[go: up one dir, main page]

JP2002236155A - Battery remaining capacity calculation method - Google Patents

Battery remaining capacity calculation method

Info

Publication number
JP2002236155A
JP2002236155A JP2001031601A JP2001031601A JP2002236155A JP 2002236155 A JP2002236155 A JP 2002236155A JP 2001031601 A JP2001031601 A JP 2001031601A JP 2001031601 A JP2001031601 A JP 2001031601A JP 2002236155 A JP2002236155 A JP 2002236155A
Authority
JP
Japan
Prior art keywords
capacity
battery
discharge
voltage
remaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001031601A
Other languages
Japanese (ja)
Other versions
JP4259768B2 (en
Inventor
Hideki Kishi
秀樹 岸
Hidenori Tsuda
英則 津田
Kenji Kawaguchi
健司 川口
Hideyuki Nagaya
英之 長屋
Toru Amezutsumi
徹 雨堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001031601A priority Critical patent/JP4259768B2/en
Publication of JP2002236155A publication Critical patent/JP2002236155A/en
Application granted granted Critical
Publication of JP4259768B2 publication Critical patent/JP4259768B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

(57)【要約】 【課題】 劣化した電池においても残容量を正確に演算
する。放電末期の残容量をより正確に演算する。 【解決手段】 電池の残容量演算方法は、電池の充電容
量から放電容量を減算して電池の残量を演算し、演算し
た残量と学習容量との比率で残存率を演算する。電池が
放電されて電圧が放電警報電圧まで低下すると、電池を
満充電されるまで充電して、電池電圧が放電警報電圧に
低下した状態から満充電されるまでの充電容量を演算し
て補充電容量(CCadd)とし、放電警報電圧まで放電
された状態における電池の残量である放電警報容量(R
Clow)に補充電容量(CCadd)を加算した値を、電池
の新学習容量(FCCnew)とする。
(57) [Summary] [Problem] To accurately calculate the remaining capacity even in a deteriorated battery. Calculate the remaining capacity at the end of discharge more accurately. A remaining battery capacity calculation method calculates a remaining capacity of a battery by subtracting a discharging capacity from a charging capacity of the battery, and calculates a remaining rate by a ratio between the calculated remaining capacity and a learning capacity. When the battery is discharged and the voltage drops to the discharge alarm voltage, the battery is charged until it is fully charged, and the charge capacity from the state where the battery voltage has dropped to the discharge alarm voltage until it is fully charged is calculated and the auxiliary charge is performed. The discharge alarm capacity (R), which is the remaining capacity of the battery when discharged to the discharge alarm voltage,
The value obtained by adding the supplementary charge capacity (CCadd) to (Clow) is defined as the new learning capacity (FCCnew) of the battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池の残容量を演
算する方法に関し、とくに、充電容量で学習容量を補正
しながら残容量を正確に演算する方法に関する。本明細
書において、学習容量とは、電池の修正された満充電容
量を意味するものとする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for calculating a remaining capacity of a battery, and more particularly to a method for accurately calculating a remaining capacity while correcting a learning capacity with a charging capacity. In this specification, the learning capacity means the corrected full charge capacity of the battery.

【0002】[0002]

【従来の技術】現在、ラップトップマイコン等に装着さ
れる電池は、充放電される使用状態において、電池の残
容量を正確に演算してマイコンに電池の情報として提供
する必要がある。マイコンは、使用途中で電源をオフに
はできず、決まった操作をしてソフトウェアを終了した
後に電源をオフにする必要があるからである。この状態
で使用するためには、電池の残容量が少なくなって、残
りの使用時間が終了操作をする時間に近くなると、マイ
コンに警報アラームを出力する必要がある。警報アラー
ムがマイコンに入力された後は、ソフトウェアを終了す
る操作をし、その後に電源をオフにすることができる。
2. Description of the Related Art At present, in a battery mounted on a laptop microcomputer or the like, it is necessary to accurately calculate the remaining capacity of the battery and provide it to the microcomputer as battery information in a charged / discharged use state. This is because the power of the microcomputer cannot be turned off during use, and it is necessary to turn off the power after performing a predetermined operation and terminating the software. In order to use the battery in this state, it is necessary to output an alarm to the microcomputer when the remaining capacity of the battery is reduced and the remaining usage time is close to the time for performing the end operation. After the alarm is input to the microcomputer, the operation of ending the software can be performed, and then the power can be turned off.

【0003】電気機器の電源に使用される電池は、放電
末期における残容量をいかに正確にで演算できるかが大
切である。放電末期に正常に残容量が表示されず、警報
アラームから極めて短時間で過放電になると、マイコン
等の電気機器を正常に終了できなくなり、あるいは、ひ
げそり機などにあっては、残りの使用時間が不正確であ
ると、完全にひげそりが終了しない状態で使用できなく
なるからである。
It is important for a battery used as a power source of electric equipment to accurately calculate the remaining capacity at the end of discharge. If the remaining capacity is not normally displayed at the end of discharge and overdischarge occurs in a very short time from the alarm alarm, electrical equipment such as microcomputers cannot be terminated normally, or the remaining usage time for shaving machines etc. If the character is incorrect, it cannot be used without complete shaving.

【0004】[0004]

【発明が解決しようとする課題】放電末期の残容量を正
確に演算するために、従来の方法は、温度や充放電のレ
ートで細かく放電特性を評価すると共に、電池の特性を
パラメーターとして記憶させ、これらに基づいて残容量
を演算している。しかしながら、従来の方法では、電池
が新しい状態では正確に残容量を演算できるが、電池が
劣化するにしたがって、残容量を正確に演算できなくな
り、とくに放電末期の残容量を正確に演算できなくなる
欠点があった。
In order to accurately calculate the remaining capacity at the end of discharge, the conventional method evaluates discharge characteristics finely based on temperature and charge / discharge rate and stores battery characteristics as parameters. , The remaining capacity is calculated based on these. However, in the conventional method, the remaining capacity can be accurately calculated when the battery is in a new state. However, as the battery deteriorates, the remaining capacity cannot be calculated accurately. In particular, the remaining capacity at the end of discharge cannot be calculated accurately. was there.

【0005】本発明は、このような欠点を解決すること
を目的に開発されたものである。本発明の重要な目的
は、劣化した電池においても残容量を正確に演算でき、
とくに放電末期の残容量をより正確に演算できる残容量
演算方法を提供することにある。
[0005] The present invention has been developed for the purpose of solving such a drawback. An important object of the present invention is to accurately calculate the remaining capacity even in a deteriorated battery,
In particular, it is an object of the present invention to provide a remaining capacity calculation method capable of more accurately calculating the remaining capacity at the end of discharge.

【0006】[0006]

【課題を解決するための手段】本発明の電池の残容量演
算方法は、電池の充電容量から放電容量を減算して電池
の残量を演算し、演算した残量と学習容量との比率で残
存率を演算する。電池が放電されて電圧が放電警報電圧
まで低下すると、電池を満充電されるまで充電して、電
池電圧が放電警報電圧に低下した状態から満充電される
までの充電容量を演算して補充電容量(CCadd)と
し、放電警報電圧まで放電された状態における電池の残
量である放電警報容量(RClow)に補充電容量(CCa
dd)を加算した値を、電池の新学習容量(FCCnew)
とする。
According to the battery remaining capacity calculation method of the present invention, the remaining capacity of the battery is calculated by subtracting the discharging capacity from the charging capacity of the battery, and the ratio of the calculated remaining capacity to the learning capacity is calculated. Calculate the survival rate. When the battery is discharged and the voltage drops to the discharge alarm voltage, the battery is charged until it is fully charged, and the charge capacity from the state where the battery voltage has dropped to the discharge alarm voltage until it is fully charged is calculated and supplemented. The capacity (CCadd), and the auxiliary charge capacity (CCa) is added to the discharge alarm capacity (RClow) which is the remaining amount of the battery in a state where the battery is discharged to the discharge alarm voltage.
dd) is added to the new learning capacity of the battery (FCCnew)
And

【0007】電池の残容量演算方法は、満充電された状
態から電池の電圧が放電警報電圧に低下するまでの放電
容量(DCmax)を演算し、演算した放電容量(DCma
x)を旧学習容量(FCCold)から減算して放電警報容
量(RClow)を演算することができる。放電容量(D
Cmax)は、放電効率を考慮して演算することができ
る。放電効率は、好ましくは、温度と放電電流をパラメ
ーターとして特定する。放電効率は、電池電圧が放電警
報電圧に低下する直前における温度と放電電流をパラメ
ーターとして特定することができる。温度と放電電流を
パラメーターとする放電効率は、放電効率を特定する値
をテーブルとして記憶し、記憶するテーブルから放電効
率を特定することができる。
The battery remaining capacity is calculated by calculating a discharge capacity (DCmax) from a fully charged state until the battery voltage drops to a discharge alarm voltage, and calculating the calculated discharge capacity (DCma).
x) can be subtracted from the old learning capacity (FCCold) to calculate the discharge alarm capacity (RClow). Discharge capacity (D
Cmax) can be calculated in consideration of the discharge efficiency. The discharge efficiency is preferably specified by using temperature and discharge current as parameters. The discharge efficiency can be specified by using the temperature and the discharge current immediately before the battery voltage drops to the discharge alarm voltage as parameters. As for the discharge efficiency using the temperature and the discharge current as parameters, values for specifying the discharge efficiency are stored as a table, and the discharge efficiency can be specified from the stored table.

【0008】さらに、残容量演算方法は、温度と放電電
流をパラメーターとして、放電警報電圧を変更すること
ができる。温度と放電電流をパラメーターとして変更さ
れる放電警報電圧は、テーブルとして記憶し、記憶する
テーブルから特定することができる。
Further, in the remaining capacity calculating method, the discharge alarm voltage can be changed using the temperature and the discharge current as parameters. The discharge alarm voltage that is changed using the temperature and the discharge current as parameters can be stored as a table and specified from the stored table.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。ただし、以下に示す実施例は、本発明
の技術思想を具体化するための残容量演算方法を例示す
るものであって、本発明は残容量演算方法を以下の方法
に特定しない。
Embodiments of the present invention will be described below with reference to the drawings. However, the embodiment described below exemplifies a remaining capacity calculation method for embodying the technical idea of the present invention, and the present invention does not specify the remaining capacity calculation method in the following method.

【0010】図1は、本発明の残容量演算方法に使用さ
れる組電池の回路図である。この組電池は、電池1と、
充放電の電流を電圧に変換する電流/電圧変換部2と、
電池1の電圧を検出する電圧検出部3と、電池1の雰囲
気温度を検出する温度検出部4と、電流/電圧変換部2
の出力信号であるアナログ信号をデジタル信号に変換す
るA/Dコンバータ11と、電圧検出部3から出力され
るアナログ信号をデジタル信号に変換するA/Dコンバ
ータ12と、温度検出部4のアナログ信号である出力信
号をデジタル信号に変換するA/Dコンバータ13と、
A/Dコンバータ11の出力信号を演算して充放電電流
または電力を積算する積算部5と、この積算部5の出力
から電池1の残容量を演算する残容量算出部6と、A/
Dコンバータ12の出力電圧を記憶している設定電圧に
比較するLowBattery検出部7と、A/Dコンバータ11
〜13のサンプリング周期を決定するタイマー8と、電
池1の放置劣化サイクル劣化判定部9と、電池1を電源
として使用する電気機器に、SMBusで電池情報を伝
送する通信処理部10とを備える。
FIG. 1 is a circuit diagram of a battery pack used in the remaining capacity calculation method of the present invention. This battery pack includes a battery 1 and
A current / voltage converter 2 for converting a charge / discharge current into a voltage;
A voltage detector 3 for detecting the voltage of the battery 1, a temperature detector 4 for detecting the ambient temperature of the battery 1, and a current / voltage converter 2
An A / D converter 11 for converting an analog signal, which is an output signal of the A / D converter, into a digital signal; an A / D converter 12 for converting an analog signal output from the voltage detector 3 into a digital signal; An A / D converter 13 for converting an output signal of
An accumulator 5 for calculating the output signal of the A / D converter 11 to accumulate the charge / discharge current or power; a remaining capacity calculator 6 for calculating the remaining capacity of the battery 1 from the output of the accumulator 5;
A low-battery detector 7 for comparing the output voltage of the D converter 12 with a stored set voltage, and an A / D converter 11
A timer 8 for determining the sampling periods of the samplings 13 to 13, a leaving deterioration cycle deterioration determining unit 9 for the battery 1, and a communication processing unit 10 for transmitting battery information by SMBus to an electric device using the battery 1 as a power supply.

【0011】電池1は、リチウムイオン二次電池または
ニッケル−水素電池である。ただ、電池1は、ニッケル
−カドミウム電池等の充電できる全ての電池とすること
ができる。電池1は、ひとつまたは複数の二次電池を直
列または並列に接続している。
The battery 1 is a lithium ion secondary battery or a nickel-hydrogen battery. However, the battery 1 can be any rechargeable battery such as a nickel-cadmium battery. Battery 1 has one or more secondary batteries connected in series or in parallel.

【0012】電池1の充放電の電流を電圧に変換する電
流/電圧変換部2は、図示しないが、電池と直列に接続
している電流検出抵抗と、この電流検出抵抗の両端に発
生する電圧を増幅するアンプとを備える。電流検出抵抗
は、電池1に流れる電流に比例した電圧が発生するの
で、電圧で電流を検出することができる。アンプは、+
−の信号を増幅できるオペアンプで、出力電圧の+−で
充電電流と放電電流を識別する。電流/電圧変換部2の
出力信号であるアナログ信号は、A/Dコンバータ11
でデジタル信号に変換される。このデジタル信号は、積
算部5と、通信処理部10と、LowBattery検出部7とに
出力される。
Although not shown, a current / voltage converter 2 for converting a charge / discharge current of the battery 1 into a voltage includes a current detection resistor connected in series with the battery, and a voltage generated at both ends of the current detection resistor. And an amplifier that amplifies the signal. Since the current detection resistor generates a voltage proportional to the current flowing through the battery 1, the current can be detected by the voltage. The amplifier is +
An operational amplifier that can amplify a negative signal, and distinguishes a charging current and a discharging current by +-of an output voltage. An analog signal which is an output signal of the current / voltage converter 2 is output to the A / D converter 11
Is converted into a digital signal. This digital signal is output to the integrating unit 5, the communication processing unit 10, and the LowBattery detecting unit 7.

【0013】電圧検出部3は、電池1の電圧を検出す
る。検出信号は、A/Dコンバータ12でデジタル信号
の電圧信号に変換されてLowBattery検出部7に出力され
る。LowBattery検出部7は、電池電圧が放電警報電圧ま
で低下すると、放電警報アラーム信号を、さらに放電が
進行して電池電圧が放電終止電圧(E.V)まで低下す
ると、放電終止電圧信号を残容量算出部6に出力し、さ
らに、電池1の電圧が過放電電圧(OverDischarge)
まで低下すると、過放電電圧信号を出力する。温度検出
部4は、電池1の雰囲気温度を検出する。検出信号は、
A/Dコンバータ13でデジタル信号に変換され、変換
された温度のデジタル信号は、LowBattery検出部7と、
積算部5と、放置劣化サイクル劣化判定部9と、通信処
理部10とに出力される。
The voltage detector 3 detects the voltage of the battery 1. The detection signal is converted into a voltage signal of a digital signal by the A / D converter 12 and output to the Low Battery detection unit 7. The LowBattery detection unit 7 outputs a discharge alarm signal when the battery voltage drops to the discharge alarm voltage, and outputs a discharge end voltage signal when the battery voltage drops to the discharge end voltage (EV) when the discharge proceeds further. The voltage is output to the calculation unit 6, and the voltage of the battery 1 is changed to an overdischarge voltage (OverDischarge).
When the voltage drops to a low level, an overdischarge voltage signal is output. The temperature detector 4 detects the ambient temperature of the battery 1. The detection signal is
The converted temperature digital signal is converted into a digital signal by the A / D converter 13,
The output is output to the accumulating unit 5, the neglected deterioration cycle deterioration determining unit 9, and the communication processing unit 10.

【0014】積算部5は、A/Dコンバータ11から入
力される電流信号を演算して電池1の残量を演算する。
残量は、電池1の充電容量から放電容量を減算して、電
流の積算値(Ah)として演算される。充電容量は、電
池1の充電電流の積算値で、あるいはこれに充電効率を
かけて演算される。放電容量は、放電電流の積算値、あ
るいは放電効率を考慮して演算される。積算部5は、電
流の積算に代わって、電力の積算値(Wh)で残量を演
算することもできる。電力の積算値は、充電電力から放
電電力を減算して演算される。電力は、A/Dコンバー
タ11から入力される電流信号に、A/Dコンバータ1
2から入力される電圧をかけて演算される。
The accumulator 5 calculates the current signal input from the A / D converter 11 to calculate the remaining amount of the battery 1.
The remaining amount is calculated as an integrated current value (Ah) by subtracting the discharge capacity from the charge capacity of the battery 1. The charge capacity is calculated as an integrated value of the charge current of the battery 1 or by multiplying the integrated value by the charge efficiency. The discharge capacity is calculated in consideration of the integrated value of the discharge current or the discharge efficiency. The integrating unit 5 can also calculate the remaining amount based on the integrated value (Wh) of the power instead of the integration of the current. The integrated value of the power is calculated by subtracting the discharge power from the charge power. The power is converted into a current signal input from the A / D converter 11 by the A / D converter 1.
The calculation is performed by multiplying the voltage input from step 2.

【0015】さらに積算部5は、演算した残存率(%)
を補正する。A/Dコンバータ12から、電池1の電圧
が放電警報電圧まで低下したことを知らせる信号が入力
されると、積算部5は、電池1の残存率(%)を放電警
報電圧に相当する残存率に補正し、さらに放電が進行し
て電池電圧が放電終止電圧に低下したことを示す信号が
入力されると、積算部5は演算した残存率を0に補正す
る。電池電圧が放電終止電圧まで低下すると、電池1の
実際の容量は0になるからである。
Further, the integrating unit 5 calculates the calculated residual rate (%)
Is corrected. When a signal indicating that the voltage of the battery 1 has dropped to the discharge alarm voltage is input from the A / D converter 12, the integrating unit 5 calculates the remaining rate (%) of the battery 1 as the remaining rate corresponding to the discharge alarm voltage. When a signal indicating that the battery voltage has dropped to the discharge end voltage due to the progress of discharge is input, the integrating unit 5 corrects the calculated remaining rate to zero. This is because when the battery voltage decreases to the discharge end voltage, the actual capacity of the battery 1 becomes zero.

【0016】残容量算出部6は、学習容量(FCC)を
演算し、演算した学習容量(FCC)と残量で電池1の
残存率(%)を演算する。残量は、積算部5で演算され
る。電池1の残存率(%)は、残量/学習容量(FC
C)の比率で演算される。
The remaining capacity calculator 6 calculates the learning capacity (FCC), and calculates the remaining rate (%) of the battery 1 based on the calculated learning capacity (FCC) and the remaining amount. The remaining amount is calculated by the integrating unit 5. The remaining rate (%) of the battery 1 is represented by the remaining amount / learning capacity (FC).
It is calculated by the ratio of C).

【0017】電池1の学習容量(FCC)は一定ではな
く、電池1が劣化するにしたがって減少する。したがっ
て、残容量算出部6は、学習容量(FCC)を補正し
て、実際の電池1の学習容量(FCC)に演算値を一致
させる。電池1の学習容量(FCC)は、電池1を充電
するときの積算値で補正する。電池1を放電させるとき
の積算値では学習容量(FCC)を補正しない。充電電
流がほぼ一定しているのに対し、放電電流は大幅に変動
するので、充電電流の積算値がより高い精度で学習容量
(FCC)を演算できるからである。
The learning capacity (FCC) of the battery 1 is not constant but decreases as the battery 1 deteriorates. Therefore, the remaining capacity calculation unit 6 corrects the learning capacity (FCC) so that the calculated value matches the actual learning capacity (FCC) of the battery 1. The learning capacity (FCC) of the battery 1 is corrected by an integrated value when the battery 1 is charged. The learning capacity (FCC) is not corrected by the integrated value when the battery 1 is discharged. This is because the charging current is substantially constant while the discharging current fluctuates greatly, so that the integrated value of the charging current can calculate the learning capacity (FCC) with higher accuracy.

【0018】このことを実現するために、残容量算出部
6は、電池1の充放電を制御して学習容量(FCC)を
演算する。残容量算出部6は、電池1の充放電を制御す
るために、組電池からSMBusを介して制御信号を充
電器や電気機器に出力する。制御信号は、電池1と直列
に接続している充電スイッチ(図示せず)をオンオフに
制御して、電池1の充電状態を制御する。
In order to realize this, the remaining capacity calculator 6 controls charging and discharging of the battery 1 and calculates a learning capacity (FCC). The remaining capacity calculator 6 outputs a control signal from the assembled battery to the charger or the electric device via the SMBus in order to control the charging and discharging of the battery 1. The control signal controls a charge switch (not shown) connected in series with the battery 1 to turn on and off, thereby controlling the state of charge of the battery 1.

【0019】残容量算出部6は、電池1が放電されて電
圧が放電警報電圧まで低下すると、電池1を満充電され
るまで継続して充電するように制御する。電池1が動作
状態にある電気機器に接続される状態で充電される場
合、電池1の放電電流よりも充電電流が大きくなるよう
にする。電池電圧が放電警報電圧に低下した状態から満
充電されるまでの充電容量は、積算部5で積算されて、
補充電容量(CCadd)として算出される。
When the battery 1 is discharged and the voltage drops to the discharge alarm voltage, the remaining capacity calculator 6 controls the battery 1 to continue charging until it is fully charged. When the battery 1 is charged while being connected to an electric device in an operating state, the charging current is set to be larger than the discharging current of the battery 1. The charge capacity from the state in which the battery voltage is reduced to the discharge alarm voltage to the time when the battery is fully charged is integrated by the integrating unit 5,
It is calculated as a supplementary charge capacity (CCadd).

【0020】さらに、積算部5は、電池1が充放電され
る状態において、充電容量から放電容量を減算して、放
電警報電圧まで放電されたときの電池1の残量を放電警
報容量(RClow)として算出する。放電警報容量(R
Clow)は、満充電された状態から電池1の電圧が放電
警報電圧に低下するまでの放電容量(DCmax)を演算
し、演算した放電容量(DCmax)を旧学習容量(FC
Cold)から減算して算出される。すなわち、電池1の
放電警報容量(RClow)は以下の式で算出される。放
電警報容量(RClow)=旧学習容量(FCCold)−放
電容量(DCmax)
Further, when the battery 1 is charged / discharged, the integrating unit 5 subtracts the discharge capacity from the charge capacity and calculates the remaining amount of the battery 1 when discharged to the discharge alarm voltage. ). Discharge alarm capacity (R
Clow) calculates the discharge capacity (DCmax) from the fully charged state until the voltage of the battery 1 drops to the discharge alarm voltage, and uses the calculated discharge capacity (DCmax) as the old learning capacity (FC
Cold). That is, the discharge alarm capacity (RClow) of the battery 1 is calculated by the following equation. Discharge alarm capacity (RClow) = old learning capacity (FCCold)-discharge capacity (DCmax)

【0021】このようにして、放電警報容量(RClo
w)が算出されると、これに放電警報電圧から満充電さ
れるまでの容量である補充電容量(CCadd)を加算し
て、新学習容量(FCCnew)が算出される。すなわ
ち、新学習容量(FCCnew)は以下の式で演算され
る。新学習容量(FCCnew)=補充電容量(CCadd)
+放電警報容量(RClow)
Thus, the discharge alarm capacity (RClo)
When w) is calculated, a new learning capacity (FCCnew) is calculated by adding an auxiliary charge capacity (CCadd) which is a capacity from the discharge alarm voltage to a full charge. That is, the new learning capacity (FCCnew) is calculated by the following equation. New learning capacity (FCCnew) = supplementary charging capacity (CCadd)
+ Discharge alarm capacity (RClow)

【0022】新学習容量(FCCnew)が算出される
と、学習容量(FCC)は、旧学習容量(FCCold)
から新学習容量(FCCnew)に補正される。その後、
新学習容量(FCCnew)を基準にして残存率(%)を
演算する。
When the new learning capacity (FCCnew) is calculated, the learning capacity (FCC) becomes the old learning capacity (FCCold).
To the new learning capacity (FCCnew). afterwards,
The remaining rate (%) is calculated based on the new learning capacity (FCCnew).

【0023】ところで、満充電された状態から電池1の
電圧が放電警報電圧に低下するまでの放電容量(DCma
x)の演算において、より高い精度で放電容量(DCma
x)を算出するために放電効率が考慮される。放電効率
は、電池1の雰囲気温度と放電電流をパラメーターとし
て特定される。雰囲気温度と放電電流は、電池電圧が放
電警報電圧に低下する直前における温度と放電電流とす
る。電池1の雰囲気温度と放電電流をパラメーターとす
る放電効率は、図2に示すテーブルとしてメモリに記憶
される。図のテーブルは、3点の温度と、4点の放電電
流から放電効率を特定しているが、ここに示す温度の
間、さらに放電電流の間の放電効率は、補間して算出す
ることができる。簡単には直線補間して、温度と電流の
間の放電効率を算出できる。この図の放電効率は、A、
B、C、Dは100〜70%の範囲で順番に小さくして
いる。A〜Dの放電効率は、電池1のタイプを考慮して
最適値に決定される。
By the way, the discharge capacity (DCma) from the fully charged state until the voltage of the battery 1 decreases to the discharge alarm voltage.
x) in the calculation of the discharge capacity (DCma) with higher accuracy
To calculate x), the discharge efficiency is taken into account. The discharge efficiency is specified using the ambient temperature of the battery 1 and the discharge current as parameters. The ambient temperature and discharge current are the temperature and discharge current immediately before the battery voltage drops to the discharge alarm voltage. The discharge efficiency using the ambient temperature of the battery 1 and the discharge current as parameters is stored in the memory as a table shown in FIG. The table in the figure specifies the discharge efficiency from the three temperatures and the four discharge currents. The discharge efficiency between the temperatures shown here and further between the discharge currents can be calculated by interpolation. it can. The discharge efficiency between the temperature and the current can be easily calculated by linear interpolation. The discharge efficiency in this figure is A,
B, C, and D are sequentially reduced in the range of 100 to 70%. The discharge efficiencies A to D are determined to be optimum values in consideration of the type of the battery 1.

【0024】放電警報電圧は、好ましくは、電池1の残
存率(%)が0〜8%となる電圧に特定される。放電警
報電圧を残存率(%)が0%となる電圧に設定すると、
放電終止電圧に等しくなる。この電圧に設定すると、放
電警報アラーム信号と放電終止電圧信号が一緒に出力さ
れる。好ましくは、放電警報電圧を放電終止電圧よりも
高く設定して、放電警報電圧になったときの残存率
(%)を0%よりも大きくする。
The discharge alarm voltage is preferably specified as a voltage at which the remaining rate (%) of the battery 1 becomes 0 to 8%. When the discharge alarm voltage is set to a voltage at which the residual rate (%) becomes 0%,
It becomes equal to the discharge end voltage. When this voltage is set, a discharge alarm signal and a discharge end voltage signal are output together. Preferably, the discharge alarm voltage is set higher than the discharge end voltage, and the remaining rate (%) at the time when the discharge alarm voltage is reached is made larger than 0%.

【0025】放電警報電圧は、温度と放電電流で変化す
るので、温度と放電電流をパラメーターとして変更す
る。温度と放電電流をパラメーターとする放電警報電圧
は、放電効率と同じように、図3に示すテーブルとして
メモリに記憶される。図のテーブルは、3点の温度と、
4点の放電電流から放電効率を特定しているが、ここに
示す温度の間、さらに放電電流の間の放電警報電圧は、
補間して算出することができる。簡単には直線補間し
て、温度と電流の間の放電警報電圧を算出できる。この
図は、リチウムイオン二次電池1の放電警報電圧を示す
もので、A、B、C、Dを3.7〜3.0Vの範囲で順
番で小さくしている。A〜Dの放電警報電圧は、電池1
に最適な値に決定する。
Since the discharge alarm voltage changes depending on the temperature and the discharge current, the temperature and the discharge current are changed as parameters. The discharge alarm voltage having the temperature and the discharge current as parameters is stored in the memory as a table shown in FIG. 3, similarly to the discharge efficiency. The table in the figure shows three temperatures and
Although the discharge efficiency is specified from the four discharge currents, the discharge alarm voltage during the temperature shown here and also during the discharge current is:
It can be calculated by interpolation. The discharge alarm voltage between the temperature and the current can be easily calculated by linear interpolation. This figure shows the discharge alarm voltage of the lithium ion secondary battery 1 and A, B, C, and D are sequentially reduced in the range of 3.7 to 3.0 V. The discharge alarm voltages of A to D
Is determined to be the optimal value.

【0026】電池1が放電されて電池1の電圧が放電警
報電圧になると、LowBattery検出部7から残容量算出部
6に放電警報アラーム信号が出力され、さらに、放電が
進行して放電終止電圧に低下すると、放電終止電圧にな
ったことを示す放電終止電圧信号が出力される。電池1
が満充電されると、電池1の電圧が満充電電圧まで上昇
するので、この信号がA/Dコンバータ12から残容量
算出部6に出力される。
When the battery 1 is discharged and the voltage of the battery 1 becomes the discharge alarm voltage, a low-battery detection unit 7 outputs a discharge alarm signal to the remaining capacity calculation unit 6, and further discharge proceeds to a discharge end voltage. When the voltage drops, a discharge end voltage signal indicating that the discharge end voltage has been reached is output. Battery 1
Is fully charged, the voltage of the battery 1 rises to the full charge voltage, and this signal is output from the A / D converter 12 to the remaining capacity calculation unit 6.

【0027】放置劣化サイクル劣化判定部9は、電池1
を使用しないで放置して劣化するときに、学習容量(F
CC)が減少するのを補正する。補正した学習容量(F
CC)は残容量算出部6に出力される。
The standing deterioration cycle deterioration judging unit 9 includes the battery 1
When the storage capacity is deteriorated by leaving it unused without using the learning capacity (F
CC) is reduced. The corrected learning capacity (F
CC) is output to the remaining capacity calculator 6.

【0028】通信処理部10は、残容量算出部6で演算
された残容量と、電圧検出部3で検出した電池電圧と、
温度検出部4で検出した温度を、装着している機器にS
MBusで伝送する。
The communication processing unit 10 calculates the remaining capacity calculated by the remaining capacity calculation unit 6, the battery voltage detected by the voltage detection unit 3,
The temperature detected by the temperature detection unit 4 is sent to the attached device by S
Transmit by MBus.

【0029】以上の組電池は、マイクロコンピューター
等の電気機器に装着される状態で、以下の動作をして、
残容量を電気機器に伝送する。 (1) 電池1が放電されて、電池1の電圧が放電警報電
圧まで低下すると、放電警報アラーム信号が出力され
る。放電警報電圧は、図3のテーブルで示すように、電
池1の雰囲気温度と放電電流で特定される電圧に変更し
て検出される。電池1が放電されるとき、積算部5は、
満充電からの放電容量(DCmax)を積算している。放
電容量(DCmax)は、電池1の雰囲気温度と放電電流
から特定される放電効率を考慮して演算される。演算さ
れた放電容量(DCmax)が、旧学習容量(FCCold)
から減算されて、放電警報容量(RClow)が演算され
る。
The above assembled battery performs the following operations in a state of being mounted on an electric device such as a microcomputer.
Transmit remaining capacity to electrical equipment. (1) When the battery 1 is discharged and the voltage of the battery 1 drops to the discharge alarm voltage, a discharge alarm signal is output. As shown in the table of FIG. 3, the discharge alarm voltage is detected by changing to a voltage specified by the ambient temperature of the battery 1 and the discharge current. When the battery 1 is discharged, the integrating unit 5
The discharge capacity (DCmax) from full charge is integrated. The discharge capacity (DCmax) is calculated in consideration of the discharge efficiency specified from the ambient temperature of the battery 1 and the discharge current. The calculated discharge capacity (DCmax) is the old learning capacity (FCCold)
, And the discharge alarm capacity (RClow) is calculated.

【0030】(2) 電池1の電圧が放電警報電圧まで低
下すると、電池1の充電が開始され、満充電されるまで
継続して充電される。放電警報電圧から満充電されまで
の充電容量が、補充電容量(CCadd)として演算され
る。補充電容量(CCadd)は、(1)の工程で演算された
放電警報容量(RClow)に加算され、新学習容量(F
CCnew)が演算される。新学習容量(FCCnew)が演
算されると、その後はこの新学習容量(FCCnew)を
基準にして残存率(%)が演算される。残存率(%)
は、電池1の残量/新学習容量(FCCnew)の割合で
演算される。残量は、充電容量から放電容量を減算して
演算される。
(2) When the voltage of the battery 1 drops to the discharge alarm voltage, charging of the battery 1 is started and the battery 1 is continuously charged until it is fully charged. The charge capacity from the discharge alarm voltage to the full charge is calculated as the auxiliary charge capacity (CCadd). The supplementary charge capacity (CCadd) is added to the discharge alarm capacity (RClow) calculated in the step (1), and the new learning capacity (F
CCnew) is calculated. After the new learning capacity (FCCnew) is calculated, the remaining rate (%) is calculated based on the new learning capacity (FCCnew). Survival rate(%)
Is calculated by the ratio of the remaining amount of the battery 1 / the new learning capacity (FCCnew). The remaining amount is calculated by subtracting the discharge capacity from the charge capacity.

【0031】[0031]

【発明の効果】本発明の電池の残容量演算方法は、劣化
した電池においても残容量を正確に演算できる特長があ
る。それは、本発明の残容量演算方法が、放電警報電圧
まで放電された電池を満充電して、放電警報電圧から満
充電されるまでの充電容量を演算して補充電容量(CC
add)とし、放電警報電圧まで放電された電池の残量で
ある放電警報容量(RClow)に補充電容量(CCadd)
を加算した値を、電池の新学習容量(FCCnew)とし
ているからである。この残容量演算方法は、放電末期の
電池の残量である放電警報容量(RClow)に補充電容
量(CCadd)を加算して電池の新学習容量(FCCne
w)を演算するので、劣化した電池においても、残容量
を、とくに放電末期の残容量をより正確に演算できる特
長が実現できる。
The method for calculating the remaining capacity of a battery according to the present invention has the advantage that the remaining capacity can be accurately calculated even for a deteriorated battery. That is, the remaining capacity calculation method of the present invention calculates a supplementary charge capacity (CC) by fully charging a battery discharged to a discharge alarm voltage and calculating a charge capacity from the discharge alarm voltage to a full charge.
add) and the supplementary charge capacity (CCadd) to the discharge alarm capacity (RClow), which is the remaining amount of the battery discharged to the discharge alarm voltage.
Is set as the new learning capacity (FCCnew) of the battery. This remaining capacity calculation method is to add a supplementary charge capacity (CCadd) to a discharge alarm capacity (RClow), which is the remaining capacity of a battery at the end of discharging, and to obtain a new learning capacity (FCCne) of the battery.
Since w) is calculated, it is possible to realize a feature that, even in a deteriorated battery, the remaining capacity, particularly the remaining capacity at the end of discharge, can be calculated more accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の残容量演算方法に使用される
組電池の回路図
FIG. 1 is a circuit diagram of a battery pack used in a remaining capacity calculation method according to an embodiment of the present invention.

【図2】温度と放電電流をパラメーターとする放電効率
のテーブルの一例を示す図
FIG. 2 is a diagram showing an example of a table of discharge efficiency using temperature and discharge current as parameters.

【図3】温度と放電電流をパラメーターとする放電警報
電圧のテーブルの一例を示す図
FIG. 3 is a diagram showing an example of a table of a discharge alarm voltage using temperature and discharge current as parameters.

【符号の説明】[Explanation of symbols]

1…電池 2…電流/電圧変換部 3…電圧検出部 4…温度検出部 5…積算部 6…残容量算出部 7…LowBattery検出部 8…タイマー 9…放置劣化サイクル劣化判定部 10…通信処理部 11…A/Dコンバータ 12…A/Dコンバータ 13…A/Dコンバータ DESCRIPTION OF SYMBOLS 1 ... Battery 2 ... Current / voltage conversion part 3 ... Voltage detection part 4 ... Temperature detection part 5 ... Integration part 6 ... Remaining capacity calculation part 7 ... LowBattery detection part 8 ... Timer 9 ... Leaving deterioration cycle deterioration judgment part 10 ... Communication processing Part 11: A / D converter 12: A / D converter 13: A / D converter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川口 健司 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 長屋 英之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 雨堤 徹 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 2G016 CB12 CB21 CB22 CB32 CC01 CC04 CC05 CC06 CC10 CC16 CC23 CD02 CF06 5G003 BA01 DA07 EA05 GC05 5H030 AA08 AS20 FF22 FF42 FF44 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Kenji Kawaguchi 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Hideyuki Nagaya 2-chome, Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Inventor Toru Amatsuki 2-5-5 Keihanhondori, Moriguchi-shi, Osaka F-term in Sanyo Electric Co., Ltd. 2G016 CB12 CB21 CB22 CB32 CC01 CC04 CC05 CC06 CC10 CC16 CC23 CD02 CF06 5G003 BA01 DA07 EA05 GC05 5H030 AA08 AS20 FF22 FF42 FF44

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 電池の充電容量から放電容量を減算して
電池の残量を演算し、演算した残量と学習容量との比率
で残存率を演算する電池の残容量演算方法において、 電池が放電されて電圧が放電警報電圧まで低下すると、
電池を満充電されるまで充電して、電池電圧が放電警報
電圧に低下した状態から満充電されるまでの充電容量を
演算して補充電容量(CCadd)とし、放電警報電圧ま
で放電された状態における電池の残量である放電警報容
量(RClow)に補充電容量(CCadd)を加算した値
を、電池の新学習容量(FCCnew)とすることを特徴
とする電池の残容量演算方法。
1. A method for calculating a remaining capacity of a battery by subtracting a discharging capacity from a charging capacity of the battery to calculate a remaining capacity of the battery, and calculating a remaining rate by a ratio of the calculated remaining capacity to a learning capacity. When the battery is discharged and the voltage drops to the discharge alarm voltage,
The battery is charged until it is fully charged, the charge capacity from when the battery voltage drops to the discharge alarm voltage until it is fully charged is calculated and used as the auxiliary charge capacity (CCadd), and the battery is discharged to the discharge alarm voltage And calculating a value obtained by adding the supplementary charge capacity (CCadd) to the discharge alarm capacity (RClow), which is the remaining amount of the battery, as a new learning capacity (FCCnew) of the battery.
【請求項2】 満充電された状態から電池の電圧が放電
警報電圧に低下するまでの放電容量(DCmax)を演算
し、演算した放電容量(DCmax)を旧学習容量(FC
Cold)から減算して放電警報容量(RClow)を演算す
る請求項1に記載される電池の残容量演算方法。
2. Calculating a discharge capacity (DCmax) from a fully charged state until the battery voltage drops to a discharge alarm voltage, and calculating the calculated discharge capacity (DCmax) to an old learning capacity (FC).
2. The method according to claim 1, wherein the discharge warning capacity (RClow) is calculated by subtracting the discharge alarm capacity from the remaining capacity.
【請求項3】 放電効率を考慮して放電容量(DCma
x)を演算する請求項2に記載される電池の残容量演算
方法。
3. A discharge capacity (DCma) in consideration of discharge efficiency.
3. The method according to claim 2, wherein x) is calculated.
【請求項4】 放電効率を、温度と放電電流をパラメー
ターとして特定する請求項3に記載される電池の残容量
演算方法。
4. The method according to claim 3, wherein the discharge efficiency is specified using temperature and discharge current as parameters.
【請求項5】 放電効率を、電池電圧が放電警報電圧に
低下する直前における温度と放電電流をパラメーターと
して特定する請求項4に記載される電池の残容量演算方
法。
5. The battery remaining capacity calculation method according to claim 4, wherein the discharge efficiency is specified as parameters of the temperature and the discharge current immediately before the battery voltage drops to the discharge alarm voltage.
【請求項6】 温度と放電電流をパラメーターとして放
電効率を特定する値をテーブルとして記憶し、記憶する
テーブルから放電効率を特定する請求項4に記載される
電池の残容量演算方法。
6. The method according to claim 4, wherein values for specifying the discharge efficiency are stored as a table using the temperature and the discharge current as parameters, and the discharge efficiency is specified from the stored table.
【請求項7】 放電警報電圧を、温度と放電電流をパラ
メーターとして変更する請求項1に記載される電池の残
容量演算方法。
7. The method according to claim 1, wherein the discharge alarm voltage is changed using temperature and discharge current as parameters.
【請求項8】 温度と放電電流をパラメーターとする放
電警報電圧をテーブルとして記憶し、記憶するテーブル
から放電警報電圧を特定する請求項7に記載される電池
の残容量演算方法。
8. The method according to claim 7, wherein the discharge alarm voltage having the temperature and the discharge current as parameters is stored as a table, and the discharge alarm voltage is specified from the stored table.
JP2001031601A 2001-02-07 2001-02-07 Battery remaining capacity calculation method Expired - Fee Related JP4259768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001031601A JP4259768B2 (en) 2001-02-07 2001-02-07 Battery remaining capacity calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001031601A JP4259768B2 (en) 2001-02-07 2001-02-07 Battery remaining capacity calculation method

Publications (2)

Publication Number Publication Date
JP2002236155A true JP2002236155A (en) 2002-08-23
JP4259768B2 JP4259768B2 (en) 2009-04-30

Family

ID=18895665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001031601A Expired - Fee Related JP4259768B2 (en) 2001-02-07 2001-02-07 Battery remaining capacity calculation method

Country Status (1)

Country Link
JP (1) JP4259768B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155434A (en) * 2005-12-02 2007-06-21 Sanyo Electric Co Ltd Method of detecting remaining capacity of secondary battery
JP2007322353A (en) * 2006-06-05 2007-12-13 Matsushita Electric Ind Co Ltd Battery capacity determination apparatus and method, and battery pack using the same
JP2009044895A (en) * 2007-08-10 2009-02-26 Sony Corp Battery pack, electronic equipment, and derivation method for residual capacity display
KR101461681B1 (en) 2006-03-31 2014-11-13 발렌스 테크놀로지, 인코포레이티드 A battery charge indication method, a battery charge monitoring device, a rechargeable battery,
US10444296B2 (en) 2014-09-12 2019-10-15 Nec Corporation Control device, control method, and recording medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103064026B (en) * 2012-10-24 2015-01-28 重庆小康工业集团股份有限公司 Vehicle battery remaining capacity monitoring method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077858A (en) * 1993-06-17 1995-01-10 Sanyo Electric Co Ltd Electronic equipment
JPH0755903A (en) * 1993-06-08 1995-03-03 Honda Motor Co Ltd Battery remaining capacity monitor
JPH07163058A (en) * 1993-12-07 1995-06-23 Nec Corp Battery life notification system
JPH0843508A (en) * 1994-07-27 1996-02-16 Shindengen Electric Mfg Co Ltd Battery capacity / remaining time display
JPH10268985A (en) * 1997-03-27 1998-10-09 Toshiba Corp Device and method for controlling power source
JPH10274670A (en) * 1997-03-31 1998-10-13 Sanyo Electric Co Ltd Capacity detection method for secondary battery
JPH10288654A (en) * 1997-04-14 1998-10-27 Honda Motor Co Ltd Battery remaining capacity detection device
JPH11326472A (en) * 1998-05-14 1999-11-26 Nissan Motor Co Ltd Residual capacity meter of battery
JPH11344544A (en) * 1998-06-03 1999-12-14 Fuji Film Celltec Kk Method for measuring battery capacity of battery pack
JP2000023377A (en) * 1998-07-02 2000-01-21 Makita Corp Power tool charging system
JP2000162292A (en) * 1998-11-27 2000-06-16 Gastar Corp Battery consumption level judgment device
JP2000195567A (en) * 1998-12-28 2000-07-14 Yamaha Motor Co Ltd Battery pack
JP2000285968A (en) * 1999-03-30 2000-10-13 Hitachi Battery Hanbai Service Kk Method and apparatus for preventing overdischarge of storage battery and monitoring apparatus
JP2001281306A (en) * 2000-03-28 2001-10-10 Mitsubishi Electric Corp Rechargeable battery remaining capacity detection device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755903A (en) * 1993-06-08 1995-03-03 Honda Motor Co Ltd Battery remaining capacity monitor
JPH077858A (en) * 1993-06-17 1995-01-10 Sanyo Electric Co Ltd Electronic equipment
JPH07163058A (en) * 1993-12-07 1995-06-23 Nec Corp Battery life notification system
JPH0843508A (en) * 1994-07-27 1996-02-16 Shindengen Electric Mfg Co Ltd Battery capacity / remaining time display
JPH10268985A (en) * 1997-03-27 1998-10-09 Toshiba Corp Device and method for controlling power source
JPH10274670A (en) * 1997-03-31 1998-10-13 Sanyo Electric Co Ltd Capacity detection method for secondary battery
JPH10288654A (en) * 1997-04-14 1998-10-27 Honda Motor Co Ltd Battery remaining capacity detection device
JPH11326472A (en) * 1998-05-14 1999-11-26 Nissan Motor Co Ltd Residual capacity meter of battery
JPH11344544A (en) * 1998-06-03 1999-12-14 Fuji Film Celltec Kk Method for measuring battery capacity of battery pack
JP2000023377A (en) * 1998-07-02 2000-01-21 Makita Corp Power tool charging system
JP2000162292A (en) * 1998-11-27 2000-06-16 Gastar Corp Battery consumption level judgment device
JP2000195567A (en) * 1998-12-28 2000-07-14 Yamaha Motor Co Ltd Battery pack
JP2000285968A (en) * 1999-03-30 2000-10-13 Hitachi Battery Hanbai Service Kk Method and apparatus for preventing overdischarge of storage battery and monitoring apparatus
JP2001281306A (en) * 2000-03-28 2001-10-10 Mitsubishi Electric Corp Rechargeable battery remaining capacity detection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155434A (en) * 2005-12-02 2007-06-21 Sanyo Electric Co Ltd Method of detecting remaining capacity of secondary battery
KR101461681B1 (en) 2006-03-31 2014-11-13 발렌스 테크놀로지, 인코포레이티드 A battery charge indication method, a battery charge monitoring device, a rechargeable battery,
JP2007322353A (en) * 2006-06-05 2007-12-13 Matsushita Electric Ind Co Ltd Battery capacity determination apparatus and method, and battery pack using the same
JP2009044895A (en) * 2007-08-10 2009-02-26 Sony Corp Battery pack, electronic equipment, and derivation method for residual capacity display
US10444296B2 (en) 2014-09-12 2019-10-15 Nec Corporation Control device, control method, and recording medium

Also Published As

Publication number Publication date
JP4259768B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
EP2899841B1 (en) Charging control device and charging time calculation method
US7974796B2 (en) Fully-charged battery capacity detection method
JP2002236154A (en) Battery remaining capacity correction method
US7928736B2 (en) Method of estimating state of charge for battery and battery management system using the same
US7800345B2 (en) Battery management system and method of operating same
JP4785708B2 (en) Pack battery control method
CN102565716A (en) Apparatus for calculating residual capacity of secondary battery
JP2003194897A (en) Battery residual capacity operating method and pack battery
JP2008241358A (en) Full capacity detection method of battery
JP2006197727A (en) Method of controlling limited current of battery
JP2003257501A (en) Secondary battery residual capacity meter
JP2002359009A (en) Charger
US7602150B2 (en) Battery device for electronic apparatus with rechargeable secondary battery, fuel cell and run time computing unit
CN100592099C (en) Apparatus and method for charging a battery
CN113424354A (en) Battery pack charging method, battery pack, and power supply device
JP2002236155A (en) Battery remaining capacity calculation method
JP3774995B2 (en) Lithium ion secondary battery charging method and charging device therefor
JP2006177764A (en) Learning capacity correcting method of battery
JPH11187585A (en) Lithium ion secondary battery charger and charging method
JP2009042182A (en) Calculating method of remaining capacity of battery
JP4796784B2 (en) Rechargeable battery charging method
JP3551084B2 (en) Secondary battery state management method and battery pack using this method
JP2000195564A (en) Charge / discharge frequency detection device and battery pack using the same
JP2005039875A (en) Secondary battery charging method and charging device using the same
JP4000240B2 (en) Secondary battery unit and secondary battery remaining amount measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees