JP2002228133A - Combustion control method for waste incinerator and apparatus therefor - Google Patents
Combustion control method for waste incinerator and apparatus thereforInfo
- Publication number
- JP2002228133A JP2002228133A JP2001022807A JP2001022807A JP2002228133A JP 2002228133 A JP2002228133 A JP 2002228133A JP 2001022807 A JP2001022807 A JP 2001022807A JP 2001022807 A JP2001022807 A JP 2001022807A JP 2002228133 A JP2002228133 A JP 2002228133A
- Authority
- JP
- Japan
- Prior art keywords
- combustion
- air
- temperature
- incinerator
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 83
- 239000002699 waste material Substances 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 title claims abstract description 16
- 239000001301 oxygen Substances 0.000 claims abstract description 24
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 24
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000007789 gas Substances 0.000 claims description 19
- 238000005259 measurement Methods 0.000 abstract description 6
- 150000002013 dioxins Chemical class 0.000 abstract 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 14
- 229910002091 carbon monoxide Inorganic materials 0.000 description 14
- HGUFODBRKLSHSI-UHFFFAOYSA-N 2,3,7,8-tetrachloro-dibenzo-p-dioxin Chemical compound O1C2=CC(Cl)=C(Cl)C=C2OC2=C1C=C(Cl)C(Cl)=C2 HGUFODBRKLSHSI-UHFFFAOYSA-N 0.000 description 9
- 238000001035 drying Methods 0.000 description 4
- 239000010813 municipal solid waste Substances 0.000 description 4
- 239000012530 fluid Substances 0.000 description 3
- 101710112287 DNA-directed RNA polymerases I and III subunit RPAC2 Proteins 0.000 description 2
- 101710183183 Probable DNA-directed RNA polymerases I and III subunit RPAC2 Proteins 0.000 description 2
- 102100034616 Protein POLR1D, isoform 2 Human genes 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000002309 gasification Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000010801 sewage sludge Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 102100033040 Carbonic anhydrase 12 Human genes 0.000 description 1
- 101000867855 Homo sapiens Carbonic anhydrase 12 Proteins 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Landscapes
- Incineration Of Waste (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ストーカ式焼却炉
や流動層式焼却炉のように、ストーカ上方や流動層の上
方に二次空気供給ノズルを介して二次燃焼域(フリーボ
ード、再燃焼領域)を形成してなる廃棄物焼却炉の燃焼
制御方法とその装置に係り、特にNOxやダイオキシン
等の排ガス濃度を低減するために、二次空気供給ノズル
より供給するガスの制御を行う廃棄物焼却炉の燃焼制御
方法とその装置に関する。BACKGROUND OF THE INVENTION The present invention relates to a secondary combustion zone (freeboard, reheating, etc.) above a stoker or a fluidized bed through a secondary air supply nozzle, such as a stoker type incinerator or a fluidized bed type incinerator. The present invention relates to a combustion control method and apparatus for a waste incinerator having a combustion zone formed therein, and in particular, to control the gas supplied from a secondary air supply nozzle in order to reduce the concentration of exhaust gas such as NOx and dioxin. The present invention relates to a combustion control method and an apparatus for an incinerator.
【0002】[0002]
【従来の技術】従来より、下水汚泥、都市ごみ又は産業
廃棄物等の処理にはストーカ式焼却炉と流動層焼却炉が
広く用いられている。流動層焼却炉は瞬時に廃棄物を乾
燥、焼却できることが最大の特徴であり、また炉床部が
定常的に高温に保持されており、かつ十分に蓄熱されて
いることから廃棄物の供給の瞬時変動に安定である。2. Description of the Related Art Conventionally, stoker-type incinerators and fluidized-bed incinerators have been widely used for treating sewage sludge, municipal solid waste, industrial waste, and the like. The most distinctive feature of fluidized bed incinerators is that they can dry and incinerate waste instantaneously.In addition, since the hearth is constantly kept at a high temperature and heat is stored sufficiently, the supply of waste Stable to instantaneous fluctuations.
【0003】かかる流動層焼却炉は都市ごみや脱水汚泥
等の焼却炉に多く見られる気泡流動層炉と石炭焚き発電
ボイラや一部廃棄物との混焼用焼却炉に見られる循環流
動層炉とに分類される。前者の気泡流動層炉の構造を簡
単に説明するに、該気泡流動層炉は、炉底に砂等の流動
媒体を充填してその下方から高圧空気の吹き込みにより
流動状態にして該流動媒体中に投入した廃棄物を瞬時に
乾燥、焼却するものである。これにより、流動媒体を高
温に維持して連続瞬時燃焼を可能にし、また流動媒体の
持つ熱容量が非常に大きいため、停止時の放熱が少な
く、間欠運転にも適するという特徴を持っており、さら
に該流動媒体の熱伝達率が速いため、下水汚泥の乾燥能
力も高い。[0003] Such fluidized bed incinerators include bubble fluidized bed furnaces often found in incinerators for municipal solid waste and dewatered sludge, etc., and circulating fluidized bed incinerators found in coal-fired power boilers and incinerators for mixed combustion of some wastes. are categorized. In order to briefly explain the structure of the former bubble fluidized bed furnace, the bubble fluidized bed furnace is filled with a fluid medium such as sand at the bottom of the furnace and made into a fluidized state by blowing high-pressure air from underneath the fluidized bed furnace. Waste that is put into the facility is instantaneously dried and incinerated. As a result, the fluid medium is maintained at a high temperature to enable continuous instantaneous combustion.In addition, since the fluid medium has a very large heat capacity, it has a small heat radiation at the time of stopping and is suitable for intermittent operation. Since the heat transfer coefficient of the fluidized medium is fast, the ability to dry sewage sludge is also high.
【0004】一方、ストーカ式ごみ焼却炉は、ごみ投入
側より後段に進むに連れ、例えば乾燥ストーカ、燃焼ス
トーカ、更には後燃焼ストーカが順次配設され、更にそ
の奥側に灰シュート等の灰出し装置が設けられ、そして
前記ストーカの上方には、上方に延在する二次燃焼室が
設けられ、該二次燃焼室の入口側(下端側)OFAノズ
ル(二次空気供給ノズル)が配設され、前記ノズルへの
二次空気の供給/開閉制御は夫々空気送給路に設けたダ
ンパにより行なわれる。On the other hand, in a stoker-type incinerator, for example, a drying stoker, a burning stoker, and a post-burning stoker are sequentially arranged as the stage proceeds from the waste input side. A secondary combustion chamber is provided above the stoker, and an upwardly extending secondary combustion chamber is provided, and an inlet side (lower end side) OFA nozzle (secondary air supply nozzle) of the secondary combustion chamber is provided. The supply / open / close control of the secondary air to the nozzles is performed by dampers provided in the air supply passages.
【0005】かかる焼却炉のごみ燃焼方法は、ストーカ
上に定量的に供給され、該ストーカ上を灰シュート側に
向かって搬送されながら夫々のストーカ下方より供給さ
れる一次燃焼空気により、順次乾燥、ガス化燃焼、火炎
燃焼、おき燃焼された後、該燃焼後の灰は灰シュート等
の灰取り出し装置側に落下する。一方、前記ストーカの
乾燥/燃焼により生成されたCmHn等の未燃分は、二
次燃焼室の入口側(下端側)のOFAノズルから供給す
る二次空気により燃焼させる。[0005] According to such a method for burning refuse in an incinerator, the refuse is quantitatively supplied onto a stoker, and is sequentially dried and dried by primary combustion air supplied from below each stoker while being conveyed over the stoker toward the ash chute. After gasification combustion, flame combustion, and ignited combustion, the ash after the combustion falls to the ash extraction device side such as an ash chute. On the other hand, unburned components such as CmHn generated by drying / combustion of the stoker are burned by secondary air supplied from an OFA nozzle on the inlet side (lower end side) of the secondary combustion chamber.
【0006】かかる流動層式やストーカ式廃棄物焼却炉
において、排ガス処理系を強化して低公害化を図ること
が多く、最近はNOx低減のため、炉内への尿素噴霧
や、炉内でのCO完全燃焼を図るため二次空気の適正化
および燃焼用空気への酸素富化を行っているが、コスト
アップや焼却炉内での本質的な改善には至っていない。In such fluidized bed or stoker type waste incinerators, exhaust gas treatment systems are often strengthened to reduce pollution, and recently, in order to reduce NOx, urea is sprayed into the furnace or urea is incinerated. Although secondary air has been optimized and oxygen has been enriched in the combustion air in order to achieve complete CO combustion, the costs have not been increased or substantial improvements have not been made in the incinerator.
【0007】更に前記廃棄物焼却炉において、前記ホッ
パのつまりや定量供給を可能にするために、プッシャを
用いて炉内へ廃棄物を間欠的に供給しているが、このよ
うに都市ゴミなど定量供給が不可能な燃焼物を焼却炉に
投入した場合、燃焼物の投入量のバラツキは、そのまま
燃焼ガスの変動や、燃焼ガス中の酸素(O2)濃度のバ
ラツキにつながり、ダイオキシン、NOx等の有害ガス
を発生させる原因ともなっていた。特に、O2濃度が低
下した場合には、一酸化炭素(CO)が多量に発生し、
CO濃度との相関が高いダイオキシンを発生させる原因
ともなっていた。なお、COが発生しないように、十分
な二次燃焼空気量を吹き込む方法があるが、O2濃度を
高くすると、O2濃度との相関が高いNOxを発生させ
る原因となる。Further, in the waste incinerator, waste is intermittently supplied into the furnace by using a pusher in order to enable clogging and constant supply of the hopper. When a combustion product that cannot be supplied in a fixed amount is introduced into an incinerator, the variation in the amount of the combustion product directly leads to a variation in the combustion gas and a variation in the oxygen (O 2 ) concentration in the combustion gas, and dioxin, NOx, and the like. And other hazardous gases. In particular, when the O 2 concentration decreases, a large amount of carbon monoxide (CO) is generated,
This was also a cause of generating dioxin having a high correlation with the CO concentration. Note that there is a method of blowing a sufficient amount of secondary combustion air so that CO is not generated. However, if the O 2 concentration is increased, NOx having a high correlation with the O 2 concentration may be generated.
【0008】このため従来は排ガス分析計によりCO濃
度を検出し、CO濃度が高くなった時に、二次燃焼空気
量を増加させて、CO濃度を下げ、CO濃度が十分低く
なった時に、二次燃焼空気量を戻していた。Therefore, conventionally, the CO concentration is detected by an exhaust gas analyzer, and when the CO concentration becomes high, the amount of secondary combustion air is increased to lower the CO concentration. The next combustion air amount was returned.
【0009】[0009]
【発明が解決しようとする課題】しかしながら、かかる
燃焼制御装置によれば、上記CO濃度(又はO2濃度)
を検出し、二次燃焼空気量を変化させる制御装置におい
て、排ガス分析計は、通常、排ガスを炉出口にて検出す
るため、計測地点まで到達するのに時間がかかり、時間
遅れがあり、有効な制御信号となりえなかった。[SUMMARY OF THE INVENTION However, according to the combustion control device, the CO concentration (or O 2 concentration)
In a control device that detects the amount of exhaust gas and changes the amount of secondary combustion air, the exhaust gas analyzer usually detects exhaust gas at the furnace outlet, so it takes time to reach the measurement point, there is a time delay, and Control signal.
【0010】一方ダイオキシンは炉内のCO濃度との相
関が高く、炉内のCO濃度が上昇すると、ダイオキシン
も高くなる傾向がある。また、NOxは炉内のO2濃度
との相関が高く、炉内のO2濃度が上昇するとNOxも
高くなる傾向がある。したがって、燃焼制御方式におい
て、ダイオキシン、NOx等の有害ガスを抑制できるか
否かは、炉内O2濃度、炉内CO濃度の両方をいかに抑
制するかにかかっており、炉出口温度、排ガスO2濃度
を検出して燃焼変動を抑える従来の制御方式では精度の
高い有害ガス抑制制御ができないという問題があった。On the other hand, dioxin has a high correlation with the CO concentration in the furnace, and as the CO concentration in the furnace increases, the dioxin tends to increase. Further, NOx is high correlation between the O 2 concentration in the furnace, NOx also tends to increase when the O 2 concentration in the furnace increases. Therefore, in the combustion control system, whether or not harmful gases such as dioxin and NOx can be suppressed depends on how to suppress both the O 2 concentration in the furnace and the CO concentration in the furnace. There was a problem that the conventional control method of detecting the concentration of 2 and suppressing the fluctuation of combustion cannot perform highly accurate harmful gas suppression control.
【0011】更に近年の燃焼制御(低CO化)として、
検出端に炉内ガスのレーザー計測方法が提案されている
が、本計測法では、測定するガス成分はレーザーの通過
部分の平均値としてあらわされるために局所のガス濃度
を測定することはできないことから、燃焼制御の精度に
限界を生じることになる。Further, as a recent combustion control (low CO),
Although a laser measurement method for furnace gas has been proposed at the detection end, this measurement method cannot measure the local gas concentration because the gas component to be measured is expressed as the average value of the laser passage. Therefore, the accuracy of the combustion control is limited.
【0012】本発明はこうした事情を考慮してなされた
もので、焼却炉内の燃焼状態を瞬時に計測可能なレーザ
ー計測手段と二次燃焼用空気として高温低酸素濃度空気
を用い、フリーボード内の燃焼状態を時間遅れなく検出
し、検出した測定値に基づいて例えば二次燃焼空気温度
と酸素濃度を変化させることにより、フリーボードの均
一燃焼を可能にするとともに、もってダイオキシンやN
Ox等の有害ガスの発生を抑制可能な焼却炉における燃
焼制御方法を提供することを目的とする。The present invention has been made in view of such circumstances, and uses laser measuring means capable of instantaneously measuring the combustion state in an incinerator and high-temperature, low-oxygen-concentration air as secondary combustion air. By detecting the combustion state of the air without delay and changing, for example, the secondary combustion air temperature and oxygen concentration based on the detected values, uniform combustion of the freeboard is enabled, and dioxin and N
An object of the present invention is to provide a combustion control method in an incinerator that can suppress generation of harmful gases such as Ox.
【0013】[0013]
【課題を解決するための手段】本発明はかかる課題を解
決するために、ストーカ式焼却炉や流動層式焼却炉のよ
うに、ストーカ上方や流動層の上方に二次空気供給ノズ
ルを介して二次燃焼域(フリーボード、再燃焼領域)を
形成してなる廃棄物焼却炉の燃焼制御方法において、前
記二次空気供給ノズルより供給される二次空気に高温低
酸素濃度空気を用いるとともに、該高温低酸素濃度空気
により燃焼されるフリーボード部で発生する燃焼過程の
中間成分をレーザーにより計測し、該計測データに基づ
いて一次空気、二次空気、若しくは助燃量を制御しなが
ら燃焼制御を実施することを特徴とする。According to the present invention, a secondary air supply nozzle is provided above a stoker or a fluidized bed, such as a stoker type incinerator or a fluidized bed type incinerator, in order to solve such a problem. In a combustion control method for a waste incinerator that forms a secondary combustion zone (free board, reburn zone), while using high-temperature low-oxygen concentration air as secondary air supplied from the secondary air supply nozzle, The intermediate component of the combustion process generated in the freeboard portion burned by the high-temperature, low-oxygen-concentration air is measured by a laser, and the combustion control is performed while controlling the primary air, the secondary air, or the auxiliary combustion amount based on the measurement data. It is characterized in that it is implemented.
【0014】この場合、前記燃焼過程の中間成分がC2
ラジカルおよびCHラジカルであり、該C2ラジカルお
よびCHラジカルの発光強度を計測してその発光強度比
に基づいて燃焼制御を実施するのがよい。又、前記高温
低酸素濃度空気に焼却炉の炉出口側より排出される低酸
素濃度の高温排ガスを少なくとも一部に用いるのがよ
い。尚、前記レーザーで計測したスペクトルは、CHラ
ジカルの場合は({390nm、430nm}付近)、
C2ラジカルの場合は({470nm、510nm、5
60nm)付近)に最も強いピーク発光強度のスペクト
ルがある。CHラジカル、C2ラジカルはともに都市ゴ
ミ等の有機物を含む廃棄物燃焼過程における中間生成物
である。In this case, the intermediate component of the combustion process is C 2
It is preferable to measure the emission intensity of the C 2 radical and the CH radical, and to control the combustion based on the emission intensity ratio. Further, it is preferable to use at least a portion of high-temperature exhaust gas having a low oxygen concentration discharged from the furnace outlet side of the incinerator into the high-temperature low-oxygen concentration air. Incidentally, the spectrum measured by the laser is, in the case of CH radical (around {390 nm, 430 nm}),
In the case of C 2 radical ({470 nm, 510 nm, 5
60 nm), there is a spectrum of the strongest peak emission intensity. Both CH radicals and C 2 radicals are intermediate products in the process of burning waste containing organic matter such as municipal waste.
【0015】そしてN2希釈時に観測される燃焼におけ
るグリーンフレームは、C2ラジカルのスワンバンド
(516.5nm)によるものとされており、そしてN
2希釈時において、{C2/CH}の発光強度比は通常
酸素濃度に比例する。即ち、通常酸素濃度における燃焼
ではC2ラジカルがCHラジカルに比べて発光強度がや
や強い。又酸素濃度の低下とともに、徐々にC2ラジカ
ルの発光強度がCHラジカルに比べ強くなり、酸素濃度
6%で緑がかった火炎(グリーンフレーム)が観測され
る。The green flame in the combustion observed upon dilution with N 2 is attributed to the swan band (516.5 nm) of C 2 radicals.
At two dilutions, the emission intensity ratio of {C 2 / CH} is usually proportional to the oxygen concentration. That is, the emission intensity of the C 2 radical is slightly higher than that of the CH radical in the combustion at the normal oxygen concentration. Further, as the oxygen concentration decreases, the emission intensity of the C 2 radical gradually becomes stronger than that of the CH radical, and a greenish flame (green flame) is observed at an oxygen concentration of 6%.
【0016】従って本発明によれば高温低酸素濃度空気
により高温空気燃焼状態を形成することで、炉内の燃焼
領域が均一化するため、計測点における測定値として正
確な値を得ることができる。高温空気燃焼により、炉内
温度を高温・均一化できるため、低CO、低ダイオキシ
ン化が可能となる。Therefore, according to the present invention, since a high-temperature air combustion state is formed by high-temperature, low-oxygen-concentration air, the combustion area in the furnace is made uniform, so that an accurate value can be obtained as a measurement value at a measurement point. . The high-temperature air combustion can make the furnace temperature high and uniform, so that low CO and low dioxin can be achieved.
【0017】なお、N2希釈時において、{C2/C
H}の発光強度比は通常酸素濃度に比例し、結果として
C2ラジカルとCHラジカルの相対発光強度は、NOx
と比例関係にあることが理解できる。ただし、NOxは
1200℃以上の局所高温域で発生するために、低酸素
にして総体発光強度を適正値となるように高温空気温度
やO2濃度を制御することで低NOx化が可能となる。When N 2 is diluted, ΔC 2 / C
The emission intensity ratio of H} is usually proportional to the oxygen concentration. As a result, the relative emission intensity of C 2 radical and CH radical is NOx
It can be understood that there is a proportional relationship. However, since NOx is generated in a local high-temperature region of 1200 ° C. or higher, NOx can be reduced by controlling the high-temperature air temperature and the O 2 concentration so that the total luminescence intensity becomes an appropriate value with low oxygen. .
【0018】[0018]
【発明の実施の形態】以下、本発明を図に示した実施例
を用いて詳細に説明する。但し、この実施例に記載され
る構成部品の寸法、形状、その相対配置などは特に特定
的な記載がない限り、この発明の範囲をそれのみに限定
する趣旨ではなく単なる説明例に過ぎない。図1は本発
明の実施形態にかかるストーカ式ごみ焼却炉の概略構成
を示し、1は生ごみが投入されるシュート(ホッパ)、
2はシュート1下方に配置され、ごみの定量供給装置と
してのフィーダ、3はストーカで、フィーダ2よりのご
み投入側より後段に進むに連れ、例えば乾燥ストーカ、
燃焼ストーカ、更には後燃焼ストーカが順次配設され、
更にその奥側に灰シュート等の灰出し装置8が設けられ
ている。そして前記ストーカ3の上方には、上方に延在
する再燃焼室9が設けられ、該燃焼室9の入口側(下端
側)のシュート1投入側(前側)の炉壁と、これと対面
する灰出し装置側(後側)の炉壁との夫々に、OFAノ
ズル(オーバーファイアエアノズル、若しくは二次空気
供給ノズルともいう)4、5が配設され、前記ノズル
4、5への二次空気の供給/開閉制御は夫々空気送給路
に設けたダンパ16、17により行なわれる。尚、10
はストーカ3下方より供給される一次燃焼空気である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to an embodiment shown in the drawings. However, unless otherwise specified, dimensions, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the invention, but are merely illustrative examples. FIG. 1 shows a schematic configuration of a stoker-type incinerator according to an embodiment of the present invention, 1 is a chute (hopper) into which garbage is put,
Numeral 2 is disposed below the chute 1, and a feeder 3 is a stoker as a quantitative supply device for garbage.
A combustion stoker, and further a post-burning stoker are sequentially arranged,
Further, an ashing device 8 such as an ash chute is provided on the back side. Above the stoker 3, a reburning chamber 9 extending upward is provided. The furnace wall on the chute 1 input side (front side) at the inlet side (lower side) of the combustion chamber 9 faces the furnace wall. OFA nozzles (also referred to as overfire air nozzles or secondary air supply nozzles) 4 and 5 are provided on the furnace wall on the ash removal device side (rear side), respectively, and secondary air is supplied to the nozzles 4 and 5. Supply / open / close control is performed by dampers 16 and 17 provided in the air supply path, respectively. In addition, 10
Is primary combustion air supplied from below the stoker 3.
【0019】かかる焼却炉のごみ燃焼方法を以下に説明
する。シュート1内に投入されたごみは、フィーダ2に
よってストーカ3上に定量的に供給され、該ストーカ3
上を灰シュート8側に向かって搬送されながら夫々のス
トーカ3下方より供給される燃焼空気10により、順次
乾燥、ガス化燃焼、火炎燃焼、おき燃焼される。その
後、該燃焼後の灰は灰シュート等の灰取り出し装置8側
に落下する。一方、前記ストーカ3の乾燥/燃焼により
生成されたCmHn等の未燃分は、再燃焼室9の入口側
(下端側)のOFAノズル4、5から供給する二次空気
11により燃焼させる。かかる記載部分までは公知であ
る。The method of burning refuse in such an incinerator will be described below. The refuse introduced into the chute 1 is quantitatively supplied onto the stoker 3 by the feeder 2,
The combustion air 10 supplied from below each of the stoker 3 while being conveyed upward to the ash chute 8 side sequentially performs drying, gasification combustion, flame combustion, and side-by-side combustion. Thereafter, the burnt ash falls to the ash take-out device 8 such as an ash chute. On the other hand, unburned components such as CmHn generated by drying / combustion of the stoker 3 are burned by the secondary air 11 supplied from the OFA nozzles 4 and 5 on the inlet side (lower end side) of the reburning chamber 9. The description up to this portion is known.
【0020】そして本実施例は、前記再燃焼室9領域が
計測可能にその両側の炉壁にレーザ発生部12aとレー
ザー受光部12bを配設し、燃焼過程の中間成分のC2
ラジカルおよびCHラジカルの発光強度を計測して演算
装置13に送る。演算装置13では前記C2ラジカルお
よびCHラジカルの発光強度比を演算し、所定の強度比
(例えば3〜6)に入っているか否かを確認する。[0020] The present embodiment, the re-combustion chamber 9 region disposed measurable the laser generating unit 12a and a laser light receiving portion 12b to the furnace wall on both sides thereof, C 2 intermediate components of the combustion process
The emission intensity of radicals and CH radicals is measured and sent to the arithmetic unit 13. The arithmetic unit 13 the C 2 calculates the light emission intensity ratio of the radical and CH radical, to confirm whether or not within a predetermined intensity ratio (for example, 3-6).
【0021】そして前記発光強度比が所定の基準範囲を
外れた場合は、後記するようにOFAノズル4、5から
供給する二次空気11を制御するダンパ16、17の開
閉制御を行う。前記ノズル4、5への二次空気11の供
給/開閉制御は、制御装置13により駆動制御されるダ
ンパ16、17を開閉制御して高温空気発生装置18よ
りの高温空気21(800〜1200℃、O2:21
%)と焼却炉の炉出口20側より排出される酸素不足の
高温排ガス22((800〜950℃、O2:5%))
を混合し、二次空気11が目的とする温度と酸素濃度に
なるように制御する。従って制御装置14は、演算装置
13よりの{C2/CH}の発光強度比とともに、高温
空気発生装置18及び焼却炉の炉出口20側より温度及
び酸素濃度信号を受け取って前記ダンパ16、17夫々
の駆動制御信号を生成する。When the light emission intensity ratio deviates from a predetermined reference range, opening / closing control of dampers 16, 17 for controlling the secondary air 11 supplied from the OFA nozzles 4, 5 is performed as described later. The supply / opening / closing control of the secondary air 11 to the nozzles 4 and 5 is controlled by opening / closing dampers 16 and 17 that are driven and controlled by a control device 13 to control the high-temperature air 21 (800 to 1200 ° C.) from the high-temperature air generator 18. , O 2 : 21
%) And oxygen-deficient high-temperature exhaust gas 22 discharged from the furnace outlet 20 side of the incinerator ((800 to 950 ° C., O 2 : 5%))
Is controlled so that the secondary air 11 has the target temperature and oxygen concentration. Accordingly, the controller 14 receives the temperature and oxygen concentration signals from the high-temperature air generator 18 and the furnace outlet 20 side of the incinerator together with the emission intensity ratio of {C 2 / CH} from the arithmetic unit 13 and receives the dampers 16, 17. Each drive control signal is generated.
【0022】次にかかる実施形態の燃焼制御動作を図2
に示すタイミングチャートに基づいて説明する。先ず、
本実施例では一次空気10にO2:21%で温度が18
0℃に加温された中温空気を用い、又二次空気11に前
記ダンパ16、17開度を制御して高温空気発生装置1
8よりの高温空気と焼却炉の炉出口20側より排出され
る酸素不足の高温排ガスを混合し、二次空気が目的とす
る温度と酸素濃度、具体的には((1000℃、O2:
8%))になるように制御する。この状態では再燃焼室
領域では1200℃の温度域で青白い炎とともに、領域
全体に波及する燃焼が見られた。Next, the combustion control operation of this embodiment is shown in FIG.
This will be described based on the timing chart shown in FIG. First,
In this embodiment, the primary air 10 contains O 2 : 21% and a temperature of 18%.
The medium-temperature air heated to 0 ° C. is used.
8 and oxygen-deficient high-temperature exhaust gas discharged from the furnace outlet 20 side of the incinerator, and the secondary air is heated to a desired temperature and oxygen concentration, specifically ((1000 ° C., O 2 :
8%)). In this state, in the reburning chamber region, burning spreading to the entire region was observed along with pale flame at a temperature range of 1200 ° C.
【0023】この運転状態下で、演算装置13よりの
{C2/CH}ラジカルの発光強度比が規定領域上限か
ら上に向かう方向に外れると、制御装置14では高温空
気発生装置18のダンパ16を開く方向に開度制御する
とともに、焼却炉の炉出口20側のダンパ17を閉じる
方向に開度制御して温度及び酸素濃度がいずれも上昇す
る方向に燃焼調整を行う。この結果演算装置13よりの
{C2/CH}ラジカルの発光強度比が規定領域下限か
ら下に向かうまで前記燃焼調整を行い、下限より外れた
時点で前記ダンパ16、17夫々元の開度に戻し、温度
と酸素濃度が((1000℃、O2:8%))になるよ
うに制御する。Under this operating condition, when the emission intensity ratio of the {C 2 / CH} radical from the arithmetic unit 13 deviates upward from the upper limit of the specified region, the control unit 14 causes the damper 16 of the high-temperature air generator 18 to operate. The opening degree is controlled in the direction in which the temperature increases and the opening degree is controlled in the direction in which the damper 17 on the furnace outlet 20 side of the incinerator is closed, so that the combustion is adjusted in a direction in which both the temperature and the oxygen concentration increase. As a result, the combustion adjustment is performed until the emission intensity ratio of the {C 2 / CH} radical from the arithmetic unit 13 goes downward from the lower limit of the specified region. Control is performed so that the temperature and the oxygen concentration become ((1000 ° C., O 2 : 8%)).
【0024】[0024]
【発明の効果】以上記載のごとく本発明によれば、焼却
炉内の燃焼状態を瞬時に計測可能なレーザー計測手段と
二次燃焼用空気として高温低酸素濃度空気を用い、フリ
ーボード内の燃焼状態を時間遅れなく検出し、検出した
測定値に基づいて例えば二次燃焼空気温度と酸素濃度を
変化させることにより、フリーボードの均一燃焼を可能
にするとともに、もってダイオキシンやNOx等の有害
ガスの発生を抑制出来る。As described above, according to the present invention, laser measurement means capable of instantaneously measuring the combustion state in an incinerator and high-temperature low-oxygen-concentration air as secondary combustion air are used for combustion in a freeboard. By detecting the state without time delay and changing, for example, the secondary combustion air temperature and the oxygen concentration based on the detected values, uniform combustion of the free board is enabled, and harmful gases such as dioxin and NOx are thereby reduced. Generation can be suppressed.
【図1】 本発明の実施形態にかかるストーカ式ごみ焼
却炉の概略構成を示す。FIG. 1 shows a schematic configuration of a stoker-type incinerator according to an embodiment of the present invention.
【図2】 図1の実施形態の燃焼制御動作を示すタイミ
ングチャート図である。FIG. 2 is a timing chart showing a combustion control operation of the embodiment of FIG.
1 シュート 2 フィーダ 3 ストーカ 4、5 OFAノズル 8 灰出し装置 9 再燃焼室(フリーボード) 10 一次空気 11 二次空気 12a レーザー発生部 12b レーザー受光部 13 演算装置 14 二次空気駆動制御装置 16、17二次空気制御ダンパ REFERENCE SIGNS LIST 1 chute 2 feeder 3 stalker 4, 5 OFA nozzle 8 ash removal device 9 reburning chamber (free board) 10 primary air 11 secondary air 12 a laser generation unit 12 b laser receiving unit 13 arithmetic unit 14 secondary air drive control unit 16, 17 Secondary air control damper
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3K062 AA02 AA11 AB01 AC01 AC19 BA02 DA05 DA21 DB06 DB08 DB12 DB17 3K065 AA01 AB01 AC01 AC19 BA02 BA06 GA03 GA14 GA23 GA27 GA34 GA53 3K078 AA02 BA03 BA21 BA26 CA03 CA06 CA12 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3K062 AA02 AA11 AB01 AC01 AC19 BA02 DA05 DA21 DB06 DB08 DB12 DB17 3K065 AA01 AB01 AC01 AC19 BA02 BA06 GA03 GA14 GA23 GA27 GA34 GA53 3K078 AA02 BA03 BA21 BA26 CA03 CA06 CA12
Claims (3)
うに、ストーカ上方や流動層の上方に二次空気供給ノズ
ルを介して二次燃焼域(フリーボード、再燃焼領域)を
形成してなる廃棄物焼却炉の燃焼制御方法において、 前記二次空気供給ノズルより供給される二次空気に高温
低酸素濃度空気を用いるとともに、該高温低酸素濃度空
気により燃焼されるフリーボード部で発生する燃焼過程
の中間成分をレーザーにより計測し、該計測データに基
づいて一次空気、二次空気、若しくは助燃量を制御しな
がら燃焼制御を実施することを特徴とする廃棄物焼却炉
の燃焼制御方法。1. A secondary combustion zone (freeboard, reburn zone) is formed above a stoker or a fluidized bed through a secondary air supply nozzle, as in a stoker type incinerator or a fluidized bed type incinerator. The method for controlling combustion of a waste incinerator comprising: using high-temperature, low-oxygen-concentration air as secondary air supplied from the secondary-air supply nozzle, and generating at a freeboard portion burned by the high-temperature, low-oxygen-concentration air. A method for controlling combustion in a waste incinerator, comprising measuring an intermediate component of a combustion process to be performed by a laser and performing combustion control while controlling primary air, secondary air, or an auxiliary combustion amount based on the measured data. .
ジカルおよびCHラジカルであり、該2つのラジカルの
発光強度を計測してその発光強度比に基づいて燃焼制御
を実施することを特徴とする廃棄物焼却炉の燃焼制御方
法。2. The combustion process according to claim 1, wherein the intermediate components are a C 2 radical and a CH radical, and the emission intensity of the two radicals is measured, and the combustion control is performed based on the emission intensity ratio. Combustion control method for waste incinerator.
口側より排出される低酸素濃度の高温排ガスを少なくと
も一部に用いることを特徴とする請求項1記載の廃棄物
焼却炉の燃焼制御方法。3. The combustion of a waste incinerator according to claim 1, wherein high-temperature exhaust gas having a low oxygen concentration discharged from the furnace outlet side of the incinerator is used at least in part for the high-temperature, low-oxygen-concentration air. Control method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001022807A JP2002228133A (en) | 2001-01-31 | 2001-01-31 | Combustion control method for waste incinerator and apparatus therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001022807A JP2002228133A (en) | 2001-01-31 | 2001-01-31 | Combustion control method for waste incinerator and apparatus therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002228133A true JP2002228133A (en) | 2002-08-14 |
Family
ID=18888162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001022807A Pending JP2002228133A (en) | 2001-01-31 | 2001-01-31 | Combustion control method for waste incinerator and apparatus therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002228133A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010255889A (en) * | 2009-04-22 | 2010-11-11 | Nippon Steel Engineering Co Ltd | Waste melting treatment method and waste melting treatment apparatus |
-
2001
- 2001-01-31 JP JP2001022807A patent/JP2002228133A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010255889A (en) * | 2009-04-22 | 2010-11-11 | Nippon Steel Engineering Co Ltd | Waste melting treatment method and waste melting treatment apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5837415A (en) | Nox decreasing incinerator | |
JP2008064361A (en) | Stoker-type incinerator and combustion control method therefor | |
JP2019178844A (en) | Waste moisture percentage measuring apparatus, stoker-type waste incinerator, waste moisture percentage measuring method, and waste incineration method | |
JP2009250571A (en) | Starting method of circulating fluidized bed furnace | |
JP2010216990A (en) | Device and method for measurement of moisture percentage in waste | |
WO2013133290A1 (en) | Grate-type waste incinerator and method for incinerating waste | |
JP5800237B2 (en) | Waste incinerator and waste incineration method | |
JP2002228133A (en) | Combustion control method for waste incinerator and apparatus therefor | |
JP7397627B2 (en) | Incineration plant and its combustion control method | |
JP3936884B2 (en) | Control method of stoker type incinerator | |
KR20010033858A (en) | Waste incineration method and device therefor | |
US10928066B2 (en) | System and method for the advanced control of nitrogen oxides in waste to energy systems | |
JP2013257063A (en) | Waste incinerator, and method of incinerating waste | |
KR100267146B1 (en) | Combustion controlling method and dioxin removal method of stoker incinerator | |
JP2002195534A (en) | Method and system for controlling combustion of refuse incinerator | |
JPH08233241A (en) | A method for detecting the properties of garbage in a garbage incinerator | |
KR100249349B1 (en) | Combustion control method and dioxin removing method of fluid bed incinerator | |
JP2015209992A (en) | Waste incineration treatment equipment and waste incineration treatment method | |
JPH03125808A (en) | Fluidized-bed type refuse incinerator | |
JP2020139720A (en) | Automatic combustion control method for garbage incinerator | |
CN104748129B (en) | Grate type incinerator | |
JP2002228130A (en) | Combustion furnace or incinerator, and method for reducing discharge of regulated gas content of the furnaces | |
JP2001241629A (en) | Low-pollution combustion equipment for waste | |
JPH07332642A (en) | Garbage incinerator | |
JP3598882B2 (en) | Two-stream waste incinerator and its operation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080128 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20080602 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080716 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080912 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090130 |