[go: up one dir, main page]

JP2002260670A - Battery and manufacturing method thereof - Google Patents

Battery and manufacturing method thereof

Info

Publication number
JP2002260670A
JP2002260670A JP2001058977A JP2001058977A JP2002260670A JP 2002260670 A JP2002260670 A JP 2002260670A JP 2001058977 A JP2001058977 A JP 2001058977A JP 2001058977 A JP2001058977 A JP 2001058977A JP 2002260670 A JP2002260670 A JP 2002260670A
Authority
JP
Japan
Prior art keywords
current collector
thermal conductivity
battery
current collecting
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001058977A
Other languages
Japanese (ja)
Other versions
JP4168227B2 (en
Inventor
Ko Nozaki
耕 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001058977A priority Critical patent/JP4168227B2/en
Publication of JP2002260670A publication Critical patent/JP2002260670A/en
Application granted granted Critical
Publication of JP4168227B2 publication Critical patent/JP4168227B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

(57)【要約】 【課題】 簡素な構成の集電構造を備え、かつ集電端子
の接合が容易な電池、およびその製造方法を提供する。 【解決手段】 本発明の電池および製造方法に用いられ
る集電体111には、例えば集電体基部111aの一端
に、この集電体基部111aを構成する材料(アルミニ
ウム等)よりも熱伝導性の低い材料(SUS等)をクラ
ッドしてなるクラッド部(熱伝導性の低い領域)111
bが設けられている。この集電体111は、クラッド部
111bが位置する側の端面において、抵抗溶接等の手
段により集電端子2に接合されている。一端に熱伝導性
の低い領域111bを設けることにより、熱伝導性の良
い材料のみからなる集電体111に比べて集電端子2と
の接合部を高温に加熱しやすいので、集電体111と集
電端子2との間に抵抗溶接等により良好な接合部2aを
形成することができる。
(57) [Problem] To provide a battery having a current collecting structure with a simple configuration and easily joining a current collecting terminal, and a method for manufacturing the same. SOLUTION: The current collector 111 used in the battery and the manufacturing method of the present invention has, for example, one end of a current collector base 111a having a higher thermal conductivity than a material (aluminum or the like) constituting the current collector base 111a. (A region with low thermal conductivity) 111 which is formed by cladding a material having low thermal conductivity (such as SUS)
b is provided. The current collector 111 is joined to the current collecting terminal 2 by means such as resistance welding on the end surface on the side where the clad portion 111b is located. By providing the region 111b having low thermal conductivity at one end, the junction with the current collecting terminal 2 is easily heated to a higher temperature than the current collector 111 made of only a material having good thermal conductivity. A good joint 2a can be formed between the power supply terminal 2 and the current collecting terminal 2 by resistance welding or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、簡単な構成により
効率よく集電構造を形成することのできる電池、および
その製造方法に関する。なお、本明細書中において「電
池」とは、ニッケル水素電池、リチウム電池などのいわ
ゆる電池以外に、キャパシタをも含む意味で使用する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery capable of efficiently forming a current collecting structure with a simple structure, and a method of manufacturing the same. In this specification, the term "battery" is used to include a capacitor in addition to a so-called battery such as a nickel-metal hydride battery and a lithium battery.

【0002】[0002]

【従来の技術】長尺状の正極側電極シートおよび負極側
電極シートと、両電極シートの間に配されるセパレータ
とを巻回してなる巻回型の電極体を備えた電池が知られ
ている。このような電池における集電構造としては、図
9に示すように、正極集電箔911の端部に正極活物質
層912の形成されない領域(活物質未形成部)911
1を設け、その部分に正極集電箔911とは別体の多数
のリードタブ911aを例えば一定の間隔で超音波溶接
等の手段により接合した正極側電極シート91を用いる
構成が一般的である。すなわち、この正極側電極シート
91を、同様に多数のリードタブ921aが接合された
負極側電極シート92と、両電極シート間を隔てる二枚
のセパレータ93とともに巻回して電極体を作製し、こ
の電極体の両端から延びる多数のリードタブ911a、
921aを正極負極それぞれの集電端子に接合して集電
構造が形成される。また、複数枚の正極側電極シート、
負極側電極シートおよびセパレータを積層してなる積層
型の電極体を備えた電池においても、各電極シートを構
成する集電箔の活物質未形成部、あるいはこの部分に接
合されたリードタブを集電端子に接合する集電構造が知
られている。
2. Description of the Related Art A battery having a wound electrode body formed by winding a long positive electrode sheet and a negative electrode sheet and a separator disposed between the two electrode sheets is known. I have. As a current collecting structure in such a battery, as shown in FIG. 9, a region (active material non-formed portion) 911 where the positive electrode active material layer 912 is not formed at the end of the positive electrode current collector foil 911
In general, a positive electrode sheet 91 is used in which a large number of lead tabs 911a separate from the positive electrode current collector foil 911 are joined at regular intervals by means such as ultrasonic welding. That is, this positive electrode sheet 91 is wound together with a negative electrode sheet 92 to which a number of lead tabs 921a are similarly joined and two separators 93 separating the two electrode sheets, thereby producing an electrode body. A number of lead tabs 911a extending from both ends of the body,
The current collecting structure is formed by joining 921a to the current collecting terminals of the positive and negative electrodes. In addition, a plurality of positive electrode side electrode sheets,
Even in a battery provided with a laminated electrode body formed by laminating a negative electrode sheet and a separator, the active material-free portion of the current collector foil constituting each electrode sheet or the lead tab joined to this portion is collected. A current collecting structure joined to a terminal is known.

【0003】[0003]

【発明が解決しようとする課題】上記集電構造を備える
電池において、集電箔およびリードタブの材質として
は、電気導電性が良いことから、一般にアルミニウム、
銅等の材料が多く用いられている。しかし、これらアル
ミニウム、銅等の材料は熱伝導性も高いため抵抗溶接等
の熱溶接には不向きなことから、リードタブと集電端子
との接合方法に制約がある。さらに、リードタブを用い
る集電構造においては、集電箔に多数のリードタブを接
合する工程を要するため電極体の製造効率を向上させる
ことが困難であり、また集電構造が複雑であるのでリー
ドタブまたは集電箔の破れ等により歩留りが低下しやす
い。一方、また、リードタブを介することなく、集電箔
の活物質未形成部に、例えば巻回された電極体の側方か
ら集電端子を直接接合する集電構造も知られている。し
かし、上述のように通常の集電箔は熱伝導性の高い材料
からなるため、この集電箔と集電端子とを熱溶接等の手
段により接合することは困難であった。
In the battery having the above-mentioned current collecting structure, the current collecting foil and the lead tab are generally made of aluminum,
Materials such as copper are often used. However, these materials such as aluminum and copper have high thermal conductivity and are not suitable for heat welding such as resistance welding. Therefore, there are restrictions on the joining method between the lead tab and the current collecting terminal. Furthermore, in the current collecting structure using the lead tab, it is difficult to improve the manufacturing efficiency of the electrode body because it requires a step of bonding a large number of lead tabs to the current collecting foil. The yield is likely to decrease due to the tear of the current collector foil. On the other hand, there is also known a current collecting structure in which a current collecting terminal is directly joined to an active material-unformed portion of a current collecting foil from the side of a wound electrode body without using a lead tab. However, as described above, since the normal current collector foil is made of a material having high thermal conductivity, it has been difficult to join the current collector foil and the current collector terminal by means such as heat welding.

【0004】本発明の目的は、簡素な構成の集電構造を
備え、かつ集電端子の接合が容易な電池、およびその製
造方法を提供することにある。
[0004] It is an object of the present invention to provide a battery having a current collecting structure with a simple configuration and easy to join a current collecting terminal, and a method of manufacturing the same.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の電池は、少なくとも一端に集電体基
部よりも熱伝導性の低い領域が設けられた集電体を用い
て電極体を構成し、該電極体のうち上記一端が位置する
側の端面に集電端子が接合されていることを特徴とす
る。このように、集電体の一端(集電端子との被接合部
に相当する)に熱伝導性の低い領域を設けることによ
り、熱伝導性の良い材料のみからなる従来の集電体に比
べてこの被接合部を高温に加熱しやすくなり、熱溶接
(例えば抵抗溶接)等による接合が容易となる。したが
って、電極体と集電端子とが直接かつ良好に接合された
電池とすることができる。
In order to solve the above-mentioned problems, a battery according to claim 1 uses a current collector having at least one end provided with a region having lower thermal conductivity than a current collector base. An electrode body is formed, and a current collecting terminal is joined to an end surface of the electrode body on the side where the one end is located. As described above, by providing a region having low thermal conductivity at one end of the current collector (corresponding to a portion to be joined to the current collecting terminal), compared to a conventional current collector made of only a material having good thermal conductivity. The part to be joined is easily heated to a high temperature, and joining by heat welding (for example, resistance welding) or the like becomes easy. Therefore, a battery in which the electrode body and the current collecting terminal are directly and satisfactorily joined can be obtained.

【0006】上記熱伝導性の低い領域は、上記集電体の
一端に不連続に(例えば一定の間隔で)設けられてもよ
いが、連続して設けられることが好ましい。また、良好
な集電効率を得るために、上記熱伝導性の低い領域上に
は活物質層が形成されていないことが好ましい。したが
って、請求項2記載のように、上記熱伝導性の低い領域
は、上記集電体の該活物質未形成部に設けられた帯状の
領域であることが好ましい。
The region having low thermal conductivity may be provided discontinuously (for example, at regular intervals) at one end of the current collector, but is preferably provided continuously. In addition, in order to obtain good current collection efficiency, it is preferable that an active material layer is not formed over the low thermal conductivity region. Therefore, as described in claim 2, it is preferable that the region having low thermal conductivity is a band-shaped region provided in the active material non-formed portion of the current collector.

【0007】上記熱伝導性の低い領域は、請求項3記載
のように、上記集電体基部に、該集電体基部を構成する
材料よりも熱伝導性の低い材料をクラッドまたはめっき
により形成してなる領域であることが好ましい。以下、
集電体基部にクラッドされる材料を「クラッド用材
料」、集電体のうちこのクラッド用材料から構成される
部分(熱伝導性の低い領域)を「クラッド部」ともい
う。
According to a third aspect of the present invention, the region having a low thermal conductivity is formed by cladding or plating a material having a lower thermal conductivity than the material constituting the current collector base on the current collector base. It is preferable that the region is formed as follows. Less than,
The material clad on the base of the current collector is also referred to as a “cladding material”, and a portion of the current collector composed of the cladding material (a region having low thermal conductivity) is also referred to as a “cladding portion”.

【0008】上記クラッド部の形状につき、図面を用い
て説明する。集電体基部71に設けられたクラッド部7
2は、図7(a)のように集電体7の側端面7aに露出
されていることが好ましい。また、集電体基部71を構
成する材料に比べて、クラッド部72に用いられる材料
は一般に電気伝導性が低いので、集電効率の点からクラ
ッド部72の上には活物質層73を形成しないことが好
ましい。したがって、図7(a)および図7(b)のよ
うに活物質層73が集電体7の両面に設けられる場合に
は、この活物質層73が形成された部分よりも側端面7
a側の範囲(活物質未形成部)にクラッド部72を形成
することが好ましい。一方、図7(c)に示すように、
活物質層73が集電体7の一方の面(表面)にのみ設け
らており、この集電体7の他方の面(裏面)の全体が活
物質未形成部となっている場合には、集電体7の裏面
に、表面に活物質層73が形成された範囲にまで及ぶク
ラッド部72を形成してもよく、さらには裏面の全体に
クラッド部が形成されていてもよい。
The shape of the cladding will be described with reference to the drawings. Cladding part 7 provided on current collector base 71
2 is preferably exposed on the side end face 7a of the current collector 7 as shown in FIG. In addition, since the material used for the clad portion 72 is generally lower in electrical conductivity than the material forming the current collector base 71, the active material layer 73 is formed on the clad portion 72 from the viewpoint of current collection efficiency. Preferably not. Therefore, when the active material layer 73 is provided on both surfaces of the current collector 7 as shown in FIGS.
It is preferable to form the clad portion 72 in the range on the a side (the portion where the active material is not formed). On the other hand, as shown in FIG.
When the active material layer 73 is provided only on one surface (front surface) of the current collector 7 and the entire other surface (back surface) of the current collector 7 is an active material non-formed portion, Alternatively, a clad portion 72 may be formed on the back surface of the current collector 7 up to the area where the active material layer 73 is formed on the front surface, and the clad portion may be formed on the entire back surface.

【0009】図8(a)に示すように、クラッド部72
が形成された部分の集電体7の厚さaは、クラッド部7
2が形成されていない部分の集電体7の厚さbとほぼ同
じ厚さであることが好ましい。この場合には、集電体7
の各部の厚さがほぼ均一となるので、例えば活物質層7
3の形成時(例えば活物質ペーストの塗布・乾燥等)に
おいて、集電体7の巻き出しやロール送り等の際にシワ
や巻きムラ等が発生しにくく、作業性が良好である。ま
た、クラッド部72の形成された部分の厚さaは、クラ
ッド部72の形成されていない部分の厚さbよりも大き
くてもよい。ただし、図8(b)に示すように、電極体
構成時において隣接する集電体7間に位置する部材およ
び層(例えば、集電体7上に設けられる活物質層73、
対極の電極シート74、およびセパレータ75)の合計
厚さDよりも、集電体7各部の厚さの差(a−b)を小
さくすることが好ましい。特に巻回型の電極体において
は、緊密に巻回された電極体を構成しやすいことから、
(a−b)<Dとすることが好ましい。なお、上記クラ
ッド部を有する集電体は、従来公知のクラッド材の製造
方法等により作製することができる。
[0009] As shown in FIG.
The thickness a of the current collector 7 at the portion where the
It is preferable that the thickness is substantially the same as the thickness b of the current collector 7 in the portion where 2 is not formed. In this case, the current collector 7
Since the thickness of each part is substantially uniform, for example, the active material layer 7
In the formation of 3 (for example, application and drying of the active material paste), wrinkles and uneven winding are unlikely to occur when the current collector 7 is unwound or fed, and the workability is good. The thickness a of the portion where the clad portion 72 is formed may be larger than the thickness b of the portion where the clad portion 72 is not formed. However, as shown in FIG. 8B, members and layers (for example, the active material layer 73 provided on the current collector 7,
It is preferable to make the difference (ab) in the thickness of each part of the current collector 7 smaller than the total thickness D of the counter electrode sheet 74 and the separator 75). In particular, in the wound electrode body, since it is easy to form a tightly wound electrode body,
It is preferable that (ab) <D. The current collector having the clad portion can be manufactured by a conventionally known method for manufacturing a clad material.

【0010】上記クラッド部を構成するクラッド用材料
としては、電池の種類に応じて、集電体基部よりも熱伝
導性の低い材質のなかから、電気的安定性等を考慮して
適当な材料を選択して用いることができる。例えば、上
記集電体基部が銅、アルミニウム等からなり、電解液が
非水電解液である場合(リチウム二次電池等)には、ス
テンレス鋼(例えばSUS306)等の鉄系合金、ニッ
ケル等が好ましく用いられる。このように集電体基部よ
りも熱伝導性の低い材料からなるクラッド部は、抵抗溶
接等の際において集電体基部に比べて容易に高温に加熱
することができる。そして、このクラッド部のもつ熱に
よって、クラッド部に近接する集電体基部を溶接に十分
な程度にまで加熱することが可能となる。これにより、
クラッド部が設けられた側の集電体の側端面(電極体の
一端面に位置することとなる)と集電端子とを抵抗溶
接、レーザ溶接等の加熱接合により容易に接合すること
ができる。
The clad material constituting the clad portion may be selected from materials having lower thermal conductivity than the current collector base depending on the type of the battery, and appropriate materials in consideration of electrical stability and the like. Can be selected and used. For example, when the current collector base is made of copper, aluminum, or the like, and the electrolyte is a non-aqueous electrolyte (such as a lithium secondary battery), an iron-based alloy such as stainless steel (for example, SUS306), nickel, or the like is used. It is preferably used. As described above, the clad portion made of a material having lower thermal conductivity than the current collector base can be easily heated to a high temperature in resistance welding or the like as compared with the current collector base. The heat of the clad makes it possible to heat the base of the current collector close to the clad to a degree sufficient for welding. This allows
The side end surface of the current collector on the side where the clad portion is provided (which is located at one end surface of the electrode body) and the current collecting terminal can be easily joined by heat welding such as resistance welding or laser welding. .

【0011】また、上記熱伝導性の低い領域が「ろう
材」のクラッドにより形成された集電体を用い、抵抗溶
接等の熱溶接時における加熱によりこの「ろう材」を融
解させて、集電体と集電部材とを接合してもよい。ろう
材としては、はんだ、銅系ろう等を用いることができ
る。この構成においては、集電体基部自体は溶接温度ま
で加熱されなくても、ろう材によって集電体基部と集電
端子とを接合することができる。なお、集電体基部を十
分に加熱することができれば、ろう材とともに集電体基
部も溶接されてもよい。
[0011] Further, using a current collector in which the region having low thermal conductivity is formed by a clad of a "brazing material", the "brazing material" is melted by heating at the time of heat welding such as resistance welding and the like. The electric body and the current collecting member may be joined. As the brazing material, solder, copper-based brazing, or the like can be used. In this configuration, even if the current collector base itself is not heated to the welding temperature, the current collector base and the current collecting terminal can be joined by the brazing material. If the current collector base can be heated sufficiently, the current collector base may be welded together with the brazing material.

【0012】なお、上記熱伝導性の低い領域を形成する
クラッド以外の方法としては、集電体本体の一端にこの
集電体本体よりも熱伝導性の低い材料をめっきする方法
等が挙げられる。上記集電端子としては、請求項4記載
のように、上記熱伝導性の低い領域を構成する材料と同
じ材料からなるものを用いることができる。例えば、集
電体基部を構成する材料またはクラッド部を構成する材
料のいずれか一方と同じ材料からなる集電端子を用いる
ことが好ましい。この場合には、電極体と集電端子とを
抵抗溶接等により接合する際の接合性が良いという利点
がある。
As a method other than the cladding for forming the region having low thermal conductivity, a method of plating a material having lower thermal conductivity than the current collector main body on one end of the current collector main body may be used. . As the current collecting terminal, a terminal made of the same material as the material constituting the low thermal conductivity region can be used. For example, it is preferable to use a current collecting terminal made of the same material as either the material forming the current collector base or the material forming the clad portion. In this case, there is an advantage that the joining property when joining the electrode body and the current collecting terminal by resistance welding or the like is good.

【0013】本発明の電池の他部は、従来公知の材料等
により構成することができる。例えば、本発明をリチウ
ム二次電池に適用する場合には、正極または負極用の集
電体基部を構成する材料としてアルミニウム、ニッケ
ル、銅等の金属を用いることができる。また、セパレー
タとしては多孔質ポリエチレン等を用いることができ
る。
The other part of the battery of the present invention can be made of a conventionally known material or the like. For example, when the present invention is applied to a lithium secondary battery, a metal such as aluminum, nickel, or copper can be used as a material forming a current collector base for a positive electrode or a negative electrode. Further, porous polyethylene or the like can be used as the separator.

【0014】正極活物質としてはリチウム含有酸化物等
が好ましく用いられ、具体例としてはLiMn24等の
リチウムマンガン酸化物、LiNiO2等のリチウムニ
ッケル酸化物、LiCoO2等のリチウムコバルト酸化
物、LiFeO2等のリチウム鉄酸化物等の、従来のリ
チウム二次電池の正極活物質に用いられている化合物等
が挙げられる。また、負極活物質としてはアモルファス
カーボン、グラファイト等の炭素材料あるいはSi、S
n、In等の金属とLiとの合金または酸化物等を用い
ることができる。あるいは、負極として金属リチウムを
用いてもよい。正極活物質層または負極活物質層を形成
するためのバインダとしてはポリフッ化ビニリデン(P
VDF)、ポリテトラフルオロエチレン(PTFE)等
を、正極活物質層を形成するための導電化材としてはカ
ーボンブラック、黒鉛、ピッチコークス等を用いること
ができる。
As the positive electrode active material, a lithium-containing oxide or the like is preferably used. Specific examples include a lithium manganese oxide such as LiMn 2 O 4 , a lithium nickel oxide such as LiNiO 2 , and a lithium cobalt oxide such as LiCoO 2 . And compounds used as a positive electrode active material of a conventional lithium secondary battery, such as lithium iron oxide such as LiFeO 2 . As the negative electrode active material, a carbon material such as amorphous carbon and graphite, or Si, S
An alloy or oxide of a metal such as n or In with Li and an oxide can be used. Alternatively, metallic lithium may be used as the negative electrode. As a binder for forming the positive electrode active material layer or the negative electrode active material layer, polyvinylidene fluoride (P
VDF), polytetrafluoroethylene (PTFE), and the like, and carbon black, graphite, pitch coke, and the like can be used as a conductive material for forming the positive electrode active material layer.

【0015】このリチウム二次電池の電解液としては、
従来のリチウム二次電池に用いられる各種非プロトン性
溶媒から選択される一種または二種以上、例えばエチレ
ンカーボネート(EC)、プロピレンカーボネート(P
C)、γ−ブチロラクトン、1,2−ジメチルエタン、
テトラヒドロフラン、1,3−ジオキサン、酢酸メチ
ル、ジエチルカーボネート(DEC)等を用いることが
できる。また電解質としては、従来のリチウム二次電池
に用いられる各種リチウム塩、例えばLiPF6、Li
BF4、LiCF3SO3、LiClO4、LiAsF6
LiSbF6、LiC49SO3、LiN(CF3SO2
2、SiC(CF3SO23等を用いることができ、これ
らのうちLiPF6、LiBF4が好ましい。電解液中に
おける電解質濃度は通常0.05〜10mol/L程度
であり、好ましくは0.1〜5mol/L程度である。
[0015] As an electrolytic solution of this lithium secondary battery,
One or more selected from various aprotic solvents used in conventional lithium secondary batteries, for example, ethylene carbonate (EC), propylene carbonate (P
C), γ-butyrolactone, 1,2-dimethylethane,
Tetrahydrofuran, 1,3-dioxane, methyl acetate, diethyl carbonate (DEC) and the like can be used. As the electrolyte, various lithium salts used in conventional lithium secondary batteries, for example, LiPF 6 , Li
BF 4 , LiCF 3 SO 3 , LiClO 4 , LiAsF 6 ,
LiSbF 6 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 )
2 , SiC (CF 3 SO 2 ) 3 and the like can be used, of which LiPF 6 and LiBF 4 are preferable. The electrolyte concentration in the electrolyte is usually about 0.05 to 10 mol / L, preferably about 0.1 to 5 mol / L.

【0016】上記電極体は、請求項5記載のように、上
記集電体を巻回してなる巻回型の電極体であることが好
ましい。本発明は積層型の電極体を備えた電池にも適用
可能であるが、巻回型の電極体を備えた電池において
は、本発明の集電構造とすることによる効果が特に有効
に発揮されるためである。
Preferably, the electrode body is a wound electrode body formed by winding the current collector. Although the present invention can be applied to a battery having a stacked electrode body, in a battery having a wound electrode body, the effect of the current collecting structure of the present invention is particularly effectively exhibited. That's because.

【0017】請求項6および7は、上記電池を製造する
方法に関する。すなわち、請求項6記載の電池の製造方
法は、少なくとも一端に集電体基部よりも熱伝導性の低
い領域が設けられた集電体を用いて電極体を構成し、該
電極体のうち上記一端が位置する側の端面に集電端子を
接合することを特徴とする。上記集電端子の接合は、請
求項7記載のように、抵抗溶接により行うことが好まし
い。
Claims 6 and 7 relate to a method of manufacturing the battery. That is, in the method for manufacturing a battery according to claim 6, the electrode body is configured using a current collector having at least one end provided with a region having lower thermal conductivity than the current collector base. It is characterized in that a current collecting terminal is joined to the end face on the side where one end is located. The connection of the current collecting terminals is preferably performed by resistance welding.

【0018】[0018]

【発明の実施の形態】以下、図面を用いて本発明の実施
態様を具体的に説明する。 (実施例1)本発明を適用した巻回型のリチウム二次電
池を図2に示す。この電池は、正極側電極シート(以
下、「正極シート」ともいう。)11、セパレータ1
3、負極側電極シート(以下、「負極シート」ともい
う。)12およびセパレータ13をこの順に積層し、巻
回してなる電極体1と、この電極体1の図2における上
端面に接合された正極集電端子2と、電極体1の下端面
に接合された有底円筒状の電池容器3と、を備える。な
お、電池容器3は負極集電端子としても機能する。ま
た、正極集電端子2は、図示しないリード線等により、
外部との導通が可能な部材と電気的に接続されている。
Embodiments of the present invention will be specifically described below with reference to the drawings. Embodiment 1 FIG. 2 shows a wound type lithium secondary battery to which the present invention is applied. This battery includes a positive electrode sheet (hereinafter, also referred to as a “positive sheet”) 11 and a separator 1.
3, the negative electrode sheet (hereinafter, also referred to as “negative electrode sheet”) 12 and the separator 13 are laminated in this order and joined to the wound electrode body 1 and the upper end surface of the electrode body 1 in FIG. The battery pack includes a positive electrode current collecting terminal and a bottomed cylindrical battery case joined to a lower end surface of the electrode body. The battery case 3 also functions as a negative electrode current collecting terminal. The positive current collecting terminal 2 is connected to a lead wire (not shown) or the like.
It is electrically connected to a member capable of conducting with the outside.

【0019】図1は、図2における電極体1の上端面と
正極集電端子2との接合部付近を拡大した断面図であ
る。正極シート11は、長尺状の正極集電体111と、
その両面に形成された正極活物質層112とからなる。
ここで、正極集電体111の長手方向に沿った一端は、
正極活物質層112の形成されない活物質未形成部11
11となっている。また、この活物質未形成部1111
には、正極集電体基部111aを構成する材料よりも熱
伝導性の低い材料がクラッドされた帯状のクラッド部1
11bが、正極集電体111の側端面に露出されるよう
に形成されている。図2に示す電極体1の上端面は、ク
ラッド部111bが設けられた側の正極集電体111の
側端面から構成され、この部分に正極集電端子2が抵抗
溶接により接合されている。
FIG. 1 is an enlarged sectional view of the vicinity of the junction between the upper end surface of the electrode body 1 and the positive electrode current collecting terminal 2 in FIG. The positive electrode sheet 11 includes a long positive electrode current collector 111,
It comprises a positive electrode active material layer 112 formed on both surfaces thereof.
Here, one end of the positive electrode current collector 111 along the longitudinal direction is
Active material non-formed portion 11 where positive electrode active material layer 112 is not formed
It is 11. Also, the active material non-formed portion 1111
Has a band-shaped clad portion 1 in which a material having lower thermal conductivity than the material forming the positive electrode current collector base 111a is clad.
11 b is formed so as to be exposed on the side end surface of the positive electrode current collector 111. The upper end surface of the electrode body 1 shown in FIG. 2 is constituted by the side end surface of the positive electrode current collector 111 on the side where the clad portion 111b is provided, and the positive electrode current collector terminal 2 is joined to this portion by resistance welding.

【0020】また、負極シート12も同様に、長尺状の
負極集電体121と、その両面に形成された負極活物質
層122とからなる。負極集電体121の長手方向に沿
った一端は活物質未形成部とされており、ここに負極集
電体基部を構成する材料よりも熱伝導性の低い材料がク
ラッドされた帯状のクラッド部121bが、負極集電体
121の側端面に露出されるように形成されている。図
2に示す電極体1の下端面は、クラッド部121bが設
けられた側の負極集電体121の側端面から構成され、
この部分に電極容器3の内側底面が抵抗溶接により接合
されている。なお、図2では正極活物質層112および
負極活物質層122を省略して示している。
Similarly, the negative electrode sheet 12 also includes a long negative electrode current collector 121 and negative electrode active material layers 122 formed on both surfaces thereof. One end of the negative electrode current collector 121 along the longitudinal direction is an active material non-formed portion, and a strip-shaped clad portion in which a material having lower thermal conductivity than the material forming the negative electrode current collector base is clad. 121 b is formed to be exposed on the side end surface of the negative electrode current collector 121. The lower end surface of the electrode body 1 shown in FIG. 2 is constituted by the side end surface of the negative electrode current collector 121 on the side where the clad portion 121b is provided,
The inner bottom surface of the electrode container 3 is joined to this portion by resistance welding. Note that FIG. 2 does not show the positive electrode active material layer 112 and the negative electrode active material layer 122.

【0021】以下、このリチウム二次電池の製造方法を
説明する。図3および図4に示すように、全体形状が幅
160mm×厚さ10μmの金属箔であって、その基部
121aは銅からなり、一方の表面には幅方向の中央部
に幅6mm×厚さ5μmのステンレス材(銅よりも熱伝
導性の低い材料)からなる帯状のクラッド部121bが
設けられた銅−SUSクラッド箔123を用意した。こ
のクラッド箔123の両面に、クラッド箔123の長手
方向の両側端に2mm、またクラッド箔123の中央部
に10mmの活物質未形成部1211を残して、長手方
向に二条の負極活物質層122を形成した。この負極活
物質層122は、例えば負極活物質、バインダおよび溶
媒を混合してなる負極活物質ペーストを塗布し、乾燥さ
せることにより形成することができる。その後、クラッ
ド箔123を幅方向の中央部に設定された切断線123
aに沿って切断することにより、二枚の負極シート12
を作製した。
Hereinafter, a method of manufacturing this lithium secondary battery will be described. As shown in FIGS. 3 and 4, the overall shape is a metal foil having a width of 160 mm × a thickness of 10 μm, and a base 121 a thereof is made of copper, and one surface has a width of 6 mm × a thickness at a central portion in the width direction. A copper-SUS clad foil 123 provided with a band-shaped clad portion 121b made of a 5 μm stainless material (a material having lower thermal conductivity than copper) was prepared. On both sides of the clad foil 123, two negative electrode active material layers 122 are formed in the longitudinal direction, leaving an active material non-formed portion 1211 of 2 mm at both ends in the longitudinal direction of the clad foil 123 and 10 mm at the center of the clad foil 123. Was formed. The negative electrode active material layer 122 can be formed by, for example, applying a negative electrode active material paste formed by mixing a negative electrode active material, a binder, and a solvent and drying the paste. Then, the cladding foil 123 is cut at the cutting line 123 set at the center in the width direction.
a along the two negative electrode sheets 12
Was prepared.

【0022】また、全体形状が幅160mm×厚さ15
μmの金属箔であって、その基部111aはアルミニウ
ムからなり、一方の表面には幅方向の中央部に幅6mm
×厚さ7.5μmのステンレス材(アルミニウムよりも
熱伝導性の低い材料)からなる帯状のクラッド部111
bが設けられたAl−SUSクラッド箔を用いて、負極
活物質層122と同様に正極活物質層112を形成した
後、このクラッド箔を中央部で切断して二枚の正極シー
ト11を作製した。
The overall shape is 160 mm in width × 15 in thickness.
μm metal foil, the base 111a of which is made of aluminum and has a width of 6 mm at the center in the width direction on one surface.
× Strip-shaped cladding 111 made of stainless steel (material having lower thermal conductivity than aluminum) with a thickness of 7.5 μm
After the positive electrode active material layer 112 is formed in the same manner as the negative electrode active material layer 122 using the Al-SUS clad foil provided with b, the clad foil is cut at the center to produce two positive electrode sheets 11. did.

【0023】その後、図5に示すように、正極シート1
1、セパレータ13、負極シート12およびセパレータ
13をこの順に、正極活物質層112および負極活物質
層122の形成された位置とセパレータ13の位置とを
重ね合わせ、かつクラッド部111bとクラッド部12
1bとがセパレータ13の反対側からはみ出すように積
層した。これを巻回してなる電極体1の上端面は正極集
電体111により構成される。この部分の正極集電体1
11は、図1に示すように、SUS製のクラッド部11
1bがその厚みの半分を占め、残りの半分はAl製の集
電体基部111aからなる。この上端面を正極集電端子
2に抵抗溶接する際には、集電体基部111aに比べて
熱伝導性の低い材料(SUS)からなるクラッド部11
1bを容易に高温に加熱することができ、このクラッド
部111bのもつ熱によって近接する集電体基部111
aを溶接に十分な程度にまで加熱することが可能とな
る。したがって、電極体1の上端面(正極集電体111
の側端面)と正極集電端子2との間に、抵抗溶接によっ
て良好な接合部2aを形成することができる。
Thereafter, as shown in FIG.
1, the separator 13, the negative electrode sheet 12, and the separator 13 in this order, the position where the positive electrode active material layer 112 and the negative electrode active material layer 122 are formed and the position of the separator 13 are overlapped, and the cladding portion 111 b and the cladding portion 12
1b protruded from the opposite side of the separator 13. The upper end surface of the electrode body 1 formed by winding this is constituted by the positive electrode current collector 111. This part of the positive electrode current collector 1
11 is a SUS clad portion 11 as shown in FIG.
1b occupies half of the thickness, and the other half is composed of a current collector base 111a made of Al. When the upper end surface is resistance-welded to the positive electrode current collector terminal 2, the clad portion 11 made of a material (SUS) having lower thermal conductivity than the current collector base 111 a is used.
1b can be easily heated to a high temperature.
a can be heated to a degree sufficient for welding. Therefore, the upper end surface of the electrode body 1 (the positive electrode current collector 111)
Between the positive current collecting terminal 2 and the positive current collecting terminal 2 by resistance welding.

【0024】また、電極体1の下端面においても同様
に、この下端面を構成する負極集電体121の厚みの半
分がSUS製のクラッド部121bからなることによ
り、抵抗溶接においてクラッド部121bを高温に加熱
し、このクラッド部121bのもつ熱によって銅製の集
電体基部121aを溶接に十分な程度にまで加熱するこ
とができ、電極体1の下端面と電極容器3の内側底面と
の間に良好な接合部を形成することができる。電極体1
と、集電端子2および電極容器3とを接合した状態を図
6に示す。図中、符号2aは正極集電体111と正極集
電端子2との接合部を、符号3aは負極集電体121と
電池容器3との接合部を示す。この図6は、図2のVI方
向矢視図に相当する。
Similarly, at the lower end surface of the electrode body 1, half of the thickness of the negative electrode current collector 121 constituting the lower end surface is made of the SUS clad portion 121b. By heating to a high temperature, the heat of the clad portion 121b can heat the copper current collector base 121a to a degree sufficient for welding, so that the gap between the lower end surface of the electrode body 1 and the inner bottom surface of the electrode container 3 can be increased. A good joint can be formed. Electrode body 1
FIG. 6 shows a state in which the current collecting terminal 2 and the electrode container 3 are joined together. In the drawing, reference numeral 2a indicates a joint between the positive electrode current collector 111 and the positive electrode current collector terminal 2, and reference numeral 3a indicates a joint between the negative electrode current collector 121 and the battery case 3. FIG. 6 corresponds to the view in the direction of arrow VI in FIG.

【0025】なお、上記実施態様では、集電体の厚さの
約半分を占める厚さのクラッド部を形成したが、集電体
の厚さに対するクラッド部の厚さの割合はこれに限定さ
れるものではない。例えば、クラッド部が形成された部
分の集電体全体の厚さを100%として、クラッド部の
厚さは20〜80%の範囲とすることが好ましく、より
好ましくは30〜70%の範囲である。クラッド部の厚
さが集電体の厚さの20%未満では、集電体基部の厚さ
に対してクラッド部が薄すぎるため、抵抗溶接等を行う
際に、集電体基部を十分に加熱できない場合がある。一
方、クラッド部の厚さが集電体の厚さの80%を超える
場合には、この部分における集電体基部の厚さが小さく
なるため電池の内部抵抗が上昇しやすい。
In the above embodiment, the clad portion having a thickness occupying about half of the thickness of the current collector is formed. However, the ratio of the thickness of the clad portion to the thickness of the current collector is not limited to this. Not something. For example, assuming that the thickness of the entire current collector in the portion where the clad portion is formed is 100%, the thickness of the clad portion is preferably in the range of 20 to 80%, more preferably in the range of 30 to 70%. is there. If the thickness of the clad portion is less than 20% of the thickness of the current collector, the clad portion is too thin with respect to the thickness of the current collector base portion. Heating may not be possible. On the other hand, when the thickness of the clad portion exceeds 80% of the thickness of the current collector, the internal resistance of the battery tends to increase because the thickness of the current collector base in this portion becomes small.

【0026】また、上記実施態様では集電体におけるク
ラッド部の幅を3mmとしたが、このクラッド部の幅は
特に限定されるものではない。ただし、クラッド部の幅
が小さすぎると抵抗溶接等を行う際に集電体基部を十分
に加熱できない場合があり、またクラッド材の製造も困
難である。一方、クラッド部の幅が大きすぎると電池の
内部抵抗が上昇する傾向にある。また、両面に活物質層
を有する集電体において活物質未形成部にクラッド部を
設ける場合には、幅の広いクラッド部を形成するために
は活物質未形成部の幅を大きくとる必要があり、電池の
大型化や重量の増大を招く。以上の観点から、クラッド
部の幅は、例えば0.5〜100mmとすることがで
き、1〜10mmとすることが好ましい。
In the above embodiment, the width of the clad in the current collector is 3 mm, but the width of the clad is not particularly limited. However, if the width of the clad portion is too small, the current collector base may not be sufficiently heated when performing resistance welding or the like, and it is difficult to manufacture the clad material. On the other hand, if the width of the clad portion is too large, the internal resistance of the battery tends to increase. Further, in the case where a clad portion is provided in an active material non-formed portion in a current collector having an active material layer on both surfaces, it is necessary to increase the width of the active material non-formed portion in order to form a wide clad portion. This leads to an increase in the size and weight of the battery. From the above viewpoints, the width of the clad portion can be, for example, 0.5 to 100 mm, and preferably 1 to 10 mm.

【0027】さらに、上記実施態様では正極集電体およ
び負極集電体の双方に熱伝導性の低い領域を形成した
が、正極集電体および負極集電体のうち一方のみに熱伝
導性の低い領域を形成してもよい。例えば、負極集電体
としては上記のクラッド箔を用い、電極体の下端面と電
極容器とを抵抗溶接により接合する一方、正極集電体の
一端には従来と同様にリードタブを接合し、このリード
タブと集電端子とを従来と同様の方法により接合する構
成としてもよい。さらに、本実施例では抵抗溶接を用い
たが、レーザ溶接等の他の加熱接合法を用いることも可
能である。
Further, in the above embodiment, the regions having low thermal conductivity are formed on both the positive electrode current collector and the negative electrode current collector, but only one of the positive electrode current collector and the negative electrode current collector has heat conductivity. A low region may be formed. For example, the above-mentioned clad foil is used as the negative electrode current collector, and the lower end face of the electrode body and the electrode container are joined by resistance welding, while a lead tab is joined to one end of the positive electrode current collector in the same manner as in the past. The lead tab and the current collecting terminal may be joined by a method similar to the conventional method. Further, although resistance welding is used in the present embodiment, other heating joining methods such as laser welding can be used.

【0028】[0028]

【発明の効果】本発明の電池は、集電体の一端に熱伝導
性の低い領域を設け、この一端と集電端子とが接合され
た集電構造を備える。これにより、集電体と集電端子と
を抵抗溶接等等により接合する際、熱伝導性のよい材料
のみからなる従来の集電体に比べて、上記一端を溶接に
必要な高温にまで容易に加熱することができる。したが
って、電極体と集電端子とが良好に接合された電池とす
ることができる。
The battery of the present invention has a current collecting structure in which a region having low thermal conductivity is provided at one end of a current collector, and this end is connected to a current collecting terminal. Thus, when the current collector and the current collecting terminal are joined by resistance welding or the like, the above-mentioned one end can be easily heated to a high temperature necessary for welding, as compared with a conventional current collector made of only a material having good thermal conductivity. Can be heated. Therefore, a battery in which the electrode body and the current collecting terminal are satisfactorily joined can be obtained.

【0029】本発明の電池では、集電体の端面に集電端
子が直接接合されており、集電体と集電端子との間にリ
ードタブ等の部材は介在しない。これにより、リードタ
ブを用いた従来の電池に比べて、集電体にリードタブを
接合する工程が不要となるので製造効率が向上し、部品
点数が削減され、さらに電池の小型化および軽量化も可
能となる。また、集電体と集電端子とが直接接合されて
いるので、リードタブを介する場合に比べて電池の内部
抵抗を低くすることができる。特に、熱伝導性の低い領
域が集電体の一端に連続して設けられている場合には、
集電体の端面全体を集電端子に接合して、この集電体の
端面全体から集電することができるので集電効率が良好
である。本発明の電池は、本発明の製造方法等により好
適に製造することができる。
In the battery of the present invention, the current collecting terminal is directly joined to the end face of the current collector, and no member such as a lead tab is interposed between the current collector and the current collecting terminal. This eliminates the need for a step of joining the lead tab to the current collector compared to conventional batteries that use lead tabs, thereby improving manufacturing efficiency, reducing the number of components, and enabling a smaller and lighter battery. Becomes Further, since the current collector and the current collection terminal are directly joined, the internal resistance of the battery can be reduced as compared with the case where the current collector is provided through the lead tab. In particular, when a region having low thermal conductivity is provided continuously at one end of the current collector,
Since the entire end face of the current collector can be joined to the current collecting terminal and current can be collected from the entire end face of the current collector, current collection efficiency is good. The battery of the present invention can be suitably manufactured by the manufacturing method of the present invention and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した電池における、電極体と集電
端子との接合部付近を示す拡大断面図である。
FIG. 1 is an enlarged sectional view showing the vicinity of a joint between an electrode body and a current collecting terminal in a battery to which the present invention is applied.

【図2】本発明を適用した電池を示す断面図である。FIG. 2 is a sectional view showing a battery to which the present invention is applied.

【図3】本発明を適用した電池の製造に使用される電極
シートを示す平面図である。
FIG. 3 is a plan view showing an electrode sheet used for manufacturing a battery to which the present invention is applied.

【図4】図3のIV−IV線断面図である。FIG. 4 is a sectional view taken along line IV-IV of FIG. 3;

【図5】本発明を適用した電池における電極体の形成工
程を示す平面図である。
FIG. 5 is a plan view showing a step of forming an electrode body in a battery to which the present invention is applied.

【図6】本発明を適用した電池を示す側面図であって、
図2のVI方向矢視図である。
FIG. 6 is a side view showing a battery to which the present invention is applied,
FIG. 6 is a view in the direction of arrow VI in FIG. 2.

【図7】(a)、(b)および(c)は、クラッド部を
有する集電体の各種形状を示す断面図である。
FIGS. 7A, 7B, and 7C are cross-sectional views showing various shapes of a current collector having a clad portion.

【図8】(a)および(b)は、クラッド部を有する集
電体の各種形状を示す断面図である。
FIGS. 8A and 8B are cross-sectional views showing various shapes of a current collector having a clad portion.

【図9】従来の電池における電極体の形成工程を示す平
面図である。
FIG. 9 is a plan view showing a step of forming an electrode body in a conventional battery.

【符号の説明】[Explanation of symbols]

1;電極体、11;正極シート、111;正極集電体、
111a;正極集電体基部、111b;クラッド部(熱
伝導性の低い領域)、1111;活物質未形成部、11
2;正極活物質層、12;負極シート、121;負極集
電体、121a;負極集電体基部、121b;クラッド
部(熱伝導性の低い領域)、122;負極活物質層、1
211;活物質未形成部、13;セパレータ、2;正極
集電端子、2a;接合部、3;電池容器(負極集電端
子)、3a;接合部。
1; electrode body, 11; positive electrode sheet, 111; positive electrode current collector,
111a; positive electrode current collector base; 111b; clad (low thermal conductivity region); 1111; active material non-formed portion, 11
2, negative electrode active material layer, 12; negative electrode sheet, 121; negative electrode current collector, 121a; negative electrode current collector base, 121b; clad portion (low thermal conductivity region), 122; negative electrode active material layer, 1
211; active material-unformed portion, 13; separator, 2; positive electrode current collecting terminal, 2a; bonding portion, 3; battery container (negative electrode current collecting terminal), 3a;

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H017 AA02 AA03 AS01 BB06 BB11 BB15 CC01 DD03 EE00 EE01 EE08 5H022 AA04 AA09 AA18 BB01 BB16 BB19 BB25 CC16 CC22 CC25 EE00 EE01 EE07 5H028 AA05 BB05 BB07 CC10 CC12 CC20 CC21 EE01  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 集電体基部よりも熱伝導性の低い領域が
少なくとも一端に設けられた集電体を用いて電極体を構
成し、該電極体のうち上記一端が位置する側の端面に集
電端子が接合されていることを特徴とする電池。
An electrode body is formed by using a current collector having at least one end provided with a region having a lower thermal conductivity than a current collector base, and an end face of the electrode body on the side where the one end is located. A battery having a current collecting terminal joined thereto.
【請求項2】 上記熱伝導性の低い領域は、上記集電体
の活物質未形成部に設けられた帯状の領域である請求項
1記載の電池。
2. The battery according to claim 1, wherein the region having low thermal conductivity is a band-shaped region provided in an active material-free portion of the current collector.
【請求項3】 上記熱伝導性の低い領域は、上記集電体
基部に、該集電体基部を構成する材料よりも熱伝導性の
低い材料をクラッドしてなる領域である請求項1または
2記載の電池。
3. The low thermal conductivity region is a region in which a material having lower thermal conductivity than the material forming the current collector base is clad on the current collector base. 2. The battery according to 2.
【請求項4】 上記集電端子は、上記熱伝導性の低い領
域を構成する材料と同じ材料からなる請求項1、2また
は3記載の電池。
4. The battery according to claim 1, wherein the current collecting terminal is made of the same material as a material constituting the low thermal conductivity region.
【請求項5】 上記電極体は、上記集電体を巻回してな
る巻回型の電極体である請求項1から4のいずれか一項
記載の電池。
5. The battery according to claim 1, wherein the electrode body is a wound electrode body formed by winding the current collector.
【請求項6】 集電体基部よりも熱伝導性の低い領域が
少なくとも一端に設けられた集電体を用いて電極体を構
成し、該電極体のうち上記一端が位置する側の端面に集
電端子を接合することを特徴とする電池の製造方法。
6. An electrode body is formed by using a current collector having at least one end provided with a region having lower thermal conductivity than the current collector base, and an end face of the electrode body on the side where the one end is located. A method for manufacturing a battery, comprising joining current collecting terminals.
【請求項7】 上記集電端子の接合を抵抗溶接により行
う請求項6記載の電池の製造方法。
7. The method for manufacturing a battery according to claim 6, wherein the current collecting terminals are joined by resistance welding.
JP2001058977A 2001-03-02 2001-03-02 Battery and manufacturing method thereof Expired - Fee Related JP4168227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001058977A JP4168227B2 (en) 2001-03-02 2001-03-02 Battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001058977A JP4168227B2 (en) 2001-03-02 2001-03-02 Battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002260670A true JP2002260670A (en) 2002-09-13
JP4168227B2 JP4168227B2 (en) 2008-10-22

Family

ID=18918613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001058977A Expired - Fee Related JP4168227B2 (en) 2001-03-02 2001-03-02 Battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4168227B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147249A (en) * 2004-11-17 2006-06-08 Toyota Motor Corp Power storage device and production thereof
JP2009081105A (en) * 2007-09-27 2009-04-16 Sanyo Electric Co Ltd Lithium secondary battery and its manufacturing method
JP2009541982A (en) * 2006-06-22 2009-11-26 バッツキャップ Method of manufacturing an electrical connection for an electrical energy storage unit
JP2010186779A (en) * 2009-02-10 2010-08-26 Shin Kobe Electric Mach Co Ltd Lithium ion capacitor
JP2011077501A (en) * 2009-09-02 2011-04-14 Seiko Instruments Inc Electrochemical cell and method of manufacturing the same
JP2013051113A (en) * 2011-08-31 2013-03-14 Nisshin Steel Co Ltd Copper-coated steel foil assembly and current-carrying member
US20160260951A1 (en) * 2015-03-03 2016-09-08 Toyota Jidosha Kabushiki Kaisha Method of manufacturing electric power storage device, and electric power storage device
JP2017157564A (en) * 2009-11-30 2017-09-07 楊 泰和 Electrode unit for wound storage and discharge device
JP2023084066A (en) * 2021-12-06 2023-06-16 トヨタ自動車株式会社 secondary battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040221929A1 (en) 2003-05-09 2004-11-11 Hebda John J. Processing of titanium-aluminum-vanadium alloys and products made thereby
KR102458524B1 (en) * 2016-11-29 2022-10-27 주식회사 엘지에너지솔루션 Method and system for dissimilar metal resistance welding of secondary battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03241662A (en) * 1990-02-20 1991-10-28 Katayama Tokushu Kogyo Kk Method of manufacturing tabbed metal porous body and tabbed metal porous body thereby manufactured
JPH0670159U (en) * 1993-03-15 1994-09-30 日本電池株式会社 Electrode current collector for organic electrolyte secondary battery
JPH08293302A (en) * 1995-04-24 1996-11-05 Matsushita Electric Ind Co Ltd Organic electrolyte secondary battery
JPH09129265A (en) * 1995-10-31 1997-05-16 Matsushita Electric Ind Co Ltd Organic electrolyte secondary battery
JPH10255753A (en) * 1997-03-12 1998-09-25 Toyota Motor Corp Manufacture of electrode for sealed type square battery
JP2000294222A (en) * 1999-04-08 2000-10-20 Matsushita Electric Ind Co Ltd Secondary battery
JP2000306570A (en) * 1999-04-22 2000-11-02 Japan Storage Battery Co Ltd Battery
JP2001023605A (en) * 1999-07-08 2001-01-26 Japan Storage Battery Co Ltd Manufacture of battery
JP2001102030A (en) * 1999-09-30 2001-04-13 Sanyo Electric Co Ltd Electric energy accumulation device
JP2002042769A (en) * 2000-07-25 2002-02-08 Nissan Motor Co Ltd Secondary battery and its manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03241662A (en) * 1990-02-20 1991-10-28 Katayama Tokushu Kogyo Kk Method of manufacturing tabbed metal porous body and tabbed metal porous body thereby manufactured
JPH0670159U (en) * 1993-03-15 1994-09-30 日本電池株式会社 Electrode current collector for organic electrolyte secondary battery
JPH08293302A (en) * 1995-04-24 1996-11-05 Matsushita Electric Ind Co Ltd Organic electrolyte secondary battery
JPH09129265A (en) * 1995-10-31 1997-05-16 Matsushita Electric Ind Co Ltd Organic electrolyte secondary battery
JPH10255753A (en) * 1997-03-12 1998-09-25 Toyota Motor Corp Manufacture of electrode for sealed type square battery
JP2000294222A (en) * 1999-04-08 2000-10-20 Matsushita Electric Ind Co Ltd Secondary battery
JP2000306570A (en) * 1999-04-22 2000-11-02 Japan Storage Battery Co Ltd Battery
JP2001023605A (en) * 1999-07-08 2001-01-26 Japan Storage Battery Co Ltd Manufacture of battery
JP2001102030A (en) * 1999-09-30 2001-04-13 Sanyo Electric Co Ltd Electric energy accumulation device
JP2002042769A (en) * 2000-07-25 2002-02-08 Nissan Motor Co Ltd Secondary battery and its manufacturing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147249A (en) * 2004-11-17 2006-06-08 Toyota Motor Corp Power storage device and production thereof
KR101403759B1 (en) * 2006-06-21 2014-06-03 에꼴 뽈리떼끄니끄 드 르위니브르씨뜨 드 낭떼 Method of producing electrical connections for an electrical energy storage unit
JP2009541982A (en) * 2006-06-22 2009-11-26 バッツキャップ Method of manufacturing an electrical connection for an electrical energy storage unit
JP2009081105A (en) * 2007-09-27 2009-04-16 Sanyo Electric Co Ltd Lithium secondary battery and its manufacturing method
JP2010186779A (en) * 2009-02-10 2010-08-26 Shin Kobe Electric Mach Co Ltd Lithium ion capacitor
JP2011077501A (en) * 2009-09-02 2011-04-14 Seiko Instruments Inc Electrochemical cell and method of manufacturing the same
JP2017157564A (en) * 2009-11-30 2017-09-07 楊 泰和 Electrode unit for wound storage and discharge device
JP2013051113A (en) * 2011-08-31 2013-03-14 Nisshin Steel Co Ltd Copper-coated steel foil assembly and current-carrying member
US20160260951A1 (en) * 2015-03-03 2016-09-08 Toyota Jidosha Kabushiki Kaisha Method of manufacturing electric power storage device, and electric power storage device
CN105938893A (en) * 2015-03-03 2016-09-14 丰田自动车株式会社 Method of manufacturing electric power storage device, and electric power storage device
US10014512B2 (en) * 2015-03-03 2018-07-03 Toyota Jidosha Kabushiki Kaisha Method of manufacturing electric power storage device, and electric power storage device
CN105938893B (en) * 2015-03-03 2019-01-15 丰田自动车株式会社 Manufacture the method and electrical storage device of electrical storage device
JP2023084066A (en) * 2021-12-06 2023-06-16 トヨタ自動車株式会社 secondary battery
JP7694432B2 (en) 2021-12-06 2025-06-18 トヨタ自動車株式会社 secondary battery

Also Published As

Publication number Publication date
JP4168227B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
JP5550923B2 (en) Method for manufacturing prismatic secondary battery
JP5089656B2 (en) Non-aqueous electrolyte secondary battery electrode structure, manufacturing method thereof, and non-aqueous electrolyte secondary battery
JPWO2012124188A1 (en) Non-aqueous secondary battery electrode, manufacturing method thereof, and non-aqueous secondary battery
JP4496582B2 (en) Lithium secondary battery
JP2010086780A (en) Square secondary battery
JP5678270B2 (en) Power generation element and secondary battery
JP2009259697A (en) Battery and its manufacturing method
JP6081745B2 (en) Flat non-aqueous secondary battery
JP5348720B2 (en) Flat non-aqueous secondary battery
JP4168227B2 (en) Battery and manufacturing method thereof
JP5483587B2 (en) Battery and manufacturing method thereof
JP3759577B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP5495270B2 (en) battery
JP5562655B2 (en) Flat non-aqueous secondary battery
JP5528305B2 (en) Flat non-aqueous secondary battery
JP5377249B2 (en) Flat non-aqueous secondary battery
JP3608047B2 (en) Bipolar type secondary battery manufacturing method and bipolar type secondary battery
JP2009110812A (en) Battery and method of manufacturing the same
JP6240265B2 (en) Method for manufacturing flat non-aqueous secondary battery
JP2011129330A (en) Flat type nonaqueous secondary battery
JP5528304B2 (en) Flat non-aqueous secondary battery
JP5566671B2 (en) Flat non-aqueous secondary battery
JP5562654B2 (en) Flat non-aqueous secondary battery
JP2011054319A (en) Nonaqueous electrolyte secondary battery
JP5681358B2 (en) Flat non-aqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees