[go: up one dir, main page]

JP2002236088A - Particle size distribution measuring device for powder particles - Google Patents

Particle size distribution measuring device for powder particles

Info

Publication number
JP2002236088A
JP2002236088A JP2001032358A JP2001032358A JP2002236088A JP 2002236088 A JP2002236088 A JP 2002236088A JP 2001032358 A JP2001032358 A JP 2001032358A JP 2001032358 A JP2001032358 A JP 2001032358A JP 2002236088 A JP2002236088 A JP 2002236088A
Authority
JP
Japan
Prior art keywords
particle size
size distribution
detection container
suspension
powder particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001032358A
Other languages
Japanese (ja)
Other versions
JP3505573B2 (en
Inventor
英人 ▲吉▼田
Hideto Yoshida
Kunihiro Fukui
国博 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2001032358A priority Critical patent/JP3505573B2/en
Publication of JP2002236088A publication Critical patent/JP2002236088A/en
Application granted granted Critical
Publication of JP3505573B2 publication Critical patent/JP3505573B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

(57)【要約】 【課題】 沈降天秤法を用いた粉体粒子の粒度分布測定
において、高い測定精度を得ることのできる、粉体粒子
の粒度分布測定装置を提案する。 【解決手段】 粒径を測定すべき粉体と液状の媒体とを
混合して懸濁液を得るための混合槽と、前記混合槽から
前記懸濁液を沈降槽に供給する供給管と、検出容器と、
質量測定器と、データ処理機とを具え、前記検出容器
を、一端が当該検出容器と、他端が前記質量測定器とそ
れぞれ接続した支持部材により前記沈降槽内部に吊り下
げ、前記沈降槽内部に供給された前記懸濁液中に分散し
た前記粉体の前記検出容器上への沈降に伴う、前記検出
容器の質量変化を測定することにより、前記粉体の粒度
分布を測定する粒度分布測定装置において、前記混合槽
に音波発振手段を取り付けたことを特徴とする。
PROBLEM TO BE SOLVED: To provide a particle size distribution measuring device for powder particles, which can obtain high measurement accuracy in particle size distribution measurement of powder particles using a sedimentation balance method. SOLUTION: A mixing tank for mixing a powder whose particle size is to be measured and a liquid medium to obtain a suspension, a supply pipe for supplying the suspension from the mixing tank to a settling tank, A detection container,
A mass measuring device and a data processor, wherein the detection container is suspended inside the sedimentation tank by a support member having one end connected to the detection container and the other end connected to the mass measuring device. A particle size distribution measurement for measuring a particle size distribution of the powder by measuring a change in mass of the detection container accompanying sedimentation of the powder dispersed in the suspension supplied to the detection container on the detection container. The apparatus is characterized in that a sound wave oscillating means is attached to the mixing tank.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、いわゆる沈降天秤
法により粉体粒子の粒度分布を測定する装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the particle size distribution of powder particles by a so-called sedimentation balance method.

【0002】[0002]

【従来の技術】かかる装置として、例えば本願発明者等
により、特開平10-267825号公報および特開2000-74813
号公報に開示されたものがある。
2. Description of the Related Art For example, Japanese Patent Application Laid-Open Nos. 10-267825 and 2000-74813 disclose such devices.
Is disclosed in Japanese Patent Application Laid-Open Publication No. HEI 9-203 (1995).

【0003】これらの装置における測定原理は以下の通
りである。すなわち、沈降槽内部に検出容器を吊り下
げ、粒径を測定すべき粉体と液状の媒体(水等)とを混
合して作製した懸濁液を沈降槽に供給し、懸濁液中に分
散した粉体の検出容器上への沈降に伴う、検出容器の質
量変化を測定することにより、粉体の粒度分布を測定す
る。
The principle of measurement in these devices is as follows. That is, a detection vessel is suspended inside a settling tank, and a suspension prepared by mixing a powder whose particle size is to be measured and a liquid medium (such as water) is supplied to the settling tank, and the suspension is added to the suspension. The particle size distribution of the powder is measured by measuring the change in mass of the detection container accompanying the sedimentation of the dispersed powder on the detection container.

【0004】つまり、測定開始と共に、沈降槽に供給さ
れた懸濁液中に分散している粉体粒子が重力によって沈
降槽底部へ沈降する間に、沈降槽内部に配置した検出容
器内に堆積した粒子の質量および検出容器底面上に仮定
した仮想的な懸濁液柱の質量の和が検出容器を下方へ押
し下げる力と、前記の懸濁液柱と沈降槽側壁との間に仮
定した中空円筒状の懸濁液柱の検出容器底面より上の部
分の質量によって生じる圧力が検出容器底面より下部に
ある液体(懸濁液)を介して検出容器を上方へ押し上げ
る力との差を検出することによって、粉体の粒度分布を
得るものである。
That is, at the same time as the start of the measurement, while the powder particles dispersed in the suspension supplied to the settling tank settle to the bottom of the settling tank by gravity, the powder particles accumulate in the detection container arranged inside the settling tank. The sum of the mass of the particles and the mass of the hypothetical suspension column assumed on the bottom surface of the detection container is a force that pushes down the detection container, and the hollow assumed between the suspension column and the settling tank side wall. Detects the difference between the pressure generated by the mass of the cylindrical suspension column above the bottom of the detection container and the force that pushes the detection container upward through the liquid (suspension) below the bottom of the detection container. Thereby, the particle size distribution of the powder is obtained.

【0005】ここでは、沈降槽に供給された懸濁液中の
粉体粒子は、測定開始時には一様に分散した状態にあ
り、その後の粉体粒子の移動は重力による鉛直方向のみ
の移動であるとの仮定がなされている。
[0005] Here, the powder particles in the suspension supplied to the settling tank are in a uniformly dispersed state at the start of the measurement, and the subsequent movement of the powder particles is only in the vertical direction due to gravity. It is assumed that there is.

【0006】ところが、実際の懸濁液中での粉体粒子
は、粒子間で凝集力が働くため一様に分散しているとは
限らず、小粒径の粒子が凝集してあたかも大径の粒子の
如き挙動を取る。また、測定中の粒子の沈降に伴い、特
に検出容器底面レベルより下部において、検出容器直下
とそれ以外の部分との間で、懸濁液の局所的な密度差が
生じ、それによって局所的な対流が発生する。すなわ
ち、沈降する粉体粒子の内、検出容器内に入ったものは
検出容器底面上に堆積し、それ以外のものはさらに下方
に向かって沈降する。そのため、検出容器直下では懸濁
液に含まれる粉体粒子の密度は相対的に小さく、それ以
外の箇所では粉体粒子の密度は相対的に大きくなる。そ
れによって沈降槽内部の懸濁液に局所的な密度差が生じ
ることとなり、この密度差に伴う自然対流が発生するも
のである。
However, the powder particles in an actual suspension are not necessarily dispersed uniformly due to the cohesive force acting between the particles, and the particles having a small particle diameter are aggregated as if they were a large particle. It behaves like particles. In addition, due to the sedimentation of the particles during the measurement, a local density difference of the suspension occurs between the portion immediately below the detection container and the other portions, particularly below the bottom level of the detection container, thereby causing a local difference. Convection occurs. That is, of the powder particles that settle, those that enter the detection container are deposited on the bottom surface of the detection container, and the other particles settle further downward. Therefore, the density of the powder particles contained in the suspension is relatively low immediately below the detection container, and the density of the powder particles is relatively high in other portions. As a result, a local density difference occurs in the suspension inside the settling tank, and natural convection occurs due to the density difference.

【0007】この自然対流によって検出容器直下の懸濁
液は上方へ、それ以外の箇所の懸濁液は下方へと移動す
る。この対流に生じる動圧が検出容器を上方へ押し上げ
るように働く。これが粒度分布測定に対する外乱とな
り、測定精度を低下させる要因となる。
[0007] Due to the natural convection, the suspension immediately below the detection container moves upward, and the suspension at other locations moves downward. The dynamic pressure generated in the convection acts to push the detection container upward. This becomes a disturbance to the particle size distribution measurement and causes a reduction in measurement accuracy.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、上記
の問題点を解決し、沈降槽内で生じる懸濁液の局所的な
対流を抑制することにより測定精度を向上させる、粉体
粒子の粒度分布測定装置を提案するものである。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and to improve the measurement accuracy by suppressing local convection of a suspension generated in a settling tank. Is proposed.

【0009】[0009]

【課題を解決するための手段】本発明による粉体粒子の
粒度分布測定装置は、粒径を測定すべき粉体と液状の媒
体とを混合して懸濁液を得るための混合槽と、前記混合
槽から前記懸濁液を沈降槽に供給する供給管と、検出容
器と、質量測定器と、データ処理機とを具え、前記検出
容器を、一端が当該検出容器と、他端が前記質量測定器
とそれぞれ接続した支持部材により前記沈降槽内部に吊
り下げ、前記沈降槽内部に供給された前記懸濁液中に分
散した前記粉体の前記検出容器上への沈降に伴う、前記
検出容器の質量変化を測定することにより、前記粉体の
粒度分布を測定する粒度分布測定装置において、前記混
合槽に音波発振手段を取り付けたことを特徴とするもの
である。
According to the present invention, there is provided a powder particle size distribution measuring apparatus, comprising: a mixing tank for mixing a powder whose particle size is to be measured with a liquid medium to obtain a suspension; A supply pipe for supplying the suspension from the mixing tank to the settling tank, a detection container, a mass measuring device, and a data processor are provided, and the detection container has one end at the detection container and the other end at the other end. The detection is performed by suspending the powder dispersed in the suspension supplied into the sedimentation tank onto the detection container by suspending the powder suspended in the sedimentation tank by a support member connected to each of the mass measuring devices. In the particle size distribution measuring device for measuring the particle size distribution of the powder by measuring a change in the mass of the container, a sound wave oscillating means is attached to the mixing tank.

【0010】本発明による粉体粒子の粒度分布測定装置
は、測定対象である粉体と液状の媒体とを混合槽内で混
合して懸濁液を作製するに際し、混合槽に取り付けた音
波発振手段によって懸濁液に音波を照射することによ
り、懸濁液中の粉体粒子の凝集を抑制し、懸濁液中での
均一な分散を促進させるものである。それによって、沈
降槽に投入された懸濁液の、沈降槽内部での対流を抑制
することができ、測定精度の向上を図ることが可能とな
る。
The apparatus for measuring the particle size distribution of powder particles according to the present invention is a method for mixing a powder to be measured and a liquid medium in a mixing tank to produce a suspension. By irradiating the suspension with sound waves by means, aggregation of the powder particles in the suspension is suppressed, and uniform dispersion in the suspension is promoted. Thereby, the convection of the suspension charged in the settling tank inside the settling tank can be suppressed, and the measurement accuracy can be improved.

【0011】この音波発振手段としては、超音波発振器
を用いることが望ましい。それによって、懸濁液中の粉
体粒子の凝集抑制と、分散の均一化の効果をより高める
ことが可能である。
It is desirable to use an ultrasonic oscillator as the sound wave oscillating means. Thereby, it is possible to further enhance the effect of suppressing aggregation of the powder particles in the suspension and making the dispersion uniform.

【0012】また本発明による粉体粒子の粒度分布測定
装置は、前記沈降槽底面上に少なくとも一つの多孔質ま
たは網状の遮蔽板を取り付けたことを特徴とする。その
ため、沈降槽内部での懸濁液の対流、特に検出容器より
も下での対流の発生を抑制し、測定精度の向上を図るこ
とが可能となる。この遮蔽板は、検出容器直下の位置に
取り付けるのが好適である。それによって、対流の抑制
と測定精度向上の効果をより確実なものとすることがで
きる。
[0012] The apparatus for measuring the particle size distribution of powder particles according to the present invention is characterized in that at least one porous or net-shaped shielding plate is mounted on the bottom of the settling tank. Therefore, it is possible to suppress the occurrence of convection of the suspension inside the sedimentation tank, particularly the occurrence of convection below the detection container, and to improve the measurement accuracy. This shield plate is preferably attached to a position directly below the detection container. Thereby, the effect of suppressing the convection and improving the measurement accuracy can be further ensured.

【0013】さらに本発明による粉体粒子の粒度分布測
定装置は、前記検出容器外径と前記沈降槽内径との比を
0.6以下、好ましくは0.5以下とすることを特徴とする。
それによって、沈降槽内部での懸濁液の対流の発生を抑
制し、測定精度の向上を図ることがより確実に行えるこ
ととなる。
Further, the apparatus for measuring the particle size distribution of powder particles according to the present invention is characterized in that the ratio between the outer diameter of the detection vessel and the inner diameter of the settling tank is determined.
It is characterized by being 0.6 or less, preferably 0.5 or less.
Thereby, generation of convection of the suspension inside the settling tank can be suppressed, and measurement accuracy can be more reliably improved.

【0014】[0014]

【発明の実施の形態】以下、図面を参照して本発明の好
適な実施形態について説明する。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

【0015】図1は、本発明による粉体粒子の粒度分布
測定装置の一実施形態の構成を示すものである。本装置
10は、ケース11内に設置した沈降槽12、ケース11上に設
置した電子天秤13、測定すべき粉体粒子を媒体と混合し
た懸濁液を収容する混合槽14、懸濁液を混合槽14から沈
降槽12へ供給するための配管15および、測定データの処
理を行うためのコンピュータ16を具える。
FIG. 1 shows the configuration of an embodiment of the apparatus for measuring the particle size distribution of powder particles according to the present invention. This device
10 is a sedimentation tank 12 installed in a case 11, an electronic balance 13 installed on the case 11, a mixing tank 14 containing a suspension in which powder particles to be measured are mixed with a medium, and a mixing tank A pipe 15 for supplying the sedimentation tank 12 from the pipe 14 and a computer 16 for processing the measurement data are provided.

【0016】沈降槽12内部には検出容器17が配置され、
検出容器17は支持ロッド18によって電子天秤13と接続す
ると共に、この支持ロッドによってケース11上部から吊
り下げられている。
A detection vessel 17 is disposed inside the settling tank 12,
The detection container 17 is connected to the electronic balance 13 by a support rod 18, and is suspended from above the case 11 by the support rod.

【0017】また混合槽14には攪拌機19およびバルブ20
が設けられている。攪拌機19は、混合槽内の懸濁液を撹
拌して、粉体粒子を均一に分散させるためのものであ
り、一方バルブは懸濁液を沈降槽12に供給する際に解放
する。なお、これらは共に制御装置21によって動作が制
御されている。
The mixing tank 14 has a stirrer 19 and a valve 20.
Is provided. The stirrer 19 is for stirring the suspension in the mixing tank to uniformly disperse the powder particles, while the valve is opened when supplying the suspension to the settling tank 12. The operation of each of these is controlled by the control device 21.

【0018】配管15は、ケース11内で供給管22と接続
し、混合槽14内の懸濁液は、配管15および投入管22を経
て沈降槽12へ供給される。なお、本装置10においては、
懸濁液投入の際に、特に検出容器17およびその周辺に偏
り無く懸濁液が供給されるようにバイパス管23が設けら
れている。このバイパス管23については、本願発明者ら
により特開2000-74813号公報において詳細に開示されて
いるため、ここでは説明を省略する。
The pipe 15 is connected to the supply pipe 22 in the case 11, and the suspension in the mixing tank 14 is supplied to the settling tank 12 via the pipe 15 and the charging pipe 22. In this device 10,
A bypass pipe 23 is provided so that the suspension is supplied evenly to the detection container 17 and its surroundings when the suspension is charged. The bypass pipe 23 is disclosed in detail in Japanese Patent Application Laid-Open No. 2000-74813 by the present inventors, and therefore, description thereof is omitted here.

【0019】混合槽24には、さらに超音波振動子24が取
り付けられている。超音波振動子24は、超音波発振器25
によって駆動され、混合槽24内に超音波を照射する。こ
の超音波によって懸濁液中の粉体粒子の凝集が抑制され
るとともに、攪拌機19による撹拌と相俟って、粉体粒子
の懸濁液内での均一な分散が促進される。
The mixing tank 24 is further provided with an ultrasonic oscillator 24. The ultrasonic oscillator 24 is an ultrasonic oscillator 25
And irradiates the mixing tank 24 with ultrasonic waves. The ultrasonic wave suppresses the aggregation of the powder particles in the suspension, and, together with the stirring by the stirrer 19, promotes the uniform dispersion of the powder particles in the suspension.

【0020】さらに沈降槽12底部には遮蔽板26が取り付
けられている。この遮蔽板26は、沈降槽12内部における
懸濁液の対流の発生を抑制するものである。この遮蔽板
26としては、多孔質または網状のもの、例えば金網を用
いることができる。また、取り付ける遮蔽板の数は、図
では検出容器17直下に1枚設けているのみであるが、2枚
以上取り付けても良く、さらには遮蔽板の配置方法も種
々の形態を取ることが可能である。
Further, a shielding plate 26 is attached to the bottom of the settling tank 12. The shielding plate 26 suppresses the generation of convection of the suspension inside the settling tank 12. This shield
As 26, a porous or mesh-like material such as a wire mesh can be used. Although only one shield plate is provided directly below the detection container 17 in the figure, two or more shield plates may be attached, and the shield plate may be arranged in various forms. It is.

【0021】図2は、沈降槽12のみを示すものである。
ここで、図には複数のパラメータ、すなわち、検出容器
17の外径d、沈降槽12の内径d、沈降槽12の側壁と
検出容器17側壁との間隔dおよび検出容器17の高さh
がそれぞれ記載されているが、これらと本発明に係る
装置による測定結果との関係については後述する。
FIG. 2 shows only the settling tank 12.
Here, the diagram shows a plurality of parameters,
The outer diameter d a of 17, the inner diameter d b of the sedimentation tank 12, the height h of the distance d c and detection container 17 of the side wall and the detection container 17 sidewall of the sedimentation tank 12
a is described, and the relationship between these and the measurement results obtained by the apparatus according to the present invention will be described later.

【0022】次に、本発明に係る装置を用いた測定結果
について説明する。ここでは、粉体粒子として最小粒子
径が1μmであるガラスビーズ(MBP1-10およびMBP3-3
0)を用い、以下の条件で測定を行った。 粒子の沈降距離(沈降槽の懸濁液液面から検出容器底部
までの距離):h=80mm 懸濁液の媒体の密度: ρ=0.998g/cm 懸濁液の媒体の粘性係数:μ=9.1×10−4Pa 粒子の密度: ρ=4.07g/cm 測定終了時における検出容器内の粒子全体の重量:G
=1.18g 重力加速度: g=9.8m/sec
Next, measurement results using the apparatus according to the present invention will be described. Here, glass beads having a minimum particle diameter of 1 μm (MBP1-10 and MBP3-3) are used as powder particles.
0) was measured under the following conditions. Sedimentation distance of particles (distance from the suspension liquid level in the sedimentation tank to the bottom of the detection container): h = 80 mm Density of the suspension medium: ρ f = 0.998 g / cm 3 Viscosity coefficient of the suspension medium: μ = 9.1 × 10 −4 Pa Particle density: ρ p = 4.07 g / cm 3 Weight of all particles in the detection container at the end of measurement: G 0
= 1.18g Gravitational acceleration: g = 9.8m / sec 2

【0023】図3は、本装置によるガラスビーズMBP1-10
を用いた測定結果、すなわち粒径分布を示すグラフであ
る。図では、本装置による測定結果を○印で、従来の沈
降天秤法による測定結果を△印で、また参考として顕微
鏡法、すなわち顕微鏡観察による測定結果を■印でそれ
ぞれ示す。図より、本装置10による測定結果が、顕微鏡
法による結果とほぼ同等のものであることが理解され
る。また、これは、従来の沈降天秤法による測定と比べ
て、測定精度が大幅に向上していることをも示してい
る。
FIG. 3 shows glass beads MBP1-10 produced by the present apparatus.
5 is a graph showing the measurement results using, that is, the particle size distribution. In the figure, the results of measurement by the present apparatus are indicated by ○, the results of measurement by the conventional sedimentation balance method are indicated by △, and the results of measurement by microscopy, ie, microscopic observation, are indicated by ■ for reference. From the figure, it is understood that the measurement result by the present apparatus 10 is almost equivalent to the result by the microscopy. This also indicates that the measurement accuracy is greatly improved as compared with the measurement by the conventional sedimentation balance method.

【0024】次に図4は、ガラスビーズMBP3-30を用いた
測定結果を示すグラフである。本図においても、本装置
により、従来の沈降天秤法による測定と比べて測定精度
の改善と、顕微鏡法による測定とほぼ同等の結果が得ら
れることが示されている。
FIG. 4 is a graph showing the measurement results using glass beads MBP3-30. This figure also shows that the present apparatus can improve the measurement accuracy as compared with the conventional sedimentation balance method, and can obtain substantially the same results as those obtained by the microscopic method.

【0025】図5は、沈降槽12内部での懸濁液の流れを
示すものである。ここでは、沈降槽および検出容器17に
関するパラメータを変化させた3通りの結果について示
す。ここで、パラメータDpは懸濁液中の粉体粒子の粒子
径であり、他のパラメータは、それぞれ前述した、沈降
槽および検出容器の大きさに関するものである(図2参
照)。図5(a)〜(c)において、懸濁液の流れの方向は矢
印の向きで、流れの速度は矢印の大きさでそれぞれ示さ
れている。
FIG. 5 shows the flow of the suspension inside the settling tank 12. Here, three types of results in which parameters relating to the sedimentation tank and the detection container 17 are changed are shown. Here, the parameter Dp is the particle size of the powder particles in the suspension, and the other parameters are related to the size of the sedimentation tank and the detection container, respectively (see FIG. 2). 5 (a) to 5 (c), the direction of the flow of the suspension is indicated by the arrow, and the speed of the flow is indicated by the size of the arrow.

【0026】図5より、沈降槽側壁と検出容器側壁との
間隔が大きい程、検出容器底部周り(図の円で囲んだ部
分)での対流の発生が小さくなることが理解される。こ
こでは特に検出容器外径dと沈降槽内径dとの比d
/dを0.6以下、より好ましくは0.5以下とすること
が効果的であることがわかる。
From FIG. 5, it is understood that the larger the distance between the settling tank side wall and the detection vessel side wall, the smaller the occurrence of convection around the bottom of the detection vessel (the part circled in the figure). The ratio d between the particular detection container outside diameter d a and sedimentation tank inner diameter d b here
The a / d b 0.6 or less, and more preferably it can be seen that it is effective to 0.5 or less.

【0027】さらに図6は、図5(a)〜(c)それぞれの場合
における粒径分布の測定結果を示すものである。この図
からも、沈降槽側壁と検出容器側壁との間隔が大きい
程、特に検出容器外径dと沈降槽内径dとの比d
/dを0.6以下、より好ましくは0.5以下ととした場合
に、高い測定精度が得られることが理解される。
FIG. 6 shows the measurement results of the particle size distribution in each of FIGS. 5 (a) to 5 (c). From the figure, the larger the distance between the settler side walls and the detection container sidewall, in particular the detection container outside diameter d a and the ratio d a between the sedimentation tank inner diameter d b
/ D b 0.6 or less, when more preferably set to 0.5 or less, it is understood that high measurement accuracy can be obtained.

【0028】以上説明したように、本発明によれば、測
定対象である粉体粒子の懸濁液中での凝集を防いで均一
な分散を促し、沈降槽内での懸濁液の対流を抑制するこ
とができ、それゆえ沈降天秤法による粉体粒子の粒度分
布を高い測定精度で行うことが可能となる。
As described above, according to the present invention, the powder particles to be measured are prevented from aggregating in the suspension to promote uniform dispersion, and the convection of the suspension in the settling tank is reduced. Therefore, the particle size distribution of the powder particles by the sedimentation balance method can be measured with high measurement accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による粉体粒子の粒度分布測定装置の
一実施形態の構成を示す図である。
FIG. 1 is a diagram showing a configuration of an embodiment of a powder particle size distribution measuring device according to the present invention.

【図2】 図1の装置の沈降槽のみを拡大して示す断面
図である。
FIG. 2 is an enlarged sectional view showing only a settling tank of the apparatus of FIG.

【図3】 図1の装置による粉体粒子(ガラスビーズ)
の粒度分布の測定結果を示すグラフである。
FIG. 3 shows powder particles (glass beads) produced by the apparatus shown in FIG.
3 is a graph showing the measurement results of the particle size distribution of the sample.

【図4】 図1の装置による粉体粒子(ガラスビーズ)
の粒度分布の測定結果を示すグラフである。
FIG. 4 shows powder particles (glass beads) produced by the apparatus shown in FIG.
4 is a graph showing the measurement results of the particle size distribution of the sample.

【図5】 沈降槽内部での懸濁液の流れを示す図であ
る。
FIG. 5 is a diagram showing a flow of a suspension inside a settling tank.

【図6】 異なる沈降槽内径と検出容器外径の比に対す
る粒度分布の測定結果を示すグラフである。
FIG. 6 is a graph showing the measurement results of the particle size distribution for different ratios of the inner diameter of the sedimentation tank and the outer diameter of the detection vessel.

【符号の説明】[Explanation of symbols]

10 粉体粒子の粒度分布測定装置 11 ケース 12 沈降槽 13 電子天秤 14 混合槽 15 配管 16 コンピュータ 17 検出容器 18 支持ロッド 19 攪拌機 20 バルブ 21 制御装置 22 供給管 23 バイパス管 24 超音波振動子 25 超音波発振器 26 遮蔽板 10 Particle size distribution analyzer 11 Case 12 Sedimentation tank 13 Electronic balance 14 Mixing tank 15 Piping 16 Computer 17 Detection vessel 18 Support rod 19 Stirrer 20 Valve 21 Controller 22 Supply pipe 23 Bypass pipe 24 Ultrasonic transducer 25 Ultra Sound generator 26 Shield

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 粒径を測定すべき粉体と液状の媒体とを
混合して懸濁液を得るための混合槽と、前記混合槽から
前記懸濁液を沈降槽に供給する供給管と、検出容器と、
質量測定器と、データ処理機とを具え、 前記検出容器を、一端が当該検出容器と、他端が前記質
量測定器とそれぞれ接続した支持部材により前記沈降槽
内部に吊り下げ、前記沈降槽内部に供給された前記懸濁
液中に分散した前記粉体の前記検出容器上への沈降に伴
う、前記検出容器の質量変化を測定することにより、前
記粉体の粒度分布を測定する粒度分布測定装置におい
て、 前記混合槽に音波発振手段を取り付けたことを特徴とす
る、粉体粒子の粒度分布測定装置。
A mixing tank for mixing a powder whose particle size is to be measured with a liquid medium to obtain a suspension; a supply pipe for supplying the suspension from the mixing tank to a settling tank; , A detection container,
A mass measuring device and a data processor, wherein the detection container is suspended inside the sedimentation tank by a support member having one end connected to the detection container and the other end connected to the mass measurement device, A particle size distribution measurement for measuring a particle size distribution of the powder by measuring a change in mass of the detection container accompanying sedimentation of the powder dispersed in the suspension supplied to the detection container on the detection container. In the apparatus, a particle size distribution measuring device for powder particles, wherein a sound wave oscillating means is attached to the mixing tank.
【請求項2】 前記音波発振手段が超音波発振器である
ことを特徴とする、請求項1記載の粉体粒子の粒度分布
測定装置。
2. The apparatus for measuring the particle size distribution of powder particles according to claim 1, wherein said sound wave oscillating means is an ultrasonic wave oscillator.
【請求項3】 前記沈降槽底面上に少なくとも一つの多
孔質または網状の遮蔽板を取り付けたことを特徴とす
る、請求項1または2記載の粉体粒子の粒度分布測定装
置。
3. The apparatus for measuring the particle size distribution of powder particles according to claim 1, wherein at least one porous or net-shaped shielding plate is mounted on the bottom of the settling tank.
【請求項4】 前記遮蔽板を、前記沈降槽底面上の前記
検出容器直下に取り付けたことを特徴とする、請求項1
〜3のいずれか1項記載の粉体粒子の粒度分布測定装
置。
4. The apparatus according to claim 1, wherein the shielding plate is attached to the bottom of the settling tank immediately below the detection container.
The particle size distribution measuring apparatus for powder particles according to any one of claims 1 to 3.
【請求項5】 前記検出容器外径と前記沈降槽内径との
比を0.6以下、好ましくは0.5以下とすることを特徴とす
る、請求項1〜3のいずれか1項記載の粉体粒子の粒度
分布測定装置。
5. The powder particles according to claim 1, wherein the ratio of the outer diameter of the detection vessel to the inner diameter of the settling tank is 0.6 or less, preferably 0.5 or less. Particle size distribution measurement device.
JP2001032358A 2001-02-08 2001-02-08 Particle size distribution measuring device for powder particles Expired - Lifetime JP3505573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001032358A JP3505573B2 (en) 2001-02-08 2001-02-08 Particle size distribution measuring device for powder particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001032358A JP3505573B2 (en) 2001-02-08 2001-02-08 Particle size distribution measuring device for powder particles

Publications (2)

Publication Number Publication Date
JP2002236088A true JP2002236088A (en) 2002-08-23
JP3505573B2 JP3505573B2 (en) 2004-03-08

Family

ID=18896306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001032358A Expired - Lifetime JP3505573B2 (en) 2001-02-08 2001-02-08 Particle size distribution measuring device for powder particles

Country Status (1)

Country Link
JP (1) JP3505573B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127789A (en) * 2003-10-22 2005-05-19 Sysmex Corp Stirrer and particle analyzer using the same
JP2013076670A (en) * 2011-09-30 2013-04-25 Hitachi Chemical Co Ltd Zeta-potential measuring method and zeta-potential measuring system
WO2014097402A1 (en) * 2012-12-18 2014-06-26 日立化成株式会社 Zeta potential measurement method and zeta potential measurement system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127789A (en) * 2003-10-22 2005-05-19 Sysmex Corp Stirrer and particle analyzer using the same
JP2013076670A (en) * 2011-09-30 2013-04-25 Hitachi Chemical Co Ltd Zeta-potential measuring method and zeta-potential measuring system
WO2014097402A1 (en) * 2012-12-18 2014-06-26 日立化成株式会社 Zeta potential measurement method and zeta potential measurement system

Also Published As

Publication number Publication date
JP3505573B2 (en) 2004-03-08

Similar Documents

Publication Publication Date Title
US7658340B2 (en) System and method for nanoparticle and nanoagglomerate fluidization
Nienow The suspension of solid particles
Atiemo‐Obeng et al. Solid–liquid mixing
EP2953710B1 (en) Apparatus and method for providing asymmetric oscillations
Kaliyaperumal et al. Fluidization of nano and sub-micron powders using mechanical vibration
JP6492561B2 (en) Cell culture equipment
Ding et al. Role of hydrophobic fine particles in coarse particle flotation: An analysis of bubble-particle attachment and detachment
Epstein Liquid-solids fluidization
Quintanilla et al. Electrofluidization of silica nanoparticle agglomerates
JP2002236088A (en) Particle size distribution measuring device for powder particles
Weisman et al. Suspension of slurries by mechanical mixers
Yamamoto et al. Investigation on the surface vortex formation during mechanical stirring with an axial-flow impeller used in an aluminum process
CN108348873B (en) Device for mixing powders and generating vibrations by means of a cryogenic fluid
Rewatkar et al. Critical impeller speed for solid suspension in mechanically agitated three-phase reactors. 2. Mathematical model
Ganzeveld et al. Hydrodynamic behaviour of animal cell microcarrier suspensions in split-cylinder airlift bioreactors
JPH0363654A (en) Manufacture of electrophotographic sensitive body
Zhu et al. Impact behavior of hydrophilic micron particles on a planar gas–liquid interface
JPH1190110A (en) Ultrasonic deforming method, manufacture of photosensitive material and ultrasonic deforming device
JPH049305B2 (en)
JPH06300738A (en) Magnetic-particle liquid tank for magnetic-particle flaw detection
Davoody et al. Maximizing impeller power efficiency in gas–solid–liquid stirred vessels through process intensification
CN107543765B (en) Wear device of microspherical catalyst
JP4781241B2 (en) Powder paint recovery processing equipment
JPH078771A (en) Method and device for mixing and dissolving powder
JP2749526B2 (en) Particle wetting angle measurement method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3505573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term