JP2002257702A - Method of eliminating static charge of charged sample - Google Patents
Method of eliminating static charge of charged sampleInfo
- Publication number
- JP2002257702A JP2002257702A JP2001056923A JP2001056923A JP2002257702A JP 2002257702 A JP2002257702 A JP 2002257702A JP 2001056923 A JP2001056923 A JP 2001056923A JP 2001056923 A JP2001056923 A JP 2001056923A JP 2002257702 A JP2002257702 A JP 2002257702A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- tube
- charge
- charged sample
- geisler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Elimination Of Static Electricity (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、主として原子間力
顕微鏡(AFM)により試料表面の微細構造を正確に観
察するために該試料の帯電を除去する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing charge from a sample in order to accurately observe a fine structure on the surface of the sample by an atomic force microscope (AFM).
【0002】[0002]
【従来の技術】従来、試料について種々の計測や分析を
行う際、試料の表面や試料全体が帯電していると計測や
分析が行えなかったり、帯電の影響で非常に誤った情報
を与えることがある。こうした不都合を防止するには、
その表面或いは全体の帯電を除電することであり、一般
には短波長光(UV)照射法とコロナ放電照射法が除電
法として知られ、前者は真空中に於ける除電、後者は大
気中の除電に適している。2. Description of the Related Art Conventionally, when performing various measurements and analyzes on a sample, if the surface of the sample or the entire sample is charged, the measurement or analysis cannot be performed, or very erroneous information is given due to the influence of the charging. There is. To prevent these inconveniences,
This is to remove the charge on the surface or the entire surface. Generally, the short-wavelength light (UV) irradiation method and the corona discharge irradiation method are known as the charge removal method. Suitable for.
【0003】[0003]
【発明が解決しようとする課題】試料表面の微細構造の
観察を目的とするAFM観察は、大気中で行うことが多
く、また、対象試料が導電性のものに限られたトンネル
顕微鏡(STM)と違い、非導電性有機物や非導電性セ
ラミック等の絶縁物でも測定できるという特徴がある。
しかし、絶縁物試料は、何らかの影響により試料内部に
電荷が蓄積すると帯電現象が現れ、この帯電は多くの場
合、測定時にAFMの短針に反発力として作用するた
め、表面構造を反映した信号が得られなくなる不都合を
もたらす。この現象は、試料が大きくなればなるほど強
く現れる。このような場合は、コロナ放電を応用して除
電を行うことにより、その条件が適正であればAFM測
定ができるようになる。だが、この方法では、試料の状
態により適正条件がまちまちで、条件が合わないと逆に
帯電を強めてしまう。また、除電のための電荷は、その
性質上、物質内部までは浸透しにくいため、除電にかな
りの時間を要する場合がある。さらに、試料によって
は、帯電性が非常に強く、除電が困難(例えば強誘電
体)でAFM測定ができないこともある。AFM observation for the purpose of observing the fine structure of the sample surface is often performed in the air, and the target sample is a tunnel microscope (STM) which is limited to a conductive sample. Unlike this, there is a feature that measurement can be performed even on an insulating material such as a non-conductive organic material or a non-conductive ceramic.
However, when charge accumulates inside the sample due to some effect, a charge phenomenon appears. In many cases, this charge acts as a repulsive force on the short hand of the AFM during measurement, so that a signal reflecting the surface structure is obtained. Brings inconvenience. This phenomenon appears more strongly as the sample becomes larger. In such a case, by performing the charge elimination by applying corona discharge, the AFM measurement can be performed if the conditions are appropriate. However, in this method, appropriate conditions are different depending on the state of the sample, and if the conditions are not satisfied, the charging is strengthened. In addition, since the charge for static elimination hardly penetrates into the inside of the substance due to its nature, a considerable time may be required for neutralization. Furthermore, depending on the sample, the chargeability is very strong, and it is difficult to remove the charge (for example, a ferroelectric substance), so that the AFM measurement cannot be performed.
【0004】絶縁物の表面構造を観察する手段として、
一般的に良く知られている方法には、走査電子顕微鏡
(SEM)による方法があるが、SEMでもその観察法
の励起源の電子銃による帯電効果により観察ができな
い。これを回避する方法は、試料表面に貴金属膜を非常
に薄く被覆(10nm以下)し、表面を導電性に処理し
て観察することである。この被膜導電性処理法は、観察
対象の構造が比較的大きければAFMにも応用できる
が、AMF観察はその殆どが微細構造観察を目的として
いるため、導電膜を成膜するとその被膜の粒子が測定に
大きな影響を与え、表面構造を明確に観察できなくな
る。従って、AFMで絶縁物の微細構造を観察するため
には、殆どの場合、除電が必要であり、短時間で設定条
件が容易な除電法が要望される。As a means for observing the surface structure of an insulator,
As a generally well-known method, there is a method using a scanning electron microscope (SEM). However, even with the SEM, observation cannot be performed due to the charging effect of the electron gun of the excitation source in the observation method. A method for avoiding this is to coat the sample surface with a very thin noble metal film (10 nm or less), treat the surface to be conductive, and observe the sample. This coating conductive treatment method can be applied to AFM if the structure to be observed is relatively large. However, most of the AMF observation is aimed at microstructure observation. This has a significant effect on the measurement and makes it impossible to clearly observe the surface structure. Therefore, in order to observe the fine structure of the insulator with the AFM, in most cases, static elimination is required, and a static elimination method in which setting conditions are easy in a short time is desired.
【0005】本発明は、強帯電性の絶縁物の試料でもA
FM測定に適合するように除電する方法を提供すること
を目的とするものである。According to the present invention, even a highly charged insulator sample
It is an object of the present invention to provide a method for removing static electricity so as to be suitable for FM measurement.
【0006】[0006]
【課題を解決するための手段】本発明では、上記の目的
を達成するため、帯電した試料にX線を照射して除電す
るようにした。該X線はガイスラー管から照射すること
が簡単で便利であり、該ガイスラー管には軟質ガラス管
あるいは硬質ガラス管を蛍光が発光する領域或いは1P
a程度にまで真空排気したものを使用することが好まし
い。原子間力顕微鏡にガイスラー管を設置しておき、該
顕微鏡で観察する帯電性のある試料に該ガイスラー管か
らX線を照射すると本発明の目的は一層適切に達成でき
る。In the present invention, in order to achieve the above object, a charged sample is irradiated with X-rays to eliminate the charge. It is easy and convenient to irradiate the X-rays from a Geisler tube.
It is preferable to use one evacuated to about a. The object of the present invention can be more appropriately achieved by installing a Geisler tube in an atomic force microscope and irradiating a charged sample to be observed with the microscope with X-rays from the Geisler tube.
【0007】[0007]
【発明の実施の形態】図面に基づき本発明をAFMに適
用した場合の実施の形態を説明すると、図1に於いて、
符号1は既存のガラス管内部の圧力を1Pa程度で蛍光
が発光する領域にまで真空排気して封じ切ったガイスラ
ー管、2は絶縁物の試料3の微細構造を観察する原子間
力顕微鏡(AFM)の本体である探針部を示し、該ガイ
スラー管1を該試料3の表面を照射する位置に設置し
た。該探針部2を該試料3の表面に沿って移動させる
と、原子間力が電圧の2次元分布として測定され、表面
の微細構造が検出できる。4は8000〜15000V
の該ガイスラー管1の高圧電源、5は念のため設けたX
線防護カバーである。高電圧電源4はネオントランスま
たはインダクションコイルでもよいが、後者は放電ギャ
ップにより電圧を調整しているために高圧ラインにノイ
ズが乗りやすく、逆に帯電することもあるので、ネオン
トランスを使用することが好ましい。該ガイスラー管1
と試料3の距離を20cm程度に設定したが、この距離
に制限はなく、装置の構成に適した距離を選択すればよ
いが、この距離が短ければ比例して除電効果が大きくな
り、ガイスラー管1の作動時間を短時間にすることがで
きる。ガイスラー管1は封じ切りのものを使用したが、
ガイスラー管内を真空ポンプで所定の圧力(1Pa以
下)に排気しながらガイスラー管を作動させてもよい。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to an AFM will be described with reference to the drawings.
Reference numeral 1 denotes a Geisler tube which is evacuated and sealed to a region where fluorescence is emitted at a pressure of about 1 Pa inside an existing glass tube, and 2 denotes an atomic force microscope (AFM) for observing a microstructure of a sample 3 of an insulator. 2) shows a probe portion as a main body, and the Geisler tube 1 was installed at a position where the surface of the sample 3 was irradiated. When the probe 2 is moved along the surface of the sample 3, the atomic force is measured as a two-dimensional distribution of voltage, and the fine structure of the surface can be detected. 4 is 8000-15000V
High-voltage power supply for the Geisler tube 1;
It is a wire protection cover. The high-voltage power supply 4 may be a neon transformer or an induction coil. However, the latter uses a neon transformer because the voltage is adjusted by the discharge gap, so that the high-voltage line is apt to carry noise and may be charged conversely. Is preferred. The Geisler tube 1
The distance between the sample and the sample 3 was set to about 20 cm. However, there is no limitation on this distance, and a distance suitable for the configuration of the apparatus may be selected. 1 can shorten the operation time. The Geisler tube 1 used was a sealed one,
The Geisler tube may be operated while exhausting the inside of the Geisler tube to a predetermined pressure (1 Pa or less) with a vacuum pump.
【0008】該絶縁物の試料3の微細構造をAFM観察
するに先立ち、該試料3の帯電の程度に応じてガイスラ
ー管1の電極1a、1a間に高圧電源4から高電圧を例
えば10秒以下の数秒間印加する。このガイスラー管1
はX線を放出する真空圧であるので、試料3はX線の照
射を受け、X線は試料3の内部にまで浸透力があるため
速やかに内部までの除電を行え、同時に試料3の付近の
大気中の気体分子が電離され、電離した気体分子が該試
料3の帯電を奪い、効率よく除電することができる。こ
のあとAFM観察を行うと、帯電の影響のない正確な表
面形態が観察できる。尚、ガイスラー管1を使用する理
由は、比較的簡単且つ安価にX線を発生させ得るからで
ある。Prior to AFM observation of the fine structure of the insulator sample 3, a high voltage is applied between the electrodes 1a and 1a of the Geisler tube 1 from the high voltage power supply 4 for, for example, 10 seconds or less in accordance with the degree of charging of the sample 3. For several seconds. This Geisler tube 1
Is a vacuum pressure that emits X-rays, the sample 3 is irradiated with X-rays, and since the X-rays have penetrating power to the inside of the sample 3, the charge can be quickly removed to the inside of the sample 3 and at the same time, the vicinity of the sample 3 The gas molecules in the atmosphere are ionized, the ionized gas molecules deprive the sample 3 of the charge, and the charge can be efficiently removed. Thereafter, when the AFM observation is performed, an accurate surface morphology without the influence of charging can be observed. The reason why the Geisler tube 1 is used is that X-rays can be generated relatively easily and inexpensively.
【0009】具体的な実施例を説明すると、ポリカーボ
ネイトの表面にプラズマエッチング加工を施した表面の
微細構造がある程度判っている試料3の微細構造を評価
するため、AFMで観察した。図2はプラズマエッチン
グ加工した後そのままの状態でAFM観察を行った結果
で、非常に強い帯電作用がみられ、加工状態の微細構造
は観察できなかった。この加工したポリカーボネイトの
試料3の微細構造を、ガイスラー管1を備えたAFMに
よりガイスラー管を5秒間作動させて除電したのち観察
した結果は図3に示す如くであり、正しい形状を反映し
たAFM像が観察できた。To explain a specific example, the surface of polycarbonate was subjected to plasma etching processing, and the surface was subjected to AFM in order to evaluate the fine structure of the sample 3 in which the fine structure was known to some extent. FIG. 2 shows the result of AFM observation performed as it is after the plasma etching processing. As a result, a very strong charging effect was observed, and the fine structure in the processed state could not be observed. The microstructure of the processed polycarbonate sample 3 was observed by removing the static electricity by operating the Geisler tube for 5 seconds by the AFM equipped with the Geisler tube 1, and the result is shown in FIG. Could be observed.
【0010】[0010]
【発明の効果】以上のように本発明によるときは、帯電
した試料にガイスラー管からX線を照射して除電するの
で、試料の内部まで迅速に除電でき、特に絶縁物の試料
の表面形状の観察に好都合に利用できる等の効果があ
り、原子間力顕微鏡にガイスラー管を設備しておくこと
で簡単迅速に十分な除電を行って微細構造の観察を行え
る効果がある。As described above, according to the present invention, a charged sample is irradiated with X-rays from a Geisler tube to eliminate the charge, so that the inside of the sample can be quickly removed, and especially the surface shape of the insulator sample can be reduced. There is an effect that it can be conveniently used for observation, and there is an effect that by equipping an atomic force microscope with a Geisler tube, sufficient and simple static elimination can be performed quickly and a fine structure can be observed.
【図1】本発明の実施に使用した装置の説明図FIG. 1 is an explanatory view of an apparatus used for carrying out the present invention.
【図2】従来のAFMによる絶縁物試料の観察像FIG. 2 is an observation image of an insulator sample by a conventional AFM.
【図3】本発明の方法による絶縁物試料のAFM像FIG. 3 is an AFM image of an insulator sample according to the method of the present invention.
1 ガイスラー管、2 AFM探針部、3 試料、 1 Geisler tube, 2 AFM probe, 3 samples,
Claims (5)
とを特徴とする帯電試料の除電方法。1. A method for removing electricity from a charged sample, comprising irradiating the charged sample with X-rays to remove the charge.
射して除電することを特徴とする帯電試料の除電方法。2. A method for neutralizing a charged sample, comprising irradiating a charged sample with X-rays from a Geisler tube to eliminate the charge.
硬質ガラス管を蛍光が発光する領域にまで真空排気した
ものを使用することを特徴とする請求項2に記載の帯電
試料の除電方法。3. The method according to claim 2, wherein a soft glass tube or a hard glass tube is evacuated to a region where fluorescence is emitted from the Geisler tube.
することを特徴とする請求項2に記載の帯電試料の除電
方法。4. The method according to claim 2, wherein the Geisler tube is evacuated to about 1 Pa.
して該顕微鏡で観察する帯電性のある試料に該ガイスラ
ー管からX線を照射することを特徴とする帯電試料の除
電方法。5. A method for removing static electricity from a charged sample, wherein the Geisler tube is installed in an atomic force microscope and a charged sample to be observed with the microscope is irradiated with X-rays from the Geisler tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001056923A JP2002257702A (en) | 2001-03-01 | 2001-03-01 | Method of eliminating static charge of charged sample |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001056923A JP2002257702A (en) | 2001-03-01 | 2001-03-01 | Method of eliminating static charge of charged sample |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002257702A true JP2002257702A (en) | 2002-09-11 |
Family
ID=18916872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001056923A Pending JP2002257702A (en) | 2001-03-01 | 2001-03-01 | Method of eliminating static charge of charged sample |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002257702A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014034489A1 (en) | 2012-08-31 | 2014-03-06 | 日東電工株式会社 | Discharge member for analysis |
JP2015132623A (en) * | 2015-03-13 | 2015-07-23 | 株式会社荏原製作所 | charged particle beam inspection method and apparatus |
JP2017075935A (en) * | 2015-09-01 | 2017-04-20 | カール・ツァイス・エスエムティー・ゲーエムベーハー | Method and device for inspecting charged sample surface |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0545160A (en) * | 1991-08-20 | 1993-02-23 | Tadahiro Omi | Interatomic force microscope |
JPH0845695A (en) * | 1994-08-02 | 1996-02-16 | Shishido Seidenki Kk | Discharging device using soft x-rays |
-
2001
- 2001-03-01 JP JP2001056923A patent/JP2002257702A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0545160A (en) * | 1991-08-20 | 1993-02-23 | Tadahiro Omi | Interatomic force microscope |
JPH0845695A (en) * | 1994-08-02 | 1996-02-16 | Shishido Seidenki Kk | Discharging device using soft x-rays |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014034489A1 (en) | 2012-08-31 | 2014-03-06 | 日東電工株式会社 | Discharge member for analysis |
JP2015132623A (en) * | 2015-03-13 | 2015-07-23 | 株式会社荏原製作所 | charged particle beam inspection method and apparatus |
JP2017075935A (en) * | 2015-09-01 | 2017-04-20 | カール・ツァイス・エスエムティー・ゲーエムベーハー | Method and device for inspecting charged sample surface |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5523651B2 (en) | Local plasma treatment | |
JP4920991B2 (en) | Plasma processing apparatus and plasma processing method | |
US5935339A (en) | Decontamination device and method thereof | |
JP3912993B2 (en) | Neutral particle beam processing equipment | |
JP6752490B2 (en) | Defect reduction in substrate processing method | |
Höche et al. | Static-charging mitigation and contamination avoidance by selective carbon coating of TEM samples | |
JP2002289583A (en) | Beam treatment device | |
JPH09205079A (en) | Pattern forming method by charged beam processing and charged beam processing apparatus | |
US20070284541A1 (en) | Oxidative cleaning method and apparatus for electron microscopes using UV excitation in a oxygen radical source | |
JPH09120957A (en) | Plasma apparatus and plasma processing method | |
EP0237220A2 (en) | Method and apparatus for forming a film | |
JP2008209312A (en) | Secondary ion mass spectrometer and method of using the same | |
JP2002257702A (en) | Method of eliminating static charge of charged sample | |
Johnson et al. | Pulsed HV vacuum breakdown of polished, powder coated, and e-beam treated large area stainless steel electrodes with 0.5 to 7 mm gaps | |
JP5198616B2 (en) | Plasma processing equipment | |
Redshaw et al. | Fabrication and characterization of field emission points for ion production in Penning trap applications | |
JPH04363849A (en) | Electron beam device | |
JP3688467B2 (en) | Impurity amount measuring method and apparatus | |
JP2002043269A (en) | Apparatus and method for determining end of laser cleaning process | |
US7205539B1 (en) | Sample charging control in charged-particle systems | |
JP2003242917A (en) | Electron gun and electron beam irradiation processing device | |
JP6662470B2 (en) | Ionization method and ionization apparatus, and imaging analysis method and imaging analysis apparatus | |
JP4362983B2 (en) | Insulator surface analysis method | |
JP2016080633A (en) | Pretreatment method and analysis method of sample | |
JP4394901B2 (en) | Method and apparatus for erasing metal surface defects |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070517 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070517 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080227 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100720 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101116 |