面図である。FIG. 1 is a sectional view showing an embodiment of a thin-film crystalline Si solar cell according to the present invention.
1・・・ガラス基板、2・・・裏電極、21・・・裏電
極を構成する第1の金属層、22・・・裏電極を構成す
る第2の金属層、23・・・裏電極を構成する第3の金
属層、3・・・光活性層部を結晶質Siで構成した半導
体接合を有する半導体膜、4・・・表透明導電膜、5・
・・表集電極DESCRIPTION OF SYMBOLS 1 ... Glass substrate, 2 ... Back electrode, 21 ... 1st metal layer which comprises a back electrode, 22 ... 2nd metal layer which comprises a back electrode, 23 ... Back electrode 3 ... a semiconductor film having a semiconductor junction in which the photoactive layer portion is made of crystalline Si, 4 ... a transparent conductive film, 5 ...
..Table collecting electrodes
───────────────────────────────────────────────────── フロントページの続き (72)発明者 白間 英樹 滋賀県八日市市蛇溝町長谷野1166番地の6 京セラ株式会社滋賀八日市工場内 Fターム(参考) 5F051 AA04 CB14 CB15 DA03 DA04 FA01 FA03 FA04 FA06 FA15 FA23 GA03 GA14 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hideki Shirama 1166 No. 1 Haseno, Jabizo-cho, Yokaichi City, Shiga Prefecture F-term (reference) 5F051 AA04 CB14 CB15 DA03 DA04 FA06 FA15 5F051 AA04 CB14 CB15 DA03 FA23 GA03 GA14
Claims (4)
光活性層部を結晶質Siで構成した半導体接合を有する
半導体膜、表透明導電膜、表電極となる金属を主体とす
る集電極がこの順に積層された薄膜結晶質Si太陽電池
において、前記裏電極金属層が、基板側から、酸化物を
形成しやすい第1の金属層、Agを主成分とする第2の
金属層、シリサイドを形成しうる第3の金属層の順に構
成された3層構造からなっており、この第1の金属層の
厚さを0.5〜200nm、第2の金属層の厚さを20
〜1000nm、第3の金属層の厚さを0.2〜10n
mの範囲としたことを特徴とする薄膜結晶質Si太陽電
池。A metal layer serving as a back electrode on a glass substrate;
In a thin-film crystalline Si solar cell in which a semiconductor film having a semiconductor junction in which a photoactive layer portion is made of crystalline Si, a front transparent conductive film, and a collector mainly composed of a metal serving as a front electrode are stacked in this order, The three electrode metal layers are formed in this order from the substrate side: a first metal layer that easily forms an oxide, a second metal layer mainly composed of Ag, and a third metal layer that can form a silicide. The first metal layer has a thickness of 0.5 to 200 nm, and the second metal layer has a thickness of 20 to 200 nm.
10001000 nm, the thickness of the third metal layer is 0.2〜1010 n
m. A thin-film crystalline Si solar cell characterized by having a range of m.
Mg、Zr、Hf、Ndのうち、少なくともひとつを主
成分とする材料からなっていることを特徴とする請求項
1に記載の薄膜結晶質Si太陽電池。2. The method according to claim 1, wherein the first metal layer comprises Ti, Al, Cr,
2. The thin-film crystalline Si solar cell according to claim 1, comprising a material containing at least one of Mg, Zr, Hf, and Nd as a main component.
Fe、Co、Ni、Zr、Nb、Mo、Ru、Rh、P
d、Hf、Ta、W、Os、Ir、Ptのうち、少なく
ともひとつを主成分とすることを特徴とする請求項1に
記載の薄膜結晶質Si太陽電池。3. The method according to claim 2, wherein the third metal layer comprises Ti, V, Cr,
Fe, Co, Ni, Zr, Nb, Mo, Ru, Rh, P
The thin-film crystalline Si solar cell according to claim 1, wherein at least one of d, Hf, Ta, W, Os, Ir, and Pt is a main component.
面が凹凸形状を有しており、その凹凸形状の横方向の平
均的凹凸ピッチが0.01〜5μm、縦方向の平均的凹
凸高低差が0.01〜1μmの範囲にあることを特徴と
する請求項1に記載の薄膜結晶質Si太陽電池。4. A surface of the glass substrate in contact with the back electrode metal layer has an uneven shape, the average uneven pitch of the uneven shape in the horizontal direction is 0.01 to 5 μm, and the average uneven height in the vertical direction is high. 2. The thin-film crystalline Si solar cell according to claim 1, wherein the difference is in a range of 0.01 to 1 [mu] m.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001053290A JP2002261302A (en) | 2001-02-28 | 2001-02-28 | Thin-film crystalline Si solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001053290A JP2002261302A (en) | 2001-02-28 | 2001-02-28 | Thin-film crystalline Si solar cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002261302A true JP2002261302A (en) | 2002-09-13 |
Family
ID=18913771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001053290A Pending JP2002261302A (en) | 2001-02-28 | 2001-02-28 | Thin-film crystalline Si solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002261302A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102034888A (en) * | 2010-10-19 | 2011-04-27 | 中国科学院苏州纳米技术与纳米仿生研究所 | Thin film solar cell and preparation method thereof |
CN101556977B (en) * | 2008-04-11 | 2012-04-18 | 福建钧石能源有限公司 | Thin-film silicon photovoltaic device, manufacturing method thereof, back electrode, and photovoltaic module |
KR101228685B1 (en) * | 2011-06-13 | 2013-01-31 | 주식회사 포스코 | Substrate for ci(g)s solar cell and ci(g)s solar cell using the same |
KR101228666B1 (en) * | 2011-06-13 | 2013-01-31 | 주식회사 포스코 | Substrate with multi-layer bottom electrode for ci(g)s solar cell and ci(g)s solar cell using the same |
CN107492543A (en) * | 2016-06-09 | 2017-12-19 | 美格纳半导体有限公司 | Wafer level chip scale package and its manufacture method including power semiconductor |
CN111509072A (en) * | 2020-03-20 | 2020-08-07 | 中国科学院宁波材料技术与工程研究所 | Novel silicon solar cell with n-type back junction design and preparation method thereof |
CN115376899A (en) * | 2022-04-22 | 2022-11-22 | 重庆平创半导体研究院有限责任公司 | Method for reducing on-resistance through crystal back optimization |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61144885A (en) * | 1984-12-18 | 1986-07-02 | Kanegafuchi Chem Ind Co Ltd | Heatproof, thin film optoelectric transducer and production thereof |
JPS61278171A (en) * | 1985-06-04 | 1986-12-09 | Agency Of Ind Science & Technol | Thin film photoelectric conversion device |
JPH0368176A (en) * | 1989-08-08 | 1991-03-25 | Asahi Glass Co Ltd | Method for manufacturing amorphous silicon solar cells |
JPH05129642A (en) * | 1991-09-10 | 1993-05-25 | Sanyo Electric Co Ltd | Amorphous silicon solar cell and manufacture thereof |
JPH05198830A (en) * | 1992-06-12 | 1993-08-06 | Semiconductor Energy Lab Co Ltd | Method of manufacturing photoelectric transducer |
JPH0564868B2 (en) * | 1985-03-18 | 1993-09-16 | Kanegafuchi Chemical Ind | |
JPH05308148A (en) * | 1992-03-05 | 1993-11-19 | Tdk Corp | Solar cell |
JPH09199745A (en) * | 1995-11-13 | 1997-07-31 | Sharp Corp | Solar cell substrate and manufacturing method thereof, substrate processing apparatus, thin film solar cell and manufacturing method thereof |
JP2000208788A (en) * | 1999-01-12 | 2000-07-28 | Mitsubishi Heavy Ind Ltd | Amorphous silicon solar cell |
JP2000252497A (en) * | 1999-02-26 | 2000-09-14 | Kanegafuchi Chem Ind Co Ltd | Method for manufacturing thin-film photoelectric conversion device |
-
2001
- 2001-02-28 JP JP2001053290A patent/JP2002261302A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61144885A (en) * | 1984-12-18 | 1986-07-02 | Kanegafuchi Chem Ind Co Ltd | Heatproof, thin film optoelectric transducer and production thereof |
JPH065770B2 (en) * | 1984-12-18 | 1994-01-19 | 鐘淵化学工業株式会社 | Manufacturing method of heat-resistant thin film photoelectric conversion element |
JPH0564868B2 (en) * | 1985-03-18 | 1993-09-16 | Kanegafuchi Chemical Ind | |
JPS61278171A (en) * | 1985-06-04 | 1986-12-09 | Agency Of Ind Science & Technol | Thin film photoelectric conversion device |
JPH0368176A (en) * | 1989-08-08 | 1991-03-25 | Asahi Glass Co Ltd | Method for manufacturing amorphous silicon solar cells |
JPH05129642A (en) * | 1991-09-10 | 1993-05-25 | Sanyo Electric Co Ltd | Amorphous silicon solar cell and manufacture thereof |
JP2911272B2 (en) * | 1991-09-10 | 1999-06-23 | 三洋電機株式会社 | Amorphous silicon solar cell and manufacturing method thereof |
JPH05308148A (en) * | 1992-03-05 | 1993-11-19 | Tdk Corp | Solar cell |
JPH05198830A (en) * | 1992-06-12 | 1993-08-06 | Semiconductor Energy Lab Co Ltd | Method of manufacturing photoelectric transducer |
JPH09199745A (en) * | 1995-11-13 | 1997-07-31 | Sharp Corp | Solar cell substrate and manufacturing method thereof, substrate processing apparatus, thin film solar cell and manufacturing method thereof |
JP2000208788A (en) * | 1999-01-12 | 2000-07-28 | Mitsubishi Heavy Ind Ltd | Amorphous silicon solar cell |
JP2000252497A (en) * | 1999-02-26 | 2000-09-14 | Kanegafuchi Chem Ind Co Ltd | Method for manufacturing thin-film photoelectric conversion device |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101556977B (en) * | 2008-04-11 | 2012-04-18 | 福建钧石能源有限公司 | Thin-film silicon photovoltaic device, manufacturing method thereof, back electrode, and photovoltaic module |
CN102034888A (en) * | 2010-10-19 | 2011-04-27 | 中国科学院苏州纳米技术与纳米仿生研究所 | Thin film solar cell and preparation method thereof |
KR101228685B1 (en) * | 2011-06-13 | 2013-01-31 | 주식회사 포스코 | Substrate for ci(g)s solar cell and ci(g)s solar cell using the same |
KR101228666B1 (en) * | 2011-06-13 | 2013-01-31 | 주식회사 포스코 | Substrate with multi-layer bottom electrode for ci(g)s solar cell and ci(g)s solar cell using the same |
CN107492543A (en) * | 2016-06-09 | 2017-12-19 | 美格纳半导体有限公司 | Wafer level chip scale package and its manufacture method including power semiconductor |
CN111509072A (en) * | 2020-03-20 | 2020-08-07 | 中国科学院宁波材料技术与工程研究所 | Novel silicon solar cell with n-type back junction design and preparation method thereof |
CN115376899A (en) * | 2022-04-22 | 2022-11-22 | 重庆平创半导体研究院有限责任公司 | Method for reducing on-resistance through crystal back optimization |
CN115376899B (en) * | 2022-04-22 | 2025-03-18 | 重庆平创半导体研究院有限责任公司 | Method for reducing on-resistance by backside optimization |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3056200B1 (en) | Method of manufacturing thin film photoelectric conversion device | |
CN105449014B (en) | The solar cell of metallic grid with plating | |
JP4903314B2 (en) | Thin film crystalline Si solar cell | |
CN104992988B (en) | Crystalline silicon solar cell surface passivation layer having good conductive performance and passivation method | |
CN103339734A (en) | Photoelectric converter and method for producing same | |
CN116053331B (en) | A kind of back contact battery and its manufacturing method and photovoltaic module | |
CN110148636A (en) | A kind of solar battery and preparation method thereof, photovoltaic module | |
CN106098801A (en) | A kind of heterojunction solar battery and preparation method thereof | |
CN116936676A (en) | Solar cell preparation method, solar cell and cell assembly | |
JP2008270562A (en) | Multi-junction type solar cell | |
JP2006310503A (en) | Stacked photovoltaic device | |
CN116995132A (en) | Solar cell preparation method, solar cell and battery component | |
CN116913987A (en) | Solar cell preparation method, solar cell and cell assembly | |
JP2002261302A (en) | Thin-film crystalline Si solar cell | |
WO2013001861A1 (en) | Solar cell and method for manufacturing same | |
JP5381562B2 (en) | Thin film solar cell and manufacturing method thereof | |
JP3653379B2 (en) | Photovoltaic element | |
JP4412766B2 (en) | Thin film polycrystalline Si solar cell | |
JP2006059993A (en) | Solar cell and manufacturing method thereof | |
WO2015098872A1 (en) | I-v measurement method for solar cell, i-v measurement device for solar cell, manufacturing method for solar cell, manufacturing method for solar cell module, and solar cell module | |
JP2001257369A (en) | Photoelectric transducer and its manufacturing method | |
JPH11261086A (en) | Photovoltaic device and solar battery module | |
JP3221984U (en) | Translucent solar cell | |
JP2001068709A (en) | Thin film solar cell | |
JP2000312014A (en) | Thin-film photoelectric conversion device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090915 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091215 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100215 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100706 |