JP2002248498A - Excess sludge treatment method - Google Patents
Excess sludge treatment methodInfo
- Publication number
- JP2002248498A JP2002248498A JP2001050626A JP2001050626A JP2002248498A JP 2002248498 A JP2002248498 A JP 2002248498A JP 2001050626 A JP2001050626 A JP 2001050626A JP 2001050626 A JP2001050626 A JP 2001050626A JP 2002248498 A JP2002248498 A JP 2002248498A
- Authority
- JP
- Japan
- Prior art keywords
- excess sludge
- sludge
- inorganic porous
- porous carrier
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010802 sludge Substances 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000011282 treatment Methods 0.000 title abstract description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000000428 dust Substances 0.000 claims abstract description 19
- 244000005700 microbiome Species 0.000 claims abstract description 19
- 239000002994 raw material Substances 0.000 claims abstract description 11
- 239000005909 Kieselgur Substances 0.000 claims abstract description 10
- 239000004927 clay Substances 0.000 claims abstract description 10
- 239000010801 sewage sludge Substances 0.000 claims abstract description 7
- 238000010304 firing Methods 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 5
- 238000003672 processing method Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 239000004576 sand Substances 0.000 description 7
- 239000010865 sewage Substances 0.000 description 6
- 230000029087 digestion Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 239000008187 granular material Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 241000590020 Achromobacter Species 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 241000588986 Alcaligenes Species 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 241000202974 Methanobacterium Species 0.000 description 1
- 241000205276 Methanosarcina Species 0.000 description 1
- 241000192041 Micrococcus Species 0.000 description 1
- 241000108056 Monas Species 0.000 description 1
- 241000186359 Mycobacterium Species 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 241001148470 aerobic bacillus Species 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000011221 initial treatment Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003110 molding sand Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052604 silicate mineral Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/20—Sludge processing
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Treatment Of Sludge (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
Abstract
Description
【0001】[0001]
【発明が属する技術分野】本発明は、余剰汚泥の処理方
法に関する。更に詳しくは、本発明は、メタンガスの発
生を抑制しつつ余剰汚泥を減容化しうる余剰汚泥の処理
方法に関する。[0001] The present invention relates to a method for treating excess sludge. More specifically, the present invention relates to a method for treating excess sludge that can reduce the volume of excess sludge while suppressing the generation of methane gas.
【0002】[0002]
【従来の技術】下水処理場や食品工場では、下水や廃水
を活性汚泥法により処理することで、CODやBODを
低下させて河川等に放流可能な程度に浄化している。こ
の活性汚泥法は、好気性及び/又は嫌気性条件下で、微
生物により下水や廃水中の有機物や無機物を分解する方
法である。活性汚泥法では、微生物の代謝による汚泥が
発生する。この汚泥は、一部活性汚泥法での処理装置に
返送されるが、そのほとんどはいわゆる余剰汚泥として
残存する。2. Description of the Related Art In sewage treatment plants and food factories, sewage and wastewater are treated by an activated sludge method to reduce COD and BOD and purify the sewage and wastewater to an extent that can be discharged to rivers and the like. The activated sludge method is a method in which microorganisms decompose organic and inorganic substances in sewage and wastewater under aerobic and / or anaerobic conditions. In the activated sludge method, sludge is generated due to metabolism of microorganisms. This sludge is partially returned to the treatment apparatus using the activated sludge method, but most of the sludge remains as so-called excess sludge.
【0003】この余剰汚泥は、肥料として、また汚泥を
焼却し、焼却灰を熔融してレンガ、ヒューム管、道路の
タイル等に再利用されている。しかし、そのほとんどは
廃棄物として埋め立て処分されているのが現状である。
近年、処分場の確保が困難である等の理由により、廃棄
物の減容化が強く望まれ、余剰汚泥に対しても、消化に
よる減容化が提案されている(例えば、特開平5−31
7897号公報参照)。この消化によれば、余剰汚泥を
約20%減容できることが知られている。[0003] The excess sludge is reused as fertilizer, incinerated sludge, melted incineration ash, and used for bricks, fume pipes, road tiles and the like. However, most of them are currently landfilled as waste.
In recent years, it has been strongly desired to reduce the volume of waste due to reasons such as difficulty in securing a disposal site, and it has been proposed to reduce the volume of excess sludge by digestion. 31
No. 7897). According to this digestion, it is known that the volume of excess sludge can be reduced by about 20%.
【0004】[0004]
【発明が解決しようとする課題】上記消化は、通常嫌気
性条件下でメタン生成細菌のような微生物により行われ
るため、メタンの発生が避けられない。メタンは可燃性
の気体であり、外部への流出を防ぐため消化の装置を気
密にする必要がある。そのため、装置の構成が複雑とな
り、設置費用が膨大となるという問題があった。更に、
消化に要する時間が3〜6ヶ月程度とかなり長いため、
その時間を短縮することも望まれていた。Since the above digestion is usually performed by microorganisms such as methanogens under anaerobic conditions, generation of methane is inevitable. Methane is a flammable gas and the digester must be hermetically sealed to prevent it from escaping. Therefore, there has been a problem that the configuration of the apparatus is complicated and the installation cost is enormous. Furthermore,
Because the time required for digestion is quite long, about 3 to 6 months,
It was also desired to shorten the time.
【0005】[0005]
【課題を解決するための手段】本発明の発明者等は、特
定の原料を造粒・焼成することにより得られた、特定の
気孔率を有する無機多孔質担体を使用することにより、
余剰汚泥を好気性雰囲気下で処理しても減容化しうるこ
とを見いだし本発明に至った。かくして本発明によれ
ば、粘土40〜99重量部、珪藻土0〜30重量部、集
塵ダスト1〜30重量部、下水汚泥焼却灰0〜50重量
部からなる原料を造粒し、焼成して得られた気孔率20
〜60%の無機多孔質担体に微生物を付着させた後、該
無機多孔質担体に活性汚泥法由来の余剰汚泥を好気性条
件下で接触させて余剰汚泥を減容させることを特徴とす
る余剰汚泥の処理方法が提供される。Means for Solving the Problems The inventors of the present invention use an inorganic porous carrier having a specific porosity obtained by granulating and firing a specific raw material,
The present inventors have found that the volume can be reduced even if excess sludge is treated in an aerobic atmosphere, and the present invention has been accomplished. Thus, according to the present invention, 40 to 99 parts by weight of clay, 0 to 30 parts by weight of diatomaceous earth, 1 to 30 parts by weight of dust dust, 0 to 50 parts by weight of sewage sludge incineration ash are granulated and fired. The obtained porosity 20
After adhering microorganisms to an inorganic porous carrier of about 60%, excess sludge derived from the activated sludge method is brought into contact with the inorganic porous carrier under aerobic conditions to reduce the volume of the excess sludge. A method for treating sludge is provided.
【0006】[0006]
【発明の実施の形態】本発明に使用することができる無
機多孔質担体(以下、「担体」と称する)は、粘土、珪
藻土及び集塵ダストを所定量含む原料を造粒し、焼成す
ることにより得られる。この担体は、SiO2を主成分
とし、Al2O3、Fe2O3、Na2O、CaO、Mg
O、K2O等の他の成分を含んでいることが好ましい。
ここで、粘土とは、細かい含水珪酸塩鉱物の集合体を意
味する。粘土のうち、山砂のような原砂から珪砂を製造
する際の副産物を好適に使用することができる。この副
産物の大部分は原砂を採掘したところに、廃棄物として
埋め戻しているのが現状である。従って、この粘土を有
効に利用すれば、経済的に有利であるばかりでなく、廃
棄物公害も防止することができる。BEST MODE FOR CARRYING OUT THE INVENTION An inorganic porous carrier (hereinafter, referred to as a "carrier") that can be used in the present invention is obtained by granulating a raw material containing a predetermined amount of clay, diatomaceous earth and dust dust and firing the granulated material. Is obtained by This carrier is mainly composed of SiO 2 , and Al 2 O 3 , Fe 2 O 3 , Na 2 O, CaO, Mg
It preferably contains other components such as O and K 2 O.
Here, clay means an aggregate of fine hydrated silicate minerals. Among the clays, a by-product of producing silica sand from raw sand such as mountain sand can be suitably used. At present, most of this by-product is buried as waste, where raw sand is mined. Therefore, if this clay is used effectively, not only is it economically advantageous, but also it is possible to prevent waste pollution.
【0007】珪藻土は、多孔質にするための原料とし
て、一般に使用されているものをいずれも使用すること
ができる。集塵ダストとは、鋳物砂の再生回収時に得ら
れるものを好適に使用することができる。即ち、鋳物の
成型(一般に、砂、ベントナイト、澱粉、石炭粉末から
構成される)を使用後、粉砕、表面磨こうし、鋳物砂を
再生する際に生じる集塵ダストを使用することができ
る。また、有機鋳型(一般に、砂、フラン樹脂から構成
される)を再生する際に生じる集塵ダストも使用するこ
とができる。これらのうち、ベントナイトを含む集塵ダ
ストを使用するのが好ましい。[0007] As diatomaceous earth, any commonly used material can be used as a raw material for making it porous. As dust collection dust, dust obtained at the time of recycling and recovery of foundry sand can be suitably used. That is, after using molding of a casting (generally composed of sand, bentonite, starch, and coal powder), dust collected when grinding and polishing the surface and regenerating the molding sand can be used. Dust collected when the organic mold (generally composed of sand and furan resin) is regenerated can also be used. Among these, it is preferable to use dust collected dust containing bentonite.
【0008】下水汚泥焼却灰とは、下水道終末処理施設
において、活性汚泥法によって発生した余剰汚泥を焼却
して水分と有機物を除去した後に残存する無機成分のこ
とを意味する。なお、余剰汚泥を使用すれば、埋め立て
処理される汚泥の量を更に減容できるという効果も奏す
る。ここで、無機多孔質担体の原料を構成する粘土、珪
藻土、集塵ダスト及び下水汚泥焼却灰の配合割合は、粘
土40〜99重量部、珪藻土0〜30重量部、集塵ダス
ト1〜30重量部(好ましくは10〜20重量部)、下
水汚泥焼却灰0〜50重量部である。なお、珪藻土及び
下水汚泥焼却灰は必ずしも添加する必要はない。[0008] The sewage sludge incineration ash means an inorganic component remaining after incinerating excess sludge generated by the activated sludge method to remove water and organic matter in a sewer final treatment facility. In addition, if surplus sludge is used, there is an effect that the volume of sludge to be landfilled can be further reduced. Here, the mixing ratio of clay, diatomaceous earth, dust collected dust and sewage sludge incineration ash constituting the raw materials of the inorganic porous carrier is 40 to 99 parts by weight of clay, 0 to 30 parts by weight of diatomaceous earth, and 1 to 30 parts by weight of dust collected. Parts (preferably 10 to 20 parts by weight) and sewage sludge incineration ash 0 to 50 parts by weight. It is not always necessary to add diatomaceous earth and sewage sludge incineration ash.
【0009】これらの原料をまず混合し、造粒する。造
粒物の形状は特に限定されず、顆粒状、ペレット状、球
状等のいずれでもよいが、担体として使用する際に表面
積を最も大きくすることができるという点で球状が好ま
しい。なお、造粒方法は特に限定されず公知の方法を使
用することができる。次いで、造粒物を焼成して担体と
することができる。焼成条件は、温度が800〜110
0℃、時間が30〜60分間であることが好ましい。な
お、上記の原料及び製造条件等は、特開平3−2153
73号公報に記載された技術をそのまま利用することが
できる。[0009] These raw materials are first mixed and granulated. The shape of the granulated product is not particularly limited, and may be any of granules, pellets, and spheres. However, spheres are preferable because the surface area can be maximized when used as a carrier. The granulation method is not particularly limited, and a known method can be used. Next, the granulated material can be fired to obtain a carrier. The firing conditions are as follows:
It is preferable that the temperature is 0 ° C. and the time is 30 to 60 minutes. The above raw materials and manufacturing conditions are described in JP-A-3-2153.
The technology described in JP-A-73-73 can be used as it is.
【0010】上記の原料及び条件にて製造された担体
は、微細な気孔を有し、その表面に複雑な凹凸を有する
セラミック多孔質体である。また、焼成されているた
め、物理的にも化学的にも長期間安定である。そのた
め、余剰汚泥の処理に使用した場合、その表面に微生物
が付着しやすく、しかも剥離しにくく、更に、長期間使
用することができるという利点を有している。The carrier produced under the above-mentioned raw materials and conditions is a porous ceramic body having fine pores and complicated irregularities on its surface. Moreover, since it is calcined, it is physically and chemically stable for a long period of time. Therefore, when used for treating excess sludge, there is an advantage that microorganisms easily adhere to the surface thereof, are hardly peeled off, and can be used for a long time.
【0011】また、上記担体は、20〜60%の気孔率
を有している。この気孔率は、上記原料以外から得られ
るセラミック多孔質体が、70〜85%程度の気孔率を
有していることと比べて、特徴的な事項である。担体の
平均粒径は、処理方法等に応じて適宜選択することがで
きる。固定床方式でほぼ球形の担体を使用した場合に
は、通常、平均粒径は1〜10mmが好ましく、2〜5
mmがより好ましい。なお、本発明に好適に使用するこ
とができる担体として、例えば山川産業社製のポーラス
トン(登録商標)シリーズが挙げられる。[0011] The carrier has a porosity of 20 to 60%. This porosity is a characteristic matter in comparison with the fact that a ceramic porous body obtained from a material other than the above-described raw materials has a porosity of about 70 to 85%. The average particle size of the carrier can be appropriately selected depending on the treatment method and the like. When a substantially spherical carrier is used in a fixed bed system, the average particle size is usually preferably 1 to 10 mm, and 2 to 5 mm.
mm is more preferable. In addition, as a carrier that can be suitably used in the present invention, for example, Polarstone (registered trademark) series manufactured by Yamakawa Sangyo Co., Ltd. can be mentioned.
【0012】この発明の方法で無機多孔質担体が好適に
使用される余剰汚泥の処理装置は、その処理方式に応じ
てその装置の構成を適宜変更することができる。具体的
な処理方式としては、担体が余剰汚泥含有水中で固定さ
れている方式(固定床方式)や水中に流動している方式
(流動床方式)があるが、本発明の方法はこれらいずれ
の方式にも適用可能である。In the apparatus for treating excess sludge in which the inorganic porous carrier is suitably used in the method of the present invention, the configuration of the apparatus can be appropriately changed according to the treatment method. Specific treatment methods include a method in which the carrier is fixed in the excess sludge-containing water (fixed bed method) and a method in which the carrier is flowing in the water (fluidized bed method). The method is also applicable.
【0013】処理装置は、余剰汚泥引抜き口と水導入口
及び処理水排出口を備えた水槽に担体が導入された構成
を有しており、通常、水の流れを上向流とするために、
下部に余剰汚泥引抜き口と水導入口を、上部に処理水排
出口を有することが多い。そして、固定床方式の場合、
通常、担体は自重により、あるいは保持手段により装置
内に固定される。一方、流動床方式の場合には、担体を
流動させうる攪拌機等の攪拌手段を備えているのが普通
である。また、本発明は好気性条件下で行われるため、
処理装置は、空気を流通させるためのエアーポンプ等の
ばっ気手段を有することが好ましい。更に、処理装置
が、複数組み合わせて使用される場合、それらは直列及
び/又は並列に設置されていてもよく、かつ、個々の処
理装置の処理方式が異なっていてもよい。The treatment apparatus has a structure in which a carrier is introduced into a water tank provided with a surplus sludge extraction port, a water introduction port, and a treated water discharge port. ,
It often has an excess sludge extraction port and water inlet port at the bottom, and a treated water discharge port at the top. And in the case of the fixed floor method,
Usually, the carrier is fixed in the device by its own weight or by holding means. On the other hand, in the case of the fluidized bed system, it is usual to provide a stirring means such as a stirrer capable of flowing the carrier. Further, since the present invention is performed under aerobic conditions,
It is preferable that the processing apparatus has an aeration means such as an air pump for flowing air. Further, when a plurality of processing devices are used in combination, they may be installed in series and / or in parallel, and the processing methods of the individual processing devices may be different.
【0014】次に、無機多孔質担体に微生物を付着(馴
化)させる。本発明の方法に使用する微生物は、特に限
定されることなく、余剰汚泥中に含まれ余剰汚泥を同化
しうる微生物をそのまま利用することができる。更に、
余剰汚泥の成分に応じて、特定の微生物を選択して付着
させてもよい。具体的な微生物の種類としては、Pseudo
monas属、Achromobacter属、Alcaligenes属、Bacillus
属、Micrococcus属、Mycobacterium属、Zooglea属等の
好気性菌、Methanobacterium属、Methanosarcina属、Me
thanococcus属等の嫌気性菌が挙げられる。微生物を担
体に付着させる方法としては、例えば、余剰汚泥を含む
水を数日間循環させて、余剰汚泥中に含まれる微生物を
付着させる方法や、特定の種類の微生物を付着させる場
合は、その微生物の種菌を加え、生物栄養剤を含む水を
循環させて、微生物を付着させる方法が挙げられる。な
お、初期の処理効率は低下するが、馴化を余剰汚泥の処
理と同時に行ってもよい。Next, microorganisms are made to adhere (acclimate) to the inorganic porous carrier. The microorganism used in the method of the present invention is not particularly limited, and a microorganism that is contained in excess sludge and that can assimilate excess sludge can be used as it is. Furthermore,
Depending on the components of the excess sludge, specific microorganisms may be selected and attached. Specific types of microorganisms include Pseudo
genus monas, Achromobacter, Alcaligenes, Bacillus
Genus, Micrococcus, Mycobacterium, Zooglea and other aerobic bacteria, Methanobacterium, Methanosarcina, Me
Anaerobic bacteria such as thanococcus sp. As a method of attaching microorganisms to a carrier, for example, circulating water containing excess sludge for several days, attaching a microorganism contained in excess sludge, or attaching a specific type of microorganism, the microorganism And then circulating water containing a bionutrient to adhere microorganisms. Although the initial treatment efficiency is reduced, the acclimatization may be performed simultaneously with the treatment of the excess sludge.
【0015】次に、微生物が付着した担体に、好気性条
件下で余剰汚泥を含む水を接触させる。水に対する余剰
汚泥の割合は、水100重量部に対して、0.5〜2.
0重量部の範囲が好ましい。また、無機多孔質担体の割
合は、余剰汚泥1リットルに対して、0.15リットル
以上であることが好ましく、0.25リットル以上であ
ることがより好ましい。本発明の方法によれば、余剰汚
泥を構成する成分及び処理装置の規模にもよるが、余剰
汚泥の量を30〜100%減容化させることが可能とな
る。なお、処理を長期間継続して行うと、微生物が過剰
に付着することにより、処理能力が低下するが、このよ
うな場合は公知の方法により処理装置を逆洗すればよ
い。Next, water containing excess sludge is brought into contact with the carrier to which the microorganisms have adhered under aerobic conditions. The ratio of surplus sludge to water is 0.5-2.
A range of 0 parts by weight is preferred. Further, the ratio of the inorganic porous carrier is preferably at least 0.15 liter, more preferably at least 0.25 liter, per liter of excess sludge. According to the method of the present invention, the amount of the excess sludge can be reduced by 30 to 100%, depending on the components constituting the excess sludge and the scale of the treatment apparatus. If the treatment is continued for a long period of time, the treatment capacity is reduced due to excessive attachment of microorganisms. In such a case, the treatment device may be backwashed by a known method.
【0016】[0016]
【実施例】無機多孔質担体として、以下の性質を有する
山川産業社製のポーラストンS−5及びS−2を使用し
た。 (ポーラストンS−5) ・粘土60〜80重量部、珪藻土5〜20重量部及び集
塵ダスト5〜20重量部の焼成物 ・ほぼ球状 ・平均粒径5mm ・気孔率30〜40% ・見掛嵩比重0.9〜1.1 ・中央細孔直径0.1〜0.5μmEXAMPLES As inorganic porous carriers, Polarstone S-5 and S-2 manufactured by Yamakawa Sangyo Co., Ltd. having the following properties were used. (Polarstone S-5)-A baked product of 60 to 80 parts by weight of clay, 5 to 20 parts by weight of diatomaceous earth and 5 to 20 parts by weight of dust dust-Almost spherical-Average particle size 5 mm-Porosity 30 to 40%-View Hung bulk specific gravity 0.9-1.1 ・ Central pore diameter 0.1-0.5 μm
【0017】(ポーラストンS-2) ・粘土60〜80重量部、珪藻土5〜20重量部及び集
塵ダスト5〜20重量部の焼成物 ・ほぼ球状 ・平均粒径2mm ・気孔率30〜40% ・見掛嵩比重0.9〜1.1 ・中央細孔直径0.1〜0.5μm(Polarstone S-2) A fired product of 60 to 80 parts by weight of clay, 5 to 20 parts by weight of diatomaceous earth and 5 to 20 parts by weight of dust dust-Almost spherical-Average particle size 2 mm-Porosity 30 to 40 %-Apparent bulk specific gravity 0.9-1.1-Central pore diameter 0.1-0.5 m
【0018】〔試験例1〕好気性条件下における余剰汚
泥の減容化試験 A社の下水処理場から入手した活性汚泥法によって処理
された余剰汚泥を3リットルのビーカーに1リットル、
これに水を1リットル入れたものを2つ用意した。一方
には、ポーラストンS−5を500ミリリットル入れ
て、他方は無添加とした。両方のビーカーに、空気を1
時間で120リットル継続して供給し、90日間の攪拌
を行った。この時の余剰汚泥の減少について測定した。
測定結果を表1に示す。[Test Example 1] Volume reduction test of excess sludge under aerobic conditions 1 liter of excess sludge obtained by the activated sludge method obtained from the sewage treatment plant of Company A was put into a 3 liter beaker.
Two liters containing 1 liter of water were prepared. On one side, 500 ml of Polarstone S-5 was added, and on the other side, no addition was made. Fill both beakers with air.
120 liters were continuously supplied over a period of time, and stirring was performed for 90 days. At this time, the decrease in excess sludge was measured.
Table 1 shows the measurement results.
【0019】[0019]
【表1】 [Table 1]
【0020】表中、Mアルカリ度とは、水中に含まれて
いる弱酸性酸塩の総量を中和するに要する鉱酸の消費量
をCaCO3に換算してppmで表示した値である。T
Sとは、溶解性物質を含む全固形分を、SSは溶解性物
質を除く懸濁固形物を意味する(単位は重量%)。 〔試験例2〕好気性条件下における余剰汚泥の減容化試
験 B社の下水処理場から入手した標準活性汚泥法によって
処理された余剰汚泥を試験例1と同様にして処理し、試
験例1と同様にして各種値を測定した。測定結果を表2
に示す。In the table, M alkalinity is a value expressed in ppm in terms of the amount of mineral acid consumed for neutralizing the total amount of weak acid salts contained in water, converted into CaCO 3 . T
S means the total solid content including the soluble substance, and SS means the suspended solid substance excluding the soluble substance (unit is% by weight). [Test Example 2] Excess sludge volume reduction test under aerobic conditions Excess sludge treated by the standard activated sludge method obtained from the sewage treatment plant of Company B was treated in the same manner as in Test Example 1. Various values were measured in the same manner as described above. Table 2 shows the measurement results.
Shown in
【0021】[0021]
【表2】 [Table 2]
【0022】表1及び表2の結果から、好気性条件下に
おいて無機多孔質担体を添加した場合は、添加していな
い場合と比較して、pH及びMアルカリ度の値が大幅に
上昇していることが示されている。これにより余剰汚泥
の消化が促進されていることがわかる。また、TSとS
Sの減少速度を比較すると、無機多孔質担体を添加した
ときの方が速く、余剰汚泥が減容していることがわか
る。From the results shown in Tables 1 and 2, when the inorganic porous carrier was added under aerobic conditions, the values of pH and M alkalinity were significantly increased as compared with the case where the inorganic porous carrier was not added. Is shown. This indicates that the digestion of the excess sludge is promoted. Also, TS and S
Comparing the reduction rate of S, it can be seen that the addition of the inorganic porous carrier is faster and the excess sludge is reduced.
【0023】[0023]
【発明の効果】本発明の余剰汚泥の処理方法によれば、
特定の原料を造粒・焼成することにより得られた、特定
の気孔率を有する無機多孔質担体を好気性条件下で使用
することにより、余剰汚泥を効率的に減容することがで
きる。また、メタンの発生が抑制されるので、処理装置
の構成を簡略化することができる。According to the method for treating excess sludge of the present invention,
By using an inorganic porous carrier having a specific porosity obtained by granulating and firing a specific raw material under aerobic conditions, excess sludge can be efficiently reduced. Further, since the generation of methane is suppressed, the configuration of the processing apparatus can be simplified.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4B033 NA19 NB14 NB23 NB24 NB62 NC04 ND04 ND10 ND20 NE06 4B065 AA99X AC20 BC05 BC42 CA54 4D059 AA05 BA03 BA27 ──────────────────────────────────────────────────の Continued on the front page F term (reference) 4B033 NA19 NB14 NB23 NB24 NB62 NC04 ND04 ND10 ND20 NE06 4B065 AA99X AC20 BC05 BC42 CA54 4D059 AA05 BA03 BA27
Claims (2)
重量部、集塵ダスト1〜30重量部、下水汚泥焼却灰0
〜50重量部からなる原料を造粒し、焼成して得られた
気孔率20〜60%の無機多孔質担体に微生物を付着さ
せた後、該無機多孔質担体に活性汚泥法由来の余剰汚泥
を好気性条件下で接触させて余剰汚泥を減容させること
を特徴とする余剰汚泥の処理方法。1. Clay 40 to 99 parts by weight, diatomaceous earth 0 to 30
Parts by weight, dust collection dust 1-30 parts by weight, sewage sludge incineration ash 0
Microorganisms are adhered to an inorganic porous carrier having a porosity of 20 to 60%, obtained by granulating a raw material consisting of 5050 parts by weight and firing, and then adding excess sludge derived from the activated sludge method to the inorganic porous carrier. A method for treating excess sludge, wherein the sludge is contacted under aerobic conditions to reduce the volume of excess sludge.
0mmの平均粒径を有する請求項1に記載の処理方法。2. The inorganic porous carrier according to claim 1, wherein the inorganic porous carrier is substantially spherical,
The processing method according to claim 1, which has an average particle diameter of 0 mm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001050626A JP2002248498A (en) | 2001-02-26 | 2001-02-26 | Excess sludge treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001050626A JP2002248498A (en) | 2001-02-26 | 2001-02-26 | Excess sludge treatment method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002248498A true JP2002248498A (en) | 2002-09-03 |
Family
ID=18911556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001050626A Pending JP2002248498A (en) | 2001-02-26 | 2001-02-26 | Excess sludge treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002248498A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6706185B2 (en) | 2002-05-22 | 2004-03-16 | Kurita Water Industries Ltd. | Biological method of phosphorus removal and biological phosphorus-removing apparatus |
WO2012017834A1 (en) * | 2010-08-06 | 2012-02-09 | 月島機械株式会社 | Anaerobic digestion method |
US20120082603A1 (en) * | 2007-08-03 | 2012-04-05 | Ramberg Charles E | Porous Bodies and Methods |
US8277743B1 (en) | 2009-04-08 | 2012-10-02 | Errcive, Inc. | Substrate fabrication |
US8359829B1 (en) | 2009-06-25 | 2013-01-29 | Ramberg Charles E | Powertrain controls |
CN105523641A (en) * | 2015-12-08 | 2016-04-27 | 辽宁工业大学 | Preparation method of microbial affinity water-treatment light carrier |
US9833932B1 (en) | 2010-06-30 | 2017-12-05 | Charles E. Ramberg | Layered structures |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH081183A (en) * | 1994-06-23 | 1996-01-09 | Kurita Water Ind Ltd | Organic waste treatment method |
JPH11300393A (en) * | 1998-04-17 | 1999-11-02 | Unitika Ltd | Method for aerobically digesting excess sludge |
JP2000102798A (en) * | 1998-09-29 | 2000-04-11 | Yamakawa Sangyo Kk | Treatment of wastewater |
-
2001
- 2001-02-26 JP JP2001050626A patent/JP2002248498A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH081183A (en) * | 1994-06-23 | 1996-01-09 | Kurita Water Ind Ltd | Organic waste treatment method |
JPH11300393A (en) * | 1998-04-17 | 1999-11-02 | Unitika Ltd | Method for aerobically digesting excess sludge |
JP2000102798A (en) * | 1998-09-29 | 2000-04-11 | Yamakawa Sangyo Kk | Treatment of wastewater |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6706185B2 (en) | 2002-05-22 | 2004-03-16 | Kurita Water Industries Ltd. | Biological method of phosphorus removal and biological phosphorus-removing apparatus |
US8551216B2 (en) | 2007-08-03 | 2013-10-08 | Errcive, Inc. | Porous bodies and methods |
US8821803B2 (en) | 2007-08-03 | 2014-09-02 | Errcive, Inc. | Porous bodies and methods |
US20120082603A1 (en) * | 2007-08-03 | 2012-04-05 | Ramberg Charles E | Porous Bodies and Methods |
US8221694B2 (en) | 2007-08-03 | 2012-07-17 | Errcive, Inc. | Porous bodies and methods |
US8361406B2 (en) | 2007-08-03 | 2013-01-29 | Errcive, Inc. | Porous bodies and methods |
US8361420B2 (en) | 2007-08-03 | 2013-01-29 | Errcive, Inc. | Porous bodies and methods |
US8623287B2 (en) * | 2007-08-03 | 2014-01-07 | Errcive, Inc. | Porous bodies and methods |
US8277743B1 (en) | 2009-04-08 | 2012-10-02 | Errcive, Inc. | Substrate fabrication |
US8679418B2 (en) | 2009-04-08 | 2014-03-25 | Errcive, Inc. | Substrate fabrication |
US9511345B1 (en) | 2009-04-08 | 2016-12-06 | Errcive, Inc. | Substrate fabrication |
US8359829B1 (en) | 2009-06-25 | 2013-01-29 | Ramberg Charles E | Powertrain controls |
US9833932B1 (en) | 2010-06-30 | 2017-12-05 | Charles E. Ramberg | Layered structures |
CN103097308A (en) * | 2010-08-06 | 2013-05-08 | 月岛机械株式会社 | Anaerobic digestion method |
WO2012017834A1 (en) * | 2010-08-06 | 2012-02-09 | 月島機械株式会社 | Anaerobic digestion method |
CN105523641A (en) * | 2015-12-08 | 2016-04-27 | 辽宁工业大学 | Preparation method of microbial affinity water-treatment light carrier |
CN105523641B (en) * | 2015-12-08 | 2018-03-20 | 辽宁工业大学 | The preparation method of microorganism compatibility water process light carrier |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01127091A (en) | Method for solidifying waste liquid to chemically fixing the same | |
CN113860497A (en) | Urban and municipal sewage nitrogen and phosphorus removal filler and preparation method thereof | |
CN112661231A (en) | Multifunctional long-acting composite filler and preparation method thereof | |
JP2002248498A (en) | Excess sludge treatment method | |
JPH0669555B2 (en) | Wastewater activated sludge treatment method | |
Bao et al. | Production of zeolite composite filters using waste paper pulp as slow release carbon source and performance investigation in a biological aerated filter | |
CN111072139B (en) | Preparation method of sulfur autotrophic denitrification biological brick and biological brick prepared by same | |
KR20210085322A (en) | Media for Water Treatment Using Zeolite and Preparation Method thereof | |
JPH0226558B2 (en) | ||
JP4947247B2 (en) | Composition for removing nitrate nitrogen and the like and method for producing the same | |
JP2004237170A (en) | Method and apparatus for treating nitrate nitrogen and phosphorus-containing water | |
KR100993120B1 (en) | Water purification block by using bottom ash and method thereof | |
EP0612692B1 (en) | Method for production of water purifying substances | |
JP4474690B2 (en) | Porous stone for water purification and water purification method | |
CN1238275C (en) | Filter material having phosphor adsorbing and biological membrane function and its preparing method | |
JP2000102798A (en) | Treatment of wastewater | |
JPH0155914B2 (en) | ||
CN1435382A (en) | A filter material for advanced sewage treatment | |
JP3103473B2 (en) | Water purification material and its production method | |
JP2008143732A (en) | Bamboo charcoal particle and sea bottom cleaning method using the same | |
KR100506329B1 (en) | Material for water-treating and water-treating apparatus | |
JP2006043619A (en) | Sewage cleaning method | |
JPH0378157B2 (en) | ||
JPH0839091A (en) | Purification of organic waste water and microbiological reaction apparatus used therein | |
JPH08117780A (en) | Microbe carrier and its preparation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080110 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100608 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101019 |