JP2002235193A - Method for forming iron sulfide-based coating with excellent slidability and iron-based material provided with iron sulfide-based coating - Google Patents
Method for forming iron sulfide-based coating with excellent slidability and iron-based material provided with iron sulfide-based coatingInfo
- Publication number
- JP2002235193A JP2002235193A JP2001032374A JP2001032374A JP2002235193A JP 2002235193 A JP2002235193 A JP 2002235193A JP 2001032374 A JP2001032374 A JP 2001032374A JP 2001032374 A JP2001032374 A JP 2001032374A JP 2002235193 A JP2002235193 A JP 2002235193A
- Authority
- JP
- Japan
- Prior art keywords
- iron
- film
- iron sulfide
- electrolysis
- aqueous solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
(57)【要約】
【課題】 水溶液電解法により形成される硫化鉄系皮膜
の高面圧下での耐焼付き性能を高める。
【解決手段】 鉄系材料を3価鉄イオン、キレート剤及
び硫黄化合物を含有する水溶液中で陽極電解することに
より、前記鉄系材料表面に実質的に硫化鉄からなる皮膜
を電解析出させることを特徴とする摺動性に優れた硫化
鉄系皮膜の形成方法。
(57) [Problem] To improve the seizure resistance of an iron sulfide-based film formed by an aqueous solution electrolysis method under a high surface pressure. SOLUTION: An iron-based material is subjected to anodic electrolysis in an aqueous solution containing trivalent iron ions, a chelating agent and a sulfur compound, thereby electrolytically depositing a film substantially composed of iron sulfide on the surface of the iron-based material. A method for forming an iron sulfide-based film having excellent sliding properties.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、鉄系材料摺動部品
の表面に摺動性に優れた硫化鉄系皮膜を形成する方法に
関する。特に、本発明は、高面圧下で安定した性能を発
揮する好ましくは膜厚1〜20μmの硫化鉄系皮膜を電解析
出させる方法に関するものである。さらに、本発明は硫
化鉄系皮膜が施された鉄系材料に関するものである。本
発明において、鉄系材料とは、機械構造用炭素鋼、合金
鋼、特殊鋼及び鉄系鋳鍛造品等、並びにこれらに浸炭、
窒化、高周波焼入れ等の熱処理を施したものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an iron sulfide-based coating having excellent slidability on the surface of a sliding part made of an iron-based material. In particular, the present invention relates to a method for electrolytically depositing a preferably 1 to 20 μm-thick iron sulfide-based coating exhibiting stable performance under high surface pressure. Further, the present invention relates to an iron-based material provided with an iron sulfide-based coating. In the present invention, the iron-based material refers to carbon steel for machine structural use, alloy steel, special steel, iron-based cast and forged products, and the like, and carburized therein.
Heat treatment such as nitriding and induction hardening is performed.
【0002】[0002]
【従来の技術】硫化鉄系皮膜を摺動層に使用する研究は
1953年に遡り、被処理物の鉄表面に活性イオウ(S0)を
拡散させて、FeS、Fe1-XS等の硫化鉄とFe2O3、Fe3O4等
の酸化物とから構成される浸硫層が摩耗の過程で摩擦係
数を低下させ、接触する相手材料との凝着や溶着を起こ
りにくくし、耐摩耗性を改善する浸硫処理法がフランス
で開発された。2. Description of the Related Art Research on the use of iron sulfide coatings for sliding layers
Dating active sulfur (S 0 ) back to the iron surface of the material to be processed back to 1953, it was converted from iron sulfides such as FeS and Fe 1-X S and oxides such as Fe 2 O 3 and Fe 3 O 4 A sulfuration treatment method was developed in France to improve the abrasion resistance by reducing the coefficient of friction in the process of abrasion, making it less likely to adhere to or adhere to the mating material in contact.
【0003】その後、浸硫処理は種々の処理方法が検討
されている。その代表的な方法を以下に記載する。 FeSと黒鉛などの固体処理剤中で被処理物を400℃以上
に加熱する固体法(パック法) 硫黄系水溶液及び低温の硫黄系溶融塩に被処理物を浸
漬後に、300℃以上に加熱する浸漬法 塩化ナトリウムを主成分とするの混合中性浴及びシア
ン酸を主成分とする混合還元浴に硫黄系化合物を加えた
500℃以上の溶融塩浴に被処理物を浸漬させる溶融塩法 水素やアンモニアと硫化水素の混合ガス雰囲気中で被
処理物を500℃以上で加熱するガス法 温度が170℃以上のチオシアン酸の溶融塩で被処理物
を陽極電解する電解法[0003] After that, various treatment methods have been studied for the sulfurizing treatment. The typical method is described below. Solid method in which the material to be treated is heated to 400 ° C or higher in a solid processing agent such as FeS and graphite (pack method) After the object to be treated is immersed in a sulfur-based aqueous solution or a low-temperature sulfur-based molten salt, the material is heated to 300 ° C or more Immersion method Sulfur compounds were added to a mixed neutral bath containing sodium chloride as a main component and a mixed reduction bath containing cyanic acid as a main component.
A molten salt method in which the object is immersed in a molten salt bath at 500 ° C or higher. A gas method in which the object is heated at 500 ° C or higher in a mixed gas atmosphere of hydrogen, ammonia, and hydrogen sulfide. Electrolysis method for anodic electrolysis of the workpiece with molten salt
【0004】ところで、浸硫層の耐摩耗性は摺動部材表
面の硬度、材質、面粗度、面圧、接触の仕方、潤滑剤の
種類などの要因によって異なる。上記方法により形成さ
れた、耐摩耗性を発揮することが期待される硫化鉄の硬
度は、浸炭及び窒化処理された素材表面と比較すると、
かなり低い為に、低硬度素材に適用された硫化鉄系皮膜
は摺動中に大きな機械的損失を示し、浸硫処理の効果を
見出せなかった。[0004] The wear resistance of the sulfurized layer varies depending on factors such as hardness, material, surface roughness, surface pressure, manner of contact, and type of lubricant on the surface of the sliding member. The hardness of iron sulfide, which is formed by the above method and is expected to exhibit abrasion resistance, is compared with the surface of the carburized and nitrided material.
Due to the considerably low temperature, the iron sulfide coating applied to the low hardness material showed a large mechanical loss during sliding, and the effect of the sulfurizing treatment could not be found.
【0005】従って、耐摩耗性の効果に優れる浸硫層と
窒化層とを同時に形成させる処理法が開発され、低硬度
素材の硬度上昇を目的とする窒化処理を基本にし、同時
に摩擦係数を低下させる硫化も行なえるようにした還元
性溶融塩法、ガス法及びイオン法の浸硫窒化処理が近年
工業化されている。これらの方法について説明する。Accordingly, a treatment method has been developed for simultaneously forming a sulfurized layer and a nitrided layer which are excellent in the wear resistance effect. Based on the nitriding treatment for the purpose of increasing the hardness of a low-hardness material, the friction coefficient is reduced at the same time. In recent years, nitrosulphurizing treatment using a reducing molten salt method, a gas method, and an ion method, which can also perform sulphidation, has been industrialized. These methods will be described.
【0006】その一つである還元性溶融塩法はシアン酸
及びシアン系化合物の溶融塩に10%以下のチオ硫酸ナト
リウム、硫化ナトリウム等の硫黄化合物を加えた混合溶
融塩中で浸硫窒化処理をする方法である。しかし、浴温
度が500℃以上と高く且つ処理時間も2時間以上と長い点
や、塩浴中の硫黄化合物を多くすると浸硫層が厚くなり
剥離し易くなる問題がある。また、浸硫と窒化を同時に
行うために、硫黄化合物の存在下で窒素の素材表面への
浸透拡散が低下して、窒化層が薄膜化するという問題が
ある。更に寸法精度の要求から、溶融塩中の硫黄化合物
を数%に抑えた低硫黄タイプ(特公昭59-6911)が主流
となっているが、還元性溶融塩法では硫黄の分析による
塩浴中の硫黄濃度の維持、硫黄の酸化防止等の管理等が
必要であり、洗浄時のシアン酸の分解による遊離シアン
の廃水処理等の公害問題も抱えている。[0006] One of the methods is a reducing molten salt method in which a sulfuric acid nitriding treatment is carried out in a mixed molten salt obtained by adding a sulfur compound such as sodium thiosulfate or sodium sulfide to a molten salt of cyanic acid and a cyanide compound in an amount of 10% or less. How to However, there are problems in that the bath temperature is as high as 500 ° C. or more and the treatment time is as long as 2 hours or more, and when the sulfur compound in the salt bath is increased, the sulfurized layer becomes thicker and easily peels off. In addition, since sulfuration and nitridation are performed simultaneously, there is a problem that the diffusion of nitrogen into the surface of the material in the presence of a sulfur compound is reduced, and the nitrided layer becomes thin. Furthermore, due to the demand for dimensional accuracy, low-sulfur type (JP-B-59-6911), in which the amount of sulfur compounds in the molten salt is reduced to a few percent, has become the mainstream. It is necessary to maintain the sulfur concentration and control the oxidation of sulfur and the like, and there are also pollution problems such as waste water treatment of free cyanide due to decomposition of cyanic acid during washing.
【0007】次に、ガス法は窒素、アンモニア及び硫化
水素の混合ガス雰囲気中で浸硫窒化処理する方法であ
る。処理温度は500℃以上と高く、且つ処理時間が3時間
以上と長い。雰囲気中のガス組成を任意に変更して、浸
硫層と窒化層の厚さをコントロール出来る柔軟性はある
が、比重の重い硫化水素ガスとアンモニアガスを均一に
混合することが重要であり、ガス圧の管理等の制御及び
炉内のガス組成の均一性を維持させる炉設計が重要であ
る。更に、排ガス中の硫化水素の回収装置が必要となる
など、処理装置が高価になるという欠点がある。Next, the gas method is a method of performing a sulphinitriding treatment in a mixed gas atmosphere of nitrogen, ammonia and hydrogen sulfide. The processing temperature is as high as 500 ° C. or more, and the processing time is as long as 3 hours or more. There is flexibility to control the thickness of the sulfurized layer and the nitrided layer by arbitrarily changing the gas composition in the atmosphere, but it is important to mix the hydrogen sulfide gas and the ammonia gas with heavy specific gravity uniformly. It is important to control the gas pressure, etc., and to design the furnace to maintain the uniformity of the gas composition in the furnace. Further, there is a disadvantage that the processing apparatus becomes expensive, for example, a recovery apparatus for hydrogen sulfide in the exhaust gas is required.
【0008】続いて、イオン法は減圧下にてアンモニア
及び硫化水素の混合ガス雰囲気中でグロー放電を起こさ
せて、浸硫窒化処理する方法である。処理時間は約4時
間と長い。雰囲気中のガス組成を任意に変更して、浸硫
層と窒化層の厚さコントロールが出来る柔軟性はある
が、比重の重い硫化水素ガスとアンモニアガスを均一に
混合することや、ガス圧の管理等の制御及び炉内のガス
組成の均一性を維持させる炉設計が重要であり、更に排
ガス中の硫化水素の回収装置が必要となるなど、処理装
置が高価になるという欠点がある。[0008] Subsequently, the ion method is a method in which glow discharge is caused in a mixed gas atmosphere of ammonia and hydrogen sulfide under reduced pressure to perform a sulphonitriding treatment. The processing time is as long as about 4 hours. It has the flexibility to control the thickness of the sulfurized layer and the nitrided layer by arbitrarily changing the gas composition in the atmosphere.However, it is possible to mix hydrogen sulfide gas and ammonia gas with heavy specific gravity uniformly, It is important to control the management and the like and to design a furnace for maintaining the uniformity of the gas composition in the furnace. Further, there is a disadvantage that the processing apparatus becomes expensive, for example, a recovery apparatus for hydrogen sulfide in the exhaust gas is required.
【0009】一方、1964年にフランスで開発された低温
浸硫処理法は浸炭及び窒化材等の表面処理硬化材に対し
て浸硫処理が可能であるという大きな特徴をもってい
る。この方法は1970年には工業化された『溶融塩の陽極
電解で浸硫処理する方法』(特開昭59-89693)であり、
チオシアン酸を含有する溶融塩浴を用いて、温度170℃
以上、電流密度1.5〜4A/dm2の範囲、処理時間4〜20分の
範囲などの条件で電解を行うことにより、被処理品から
溶出するFe2+とチオシアン酸の分解で生じるS2-との反
応で、陽極に硫化鉄を析出させる処理法である。しか
し、低温浸硫処理とはいうものの170℃以上の溶融塩処
理である為に、熱処理にて硬化した部品表面の硬度が低
下する点や、処理後の母材表面が顕著に荒れる点等の問
題がある。更に、洗浄の際にチオシアン酸が分解するこ
とによる遊離シアンの廃水処理等の公害問題を抱えてい
る。On the other hand, the low-temperature sulfurizing treatment method developed in France in 1964 has a great feature that the surface treatment hardening material such as carburizing and nitriding material can be sulfurized. This method was industrialized in 1970, "Sulfurization treatment by anodic electrolysis of molten salt" (JP-A-59-89693).
Using a molten salt bath containing thiocyanic acid, at a temperature of 170 ° C.
As described above, by performing electrolysis under the conditions of a current density in the range of 1.5 to 4 A / dm 2 and a processing time of 4 to 20 minutes, S 2− generated by decomposition of Fe 2+ and thiocyanic acid eluted from the article to be processed. Is a treatment method for precipitating iron sulfide on the anode by the reaction with However, although it is a low-temperature sulfurization treatment, since it is a molten salt treatment at 170 ° C or higher, the hardness of the component surface cured by heat treatment decreases, and the base material surface after treatment becomes significantly rough, etc. There's a problem. Furthermore, there is a pollution problem such as waste water treatment of free cyanide due to decomposition of thiocyanic acid during washing.
【0010】そこで『鉄または鉄合金の硫化処理法』
(特開平11-302897)においてアルカリ金属もしくはア
ルカリ土類金属のチオシアン酸塩またはチオ硫酸塩の1
種または2種以上を溶解した水溶液を水溶液として、陽
極電解によって硫化鉄系皮膜を形成させる方法が開発さ
れた。この方法は、水溶液処理であるために、熱処理部
品の硬度低下の問題は改善されたが、依然として廃水処
理等の公害問題を抱えている。[0010] Therefore, "Sulfurization treatment of iron or iron alloy"
(Japanese Patent Application Laid-Open No. Hei 11-302897) discloses that one of thiocyanate or thiosulfate of alkali metal or alkaline earth metal is used.
A method has been developed to form an iron sulfide-based film by anodic electrolysis using an aqueous solution in which one or more species are dissolved. Since this method is an aqueous solution treatment, the problem of a decrease in hardness of the heat-treated component has been improved, but it still has pollution problems such as wastewater treatment.
【0011】また、1997年には3価鉄イオン、3価鉄イ
オンをキレートする第1のキレート剤及び硫黄化合物を
含有し、PHが9以上のアルカリ性の水溶液にて陰極電解
して、硫化鉄を形成させる方法『耐摩耗性が優れた皮膜
の形成方法及び耐摩耗性皮膜が施された鉄系材料』(特
開平11-050297)が開発された。この方法は水溶液系の
陰極電解である為に、熱処理部品の硬度低下や表面粗れ
の問題なく皮膜の形成が可能であり、さらに主成分が3
価鉄イオン、硫黄イオン及びキレート剤から成る為に、
廃水も簡易的な施設で対応できる特徴を有している。Further, in 1997, a cathodic electrolysis was carried out in an alkaline aqueous solution having a pH of 9 or more, containing a ferric iron ion, a first chelating agent for chelating a ferric iron ion, and a sulfur compound. A method for forming a film having excellent wear resistance and an iron-based material provided with a wear-resistant film (JP-A-11-050297) have been developed. Since this method is an aqueous cathodic electrolysis, it is possible to form a film without a problem of hardness reduction and surface roughness of a heat-treated part.
Because it consists of ferrous ion, sulfur ion and chelating agent,
Wastewater has a feature that can be handled by simple facilities.
【0012】本発明者らは、各種浸硫窒化処理法及び電
解法で形成された皮膜中の硫化鉄含有量を調査する目的
で、蛍光X線回折(XRF)で硫化鉄の定量分析を実施した。
結果として各浸硫窒化処理で析出する硫化鉄は、各電解
硫化処理と比較して著しく少ない事が確認された。以上
の事から、簡易的な設備で高純度の硫化鉄系皮膜を形成
できる陰極電解硫化処理法は、従来法の抱える問題を改
善した処理法と考えられる。性能面においても陰極電解
硫化処理皮膜は低面圧下の摺動条件で摩擦係数を低減さ
せ、著しく耐摩耗性能を向上させる効果が確認されてい
る。The present inventors conducted a quantitative analysis of iron sulfide by X-ray fluorescence (XRF) in order to investigate the content of iron sulfide in the films formed by various nitrosulphurizing treatment methods and electrolytic methods. did.
As a result, it was confirmed that the amount of iron sulfide precipitated in each of the oxynitriding treatments was significantly smaller than that in each of the electrolytic sulfide treatments. From the above, it is considered that the cathodic electrolytic sulfurization treatment method capable of forming a high-purity iron sulfide-based film with simple equipment is a treatment method which has solved the problems of the conventional method. In terms of performance, it has been confirmed that the cathodic electrolytic sulfurization treatment film has an effect of reducing the friction coefficient under sliding conditions under low surface pressure and remarkably improving wear resistance.
【0013】[0013]
【表1】 [Table 1]
【0014】本発明者らは、陰極電解硫化処理皮膜の摺
動特性を調べたところ、高面圧の過酷な摺動条件下では
皮膜密着性の問題から安定的に性能を発揮できないこと
が分かった。一般に、浸硫処理は過酷な条件下で使用さ
れる部品の耐焼付き性能を改善することを目的として適
用されていることを考慮すると、陰極電解硫化処理は従
来法にない大きな特徴を有しているものの、市場の主た
る要求への対応は不充分である。さらに、特開平11−30
2897号においては鉄イオンは二価の形態で電解液中に添
加されている。この陽極電解硫化鉄皮膜は本発明者らが
追試したところ摩擦係数が高いために、摺動性能に改善
の余地が有ることが分かった。The inventors of the present invention have examined the sliding characteristics of the cathodic electrolytic sulfurized film, and found that under severe sliding conditions of high surface pressure, the film cannot exhibit stable performance due to the problem of film adhesion. Was. In general, cathodic electrolytic sulfurization has a large feature not found in conventional methods, considering that sulfurization is applied for the purpose of improving seizure resistance of components used under severe conditions. However, the response to the main demands of the market is inadequate. Further, JP-A-11-30
In 2897, iron ions are added to the electrolyte in a divalent form. The inventors of the present invention conducted additional tests on the anodic electrolytic iron sulfide film, and found that there was room for improvement in the sliding performance because the coefficient of friction was high.
【0015】[0015]
【発明が解決しようとする課題】本発明は従来技術の抱
えるこれらの問題点を解決する為のものであって、鉄系
材料摺動部品の表面に高面圧下で安定した耐摩耗性や耐
焼付き性を発揮する皮膜を形成する処理方法及びかかる
皮膜を有する鉄系材料を提供することを目的とするもの
である。SUMMARY OF THE INVENTION The present invention has been made to solve these problems of the prior art and is intended to provide a stable abrasion resistance and burning resistance under high surface pressure on the surface of a sliding part made of an iron-based material. It is an object of the present invention to provide a processing method for forming a film exhibiting adhesiveness and an iron-based material having such a film.
【0016】[0016]
【課題を解決するための手段】本発明者らは、上記従来
技術の抱える問題点を解決するための手段について検討
した結果、鉄系材料を3価鉄イオンとキレート剤と硫黄
系化合物を含有する水溶液中で陽極電解処理することに
より、鉄系材料の表面に高面圧下で安定した耐摩耗性を
発揮する硫化鉄系皮膜が析出形成させる事を新たに見出
し、本発明を完成するに至ったのである。Means for Solving the Problems The present inventors have studied means for solving the above-mentioned problems of the prior art, and as a result, have found that the iron-based material contains trivalent iron ions, a chelating agent and a sulfur-based compound. Anodic electrolysis treatment in an aqueous solution to form an iron sulfide-based film exhibiting stable wear resistance under a high surface pressure on the surface of an iron-based material. It was.
【0017】すなわち、本発明に係る耐摩耗性に優れた
硫化鉄系皮膜の形成方法は、3価鉄イオン、キレート剤
及び硫黄化合物を含有する水溶液中で陽極電解処理する
ことにより、鉄系材料の表面に実質的に硫化鉄からなる
皮膜を電解析出させることを特徴とするものである。ま
た、本発明に係る鉄系材料は硫化鉄系皮膜を表面に陽極
電解析出してなる鉄系材料において、3価鉄イオン、キ
レート剤及び硫黄化合物を含有する水溶液中で陽極電解
処理することにより実質的に硫化鉄からなる皮膜を施し
たことを特徴とする。以下、本発明の内容を詳細に説明
する。That is, the method for forming an iron sulfide-based film having excellent wear resistance according to the present invention comprises the steps of: subjecting an iron-based material to an anodic electrolysis treatment in an aqueous solution containing a ferric ion, a chelating agent and a sulfur compound. A film substantially composed of iron sulfide is electrolytically deposited on the surface of the substrate. The iron-based material according to the present invention is obtained by subjecting an iron-based material obtained by anodic electrolytic deposition of an iron sulfide-based coating to the surface by performing anodic electrolytic treatment in an aqueous solution containing a trivalent iron ion, a chelating agent, and a sulfur compound. It is characterized in that a coating substantially made of iron sulfide is applied. Hereinafter, the contents of the present invention will be described in detail.
【0018】本発明により形成される実質的に硫化鉄か
らなる皮膜は、陽極電解により被処理品から溶出した鉄
イオンと電解液中の硫黄イオンが化合して形成される。
また予め添加されている3価鉄イオンは安定的に皮膜を
形成する効果を有している。The film substantially composed of iron sulfide formed according to the present invention is formed by combining iron ions eluted from the article to be treated by anodic electrolysis with sulfur ions in the electrolytic solution.
In addition, trivalent iron ions added in advance have an effect of stably forming a film.
【0019】本発明で使用する水溶液中の3価鉄イオン
のモル濃度は、0.001〜0.5mol/Lの範囲が好ましい。水
溶液のPHは8以上であることが好ましい。キレート剤
のモル濃度は0.001〜2.0mol/Lの範囲が好ましい。硫黄
化合物のモル濃度は0.005〜1.0mol/Lの範囲が好まし
い。また、電解法は定電流電解法、PR電解法、パルス
電解法がある。水溶液の処理温度は35〜60℃の範囲内で
あることが好ましい。電解処理での電流密度は1〜20A/d
m2の範囲内が好ましい。The molar concentration of trivalent iron ions in the aqueous solution used in the present invention is preferably in the range of 0.001 to 0.5 mol / L. The pH of the aqueous solution is preferably 8 or more. The molar concentration of the chelating agent is preferably in the range of 0.001 to 2.0 mol / L. The molar concentration of the sulfur compound is preferably in the range of 0.005 to 1.0 mol / L. The electrolysis method includes a constant current electrolysis method, a PR electrolysis method, and a pulse electrolysis method. The treatment temperature of the aqueous solution is preferably in the range of 35 to 60 ° C. Current density in electrolytic treatment is 1 to 20 A / d
in the range of m 2 is preferred.
【0020】次に硫化鉄系皮膜の厚さは1〜20μmの硫化
鉄系皮膜あることが好ましい。本発明の皮膜はあらゆる
導電性物質に形成可能であるが、工業的に重要であるの
は、機械構造用炭素鋼・合金鋼、鋳鉄、鉄系鍛鋳造品等
である。特に本発明は浸炭及び窒化等の熱処理材の上に
硬化面を軟化する事なく、好ましくはHv600以上の
下地表面硬度を確保しつつ硫化鉄系皮膜を析出させる表
面処理である点が特筆される。熱処理材には、表面にFe
O、Fe3O4等の酸化膜が生成されて不活性化している為
に、塩酸、硫酸、スルファミン酸及びフッ化水素酸等の
酸洗及び電解研磨による研磨等の化学的方法、並びにブ
ラスト・ショット及び研磨等の物理的方法による酸化膜
の除去法及び活性化の前処理の実施した方が、電解析出
の付き回り性及び密着性が向上するので好ましい。Next, the thickness of the iron sulfide-based coating is preferably 1 to 20 μm. The coating of the present invention can be formed on any conductive material, but industrially important are carbon steels / alloy steels for machine structures, cast irons, iron-based forged products and the like. In particular, it is noted that the present invention is a surface treatment for precipitating an iron sulfide-based coating while softening the hardened surface on a heat-treated material such as carburizing and nitriding and preferably securing a base surface hardness of Hv600 or more. . For heat-treated materials, Fe
Oxide films such as O and Fe 3 O 4 are generated and inactivated, so chemical methods such as pickling with hydrochloric acid, sulfuric acid, sulfamic acid and hydrofluoric acid and polishing by electrolytic polishing, and blasting It is preferable to perform a method of removing an oxide film by a physical method such as shot and polishing, and to perform a pretreatment for activation, since the throwing power and adhesion of electrolytic deposition are improved.
【0021】[0021]
【作用】本発明の水溶液組成は、硫化鉄の供給源となる
べき3価鉄イオンが水酸化鉄「Fe(OH)2及びFe(OH)3」を生
成すること及び沈殿すること等の現象を防止するため
に、3価鉄イオンをキレート剤でキレート化合物にして
水溶液中での溶解及び安定化を図っている。図1〜3に、
本発明の陽極電解法により鉄鋼材料の表面に形成した硫
化鉄系皮膜のそれぞれFe,S,OのESCAチャートであ
る。横軸は結合エネルギーであり、縦軸はスパッタリン
グ時間である。これらの図から硫化鉄と酸化鉄のピーク
が検出される。さらに、別のESCA試験から皮膜の表
面から内部の方向でFe とOは減少していたが、 Sは強く
検出された。これらの結果から本発明の硫化鉄系皮膜は
実質的に硫化鉄からなり、酸化鉄も少量存在する皮膜で
あることが確認された。The aqueous solution composition of the present invention is based on the phenomenon that trivalent iron ions to be a source of iron sulfide generate iron hydroxide "Fe (OH) 2 and Fe (OH) 3 " and precipitate. In order to prevent this, a ferric ion is used as a chelating compound with a chelating agent to dissolve and stabilize in an aqueous solution. Figures 1-3
3 is an ESCA chart of Fe, S, and O of an iron sulfide-based film formed on the surface of a steel material by the anodic electrolysis method of the present invention. The horizontal axis is the binding energy, and the vertical axis is the sputtering time. From these figures, peaks of iron sulfide and iron oxide are detected. In addition, another ESCA test showed that Fe and O decreased from the surface of the film to the inside, but S was strongly detected. From these results, it was confirmed that the iron sulfide-based coating of the present invention was substantially composed of iron sulfide, and was a coating containing a small amount of iron oxide.
【0022】[0022]
【発明の好ましい実施態様】キレート剤は皮膜の密着性
や均一性にも関係する重要な成分である。代表例を以下
に示す。 (a)クエン酸、グルコン酸、酒石酸等の脂肪族カルボン
酸系 (b)α‐D‐グルコヘプトン酸、β‐D‐グルコヘプトン
酸、α‐D‐ガラコヘプトン酸 、β‐D‐ガラコヘプト
ン酸等のヘプトン酸系 (c)5−スルホサリチル酸、ピロカテコール‐3,5‐ジス
ルフォン酸、スルフォン酸等の 芳香族系 (d)アミノナフトールジスルフォン酸、アミノフェノー
ルスルフォン酸等のアミノ基を有 する芳香族系 (e)8‐オキシキノリン、オキシン‐5‐スルフォン酸、
7‐ヨードオキシン‐5‐スルフ ォン酸等のオキシノ
ン系 (f)アミノ基を有する芳香族系 m‐アミノフェノール、3‐アミノベンゼンスルフォン
酸 3‐アミノ‐4‐ヒドロキシベンゼンスルフォン酸 3‐アミノ‐4‐メトキシベンゼンスルフォン酸 4‐アミノ‐3‐メチルベンゼンスルフォン酸 アミノフェノールジスルフォン酸 1‐アミノ‐2‐ナフトール‐4‐スルフォン酸 4‐アミノ‐3‐ヒドロキシ‐1‐ナフトールスルフォ
ン酸 (g) ニトロ基を有する芳香族系 3‐ニトロベンゼンスルフォン酸 ニトロフェノールスルフォン酸 ニトロチオフェノール 6‐ニトロ‐2‐アミノフェノール‐4‐スルフォン酸 ニトロナフタリンスルフォン酸 4,4'‐ジニトロスチルベン‐2,2'‐ジスルフォン酸 (h) アミノ基を有するカルボン酸系 アミノフタル酸 アミノサリチル、 5‐アミノ‐2‐ヒドロキシ安息香酸 2‐アミノチアゾール‐4‐カルボン酸 2‐アミノ‐3‐ピリジンカルボン酸 (i) ニトロ基を有するカルボン酸系 3‐5‐ジニトロ安息香酸 2‐ヒドロキシ‐3,5‐ジニトロ安息香酸 ニトロフタル酸 ニトロテレフタル酸 α‐ニトロプロピオン酸 (j) アミノ基を有するアルコール系 アミノイソフタル酸 アミノ‐1‐ナフトエ酸 アスパラギン酸 アミノクレゾール アミノチオフェノール アミノニトロフェノール アミノキノリン アミノキルナジン (k) ニトロ基を有するアルコール系 ニトロ‐1‐ナフチルアミン ニトロ‐1‐ナフトール ニトロヒドロキノン 4‐ニトロトルエン‐2‐スルフォン酸 ニトロフェニル酢酸 ニトロ‐1‐ナフトエ酸 (l)その他 ジエチレントリアミン五酢酸 メトロカプトエチレンイミノアミノジ酢酸 ジエチレントリアミンペンタ(メチレンスルフォン酸) 8‐ヒドロキシ‐5‐ニトロピリジン ニトロ‐m‐トリジンA preferred embodiment of the present invention is that the chelating agent is an important component which also affects the adhesion and uniformity of the film. Representative examples are shown below. (a) Aliphatic carboxylic acids such as citric acid, gluconic acid, tartaric acid, etc. Acid type (c) Aromatic type such as 5-sulfosalicylic acid, pyrocatechol-3,5-disulfonate, sulfonic acid, etc. (e) 8-oxyquinoline, oxine-5-sulfonic acid,
Oxynones such as 7-iodooxin-5-sulfonic acid (f) Aromatic compounds having an amino group m-aminophenol, 3-aminobenzenesulfonic acid 3-amino-4-hydroxybenzenesulfonic acid 3-amino- 4-methoxybenzenesulfonic acid 4-amino-3-methylbenzenesulfonic acid aminophenol disulfonic acid 1-amino-2-naphthol-4-sulfonic acid 4-amino-3-hydroxy-1-naphtholsulfonic acid (g) nitro Aromatic system having a group 3-nitrobenzenesulfonic acid nitrophenolsulfonic acid nitrothiophenol 6-nitro-2-aminophenol-4-sulfonic acid nitronaphthalenesulfonic acid 4,4'-dinitrostilbene-2,2'-disulfonic acid (h) Carboxylic acids having an amino group Aminosalicyl nophthalate, 5-Amino-2-hydroxybenzoic acid 2-Aminothiazole-4-carboxylic acid 2-Amino-3-pyridinecarboxylic acid (i) Carboxylic acid having a nitro group 3-5-Dinitrobenzoic acid 2 -Hydroxy-3,5-dinitrobenzoic acid Nitrophthalic acid Nitroterephthalic acid α-Nitropropionic acid (j) Alcohol system having amino group Aminoquilnadine (k) Alcohol having nitro group Nitro-1-naphthylamine Nitro-1-naphthol Nitrohydroquinone 4-Nitrotoluene-2-sulfonic acid Nitrophenylacetic acid Nitro-1-naphthoic acid (l) Other diethylenetriamine Acetate Metro mercapto ethylene imino amino diacetic acid diethylene triamine penta (methylene sulfonic acid) 8-hydroxy-5-nitropyridine-nitro -m- tolidine
【0023】次に、硫化鉄形成の硫黄の供給源となる物
質の代表例を以下に記載する。 硫化カリウム、硫化ナトリウム、硫化アンモニウム等
の硫化塩 チオ硫酸カリウム、チオ硫酸ナトリウム、チオ硫酸ア
ンモニウム等のチオ硫酸塩 亜ジチオ硫酸カリウム、亜ジチオ硫酸ナトリウム、亜
ジチオ硫酸アンモニウム等の亜ジ チオ硫酸塩 四チオン硫酸カリウム、四チオン硫酸ナトリウム、四
チオン硫酸アンモニウム等の硫黄 化合物 溶解で硫黄イオンを供給する硫化塩のモル濃度、並びに
分解で硫黄イオンを供給するチオ硫酸塩及び亜ジチオン
硫酸塩のモル濃度は、0.005〜1.0mol/Lの範囲である事
が望ましい。Next, typical examples of the substance serving as a source of sulfur for forming iron sulfide are described below. Sulfides such as potassium sulfide, sodium sulfide, and ammonium sulfideSulfates such as potassium thiosulfate, sodium thiosulfate, and ammonium thiosulfate Sulfur compounds such as potassium, sodium tetrathiosulfate, ammonium tetrathiosulfate, etc. It is desirable to be in the range of 1.0 mol / L.
【0024】続いて、好ましい電解条件の限定理由を説
明する。まず、3価鉄イオンのモル濃度が0.001mol/L
未満の場合、硫化鉄形成に必要な鉄源が不足している為
に、被処理品から溶出してくる鉄を中心に反応が起こ
る。その結果、被処理品表面の粗れや寸法変化等が問題
になってくる。一方、3価鉄イオンのモル濃度が0.5mol
/Lを超えると水溶液中に水酸化鉄や硫化鉄が沈殿物と
して析出する為に、浴管理上で適さない。従って、3価
鉄イオンのモル濃度は0.001〜0.50mol/Lの範囲が好ま
しい。Next, the reasons for limiting the preferable electrolysis conditions will be described. First, the molar concentration of trivalent iron ions is 0.001mol / L
If it is less than 3, the reaction occurs mainly on iron eluted from the article to be treated, because the iron source required for iron sulfide formation is insufficient. As a result, the surface roughness and dimensional change of the article to be processed become a problem. On the other hand, the molar concentration of trivalent iron ions is 0.5 mol.
If / L is exceeded, iron hydroxide or iron sulfide precipitates as a precipitate in the aqueous solution, which is not suitable for bath management. Therefore, the molar concentration of trivalent iron ions is preferably in the range of 0.001 to 0.50 mol / L.
【0025】次に、硫化塩、チオ硫酸塩及び亜ジチオン
硫酸塩のモル濃度が0.005mol/L未満になると、良好な
電解条件下で長時間処理を行なっても、硫化鉄の析出が
困難になる。一方、硫化塩等のモル濃度が1.0mol/Lを
超えると、沈殿物が過剰に形成される為に管理上、問題
となる。従って、硫化物、チオ硫酸塩及び亜ジチオン硫
酸塩のモル濃度は0.01〜0.8mol/Lの範囲が好ましい。
四チオン硫酸塩のモル濃度は0.005〜0.4mol/Lの範囲が
好ましい。Next, when the molar concentration of sulfide, thiosulfate and dithionite sulfate is less than 0.005 mol / L, precipitation of iron sulfide becomes difficult even if the treatment is carried out for a long time under good electrolytic conditions. Become. On the other hand, when the molar concentration of the sulfide or the like exceeds 1.0 mol / L, a precipitate is excessively formed, which poses a problem in management. Therefore, the molar concentrations of sulfide, thiosulfate and dithionite are preferably in the range of 0.01 to 0.8 mol / L.
The molar concentration of tetrathione sulfate is preferably in the range of 0.005 to 0.4 mol / L.
【0026】一方、水溶液のPHを8以上に規制したが、P
Hが8未満になると、電流密度と時間に対応して硫化鉄
が析出せずに、皮膜制御が困難になる為である。また、
PH13以上に維持する為には、水酸化カリウム、水酸化ナ
トリウム等のアルカリを電解浴中に頻繁に添加しなけれ
ばならない。簡便な皮膜制御と浴管理を低コストで実施
する為に、PHの管理幅は10.0〜12.0が望ましい。On the other hand, the pH of the aqueous solution was regulated to 8 or more.
If H is less than 8, iron sulfide does not precipitate in accordance with the current density and time, and it is difficult to control the film. Also,
In order to maintain the pH at 13 or more, an alkali such as potassium hydroxide or sodium hydroxide must be frequently added to the electrolytic bath. In order to perform simple film control and bath management at low cost, the PH control range is preferably 10.0 to 12.0.
【0027】本発明において、定電流電解による長時間
処理は、酸化領域(不動態化)に移行する為に皮膜形成
が停止してしまう為に厚膜化を図る場合は、パルス電解
を用いる事が好ましい。また、陽極電解と陰極電解を併
用するPR電解法を用いる事により、最表面になじみ性
を発揮する陰極電解皮膜、第二層には耐焼付き性の陽極
電解皮膜の形成が可能である。In the present invention, the long-term treatment by constant current electrolysis is performed by using pulse electrolysis when the film formation is stopped due to the transition to the oxidized region (passivation). Is preferred. Further, by using the PR electrolysis method in which anodic electrolysis and cathodic electrolysis are used in combination, it is possible to form a cathodic electrolytic film exhibiting conformability on the outermost surface and a seizure-resistant anodic electrolytic film on the second layer.
【0028】次に、処理温度が35℃未満になると、最適
な電解条件下でも硫化鉄が析出し難くなり、被処理品上
に均一な皮膜を形成させる事が困難になる。処理温度が
60℃を超える場合、硫化鉄の析出は可能であるが、キレ
ート化合物の分解に伴う浴寿命の低下が問題となるため
に、処理温度は30℃〜60℃の範囲が好ましい。Next, when the processing temperature is lower than 35 ° C., iron sulfide hardly precipitates even under the optimal electrolytic conditions, and it becomes difficult to form a uniform film on the article to be processed. Processing temperature
When the temperature exceeds 60 ° C., precipitation of iron sulfide is possible, but a reduction in bath life due to decomposition of the chelate compound poses a problem. Therefore, the treatment temperature is preferably in the range of 30 ° C. to 60 ° C.
【0029】陽極電流密度が1A/dm2未満の電解条件で
は、被処理品からの鉄の溶出が不均一なる為に、形成さ
れた皮膜に斑点が発生する。また、陽極電流密度が20A/
dm2を超える場合は、鉄の溶出反応から酸化反応に移行
する為に、被処理品の表面は不活性化され皮膜生成が困
難になる。そのために、電流密度は1〜20A/dm2の範囲が
好ましい。Under the electrolysis conditions where the anode current density is less than 1 A / dm 2 , the elution of iron from the article to be treated is not uniform, so that spots are formed on the formed film. The anode current density is 20 A /
If it exceeds dm 2 , the transition from the elution reaction of iron to the oxidation reaction will inactivate the surface of the article to be treated, making it difficult to form a film. Therefore, the current density is preferably in the range of 1 to 20 A / dm 2 .
【0030】従って、水溶液組成の上記の各成分を好ま
しい範囲に設定すると、電流密度、処理時間及び処理時
間の任意の組み合わせで、1〜20μmの硫化鉄系皮膜を
制御して形成する事が可能になった。Therefore, when the above-mentioned components of the aqueous solution composition are set in the preferable ranges, it is possible to control and form a 1 to 20 μm iron sulfide film by an arbitrary combination of current density, processing time and processing time. Became.
【0031】更に、上記の水溶液に亜硫酸カリウム、亜
硫酸ナトリウム及び亜硫酸アンモニウム等の亜硫酸塩を
添加する事により、電解中に析出するK2SX、Na2SX、及
び(NH 4)2SX等のポリ硫化物を溶解させ、硫黄分を水溶液
中に一定に維持させることができる。Further, potassium sulfite and sulfite are added to the above aqueous solution.
Sulfites such as sodium sulfate and ammonium sulfite
Addition of K precipitates during electrolysisTwoSX, NaTwoSX,
(NH Four)TwoSXPolysulfides such as
Can be kept constant inside.
【0032】尚、本発明法は電解法に属するので、電解
法の一般常識を適宜採用する事はやぶさかではない。例
えば、上記した全ての水溶液に電解質となるカリウムや
ナトリウム、及びアンモニウムの硫酸塩、塩酸塩、ピロ
リン酸塩、アミドスルフォン酸塩等の溶解度の大きい塩
を0.5mol/L以上添加して、電流密度と電圧の分極曲線
を水平にし、被処理材上での電流密度を均一に復極させ
て硫化層の均一性を図ることはめっきの一般常識である
ので、本発明に適用できる事も当然である。Since the method of the present invention belongs to the electrolysis method, it is not easy to appropriately adopt general common sense of the electrolysis method. For example, 0.5 mol / L or more of highly soluble salts such as potassium, sodium, and ammonium sulfates, hydrochlorides, pyrophosphates, and amidesulfonates serving as electrolytes are added to all the aqueous solutions described above, and the current density is increased. It is common general knowledge of plating to make the polarization curve of voltage and voltage horizontal, and to uniformly reverse the current density on the material to be processed to achieve uniformity of the sulfide layer, so that it is naturally applicable to the present invention. is there.
【0033】[0033]
【実施例】〔実施例1〕材質SUJ2からなるSRV試験片(φ
27mm×7.9mm)を供試材として硫化処理を行った。一連
の処理行程は図4の通りである。浸炭及び窒化等の熱処
理部品に付着した油分及びゴミ等をアルカリ性の脱脂剤
で除去し、水洗する。次に、最表面の酸化膜除去を化学
的方法で実施し、水洗及び中和を行ない、物理的方法で
酸化膜除去の前処理を実施した後に、研磨材を除去する
為の脱脂及び水洗を行なう。硫化処理は図5の電解析出
装置を用い、部材を陽極に設置して、3価鉄イオン10
0重量部に対してキレート剤300重量部、硫黄化合物
20重量部を含有する水溶液(全体で420重量部)中
で処理温度40℃、PH10にて15分間、5A/dm2で電解する。
この時、SUJ2のSRV試験片には厚さが14〜15μmの
硫化鉄系皮膜が形成された。図6に皮膜断面写真を示
す。後処理は水洗又は湯洗後に80〜100℃の熱風乾
燥を行ない、防錆の目的で油塗布を実施した。[Example] [Example 1] SRV test piece (φ
(27 mm x 7.9 mm) was used as a test material and subjected to sulfuration treatment. FIG. 4 shows a series of processing steps. Oil and dust attached to the heat-treated parts such as carburizing and nitriding are removed with an alkaline degreasing agent and washed with water. Next, the oxide film on the outermost surface is removed by a chemical method, washing and neutralization are performed, and after performing a pretreatment of removing the oxide film by a physical method, degreasing and washing for removing abrasives are performed. Do. The sulfuration treatment is performed by using the electrolytic deposition apparatus shown in FIG.
Electrolysis is carried out at a treatment temperature of 40 ° C. and PH10 for 15 minutes at 5 A / dm 2 in an aqueous solution containing 420 parts by weight of a chelating agent and 20 parts by weight of a sulfur compound per 0 parts by weight.
At this time, an iron sulfide-based film having a thickness of 14 to 15 μm was formed on the SUJ2 SRV test piece. FIG. 6 shows a cross-sectional photograph of the film. The post-treatment was performed by hot-air drying at 80 to 100 ° C. after washing with water or hot water, and applying oil for the purpose of rust prevention.
【0034】〔実施例2〕3価鉄イオン100重量部に
対してキレート剤120重量部、硫黄化合物80重量部
を含有する水溶液(全体で420重量部)中で実施例1
に記載の方法で電解することにより、厚さが15〜16μ
mの硫化鉄系皮膜が形成された。Example 2 Example 1 was conducted in an aqueous solution (420 parts by weight in total) containing 120 parts by weight of a chelating agent and 80 parts by weight of a sulfur compound with respect to 100 parts by weight of ferric ion.
The thickness is 15 to 16μ by electrolyzing according to the method described in
m of iron sulfide-based film was formed.
【0035】〔実施例3〕3価鉄イオン100重量部に
対してキレート剤60000重量部、硫黄化合物400
0重量部を含有する水溶液中で実施例1に記載の方法で
電解することにより、厚さが3〜5μmの硫化鉄系皮膜
が形成された。Example 3 60000 parts by weight of a chelating agent and 400 parts of a sulfur compound per 100 parts by weight of ferric ion
By electrolyzing in an aqueous solution containing 0 parts by weight by the method described in Example 1, an iron sulfide-based film having a thickness of 3 to 5 μm was formed.
【0036】〔実施例4〕3価鉄イオン100重量部に
対してキレート剤0.5重量部、硫黄化合物20重量部を
含有する水溶液中で実施例1に記載の方法で電解するこ
とにより、厚さが10〜12μmの硫化鉄系皮膜が形成され
た。Example 4 The thickness of the electrolyte was determined by electrolysis in an aqueous solution containing 0.5 parts by weight of a chelating agent and 20 parts by weight of a sulfur compound with respect to 100 parts by weight of trivalent iron ions according to the method described in Example 1. Formed an iron sulfide coating having a thickness of 10 to 12 μm.
【0037】〔実施例5〕3価鉄イオン100重量部に
対してキレート剤1000重量部、硫黄化合物20重量
部を含有する水溶液中で実施例1に記載の方法で電解す
ることにより、厚さが14〜15μmの硫化鉄系皮膜が
形成された。Example 5 The thickness of the electrolyte was adjusted by electrolysis in an aqueous solution containing 1000 parts by weight of a chelating agent and 20 parts by weight of a sulfur compound with respect to 100 parts by weight of trivalent iron ions according to the method described in Example 1. Formed an iron sulfide coating having a thickness of 14 to 15 μm.
【0038】〔実施例6〕3価鉄イオン100重量部に
対してキレート剤300重量部、硫黄化合物2.5重量部
を含有する水溶液中で実施例1に記載の方法で電解する
ことにより、厚さが1〜2μmの硫化鉄系皮膜が形成さ
れた。Example 6 The thickness of the electrolyte was determined by electrolysis in an aqueous solution containing 300 parts by weight of a chelating agent and 2.5 parts by weight of a sulfur compound with respect to 100 parts by weight of trivalent iron ions according to the method described in Example 1. Of 1 to 2 μm was formed.
【0039】〔実施例7〕3価鉄イオン100重量部に
対してキレート剤300重量部、硫黄化合物5000重
量部を含有する水溶液中で実施例1に記載の方法で電解
することにより、厚さが18〜19μmの硫化鉄系皮膜
が形成された。Example 7 The thickness of the electrolyte was adjusted by electrolysis in an aqueous solution containing 300 parts by weight of a chelating agent and 5000 parts by weight of a sulfur compound with respect to 100 parts by weight of trivalent iron ions according to the method described in Example 1. Of 18 to 19 μm was formed.
【0040】〔実施例8〕実施例1の方法で5分間電解
することにより、厚さが4〜5μmの硫化鉄系皮膜が形
成された。Example 8 An electrosulfide film having a thickness of 4 to 5 μm was formed by electrolysis for 5 minutes according to the method of Example 1.
【0041】〔実施例9〕水溶液のPHを11.5に変更
し実施例1の方法で電解したところ、厚さが15〜16
μmの硫化鉄系皮膜が形成された。Example 9 When the pH of the aqueous solution was changed to 11.5 and electrolysis was performed by the method of Example 1, the thickness was 15 to 16
A μm iron sulfide-based film was formed.
【0042】〔実施例10〕処理温度を50℃に変更して実
施例1の方法で5分間電解したところ、厚さが19〜20μ
mの硫化鉄系皮膜が形成された。Example 10 The treatment temperature was changed to 50 ° C., and electrolysis was performed for 5 minutes by the method of Example 1.
m of iron sulfide-based film was formed.
【0043】[0043]
【表2】 [Table 2]
【0044】実施例1で形成された硫化鉄系皮膜の耐焼
付き性能を、SRV試験機を使用して確認した。SRV試験は
図6に示すようにDiskとBallの点接触の摺動であり、面
圧は非常に高く、過酷な条件の摺動試験が実施できる。
試験条件及び試験結果を以下に記載する。また、比較例
1として無処理の試験も行なった。結果として、本発明
で硫化鉄系皮膜を電解析出させる事により、耐焼付き性
能を3倍以上も向上する効果が明らかになった。The anti-seizure performance of the iron sulfide coating formed in Example 1 was confirmed using an SRV tester. As shown in FIG. 6, the SRV test is sliding at a point contact between the disk and the ball. The surface pressure is very high, and a sliding test under severe conditions can be performed.
The test conditions and test results are described below. In addition, an untreated test was also performed as Comparative Example 1. As a result, the effect of improving the anti-seizure performance by more than three times by the electrolytic deposition of the iron sulfide-based coating according to the present invention has been clarified.
【0045】[0045]
ステップ荷重:50N/min 振動数 :50Hz 摺動距離 :2mm 相手材 :φ1.0(SUJ2) 使用油 :スピンドル油(2号) Step load: 50N / min Vibration frequency: 50Hz Sliding distance: 2mm Counterpart material: φ1.0 (SUJ2) Oil used: spindle oil (No. 2)
【0046】[0046]
【表3】 [Table 3]
【0047】実施例1で形成された硫化鉄系皮膜の摺動
性能(摩擦係数)を、図7に記載のSRV試験機を使用し
て確認した。試験条件については以下に示す。また、従
来法で形成された皮膜も比較例2〜5で評価した。結果と
して、本発明により電解析出した硫化鉄系皮膜は、従来
法と比較すると摩擦係数を約2分の1に低減しており、
摺動性能を飛躍的に向上させる効果が明らかになった。The sliding performance (friction coefficient) of the iron sulfide-based coating formed in Example 1 was confirmed using the SRV tester shown in FIG. The test conditions are shown below. The films formed by the conventional method were also evaluated in Comparative Examples 2 to 5. As a result, the iron sulfide-based film electrolytically deposited according to the present invention has a friction coefficient reduced to about one half compared with the conventional method,
The effect of dramatically improving the sliding performance was clarified.
【0048】[0048]
負荷荷重 :250N 振動数 :50Hz 摺動距離 :2mm 相手材 :φ1.0(SUJ2) 使用油 :グリース(二硫化モリブデン添加) Load: 250N Frequency: 50Hz Sliding distance: 2mm Mating material: φ1.0 (SUJ2) Oil used: Grease (molybdenum disulfide added)
【0049】[0049]
【表4】 [Table 4]
【0050】[0050]
【発明の効果】本発明により、硫化鉄系皮膜を60℃以下
のアルカリ性水溶液中で電解析出させることが可能とな
り、従来法の『溶融塩の陽極電解で浸硫処理する方法
(特許公開:昭59‐8973)』で問題になっていた熱処理
部品の表面硬度低下の問題が解消された。また、各種硫
化処理法は、主に自動車・2輪車の摺動部品に適用され
ているが、最近、市場では低燃費化の要求が強く、軽量
化を図り改善する動きがある。その為に摺動部品は小型
化されており、使用条件がより高面圧で過酷になってき
ている。本発明により電解析出した硫化鉄系皮膜は、従
来法を遥かに超える耐摩耗性能を有しており、今後の市
場ニーズにも適応した技術の提供が可能となっている。According to the present invention, an iron sulfide-based film can be electrolytically deposited in an alkaline aqueous solution at a temperature of 60 ° C. or less. The problem of reduced surface hardness of heat treated parts, which was a problem in 1984-8973), has been resolved. In addition, various sulfurizing treatment methods are mainly applied to sliding parts of automobiles and motorcycles. Recently, however, there is a strong demand for low fuel consumption in the market, and there is a movement to reduce the weight and improve the fuel economy. For this reason, sliding parts have been miniaturized, and the use conditions have become more severe at higher surface pressures. The iron sulfide-based film electrolytically deposited according to the present invention has abrasion resistance performance far exceeding the conventional method, and it is possible to provide a technique adapted to future market needs.
【図1】本発明により形成された皮膜のFeの結合エネル
ギーを示すESCAチャートである。FIG. 1 is an ESCA chart showing the binding energy of Fe of a film formed according to the present invention.
【図2】本発明により形成された皮膜のSの結合エネル
ギーを示すESCAチャートである。FIG. 2 is an ESCA chart showing the binding energy of S of a film formed according to the present invention.
【図3】本発明により形成された皮膜のOの結合エネル
ギーを示すESCAチャートである。FIG. 3 is an ESCA chart showing the binding energy of O of a film formed according to the present invention.
【図4】本発明による電解析出装置の説明するフローチ
ャートである。FIG. 4 is a flowchart illustrating an electrolytic deposition apparatus according to the present invention.
【図5】本発明法を実施する電解析出装置の概略図であ
る。FIG. 5 is a schematic view of an electrolytic deposition apparatus for carrying out the method of the present invention.
【図6】実施例1の条件で形成された硫化鉄系皮膜であ
る。FIG. 6 is an iron sulfide-based film formed under the conditions of Example 1.
【図7】実施例1で実施したSRV試験機のイメージ図で
ある。FIG. 7 is an image diagram of the SRV test machine implemented in Example 1.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 秀正 東京都中央区日本橋1丁目15番1号 日本 パーカライジング株式会社内 Fターム(参考) 4K044 AA02 AB05 BA18 BA19 BB03 BC01 CA12 CA17 CA18 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hidemasa Sato 1-15-1 Nihonbashi, Chuo-ku, Tokyo Japan F-term in Parkerizing Co., Ltd. 4K044 AA02 AB05 BA18 BA19 BB03 BC01 CA12 CA17 CA18
Claims (12)
び硫黄化合物を含有する水溶液中で陽極電解することに
より、前記鉄系材料表面に実質的に硫化鉄からなる皮膜
を電解析出させることを特徴とする摺動性に優れた硫化
鉄系皮膜の形成方法。1. A film substantially composed of iron sulfide is electrolytically deposited on the surface of an iron-based material by subjecting the iron-based material to anodic electrolysis in an aqueous solution containing a ferric ion, a chelating agent, and a sulfur compound. A method for forming an iron sulfide-based film having excellent sliding properties.
が0.001〜2.0mol/Lの範囲内にある請求項1に記載の摺
動性に優れた硫化鉄系皮膜の形成方法。2. The method according to claim 1, wherein the chelating agent in the aqueous solution has a molar concentration of 0.001 to 2.0 mol / L.
5〜1.0mol/Lの範囲内である、請求項1又は2に記載の摺
動性に優れた硫化鉄系皮膜の形成方法。3. The method according to claim 1, wherein the molar concentration of the sulfur compound in the liquid is 0.00
3. The method for forming an iron sulfide-based film having excellent slidability according to claim 1, wherein the iron sulfide-based coating is in a range of 5 to 1.0 mol / L.
が0.001〜0.5mol/Lの範囲内にある請求項1から3まで
の何れか1項に記載の摺動性に優れた硫化鉄系皮膜の形
成方法。4. The iron sulfide excellent in slidability according to any one of claims 1 to 3, wherein the ferric iron ions in the aqueous solution have a molar concentration in a range of 0.001 to 0.5 mol / L. How to form a system film.
法で行う請求項1から4までの何れか1項に記載の摺動
性に優れた硫化鉄系皮膜の形成方法。5. The method according to claim 1, wherein the anodic electrolysis is performed by a constant current method or a pulse electrolysis method.
ともに、PR電解の陰極電解を3価鉄イオン、キレート剤
及び硫黄化合物を含有する水溶液中で行う請求項1から
4までの何れか1項に記載の摺動性に優れた硫化鉄系皮
膜の形成方法。6. The method according to claim 1, wherein the anodic electrolysis is performed by a PR electrolysis method, and the cathodic electrolysis of the PR electrolysis is performed in an aqueous solution containing a ferric ion, a chelating agent, and a sulfur compound. 3. The method for forming an iron sulfide-based film having excellent slidability according to item 1.
内にある請求項1から6までの何れか1項に記載の摺動性
に優れた硫化鉄系皮膜の形成方法。7. The method for forming an iron sulfide-based coating having excellent slidability according to claim 1, wherein a treatment temperature of the aqueous solution is in a range of 35 to 60 ° C.
ある請求項1から7までの何れか1項記載の摺動性に優れ
た硫化鉄系皮膜の形成方法。8. The method according to claim 1, wherein the anode current density is in the range of 1 to 20 A / dm 2 .
なる鉄系材料において、3価鉄イオン、キレート剤及び
硫黄化合物を含有する水溶液中で陽極電解処理すること
に電解析出された実質的に硫化鉄からなる皮膜を施した
ことを特徴とする鉄系材料。9. An iron-based material obtained by anodic deposition of an iron sulfide-based film on the surface is subjected to anodic electrolysis in an aqueous solution containing trivalent iron ions, a chelating agent and a sulfur compound. An iron-based material having a coating substantially made of iron sulfide.
は高周波焼入れによりHv600以上に表面硬化された
鉄鋼材料である請求項9に記載の鉄系材料。10. The iron-based material according to claim 9, wherein the base of the coating is a steel material whose surface is hardened to Hv600 or more by carburizing, nitriding, or induction hardening.
請求項9又は10に記載の鉄系材料。11. The iron-based material according to claim 9, wherein said coating has a thickness of 1 to 20 μm.
レート剤及び硫黄化合物を含有する水溶液中で陰極電解
を行うことにより形成した別の皮膜を施したことを特徴
とする請求項9から11までの何れか1項記載の鉄系材
料。12. The film according to claim 9, wherein another film formed by performing cathodic electrolysis in an aqueous solution containing ferric ion, a chelating agent and a sulfur compound is applied to the surface of the film. 12. The iron-based material according to any one of items 11 to 11.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001032374A JP2002235193A (en) | 2001-02-08 | 2001-02-08 | Method for forming iron sulfide-based coating with excellent slidability and iron-based material provided with iron sulfide-based coating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001032374A JP2002235193A (en) | 2001-02-08 | 2001-02-08 | Method for forming iron sulfide-based coating with excellent slidability and iron-based material provided with iron sulfide-based coating |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002235193A true JP2002235193A (en) | 2002-08-23 |
Family
ID=18896316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001032374A Pending JP2002235193A (en) | 2001-02-08 | 2001-02-08 | Method for forming iron sulfide-based coating with excellent slidability and iron-based material provided with iron sulfide-based coating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002235193A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008105082A (en) * | 2006-10-27 | 2008-05-08 | Matsuoka Tekkosho:Kk | Mold |
JP2009041049A (en) * | 2007-08-07 | 2009-02-26 | Nippon Parkerizing Co Ltd | Method for producing iron sulfide film |
US20100044234A1 (en) * | 2006-11-24 | 2010-02-25 | H.E.F. | Sulphuration method of ferrous alloy parts in an aqueous solution |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03240999A (en) * | 1990-02-19 | 1991-10-28 | Usui Internatl Ind Co Ltd | Formation of tough electric insulating layer on surface of copper material |
JPH04254574A (en) * | 1991-02-06 | 1992-09-09 | Mazda Motor Corp | Steel member excellent in wear resistance and its production |
JPH06264293A (en) * | 1993-03-09 | 1994-09-20 | Usui Internatl Ind Co Ltd | Forming method of electric insulating layer on surface of copper material |
JPH1150297A (en) * | 1997-06-04 | 1999-02-23 | Nippon Parkerizing Co Ltd | Method of forming a film having excellent wear resistance and iron-based material provided with a wear-resistant film |
JPH11302897A (en) * | 1998-04-23 | 1999-11-02 | Dowa Mining Co Ltd | Sulfiding treatment of iron or iron alloy |
JP2004162895A (en) * | 2002-09-19 | 2004-06-10 | Nissan Motor Co Ltd | Link mechanism for internal combustion engine |
-
2001
- 2001-02-08 JP JP2001032374A patent/JP2002235193A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03240999A (en) * | 1990-02-19 | 1991-10-28 | Usui Internatl Ind Co Ltd | Formation of tough electric insulating layer on surface of copper material |
JPH04254574A (en) * | 1991-02-06 | 1992-09-09 | Mazda Motor Corp | Steel member excellent in wear resistance and its production |
JPH06264293A (en) * | 1993-03-09 | 1994-09-20 | Usui Internatl Ind Co Ltd | Forming method of electric insulating layer on surface of copper material |
JPH1150297A (en) * | 1997-06-04 | 1999-02-23 | Nippon Parkerizing Co Ltd | Method of forming a film having excellent wear resistance and iron-based material provided with a wear-resistant film |
JPH11302897A (en) * | 1998-04-23 | 1999-11-02 | Dowa Mining Co Ltd | Sulfiding treatment of iron or iron alloy |
JP2004162895A (en) * | 2002-09-19 | 2004-06-10 | Nissan Motor Co Ltd | Link mechanism for internal combustion engine |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008105082A (en) * | 2006-10-27 | 2008-05-08 | Matsuoka Tekkosho:Kk | Mold |
US20100044234A1 (en) * | 2006-11-24 | 2010-02-25 | H.E.F. | Sulphuration method of ferrous alloy parts in an aqueous solution |
JP2010510390A (en) * | 2006-11-24 | 2010-04-02 | アッシュ・ウー・エフ | Method of sulfurizing alloyed iron parts in aqueous solution |
US8562812B2 (en) * | 2006-11-24 | 2013-10-22 | H.E.F. | Sulphuration method of ferrous alloy parts in an aqueous solution |
TWI448583B (en) * | 2006-11-24 | 2014-08-11 | Hef公司 | Process for the sulfurization in aqueous solution of ferrous alloy parts |
JP2009041049A (en) * | 2007-08-07 | 2009-02-26 | Nippon Parkerizing Co Ltd | Method for producing iron sulfide film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5166912B2 (en) | Metal material and manufacturing method thereof | |
TWI630284B (en) | Passivation of micro-discontinuous chromium deposited from a trivalent electrolyte | |
JP2004323913A (en) | Metal lubricating surface treatment method, and lubricating metal member having a lubricated surface obtained by the lubricating surface treatment method | |
US3951759A (en) | Chromium electroplating baths and method of electrodepositing chromium | |
WO1981002311A1 (en) | Method of producing conversion coatings | |
JP2022141949A (en) | Controlled method for depositing chromium layer or chromium alloy layer on at least one substrate | |
JP2007100206A (en) | Treatment solution for forming black hexavalent chromium-free conversion coating on zinc or zinc alloy | |
EP3149223B1 (en) | Aqueous electroless nickel plating bath and method of using the same | |
CN1500910A (en) | Electroless Nickel Plating Method on Magnesium Alloy | |
JP4809037B2 (en) | Black plating film, method for forming the same, and article having plating film | |
CN104254642B (en) | Blackening treatment solution for black cr-co alloy plating film | |
JP4366579B2 (en) | Method for forming black nickel film and electroless nickel-phosphorus plating bath | |
JP2002235193A (en) | Method for forming iron sulfide-based coating with excellent slidability and iron-based material provided with iron sulfide-based coating | |
CN107208298B (en) | Sn-plated steel sheet, chemical conversion-treated steel sheet, and their manufacturing method | |
JP2001192850A (en) | Surface treating solution for sliding parts, surface treating method for sliding parts and sliding parts | |
JPH1150297A (en) | Method of forming a film having excellent wear resistance and iron-based material provided with a wear-resistant film | |
JP5049692B2 (en) | Method for producing iron sulfide film | |
JP2006169605A (en) | Method for forming electroless-plated nickel film having phosphate coating, and formed film thereby | |
JP2944799B2 (en) | Surface treatment method of aluminum or aluminum alloy | |
JPH0742588B2 (en) | Method for forming black electroless nickel-phosphorus alloy film | |
US6589412B1 (en) | Method for producing a sliding member having excellent seizure resistance | |
CN101600818B (en) | Method for sulfidizing ferroalloy parts in aqueous solution | |
KR102435158B1 (en) | Calcium-Based Zinc Phosphate Complex Film Coating Compositions With Durability and Releasing and Coating Treatment Methods Using Thereof | |
JPH09228092A (en) | Corrosion resistant iron plating film and plating method | |
JPH09217192A (en) | High-speed, high-hardness iron-containing metal plating method for metallic materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070828 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101001 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101019 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110322 |