JP2002256325A - Pretreatment method of hot metal with low slag generation using converter type vessel - Google Patents
Pretreatment method of hot metal with low slag generation using converter type vesselInfo
- Publication number
- JP2002256325A JP2002256325A JP2001058001A JP2001058001A JP2002256325A JP 2002256325 A JP2002256325 A JP 2002256325A JP 2001058001 A JP2001058001 A JP 2001058001A JP 2001058001 A JP2001058001 A JP 2001058001A JP 2002256325 A JP2002256325 A JP 2002256325A
- Authority
- JP
- Japan
- Prior art keywords
- hot metal
- slag
- treatment
- weight
- converter type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
(57)【要約】
【課題】 転炉型容器を用い、脱Si、脱Pの予備処理
に用いるフラックスの使用量や発生スラグ量を減少さ
せ、脱Si、脱P反応の反応効率を高めて到達Si、到
達P濃度を低減することができる転炉型容器を用いたス
ラグ発生量の少ない溶銑の予備処理方法を提供する。
【解決手段】 転炉型容器10を用いて、脱Si処理及
び脱P処理を行うスラグ発生量の少ない溶銑の予備処理
方法において、前回の溶銑の予備処理で発生したスラグ
の40〜60重量%を転炉型容器10内に残留させてお
き、転炉型容器10内に新しい溶銑16を装入し、そし
て吹酸し溶銑16の脱Si処理及び脱P処理を行い、こ
の脱Si処理及び脱P処理の途中で、溶銑16にフラッ
クス15を添加して、更に、脱Si処理及び脱P処理を
継続して行う。
(57) [Summary] [PROBLEMS] To reduce the amount of flux used and the amount of generated slag used for preliminary treatment of de-Si and de-P by using a converter type vessel, and to increase the reaction efficiency of de-Si and de-P reactions. Provided is a method for pretreating hot metal with a small amount of slag generation using a converter type vessel that can reduce the reached Si and reached P concentrations. SOLUTION: In a pretreatment method for hot metal with a small amount of slag generated by performing a de-Si treatment and a de-P treatment using a converter type container 10, 40 to 60% by weight of slag generated in the previous pre-treatment of hot metal. Is left in the converter-type container 10, a new hot metal 16 is charged into the converter-type container 10, and the molten iron 16 is subjected to a deoxidizing treatment and a de-P-treatment by blowing and acidifying. During the P removal process, the flux 15 is added to the hot metal 16, and further, the Si removal process and the P removal process are continuously performed.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、転炉等の精錬炉を
用いて、前回の溶銑の脱Si(珪素)処理及び脱P
(燐)処理を行った際に発生したスラグの一部を利用し
て、新しい溶銑の脱Si処理、脱P処理を行う転炉型容
器を用いたスラグ発生量の少ない溶銑の予備処理方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for removing Si (silicon) and removing P
(Phosphorus) Using a part of the slag generated when performing the treatment, the pre-treatment method of the hot metal with a small amount of slag generation using a converter type vessel that performs de-Si treatment and de-P treatment of new hot metal .
【0002】[0002]
【従来の技術】従来、製鋼の主原料である溶銑は、Si
(珪素)やS(硫黄)、P(燐)等の不純物を含んでお
り、予めこれ等の不純物を除去する脱Si、脱S、脱P
等のいわゆる溶銑の予備処理が行われている。特に、脱
Si処理及び脱P処理を同時に行う場合は、溶銑に生石
灰、ソーダ灰等の脱燐用のフラックスとPを酸化する気
体酸素、あるいは酸化鉄や集塵ダスト、スラジ等の固体
酸化剤を添加するか、又はフラックスや固体酸化剤の吹
き込み(インゼクション)を行うことにより、溶銑中の
Siを優先的にSiO2 にして除去し、同時に、Pを酸
化物(P2 O5 )にし、生成したスラグ中のCaOに捕
捉させて溶銑中から除去する。しかし、これ等溶銑の予
備処理では、Siは容易にSiO2 として除去できる
が、脱Pの反応効率が悪く、到達P濃度を十分に低下す
ることが困難である。この対策として、特開昭62−1
09910号公報に記載されているように、CaOを主
成分とした滓化促進剤を配合したフラックスを溶銑の表
面に載置し、ランスから酸素を上吹きしながら、鉄鉱石
やスケール等の固体酸素剤の粉末を溶銑内にインゼクシ
ョンする方法が行われている。更に、特開平6−287
616号公報に記載されているように、酸化鉄60〜8
0重量%を含んだCaO−Fe2 O3 −CaF2 系のフ
ラックスに、Na2 O3を3〜10重量%を配合したも
のを、溶銑内にインゼクションし、上方からランスを用
いて溶銑の表面に酸素を吹き付けて脱Si処理及び脱P
処理を同時に行う方法が提案されており、脱P効率の向
上と到達P濃度の低減を図っている。2. Description of the Related Art Conventionally, hot metal, which is a main raw material of steelmaking, is made of Si.
(Si), S (sulfur), P (phosphorus), and other impurities, and removes these impurities in advance to remove Si, remove S, remove P
So-called pretreatment of hot metal is performed. In particular, when performing the de-Si treatment and the de-P treatment at the same time, a flux for dephosphorization such as quicklime and soda ash and gaseous oxygen for oxidizing P in the hot metal, or a solid oxidizing agent such as iron oxide, dust collection dust, and sludge are used. , Or by injecting a flux or a solid oxidant (injection) to remove Si in the hot metal preferentially into SiO 2 and remove P at the same time as an oxide (P 2 O 5 ), It is captured by CaO in the generated slag and removed from the hot metal. However, in the pretreatment of such hot metal, Si can be easily removed as SiO 2 , but the reaction efficiency of P removal is poor, and it is difficult to sufficiently reduce the ultimate P concentration. As a countermeasure against this, JP-A-62-1
As described in JP 09910 Gazette, a flux containing a slagging accelerator containing CaO as a main component is placed on the surface of hot metal, and while oxygen is blown upward from a lance, solids such as iron ore and scale are removed. A method of injecting a powder of an oxygen agent into hot metal has been used. Further, JP-A-6-287
No. 616, iron oxides 60 to 8
0% by weight of CaO-Fe 2 O 3 -CaF 2 system flux containing, those of Na 2 O 3 were blended 3 to 10 wt%, and Inzekushon into hot metal, hot metal using a lance from above Spraying oxygen on the surface to remove Si and remove P
A method for simultaneously performing the processing has been proposed, which aims at improving the P removal efficiency and reducing the attained P concentration.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、特開昭
62−109910号公報に記載された方法では、初期
の溶銑の脱Si、脱P効率を高めることができるが、脱
P処理の初期から末期の間を同一の処理条件で行ってお
り、スラグ等への燐の平衡論的な物質移動を考慮してい
ないため、脱P処理の中期から末期である脱P後期にお
ける脱P効率が低下して到達P濃度が高くなる。この到
達P濃度を低くするには、脱Si処理及び脱P処理に使
用する生石灰や酸化鉄、ミルスケール、酸素等の使用量
が増加して処理コストが上昇する。更に、常に、新しい
生石灰、酸化鉄等を使用したり、吹き込むフラックスの
使用量が多くなることにより、脱Si、脱P処理の際に
生成するスラグ量が増加し、このスラグの処理に多大の
費用を要する。また、特開平6−287616号公報に
記載された方法では、常に、新しい生石灰、酸化鉄等を
使用し、CaF2 やNa2 O3 等の高価な原料を使用す
る必要があり、生成スラグ量が増加する。しかも、生成
したスラグには、強アルカリ成分やフッ素等が含まれる
ため、生成したスラグは、廃棄する際に環境上での制約
を受ける。更に、特開昭62−109910号公報に記
載された方法と同様に、脱P処理の初期から末期の間を
同一の処理条件で行い、スラグ等への燐の平衡論的な物
質移動を考慮していないため、脱P処理の脱P後期にお
ける脱P効率が低下し、脱Si、脱Pの予備処理に用い
るフラックスの使用量が増加し、生成するスラグ量が増
加し、このスラグの処理に多大の費用を要する等の問題
がある。However, according to the method described in Japanese Patent Application Laid-Open No. 62-109910, the efficiency of de-Si and de-P removal of hot metal at the initial stage can be increased, but from the beginning to the end of the de-P process. Is performed under the same processing conditions, and the equilibrium mass transfer of phosphorus to slag or the like is not taken into account. As a result, the ultimate P concentration increases. In order to reduce the ultimate P concentration, the amount of quicklime, iron oxide, mill scale, oxygen, etc. used in the de-Si treatment and the de-P treatment increases, and the treatment cost increases. Furthermore, the amount of slag generated during the removal of Si and P is increased by using fresh quick lime, iron oxide, etc., and by increasing the amount of flux to be blown. Expensive. Further, in the method described in JP-A-6-287616, it is necessary to always use fresh quick lime, iron oxide and the like, and to use expensive raw materials such as CaF 2 and Na 2 O 3, and the amount of generated slag is required. Increase. In addition, since the generated slag contains a strong alkali component, fluorine, and the like, the generated slag is subject to environmental restrictions when discarded. Further, similarly to the method described in Japanese Patent Application Laid-Open No. 62-109910, from the initial stage to the final stage of the de-P treatment, the same treatment conditions are used to take into account the equilibrium mass transfer of phosphorus to slag and the like. Therefore, the de-P efficiency in the latter stage of the de-P process decreases, the amount of flux used for the preliminary treatment of de-Si and de-P increases, and the amount of slag generated increases. However, there is a problem that a large cost is required.
【0004】本発明はかかる事情に鑑みてなされたもの
で、転炉型容器を用い、脱Si、脱Pの予備処理に用い
るフラックスの使用量や発生スラグ量を減少させ、脱S
i、脱P反応の反応効率を高めて到達Si、到達P濃度
を低減することができる転炉型容器を用いたスラグ発生
量の少ない溶銑の予備処理方法を提供することを目的と
する。The present invention has been made in view of the above circumstances, and uses a converter type vessel to reduce the amount of flux used for the preliminary treatment of de-Si and de-P and the amount of generated slag, and to remove S
It is an object of the present invention to provide a pretreatment method for hot metal with a small amount of slag generation using a converter type vessel capable of increasing the reaction efficiency of the de-P reaction and reducing the attained Si and attained P concentrations.
【0005】[0005]
【課題を解決するための手段】前記目的に沿う本発明に
係る転炉型容器を用いたスラグ発生量の少ない溶銑の予
備処理方法は、転炉型容器を用いて、脱Si処理及び脱
P処理を行うスラグ発生量の少ない溶銑の予備処理方法
において、前回の溶銑の予備処理で発生したスラグの4
0〜60重量%を前記転炉型容器内に残留させておき、
該転炉型容器内に新しい溶銑を装入し、そして吹酸し該
溶銑の脱Si処理及び脱P処理を行い、この脱Si処理
及び脱P処理の途中で、該溶銑にフラックスを添加し
て、更に、前記脱Si処理及び脱P処理を継続して行
う。この方法により、酸素供給律則の領域である溶銑の
Si及びP濃度が高い領域で、前回の溶銑の予備処理で
発生したスラグの一部を、新しく装入した溶銑の予備処
理に用い、更に吹酸することによって、この新しい溶銑
中のSi及びPを酸化してスラグ中に吸収させることが
でき、しかも、後で添加するフラックスの滓化を促進さ
せることができる。更に、転炉型容器内に装入した新し
い溶銑中のSi及びP濃度が低くなる時点で、フラック
スを添加して、早期にフラックスを滓化して生成させた
スラグのSiO2 やP2 O5 の吸収能を高め、脱Si反
応は勿論、特に、脱P反応を促進することができ、到達
P濃度を低減することができる。前回の溶銑の予備処理
で発生したスラグ量の40重量%未満を残留させた場
合、スラグ量が少なくなり過ぎて、SiO2 やP2 O5
のスラグの吸収能が低下し、後に添加するフラックスが
増加して予備処理コストが高くなる。一方、60重量%
を超えて残留させると、ある程度SiO2 やP2 O5 を
吸収したスラグ量が増加するため、新しいフラックス
が、SiO2 やP2 O5 を吸収したスラグに希釈され、
全体としての脱Si及び脱P効率が低下する。更に、到
達P濃度を低くするためには、フラックスの使用量を増
す必要があり、発生するスラグ量が増加し、スラグの処
理コストが上昇する。According to the present invention, there is provided a method for pre-treating molten iron having a small amount of slag using a converter type container according to the present invention. In the pretreatment method of hot metal with a small amount of slag to be treated, the slag generated in the previous pretreatment of hot metal
0-60% by weight is left in the converter type container,
A new hot metal is charged into the converter type vessel, and the hot metal is blown and subjected to a de-Si treatment and a de-P treatment. The flux is added to the hot metal during the de-Si treatment and the de-P treatment. Further, the above-mentioned Si removal processing and P removal processing are continuously performed. By this method, a part of the slag generated in the previous hot metal pretreatment in a region where the Si and P concentrations of the hot metal are high, which is a region of the oxygen supply law, is used for the pretreatment of newly charged hot metal, and By blowing acid, Si and P in the new hot metal can be oxidized and absorbed in the slag, and further, slagging of the flux added later can be promoted. Further, when the concentration of Si and P in the new hot metal charged in the converter type vessel becomes low, flux is added, and SiO 2 or P 2 O 5 of slag generated by slagging the flux at an early stage is added. Can be enhanced to promote the de-P reaction as well as the de-Si reaction, and to reduce the ultimate P concentration. If less than 40% by weight of the amount of slag generated in the previous hot metal pretreatment remains, the amount of slag becomes too small and SiO 2 or P 2 O 5
The slag absorption capacity is reduced, the flux added later increases, and the pretreatment cost increases. On the other hand, 60% by weight
If the residual slag exceeds a certain value, the amount of slag that has absorbed SiO 2 or P 2 O 5 increases to some extent, so that new flux is diluted into slag that has absorbed SiO 2 or P 2 O 5 ,
The overall de-Si and de-P efficiencies are reduced. Furthermore, in order to lower the ultimate P concentration, it is necessary to increase the amount of the flux used, and the amount of generated slag increases, and the slag processing cost increases.
【0006】ここで、本発明に係る転炉型容器を用いた
スラグ発生量の少ない溶銑の予備処理方法において、前
記転炉型容器内に装入する前記新しい溶銑のSi濃度は
0.1〜0.6重量%であるのがよい。これにより、新
しい溶銑中のSiを酸化させてSiO2 を生成させ、ス
ラグ中に吸収させ、しかも、スラグ塩基度の低下を抑制
して脱P反応を促進することができる。なお、新しい溶
銑のSi濃度が0.1重量%未満になると、生成したス
ラグの塩基度が高くなって生成したスラグの滓化が悪く
なり、脱P反応が低下する。一方、Si濃度が0.6重
量%を超えると、生成したスラグの塩基度が低くなり過
ぎて後期でのP2 O5 の吸収が悪くなり、到達P濃度が
高くなる。Here, in the pretreatment method for hot metal with a small amount of slag generated using the converter type container according to the present invention, the Si concentration of the new hot metal charged into the converter type container is 0.1 to 0.1. It is preferably 0.6% by weight. This makes it possible to oxidize Si in the new hot metal to generate SiO 2 , absorb it into the slag, suppress the decrease in slag basicity, and promote the P removal reaction. If the Si concentration of the new hot metal is less than 0.1% by weight, the basicity of the generated slag increases, and the generated slag becomes poor in slag and the P removal reaction decreases. On the other hand, if the Si concentration exceeds 0.6% by weight, the basicity of the generated slag becomes too low, so that the absorption of P 2 O 5 in the latter stage becomes poor, and the ultimate P concentration becomes high.
【0007】更に、本発明に係る転炉型容器を用いたス
ラグ発生量の少ない溶銑の予備処理方法において、前記
フラックスとしてCaOを用い、該CaOの添加は、前
記吹酸の全経過時間の50〜70%にあたる時期に行う
のがよい。これにより、添加したフラックスの滓化を良
好にし、しかも、スラグ中のFeO濃度の低下を抑制
し、生成したスラグのSiO2 やP2 O5 の吸収能を安
定して高めることができるため、脱Si及び脱P反応を
促進させることができる。フラックスを添加する時期が
吹酸の全経過時間の50%未満では、吹酸の初期(フラ
ックスの添加時)に発生するスラグの量が増大し、スラ
グ中のFeO濃度が低下するため、脱Si及び脱P効率
が低下する。一方、フラックスの添加時期が吹酸の全経
過時間の70%を超えると、フラックスの予備処理の内
でのフラックスの滓化が悪くなり、脱P効率が低下して
到達P濃度が高くなる。Further, in the method for pretreating hot metal with a small amount of slag generated using the converter type container according to the present invention, CaO is used as the flux, and the addition of the CaO is performed for 50 hours of the total elapsed time of the blowing acid. It is good to do it at the time of ~ 70%. This makes it possible to improve the slagging of the added flux, suppress the decrease in the FeO concentration in the slag, and stably increase the absorption capacity of the generated slag for SiO 2 and P 2 O 5 . De-Si and De-P reactions can be promoted. If the time when the flux is added is less than 50% of the total elapsed time of the blowing acid, the amount of slag generated at the beginning of the blowing acid (when the flux is added) increases, and the FeO concentration in the slag decreases. And the efficiency of removing P decreases. On the other hand, if the time of addition of the flux exceeds 70% of the total elapsed time of the blowing acid, flux slagging during the flux pretreatment becomes poor, the P removal efficiency decreases, and the ultimate P concentration increases.
【0008】[0008]
【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。図1は本発明の一実施の形態に係る
転炉型容器を用いたスラグ発生量の少ない溶銑の予備処
理方法に適用される上底吹き転炉の全体図である。図1
に示すように、本発明の一実施の形態に係る転炉型容器
を用いたスラグ発生量の少ない溶銑の予備処理方法に用
いられる転炉型容器の一例である上底吹き転炉10は、
炉体11の底部に底吹きノズル12を設け、上方から炉
体11内に挿入される上吹きランス13を有し、脱Si
(脱珪)、脱P(脱燐)用のフラックスの一例である生
石灰(CaO)15を貯留する貯蔵ホッパ14と、これ
等貯蔵ホッパ14から切り出された生石灰15を炉体1
1内の溶銑16の上部に形成されたスラグ17に添加す
るシュート18と、炉体11の側部に設けた出鋼口19
を備えている。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. FIG. 1 is an overall view of an upper-bottom blow converter applied to a pretreatment method for hot metal with a small amount of slag using a converter type container according to one embodiment of the present invention. Figure 1
As shown in the above, an upper and bottom blown converter 10 which is an example of a converter type container used in a pretreatment method of hot metal with a small amount of slag using the converter type container according to one embodiment of the present invention,
A bottom blow nozzle 12 is provided at the bottom of the furnace body 11 and has an upper blow lance 13 inserted into the furnace body 11 from above.
A storage hopper 14 for storing quicklime (CaO) 15 which is an example of a flux for (silicon removal) and P removal (phosphorus removal), and a quicklime 15 cut out of the storage hopper 14 into a furnace 1
A chute 18 to be added to a slag 17 formed on the top of the hot metal 16 in the furnace 1 and a tapping port 19 provided on a side of the furnace body 11
It has.
【0009】次に、本発明の一実施の形態に係る転炉型
容器を用いたスラグ発生量の少ない溶銑の予備処理方法
について前記した上底吹き転炉10を用いて説明する。
まず、上底吹き転炉10に、Si(珪素)濃度が0.1
〜0.6重量%、P(燐)濃度が0.090〜0.13
0重量%の脱Si及び脱P処理を行っていない溶銑を1
70トン装入し、生石灰15を貯蔵ホッパ14から切り
出しシュート18を介して炉体11内に添加し、上吹き
ランス13を下降させて、炉体11内に挿入して吹酸を
行って、SiやPを酸化させ、生成させたSiO2 やP
2 O5 をスラグ中に吸収させて、溶銑の予備処理である
脱Si及び脱P処理を行い、溶銑中のSi濃度を0.0
1重量%、到達P濃度を0.010重量%にすること
で、予備処理後に5トンのスラグを生成させた。予備処
理が終了した溶銑は、出鋼口19から図示しない別の容
器に出銑され、この予備処理で発生したスラグの40〜
60重量%を上底吹き転炉10の炉体11内に残留させ
た。Next, a method for pre-treating hot metal with a small amount of slag using the converter type container according to one embodiment of the present invention will be described using the above-described upper and lower blown converter 10.
First, the top and bottom blown converter 10 is set to a Si (silicon) concentration of 0.1.
0.6% by weight, P (phosphorus) concentration is 0.090 to 0.13
0% by weight of hot metal that has not been de-Si- or P-depleted
70 tons were charged, quicklime 15 was cut out from the storage hopper 14, added to the furnace body 11 via the chute 18, the upper blowing lance 13 was lowered, and inserted into the furnace body 11 to perform blowing acid, SiO 2 and P generated by oxidizing Si and P
2 O 5 is absorbed into the slag, and de-Si and de-P treatments, which are preliminary treatments of the hot metal, are performed to reduce the Si concentration in the hot metal to 0.0%.
By adjusting the concentration of P to 1% by weight and the ultimate P concentration to 0.010% by weight, 5 tons of slag was generated after the pretreatment. The hot metal that has been subjected to the pre-treatment is tapped from the tap hole 19 to another container (not shown), and the slag generated in the pre-treatment is 40 to
60% by weight was left in the furnace body 11 of the top and bottom blown converter 10.
【0010】本実施の形態では、前述した溶銑、すなわ
ち前回の溶銑(前チャージの溶銑)の予備処理で生成し
たスラグの40〜60重量%を炉体11内に残留させた
状態で、上底吹き転炉10の炉体11内に、Si(珪
素)濃度が0.1〜0.6重量%、P(燐)濃度が0.
090〜0.130重量%の新しい(脱Si及び脱P処
理を行っていない)溶銑16を170トン装入する。そ
して、上吹きランス13を下降させ、その先端が炉体1
1内の溶銑16の表面から1800mm上方の位置にな
るように挿入して、吹酸(気体酸素の吹き付け)を行っ
た。更に、底吹きノズル12から溶銑の攪拌用のアルゴ
ンガス、窒素ガス等の攪拌ガスを吹き込みながら新しい
溶銑16の脱Si及び脱P処理の予備処理を行った。脱
Si処理、脱P前半の処理では、吹酸によって、溶銑1
6中のSiの殆どが酸化され、SiO2 になってスラグ
17中に吸収され、脱Si反応が完了する。このとき、
脱Si反応が進行するにつれて、吹酸されたOによって
溶銑16中のPも酸化されてP2 O5 になり、スラグ1
7中に吸収され、脱P反応が行われる。しかし、予備処
理時の吹酸の全経過時間(吹酸の開始から吹酸の終了ま
での吹酸を行う時間)の50%近傍になると、スラグ1
7中のP2 O5 の吸収能が低下し、脱P反応は、スラグ
17にPが吸収されにくい、即ちPの供給律則の領域に
入るため、脱P効率が低下し始める。従って、脱Si処
理及び脱P処理の途中、即ち吹酸の全経過時間の50〜
70%にあたる時期、つまりその時間内に、生石灰15
を貯蔵ホッパ14から切り出し、シュート18を介して
炉体11内の溶銑16に添加して、更に、脱Si処理及
び脱P処理を継続して行う。In the present embodiment, the above-described hot metal, that is, 40 to 60% by weight of the slag generated in the pretreatment of the previous hot metal (pre-charged hot metal) remains in the furnace In the furnace body 11 of the blow-down converter 10, the Si (silicon) concentration is 0.1 to 0.6% by weight, and the P (phosphorus) concentration is 0.1%.
170 tons of 090 to 0.130% by weight of fresh hot metal 16 (not subjected to de-Si and de-P treatment) is charged. Then, the upper blowing lance 13 is lowered, and the tip thereof is
The hot metal 16 in 1 was inserted at a position 1800 mm above the surface of the hot metal 16 to perform blowing acid (blowing of gaseous oxygen). Further, the pre-treatment of removing Si and P from the new hot metal 16 was performed while blowing a stirring gas such as argon gas and nitrogen gas for stirring the hot metal from the bottom blowing nozzle 12. In the treatment in the first half of the removal of Si and removal of P, molten iron 1
Most of the Si in 6 is oxidized to SiO 2 and absorbed in the slag 17, completing the de-Si reaction. At this time,
As the de-Si reaction proceeds, P in the hot metal 16 is also oxidized to P 2 O 5 by the blown O and the slag 1
7, and a de-P reaction is performed. However, when the total time of the blowing acid at the time of the pretreatment is close to 50% of the total elapsed time of the blowing acid (the time from the start of the blowing acid to the end of the blowing acid), the slag 1
7, the ability to absorb P 2 O 5 decreases, and in the de-P reaction, P is less likely to be absorbed by the slag 17, that is, it enters the region of the P supply rule, so the de-P efficiency starts to decrease. Therefore, during the de-Si treatment and the de-P treatment, that is, 50 to 50 hours of the total elapsed time of the blowing acid
70% of the time, that is, within that time, quicklime 15
Is cut out from the storage hopper 14 and added to the hot metal 16 in the furnace body 11 via the chute 18, and further, the Si removal processing and the P removal processing are continuously performed.
【0011】この生石灰15は、脱Si及び脱P処理の
初期に一括添加すると、スラグ中のFeO濃度が上がら
ず、脱P処理の中間で多量に添加すると、添加直後にF
eO濃度が低下したり、スラグの滓化不良を招くため、
均等に分割して添加するか、あるいは少量ずつ連続して
添加を行う必要がある。添加した生石灰15は、溶融し
たスラグ17に容易に混合され、固体である生石灰15
と溶融体であるスラグ17の接触によって速やかに溶解
し、スラグ17のP2 O5 の吸収能を高めることができ
る。その結果、脱P反応の進行し難いPの供給律則の領
域であっても、Pの酸化とこの酸化により生成したP2
O5 のスラグ17への吸収による脱P反応を促進するこ
とができ、この脱P反応を、到達P濃度が0.02〜
0.03重量%の範囲になるまで行う。また、この脱S
i、脱P処理は、前チャージの溶銑の予備処理を行った
際に生成したスラグの40〜60重量%を再利用してい
るので、溶銑の予備処理で発生する廃棄スラグの量を減
少させることができ、生石灰の使用量や廃棄スラグの処
理コスト等を低減することができる。しかも、スラグ1
7中にNaやフッ素等の強アルカリ成分や特定の成分を
含まないので、廃棄する際の環境上の制約を無くすこと
ができる。このように、前回の溶銑の予備処理を行った
後のスラグの40〜60重量%を、常に上底吹き転炉1
0の炉体11内に残留させ、新しい溶銑16を炉体11
内に装入して、吹酸による脱Si、脱P処理を行い、し
かも、脱Si処理及び脱P処理の途中でCaOを添加す
る予備処理を繰返し行う。脱Si処理及び脱P処理が行
われた溶銑16は、出鋼口19から出銑され、脱炭精錬
炉である上吹き転炉、上底吹き転炉、電気炉等に装入さ
れて、吹酸による脱炭精錬が行われ、これにより、溶鋼
が製造される。If the quicklime 15 is added in a lump at the beginning of the removal of Si and the removal of P, the concentration of FeO in the slag does not increase.
In order to reduce the eO concentration or to cause poor slag slagging,
It is necessary to add evenly divided portions, or to add continuously little by little. The added quicklime 15 is easily mixed into the molten slag 17 and is a solid quicklime 15
And slag 17, which is a molten material, quickly dissolves, and the slag 17 can have an increased ability to absorb P 2 O 5 . As a result, even in the region of the P supply rule in which the de-P reaction hardly progresses, the oxidation of P and the P 2 generated by this oxidation occur.
It is possible to promote the de-P reaction due to the absorption of O 5 into the slag 17, and this de-P reaction is achieved when the ultimate P concentration is 0.02
The process is performed until the content becomes 0.03% by weight. In addition, this escape S
i. Since the P removal process reuses 40 to 60% by weight of the slag generated during the pretreatment of the pre-charged hot metal, the amount of waste slag generated in the pretreatment of the hot metal is reduced. It is possible to reduce the amount of quicklime used, the cost of treating waste slag, and the like. Moreover, slag 1
Since 7 does not contain a strong alkali component such as Na or fluorine or a specific component, it is possible to eliminate environmental restrictions at the time of disposal. As described above, 40 to 60% by weight of the slag after the previous hot metal pretreatment is always used for the top and bottom blown converter 1
0, and new hot metal 16 is left in the furnace body 11.
After the removal of Si and P by blowing acid, preliminary treatment of adding CaO during the removal of Si and the removal of P is repeatedly performed. The hot metal 16 that has been subjected to the Si-removing process and the P-removing process is tapped from a tap hole 19, and charged into a decarburization refining furnace, such as an upper-blowing converter, an upper-bottom-blowing converter, or an electric furnace. Decarburization smelting by blowing acid is performed, thereby producing molten steel.
【0012】[0012]
【実施例】次に、本発明に係る転炉型容器を用いたスラ
グ発生量の少ない溶銑の予備処理方法の実施例について
説明する。初めに、珪素(Si)濃度が0.3重量%、
燐濃度が0.100重量%の前チャージの溶銑150ト
ンを上底吹き転炉10に装入し、CaOの添加と吹酸を
行って脱Si処理及び脱P処理を行い、炉体11内に前
チャージの予備処理で生成したスラグの一部を残留さ
せ、そのスラグの残留量、燐濃度が0.100重量%の
新しい溶銑、即ち次チャージの溶銑の珪素(Si)濃
度、吹酸の途中でのCaOの投入タイミングを変化させ
て、脱Si及び脱Pの予備処理を行った。なお、炉体1
1内には、新しい次チャージの溶銑150トンを装入し
た。そして、次チャージの溶銑の予備処理後の到達P濃
度(到達P重量%)と、生石灰と酸化鉄を添加して行う
従来の予備処理のスラグ発生量を指数1とした場合の発
生スラグ量指数、及び総合評価をそれぞれ調査した。そ
の結果を表1に示す。Next, a description will be given of an embodiment of a method for pretreating hot metal with a small amount of slag generation using a converter type container according to the present invention. First, the silicon (Si) concentration is 0.3% by weight,
150 tons of pre-charged hot metal having a phosphorus concentration of 0.100% by weight is charged into the top and bottom blown converter 10, and CaO addition and blowing acid are performed to remove Si and P, and A part of the slag generated in the pre-charging pretreatment, the residual amount of the slag, the new hot metal having a phosphorus concentration of 0.100% by weight, ie, the silicon (Si) concentration of the hot metal of the next charge, Preliminary treatment for removal of Si and removal of P was performed by changing the charging timing of CaO on the way. Furnace body 1
1 was charged with 150 tons of new hot metal. Then, the ultimate P concentration (attained P weight%) after the pretreatment of the hot metal of the next charge and the generated slag amount index when the slag generation amount of the conventional pretreatment performed by adding quicklime and iron oxide is set to index 1 , And the overall evaluation were investigated. Table 1 shows the results.
【0013】実施例1及び実施例2は、前チャージの残
留スラグの50重量%、43重量%をそれぞれ使用し、
溶銑の装入時のSi濃度を0.35重量%、0.42重
量%、追加CaOの投入タイミングを吹酸の全経過時間
の55%、63%にした場合であり、それぞれ到達P濃
度を0.013重量%、0.011重量%、発生スラグ
量指数を0.45、0.51にでき、総合評価として良
い(○)結果が得られた。実施例3は、前チャージの残
留スラグの下限である40重量%、実施例4は、前チャ
ージの残留スラグの上限である60重量%をそれぞれ使
用した場合であり、それぞれ到達P濃度を0.012重
量%、0.015重量%、発生スラグ量指数を0.5
4、0.41にでき、総合評価として良い(○)結果が
得られた。実施例5は、次チャージのSi濃度を0.1
0重量%、実施例6は、Si濃度を0.60重量%とし
た場合であり、それぞれ到達P濃度を0.012重量
%、0.014重量%、発生スラグ量指数を0.47、
0.48にでき、総合評価として良い(○)結果が得ら
れた。実施例7は、追加CaO投入タイミングを下限で
ある50%、実施例8は、追加CaO投入タイミングを
上限である70%にした場合であり、それぞれ到達P濃
度を0.011重量%、0.014重量%、発生スラグ
量指数を0.51、0.46にでき、総合評価として良
い(○)結果が得られた。Examples 1 and 2 used 50% by weight and 43% by weight of the residual slag of the pre-charge, respectively.
The case where the Si concentration at the time of charging the hot metal was 0.35% by weight and 0.42% by weight, and the addition timing of additional CaO was 55% and 63% of the total elapsed time of the blowing acid, respectively, was the ultimate P concentration. 0.013% by weight and 0.011% by weight, and the generated slag amount index could be 0.45 and 0.51, and a good ()) result was obtained as the overall evaluation. Example 3 is the case where the lower limit of the residual slag of the previous charge is 40% by weight, and Example 4 is the case where the upper limit of the residual slag of the previous charge is 60% by weight. 012% by weight, 0.015% by weight, the generated slag amount index is 0.5
4, 0.41 was obtained, and a good ()) result was obtained as the overall evaluation. In the fifth embodiment, the Si concentration of the next charge is set to 0.1.
0% by weight, Example 6 is the case where the Si concentration is 0.60% by weight, the ultimate P concentration is 0.012% by weight, 0.014% by weight, the generated slag amount index is 0.47,
0.48, and a good (○) result was obtained as the overall evaluation. Example 7 is the case where the additional CaO injection timing is set to the lower limit of 50%, and Example 8 is the case where the additional CaO input timing is set to the upper limit of 70%. 014% by weight, the generated slag amount index was 0.51 and 0.46, and a good (○) result was obtained as the overall evaluation.
【0014】[0014]
【表1】 [Table 1]
【0015】これに対し、比較例1は、前チャージの残
留スラグの使用量を33重量%と低くした場合であり、
十分な脱Pを行うために必要なスラグ量が不足し、予備
処理終了時の到達P濃度が0.034重量%と高くなっ
て、脱炭精錬工程での負荷が増加し、総合評価として悪
い(×)結果になった。比較例2は、前チャージの残留
スラグスラグの使用量を67重量%と多くした場合であ
り、脱Pは十分に行なえるが、発生スラグ量指数が0.
82と高くなり、廃棄処理コスト等の増加を招くため、
総合評価としてやや悪い(△)結果になった。比較例3
は、次チャージのSi濃度を0.05重量%と低くした
場合であり、予備処理時のスラグの塩基度が高くなり、
スラグの滓化が悪く、脱P効率が低下し、到達P濃度が
0.037と高くなって、脱炭精錬工程での負荷が増加
し、総合評価として悪い(×)結果になった。比較例4
は、次チャージのSi濃度を0.67重量%と高くした
場合であり、SiO2 の生成に起因してスラグの発生量
が増加し、発生スラグ量指数が0.85とやや悪く、更
に、スラグの塩基度の低下によって脱P効率が低下し、
到達P濃度が0.032重量%と高くなり、総合評価と
して悪い(×)結果になった。比較例5は、追加CaO
の投入タイミングを36%としたため、投入時期が早過
ぎた場合であり、予備処理の開始の初期のスラグ量が増
加し、このスラグ量の増加にともなってスラグ中のFe
O濃度が低下し、予備処理の全体を通した脱P効率が低
下して到達P濃度が0.035重量%と高くなり、総合
評価として悪い(×)結果になった。比較例6は、追加
CaOの投入タイミングが78%となり、投入時期が遅
過ぎた場合であり、予備処理の末期のスラグの滓化不良
を招き、予備処理の全体を通した脱P効率が低下して到
達P濃度が0.039重量%と高くなり、総合評価とし
て悪い(×)結果になった。なお、従来法は、炉内11
に装入した溶銑に、常に、新しい生石灰と酸化鉄を添加
して吹酸を行う溶銑の脱Si及び脱P処理を行った場合
であり、予備処理の全体を通して生石灰及び酸化鉄の添
加量が増加し、発生スラグ量指数が1.0と高くなり、
廃棄処理コスト等の増加を招くため、総合評価として悪
い(×)結果になった。On the other hand, in Comparative Example 1, the amount of residual slag used in the pre-charge was reduced to 33% by weight.
The amount of slag necessary for performing sufficient de-P is insufficient, and the ultimate P concentration at the end of the pretreatment becomes as high as 0.034% by weight, and the load in the decarburization refining process increases, resulting in poor overall evaluation. (×) The result was obtained. Comparative Example 2 is a case where the used amount of the residual slag slag of the previous charge was increased to 67% by weight, and the removal of P could be sufficiently performed, but the generated slag amount index was 0.1%.
82, which leads to an increase in waste disposal costs, etc.
The result was somewhat bad (△) as the overall evaluation. Comparative Example 3
Is the case where the Si concentration of the next charge is reduced to 0.05% by weight, the basicity of the slag at the time of the pretreatment increases,
The slag was poorly slagged, the de-P efficiency decreased, the ultimate P concentration increased to 0.037, the load in the decarburization refining process increased, and the overall evaluation was poor (x). Comparative Example 4
Is the case where the Si concentration of the next charge was increased to 0.67% by weight, the amount of slag generated increased due to the formation of SiO 2 , and the generated slag amount index was slightly worse at 0.85. The de-P efficiency decreases due to the decrease in slag basicity,
The ultimate P concentration was as high as 0.032% by weight, and the result was poor (x) as the overall evaluation. Comparative Example 5 has additional CaO
Is set to 36%, which means that the charging time is too early, and the amount of slag in the initial stage of the start of the pretreatment increases, and with the increase in the amount of slag, the amount of Fe in the slag increases.
The O concentration decreased, the P removal efficiency throughout the entire pretreatment decreased, and the ultimate P concentration increased to 0.035% by weight, resulting in a poor (X) result as an overall evaluation. Comparative Example 6 is a case in which the additional CaO charging timing was 78%, and the charging timing was too late, resulting in poor slag slagging at the final stage of the pretreatment, resulting in a decrease in the P removal efficiency throughout the entire pretreatment. As a result, the ultimate P concentration was as high as 0.039% by weight, and the overall evaluation was poor (x). In the conventional method, the inside of the furnace 11
This is the case where the hot metal charged into the furnace is always subjected to de-Si and de-P treatment of hot metal by adding fresh quick lime and iron oxide to perform blowing acid, and the amount of quick lime and iron oxide added during the entire pretreatment Increase, the generated slag amount index becomes high as 1.0,
Since the cost of disposal was increased, the overall evaluation was bad (x).
【0016】以上、本発明の実施の形態を説明したが、
本発明は、上記した形態に限定されるものでなく、要旨
を逸脱しない条件の変更等は全て本発明の適用範囲であ
る。例えば、本実施の形態では、フラックスとしてCa
Oを用いた場合について説明したが、CaOの他に、ド
ロマイト、石灰石等、一般に脱Pに用いられているフラ
ックスを使用することができる。更に、溶銑中のSi、
Pの酸化を行う場合、吹酸による方法の他に、スラジ、
集塵ダスト、鉄鉱石、スケール等の固体酸素剤を吹酸と
併用することができる。The embodiments of the present invention have been described above.
The present invention is not limited to the above-described embodiment, and all changes in conditions that do not depart from the gist are within the scope of the present invention. For example, in the present embodiment, the flux is Ca
Although the case where O is used has been described, a flux generally used for de-P, such as dolomite and limestone, can be used in addition to CaO. Furthermore, Si in hot metal,
When P is oxidized, sludge,
Solid oxygen agents such as dust dust, iron ore, and scale can be used in combination with the blowing acid.
【0017】[0017]
【発明の効果】請求項1〜3記載の転炉型容器を用いた
スラグ発生量の少ない溶銑の予備処理方法においては、
前回の溶銑の予備処理で発生したスラグの40〜60重
量%を転炉型容器内に残留させておき、転炉型容器内に
新しい溶銑を装入し、そして吹酸し溶銑の脱Si処理及
び脱P処理を行い、この脱Si処理及び脱P処理の途中
で、溶銑にフラックスを添加して、更に、脱Si処理及
び脱P処理を継続して行うので、脱Si、脱P予備処理
に用いるフラックスを節減することができ、脱Si及び
脱Pの効率を高めて、到達Si、到達P濃度を低減する
ことができ、廃棄スラグの処理コストを低減することが
できる。According to the pretreatment method for hot metal with a small amount of slag generated using the converter type container according to claims 1 to 3,
40-60% by weight of the slag generated in the previous hot metal pretreatment is left in the converter type vessel, new hot metal is charged into the converter type vessel, and the molten iron is blown off to remove Si. In the course of the de-Si treatment and the de-P treatment, a flux is added to the hot metal, and the de-Si treatment and the de-P treatment are continuously performed. Can be saved, the efficiency of de-Si and de-P can be increased, the attained Si and P concentrations can be reduced, and the disposal cost of waste slag can be reduced.
【0018】請求項2記載の転炉型容器を用いたスラグ
発生量の少ない溶銑の予備処理方法においては、転炉型
容器内に装入する新しい溶銑のSi濃度を0.1〜0.
6重量%にしているので、スラグ量の過剰な増加やスラ
グの塩基度の低下を抑制して脱Si、脱P効率を安定し
て高め、到達Si、到達P濃度をより低くすることがで
き、後工程の脱炭精錬の負荷を軽減することができる。According to a second aspect of the present invention, there is provided a method for pretreating hot metal with a small amount of slag using a converter type container, wherein the Si concentration of new hot metal charged into the converter type container is 0.1 to 0.1.
Since the content is set to 6% by weight, it is possible to suppress an excessive increase in the amount of slag and a decrease in basicity of the slag, stably increase the de-Si and de-P efficiencies, and lower the attained Si and attained P concentrations. In addition, the load of the decarburization refining in the post process can be reduced.
【0019】請求項3記載の転炉型容器を用いたスラグ
発生量の少ない溶銑の予備処理方法においては、フラッ
クスとしてCaOを用い、CaOの添加は、吹酸の全経
過時間の50〜70%にあたる時期に行うので、スラグ
の滓化を良好にして少ないスラグ量で脱Si、脱P効率
を安定して高めることができ、発生したスラグのアルカ
リ成分等の有害成分を抑制して再利用を行うことができ
る。According to a third aspect of the present invention, there is provided a method for pre-treating hot metal with a small amount of slag using a converter type container, wherein CaO is used as a flux, and the addition of CaO is 50 to 70% of the total elapsed time of the blowing acid. Since the slag is formed at a suitable time, it is possible to improve the slag slaging, improve the efficiency of de-Si and de-P with a small amount of slag, suppress harmful components such as alkali components of the generated slag, and reuse the slag. It can be carried out.
【図1】本発明の一実施の形態に係る転炉型容器を用い
たスラグ発生量の少ない溶銑の予備処理方法に適用され
る上底吹き転炉の全体図である。FIG. 1 is an overall view of an upper-bottom blow converter applied to a pretreatment method for hot metal with a small amount of slag generation using a converter type container according to one embodiment of the present invention.
10:上底吹き転炉(転炉型容器)、11:炉体、1
2:底吹きノズル、13:上吹きランス、14:貯蔵ホ
ッパ、15:生石灰(フラックス)、16:溶銑、1
7:スラグ、18:シュート、19:出鋼口10: top and bottom blown converter (converter type vessel), 11: furnace body, 1
2: bottom blowing nozzle, 13: top blowing lance, 14: storage hopper, 15: quick lime (flux), 16: hot metal, 1
7: slag, 18: chute, 19: tapping outlet
Claims (3)
P処理を行うスラグ発生量の少ない溶銑の予備処理方法
において、前回の溶銑の予備処理で発生したスラグの4
0〜60重量%を前記転炉型容器内に残留させておき、
該転炉型容器内に新しい溶銑を装入し、そして吹酸し該
溶銑の脱Si処理及び脱P処理を行い、この脱Si処理
及び脱P処理の途中で、該溶銑にフラックスを添加し
て、更に、前記脱Si処理及び脱P処理を継続して行う
ことを特徴とする転炉型容器を用いたスラグ発生量の少
ない溶銑の予備処理方法。In a pretreatment method of hot metal with a small amount of slag generated by performing a de-Si treatment and a de-P treatment using a converter-type container, the slag generated in the previous pre-treatment of the hot metal is reduced.
0-60% by weight is left in the converter type container,
A new hot metal is charged into the converter type vessel, and the hot metal is blown and subjected to a de-Si treatment and a de-P treatment. The flux is added to the hot metal during the de-Si treatment and the de-P treatment. Further, a pretreatment method for hot metal with a small amount of slag generation using a converter type vessel, wherein the de-Si treatment and the P removal treatment are continuously performed.
グ発生量の少ない溶銑の予備処理方法において、前記転
炉型容器内に装入する前記新しい溶銑のSi濃度は0.
1〜0.6重量%であることを特徴とする転炉型容器を
用いたスラグ発生量の少ない溶銑の予備処理方法。2. The method for pretreating hot metal with a small amount of slag generated using the converter type container according to claim 1, wherein the Si concentration of the new hot metal charged into the converter type container is 0.1%.
A pretreatment method for hot metal with a small amount of slag generation using a converter type vessel, characterized in that the content is 1 to 0.6% by weight.
たスラグ発生量の少ない溶銑の予備処理方法において、
前記フラックスとしてCaOを用い、該CaOの添加
は、前記吹酸の全経過時間の50〜70%にあたる時期
に行うことを特徴とする転炉型容器を用いたスラグ発生
量の少ない溶銑の予備処理方法。3. A pretreatment method for hot metal with a small amount of slag generation using the converter type container according to claim 1 or 2,
Using CaO as the flux, wherein the addition of the CaO is performed at a time corresponding to 50 to 70% of the total elapsed time of the blowing acid; Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001058001A JP4369632B2 (en) | 2001-03-02 | 2001-03-02 | Pretreatment method of hot metal with low slag generation using converter type vessel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001058001A JP4369632B2 (en) | 2001-03-02 | 2001-03-02 | Pretreatment method of hot metal with low slag generation using converter type vessel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002256325A true JP2002256325A (en) | 2002-09-11 |
JP4369632B2 JP4369632B2 (en) | 2009-11-25 |
Family
ID=18917795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001058001A Expired - Fee Related JP4369632B2 (en) | 2001-03-02 | 2001-03-02 | Pretreatment method of hot metal with low slag generation using converter type vessel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4369632B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009249666A (en) * | 2008-04-03 | 2009-10-29 | Nippon Steel Corp | Dephosphorization refining method for molten iron |
JP2010215969A (en) * | 2009-03-17 | 2010-09-30 | Nippon Steel Corp | Method for utilizing electric furnace slag |
WO2013108810A1 (en) | 2012-01-19 | 2013-07-25 | Jfeスチール株式会社 | Method for preliminary treatment of molten iron |
US20140069235A1 (en) * | 2011-07-19 | 2014-03-13 | Jfe Steel Corporation | Method of refining molten iron |
KR20150095890A (en) | 2013-01-18 | 2015-08-21 | 제이에프이 스틸 가부시키가이샤 | Converter steelmaking process |
-
2001
- 2001-03-02 JP JP2001058001A patent/JP4369632B2/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009249666A (en) * | 2008-04-03 | 2009-10-29 | Nippon Steel Corp | Dephosphorization refining method for molten iron |
JP2010215969A (en) * | 2009-03-17 | 2010-09-30 | Nippon Steel Corp | Method for utilizing electric furnace slag |
US20140069235A1 (en) * | 2011-07-19 | 2014-03-13 | Jfe Steel Corporation | Method of refining molten iron |
US9315875B2 (en) | 2011-07-19 | 2016-04-19 | Jfe Steel Corporation | Method of refining molten iron |
WO2013108810A1 (en) | 2012-01-19 | 2013-07-25 | Jfeスチール株式会社 | Method for preliminary treatment of molten iron |
KR20140102742A (en) | 2012-01-19 | 2014-08-22 | 제이에프이 스틸 가부시키가이샤 | Method for preliminary treatment of molten iron |
EP2806039A4 (en) * | 2012-01-19 | 2015-11-04 | Jfe Steel Corp | PROCESS FOR PRE-TREATING MELT-LIQUID IRON |
KR101648652B1 (en) | 2012-01-19 | 2016-08-16 | 제이에프이 스틸 가부시키가이샤 | Method for preliminary treatment of molten iron |
US9920390B2 (en) | 2012-01-19 | 2018-03-20 | Jfe Steel Corporation | Method for preliminary treatment of molten iron |
KR20150095890A (en) | 2013-01-18 | 2015-08-21 | 제이에프이 스틸 가부시키가이샤 | Converter steelmaking process |
CN104937116A (en) * | 2013-01-18 | 2015-09-23 | 杰富意钢铁株式会社 | converter steelmaking |
Also Published As
Publication number | Publication date |
---|---|
JP4369632B2 (en) | 2009-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI410501B (en) | Method for recovering iron and phosphorus from steel slag | |
KR101699272B1 (en) | Steelmaking method in converter | |
WO1995001458A1 (en) | Steel manufacturing method using converter | |
JPH0770626A (en) | Converter steelmaking | |
JP5983492B2 (en) | Hot metal pretreatment method | |
JP4977870B2 (en) | Steel making method | |
JP4369632B2 (en) | Pretreatment method of hot metal with low slag generation using converter type vessel | |
JP2000160233A (en) | Stainless steel desulfurization refining method | |
JP2006274349A (en) | Steel refining method | |
JP2008184648A (en) | Hot metal desiliconization and dephosphorization methods | |
JP4210011B2 (en) | Dephosphorization method of hot metal using converter | |
JP2833736B2 (en) | Hot metal pretreatment method | |
JP2607329B2 (en) | Hot metal dephosphorization method | |
WO2003029498A1 (en) | Method for pretreatment of molten iron and method for refining | |
JP2006265623A (en) | Hot metal pretreatment method | |
WO2004020677A1 (en) | Method of manufacturing low phosphorous hot metal | |
JP3742543B2 (en) | Hot metal desulfurization method | |
JP2002294321A (en) | Method for removing Si from hot metal using converter type vessel | |
JP6848780B2 (en) | How to operate the converter | |
JP2000328123A (en) | Converter refining method for adjusting silicon input | |
JP3684953B2 (en) | Pre-silicidation / phosphorization method of hot metal | |
JPH02200715A (en) | Hot metal dephosphorization and desulfurization method | |
JP2004307944A (en) | Hot metal pretreatment operation method in converter type vessel | |
JP3297997B2 (en) | Hot metal removal method | |
JP2002069518A (en) | Dephosphorization of hot metal with low slag generation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070904 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090417 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090428 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090624 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090818 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090828 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120904 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120904 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130904 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130904 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |