JP2002221303A - Method of measuring furnace interior side temperature of membrane panel - Google Patents
Method of measuring furnace interior side temperature of membrane panelInfo
- Publication number
- JP2002221303A JP2002221303A JP2001016216A JP2001016216A JP2002221303A JP 2002221303 A JP2002221303 A JP 2002221303A JP 2001016216 A JP2001016216 A JP 2001016216A JP 2001016216 A JP2001016216 A JP 2001016216A JP 2002221303 A JP2002221303 A JP 2002221303A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- furnace
- heat transfer
- membrane panel
- panel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は複数の管とメンブレ
ンバーで構成されるボイラ火炉壁のメンブレンパネルの
温度測定方法に係り、特に伝熱管やメンブレンバーの炉
内側表面温度を炉外から容易に測定する方法に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the temperature of a membrane panel of a boiler furnace wall comprising a plurality of tubes and a membrane bar, and more particularly to a method for easily measuring the inside surface temperature of a heat transfer tube or a membrane bar from outside the furnace. It relates to a method of measuring.
【0002】[0002]
【従来の技術】図2にボイラ火炉の燃焼室及び火炉全体
の概略外観構造を示す。この種のボイラにおいては、管
と管との間にメンブレンバーを溶接で接合したメンブレ
ンパネルからなる前壁7、側壁8、ケージ側壁9、ケー
ジ底部壁10、天井壁11によって、気密性の高い箱型
の燃焼室及び火炉が構成されている。2. Description of the Related Art FIG. 2 shows a schematic external structure of a combustion chamber of a boiler furnace and the entire furnace. In this type of boiler, a high airtightness is provided by a front wall 7, a side wall 8, a cage side wall 9, a cage bottom wall 10, and a ceiling wall 11 formed of a membrane panel in which a membrane bar is welded between pipes. A box-shaped combustion chamber and a furnace are configured.
【0003】図3に側壁管17、ケージ壁管18及びケ
ージ底部管19の結合部12の詳細図を示す。複数の側
壁管17、ケージ壁管18及びケージ底部管19はそれ
ぞれ伝熱効果を上げるためメンブレンバー2と呼ばれる
板を管の両側に配し、管の軸方向に連続した溶接によっ
て結合し、機密性を有する一体の燃焼室を形成してい
る。なお、ケージ壁管18の下端部はケージ側壁管寄せ
20に接続されている。FIG. 3 shows a detailed view of the connecting portion 12 of the side wall tube 17, the cage wall tube 18 and the cage bottom tube 19. The plurality of side wall pipes 17, the cage wall pipes 18 and the cage bottom pipes 19 are each provided with a plate called a membrane bar 2 on both sides of the pipes in order to enhance the heat transfer effect, and are connected by continuous welding in the axial direction of the pipes to secure the airtight. To form an integral combustion chamber having a characteristic. The lower end of the cage wall tube 18 is connected to a cage side wall header 20.
【0004】結合部12は3種類の管群(側壁管17、
ケージ壁管18、ケージ底部管19)が3次元的に合体
しており複雑な構造をしていることから、構造物として
は強度的に最も注意しなければならない形状不連続部を
形成している。[0004] The connecting portion 12 is composed of three types of tube groups (sidewall tube 17,
Since the cage wall tube 18 and the cage bottom tube 19) are three-dimensionally united and have a complicated structure, the structure is formed with a shape discontinuity which requires the most attention in terms of strength. I have.
【0005】[0005]
【発明が解決しようとする課題】前述のような構造を備
えたボイラ火炉においては、前壁7、側壁8、ケージ側
壁9、ケージ底部壁10、天井壁11の各壁面間の温度
差からそれぞれの壁面に熱変形が生じ、特に側壁8とケ
ージ側壁9の結合部12には図4に示すように伝熱管1
とメンブレンバー2の溶接部3を起点として亀裂13が
発生することが問題となっている。発見された亀裂13
は、その都度補修され、更に適宜補強も施されている
が、補修及び補強後も定期検査を行う度に、同一の側壁
8とケージ側壁9の結合部12に新たな亀裂が発見さ
れ、亀裂の削除と補修に多大の時間と費用を要してい
る。In the boiler furnace having the above-described structure, the temperature difference between the front wall 7, the side wall 8, the cage side wall 9, the cage bottom wall 10, and the ceiling wall 11, respectively, is used. As shown in FIG. 4, the heat transfer tube 1 is formed at the joint 12 between the side wall 8 and the cage side wall 9.
The problem is that a crack 13 is generated from the weld 3 of the membrane bar 2 as a starting point. Crack 13 found
Is repaired and reinforced as needed each time. However, each time the periodic inspection is performed after the repair and reinforcement, a new crack is found in the joint 12 between the same side wall 8 and the cage side wall 9. It takes a great deal of time and money to remove and repair.
【0006】上述の各壁面間の温度差は、メンブレンパ
ネル内の流体温度が一定ではなく、流体経路に沿って温
度上昇するために生じる。特にボイラの起動時には水張
り操作によって温度の低い内部流体がボイラ内に供給さ
れ、流体経路に沿ってゆっくりと流れるため温度変化の
時間差により各メンブレンパネル間に温度差が生じ、そ
の結果生じる熱伸び差によって熱応力が発生する。そし
て前記結合部12においては取合い構造が不連続なこと
もあり、過大な熱応力が発生し、ボイラの運用に制限を
設ける場合もあった。[0006] The above-mentioned temperature difference between the wall surfaces is generated because the fluid temperature in the membrane panel is not constant but rises along the fluid path. In particular, when the boiler is started, the internal fluid having a low temperature is supplied into the boiler by the water filling operation, and flows slowly along the fluid path. This generates thermal stress. In addition, the joining structure may be discontinuous in the connecting portion 12, and an excessive thermal stress may be generated, thereby restricting the operation of the boiler in some cases.
【0007】一方では、炉内側伝熱管1の汚れ、伝熱管
1の内部流体の不足、ボイラの異常燃焼等の原因により
火炉壁が局所的に過熱される場合がある。この過熱され
た領域は強度が極端に低下しており、摩耗により短時間
で伝熱管1の肉厚が薄くなったり、内圧によって伝熱管
1が破裂することもある。これらのことが原因となり蒸
気漏れが生じた場合、ボイラの停止を余儀なくされるこ
とになるので、特に起動停止の繰り返し回数が多いプラ
ントでの運用上の問題となっている。On the other hand, the furnace wall may be locally overheated due to contamination of the heat transfer tube 1 inside the furnace, lack of fluid inside the heat transfer tube 1, abnormal combustion of the boiler, and the like. The strength of the overheated region is extremely reduced, and the thickness of the heat transfer tube 1 may be reduced in a short time due to abrasion, or the heat transfer tube 1 may be ruptured due to internal pressure. If a steam leak occurs due to these factors, the boiler must be stopped, which is a problem in operation particularly in a plant where the number of times of starting and stopping is repeated.
【0008】これらのことを防止し、ボイラの火炉壁温
度を監視するため、メンブレンパネルには通常、電中研
方式と呼ばれる温度計が設置されているが、これは図5
(a)のメンブレンパネルの断面図に示すように伝熱管
1の表面に円周方向の溝14を機械加工し、この溝14
に伝熱管1上に設けられた温度計5からの引出し線16
を通して伝熱管1の温度測定を行うものである。しかし
ながら、測定できるのはあくまでも伝熱管1内部のメタ
ル温度であり最も高温となる伝熱管1の炉内側表面温度
の測定は困難である。更に図5(b)に示す伝熱管表面
側の断面詳細図にも示すように、伝熱管1の表面に溝1
4を機械加工して引出し線16を通した後に、再び溝1
4を保護板28で溶接によって埋めるため、温度計5の
設置費用も高くなる。In order to prevent these problems and to monitor the temperature of the furnace wall of the boiler, a thermometer called the “CRIEPI system” is usually installed on the membrane panel.
A circumferential groove 14 is machined on the surface of the heat transfer tube 1 as shown in the cross-sectional view of the membrane panel in FIG.
Wire 16 from the thermometer 5 provided on the heat transfer tube 1
Through which the temperature of the heat transfer tube 1 is measured. However, it is only possible to measure the metal temperature inside the heat transfer tube 1 and it is difficult to measure the surface temperature inside the furnace of the heat transfer tube 1 which is the highest. Further, as shown in a detailed sectional view of the heat transfer tube surface side shown in FIG.
After machining the lead wire 4 and passing the lead wire 16, the groove 1
Since 4 is filled with the protection plate 28 by welding, the installation cost of the thermometer 5 also increases.
【0009】本発明の課題は、炉外側のメンブレンパネ
ル表面温度を用いて炉内側のメンブレンパネル表面温度
を精度良く測定することにより、ボイラ火炉壁全体の温
度分布を正確かつ安価に把握して信頼性の高いあるいは
メンテナンスの必要性の少ないボイラ構造を提供するこ
とにある。[0009] An object of the present invention is to accurately and inexpensively grasp the temperature distribution of the entire boiler furnace wall by accurately measuring the surface temperature of the membrane panel inside the furnace using the surface temperature of the membrane panel outside the furnace. It is an object of the present invention to provide a boiler structure having high performance or requiring less maintenance.
【0010】[0010]
【課題を解決するための手段】本発明の上記課題は図1
に示すように、炉外側メンブレンパネル表面温度を数点
測定し、これらの値を用いて炉内側のメンブレンパネル
表面温度予測点6を回帰計算することにより達成され
る。SUMMARY OF THE INVENTION The above object of the present invention is shown in FIG.
As shown in (1), it is achieved by measuring several points of the outer membrane panel surface temperature and regressively calculating the membrane panel surface temperature prediction point 6 inside the furnace using these values.
【0011】具体的にはまず、あらかじめ図11に示す
ように伝熱管寸法等のメンブレンパネル形状と炉内側の
伝熱や輻射等の温度境界条件を種々に変化させ、有限要
素法といった数値解析によりメンブレンパネルの温度分
布を計算し、データベース化しておく。Specifically, first, as shown in FIG. 11, the membrane panel shape such as the size of the heat transfer tube and the temperature boundary conditions such as heat transfer and radiation inside the furnace are variously changed, and numerical analysis such as the finite element method is performed. Calculate the temperature distribution of the membrane panel and create a database.
【0012】次にこのデータベースを用いて、複数の炉
外側の温度測定点における温度を独立変数とし、求めた
い炉内側の表面温度を従属変数として重回帰式を求め
る。Next, using this database, a multiple regression equation is determined using the temperatures at a plurality of temperature measurement points outside the furnace as independent variables and the surface temperature inside the furnace to be determined as a dependent variable.
【0013】最後に、上述のようにして求めた重回帰式
に実測した炉外側の測定温度を代入して、求めたい任意
の炉内側の表面温度を推定する。Finally, the surface temperature inside the furnace to be determined is estimated by substituting the actually measured temperature outside the furnace into the multiple regression equation obtained as described above.
【0014】更に、上述のようにメンブレンパネルの温
度分布をデータベース化しているため、炉内側の表面温
度だけではなくメンブレンパネルの任意の位置における
温度も炉外側の温度測定点の温度から推定可能となる。
なお、図1中の演算器4は図11中の測定装置に相当し
ている。Further, since the temperature distribution of the membrane panel is made into a database as described above, not only the surface temperature inside the furnace but also the temperature at an arbitrary position of the membrane panel can be estimated from the temperature at the temperature measurement point outside the furnace. Become.
The computing unit 4 in FIG. 1 corresponds to the measuring device in FIG.
【0015】[0015]
【作用】図1に示すように、通常はメンブレンパネルを
構成する伝熱管1とメンブレンバー2は炉内側からバー
ナによる熱負荷を受け、伝熱管1の内部を流れる内部流
体によって冷却されている。この場合のメンブレンパネ
ルの温度分布は図6に示すような分布となっている。As shown in FIG. 1, a heat transfer tube 1 and a membrane bar 2 which normally constitute a membrane panel receive a thermal load from a furnace inside by a burner and are cooled by an internal fluid flowing inside the heat transfer tube 1. In this case, the temperature distribution of the membrane panel is as shown in FIG.
【0016】この温度分布において、伝熱管1の温度測
定点21から溶接部の温度測定点22までの温度勾配は
伝熱管1内の内部流体温度と熱伝達率に大きく関係して
おり、内部流体温度が低いほどあるいは熱伝達率が大き
いほどこの温度勾配は密になる。一方で溶接部の温度測
定点22からメンブレンパネルの温度測定点23までの
温度勾配は炉内側の熱負荷に大きく関係しており、熱負
荷が大きいほど温度勾配は密になる。したがって、これ
ら温度測定点21〜23間のそれぞれの温度勾配が分か
れば、その温度勾配から図6に示すようなメンブレンパ
ネル全体の温度分布はある程度予測することが可能であ
り、伝熱管1の炉内側の温度予測点6の温度を推定する
ことができる。In this temperature distribution, the temperature gradient from the temperature measurement point 21 of the heat transfer tube 1 to the temperature measurement point 22 of the welded portion is greatly related to the temperature of the internal fluid in the heat transfer tube 1 and the heat transfer coefficient. The lower the temperature or the higher the heat transfer coefficient, the tighter the temperature gradient. On the other hand, the temperature gradient from the temperature measurement point 22 of the welded portion to the temperature measurement point 23 of the membrane panel is greatly related to the heat load inside the furnace, and the higher the heat load, the tighter the temperature gradient. Therefore, if the temperature gradient between these temperature measurement points 21 to 23 is known, the temperature distribution of the entire membrane panel as shown in FIG. 6 can be predicted to some extent from the temperature gradient. The temperature at the inner temperature prediction point 6 can be estimated.
【0017】温度測定点数が3点である場合の具体的な
温度推定方法を以下に示す。まず、メンブレンパネルの
熱負荷と伝熱管1の内部流体温度、熱伝達率を種々に変
化させて温度測定点21〜23の温度と温度予測点6の
温度を測定する。A specific method for estimating the temperature when the number of temperature measurement points is three will be described below. First, the temperature at the temperature measurement points 21 to 23 and the temperature at the temperature prediction point 6 are measured by variously changing the heat load of the membrane panel, the internal fluid temperature of the heat transfer tube 1, and the heat transfer coefficient.
【0018】次に、温度予測点6の温度を従属変数と
し、温度測定点21〜23の温度を独立変数として重回
帰を実施して温度測定点21〜23のそれぞれに対する
重回帰係数を決定する。Next, multiple regression is performed using the temperature of the temperature prediction point 6 as a dependent variable and the temperatures of the temperature measurement points 21 to 23 as independent variables to determine a multiple regression coefficient for each of the temperature measurement points 21 to 23. .
【0019】このようにして求まった重回帰式に、実際
のメンブレンパネルで実測された温度測定点21〜23
の温度を代入すれば炉内側の伝熱管表面温度(温度予測
点6の温度)が推定できる。The multiple regression equation obtained in this manner is used to calculate the temperature measurement points 21 to 23 actually measured on the actual membrane panel.
By substituting the above temperature, the surface temperature of the heat transfer tube inside the furnace (the temperature at the temperature prediction point 6) can be estimated.
【0020】次に、炉外側の温度測定点と炉内側温度予
測点の温度推定誤差の関係について述べることにする。
温度推定誤差は温度測定点数が増えるほど小さくなって
いくと考えられるが、必要以上に増やすことはコスト面
からは好ましくない。温度測定点数と温度推定誤差との
関係を図8に示す。Next, the relationship between the temperature estimation error between the outside temperature measurement point and the inside temperature prediction point will be described.
It is considered that the temperature estimation error decreases as the number of temperature measurement points increases, but increasing it more than necessary is not preferable in terms of cost. FIG. 8 shows the relationship between the number of temperature measurement points and the temperature estimation error.
【0021】ここで、温度測定点数=1は図6に示す伝
熱管1の温度測定点21、温度測定点数=2は伝熱管1
の温度測定点21とメンブレンパネルの温度測定点2
3、温度測定点数=3は伝熱管1の温度測定点21と溶
接部の温度測定点22とメンブレンパネルの温度測定点
23を示している。更に温度測定点24を追加したもの
が温度測定点数=4、これに温度測定点25を追加した
ものが温度測定点数=5である。Here, the number of temperature measurement points = 1 is the temperature measurement point 21 of the heat transfer tube 1 shown in FIG.
Temperature measurement point 21 of membrane panel and temperature measurement point 2 of membrane panel
3, the number of temperature measurement points = 3 indicates the temperature measurement point 21 of the heat transfer tube 1, the temperature measurement point 22 of the welded portion, and the temperature measurement point 23 of the membrane panel. Further, the number of temperature measurement points = 4 is obtained by adding the temperature measurement points 24, and the number of temperature measurement points = 5 is obtained by adding the temperature measurement points 25 thereto.
【0022】図8から分かるように、温度測定点数が増
えるほど温度推定誤差は小さくなるが温度測定点数が3
点以上で温度推定誤差は約3℃以下に収束している。し
たがて、温度測定点数は3点で十分と考えられる。As can be seen from FIG. 8, as the number of temperature measurement points increases, the temperature estimation error decreases, but the number of temperature measurement points decreases by three.
Above the point, the temperature estimation error converges to about 3 ° C. or less. Therefore, it is considered that three temperature measurement points are sufficient.
【0023】更に、温度測定点を図6に示す伝熱管1の
温度測定点21、溶接部の温度測定点22、メンブレン
パネルの温度測定点23に設定した場合、ボイラの異常
燃焼により火炉壁の局部過熱が生じると、通常運転時と
比較して溶接部の温度測定点22からメンブレンパネル
の温度測定点23までの温度勾配のみが密になるので火
炉壁の局部過熱が検出可能となる。一方、膜沸騰等で伝
熱管1内の熱伝達率が極端に低くなった場合でも伝熱管
1の温度測定点21から溶接部の温度測定点22までの
温度勾配のみが疎になるので、これも検出可能となる。Further, when the temperature measurement points are set to the temperature measurement point 21 of the heat transfer tube 1, the temperature measurement point 22 of the welded portion, and the temperature measurement point 23 of the membrane panel shown in FIG. When local overheating occurs, only the temperature gradient from the temperature measurement point 22 of the welded portion to the temperature measurement point 23 of the membrane panel becomes denser than in the normal operation, so that local overheating of the furnace wall can be detected. On the other hand, even when the heat transfer coefficient in the heat transfer tube 1 becomes extremely low due to film boiling or the like, only the temperature gradient from the temperature measurement point 21 of the heat transfer tube 1 to the temperature measurement point 22 of the welded portion becomes sparse. Can also be detected.
【0024】[0024]
【発明の実施の形態】本発明の実施の形態について図面
と共に説明する。図7に本発明の第1の実施の形態のボ
イラ火炉壁の伝熱管1とメンブレンバー2からなるメン
ブレンパネルの断面図を示す。伝熱管1とメンブレンバ
ー2は溶接部3で接続され、炉外側の伝熱管1表面に3
つの温度測定点21〜23を取り付け、炉内側の伝熱管
1表面の温度予測点6の温度を予測する。Embodiments of the present invention will be described with reference to the drawings. FIG. 7 is a sectional view of a membrane panel including a heat transfer tube 1 and a membrane bar 2 of a boiler furnace wall according to the first embodiment of the present invention. The heat transfer tube 1 and the membrane bar 2 are connected by a welded portion 3, and 3
Two temperature measurement points 21 to 23 are attached, and the temperature of the temperature prediction point 6 on the surface of the heat transfer tube 1 inside the furnace is predicted.
【0025】伝熱管1の材質は1Cr−0.5Mo鋼、
寸法はφ38.1mm×t6.7mmとした。一方、メ
ンブレンバー2の材質は1Cr−0.5Mo鋼、寸法は
幅12.7mm×厚さ9mmとしたものである。メンブ
レンバー2は伝熱管1に溶接によって接合されており、
溶接脚長は伝熱管1側、メンブレンバー2側ともに約3
mmとしている。The material of the heat transfer tube 1 is 1Cr-0.5Mo steel,
The dimensions were φ38.1 mm × t6.7 mm. On the other hand, the material of the membrane 2 is 1Cr-0.5Mo steel, and the dimensions are 12.7 mm in width × 9 mm in thickness. The membrane bar 2 is joined to the heat transfer tube 1 by welding.
The welding leg length is about 3 for both the heat transfer tube 1 side and the membrane bar 2 side.
mm.
【0026】炉内側の熱負荷を2.78〜13.89×
10−5kcal/mm2secとし、伝熱管1の内部
流体温度を300〜500℃、熱伝達率2.78〜8.
33×10−6kcal/mm2sec℃と種々に変化
させた場合における、炉外側の温度測定点21〜23の
実測温度、及び炉内側の温度予測点6の実測温度と重回
帰から求まる温度推定結果を図9に示す。The heat load inside the furnace is 2.78 to 13.89 ×
10 −5 kcal / mm 2 sec, the internal fluid temperature of the heat transfer tube 1 is 300 to 500 ° C., and the heat transfer coefficient is 2.78 to 8.
In the case where the temperature is variously changed to 33 × 10 −6 kcal / mm 2 sec ° C., the measured temperature of the temperature measurement points 21 to 23 outside the furnace and the temperature measured from the measured temperature of the temperature prediction point 6 inside the furnace and multiple regression. FIG. 9 shows the estimation result.
【0027】温度測定点数は前記温度測定点21〜23
の三点とし、重回帰係数は炉外側の測定温度点の三点を
独立変数とし、炉内側の伝熱管温度の実測結果を従属変
数として重回帰から決定した。なお、本実施の形態にお
ける決定係数R2は0.998、最大推定温度誤差は3
℃となっており、炉内側の伝熱管1表面の温度予測点6
の温度すなわち炉内側の伝熱管表面温度は精度良く推定
されていることが分かる。The number of temperature measurement points is the above-mentioned temperature measurement points 21 to 23.
The multiple regression coefficients were determined from multiple regression using the three measured temperature points outside the furnace as independent variables and the actual measurement results of the heat transfer tube temperature inside the furnace as dependent variables. In this embodiment, the determination coefficient R 2 is 0.998, and the maximum estimated temperature error is 3
° C, and a temperature prediction point 6 on the surface of the heat transfer tube 1 inside the furnace.
It can be seen that the temperature of the heat transfer tube surface inside the furnace, that is, the surface temperature of the heat transfer tube was accurately estimated.
【0028】本発明の第2の実施の形態を図10に示
す。上記した第1の実施の形態ではメンブレンパネルの
管軸方向の温度分布が無いものと仮定して、炉外側の温
度測定点としては管軸直角方向の同一平面上にある伝熱
管1、メンブレンバー2、溶接部3の3点であった。し
かし、メンブレンパネルにおいて局部過熱が生じた場合
は管軸方向にも温度偏差が生じることになる。本実施の
形態では管軸方向の温度勾配も考慮するため、上記第1
の実施の形態の3つの温度測定点21〜23に加えて、
溶接部3の伝熱管管軸方向の上下に更に2点の温度測定
点26、27を追加して計5つの温度測定点21〜2
3、26、27としている。これによりメンブレンパネ
ルの伝熱管管軸方向の温度偏差も上述した重回帰式の中
に反映されることから、炉内側温度をより正確に推定で
きるようになる。従って、炉内側の熱負荷アンバランス
によるメンブレンパネルの局部過熱に対しても、その温
度と過熱範囲が推定可能となる。FIG. 10 shows a second embodiment of the present invention. In the first embodiment described above, assuming that there is no temperature distribution in the tube axis direction of the membrane panel, the heat transfer tubes 1 and the membrane bar on the same plane in the direction perpendicular to the tube axis are used as temperature measurement points outside the furnace. 2, 3 points of the welded portion. However, when local overheating occurs in the membrane panel, a temperature deviation also occurs in the tube axis direction. In this embodiment, since the temperature gradient in the tube axis direction is also considered,
In addition to the three temperature measurement points 21 to 23 of the embodiment,
Two more temperature measurement points 26 and 27 are added above and below the heat transfer tube axis direction of the welded portion 3 to make a total of five temperature measurement points 21 to 2
3, 26, 27. Accordingly, the temperature deviation in the axial direction of the heat transfer tube of the membrane panel is also reflected in the above-described multiple regression equation, so that the furnace inside temperature can be more accurately estimated. Accordingly, even for local overheating of the membrane panel due to unbalanced heat load inside the furnace, the temperature and the overheating range can be estimated.
【0029】[0029]
【発明の効果】本発明によれば、炉内側のメンブレンパ
ネル表面温度を精度良く測定することにより、ボイラ火
炉壁全体の温度分布を正確かつ安価に把握して信頼性の
高いあるいはメンテナンスの必要性の少ないボイラ構造
が得られる。According to the present invention, it is possible to accurately and inexpensively grasp the temperature distribution of the entire boiler furnace wall by accurately measuring the surface temperature of the membrane panel inside the furnace, and to obtain high reliability or maintenance. And a boiler structure with a small number is obtained.
【図1】 本発明の炉内側伝熱管表面温度の測定方法を
説明するメンブレンパネル断面図である。FIG. 1 is a cross-sectional view of a membrane panel for explaining a method of measuring a surface temperature of a heat transfer tube inside a furnace according to the present invention.
【図2】 発電所用ボイラの燃焼室及び火炉の概略図で
ある。FIG. 2 is a schematic view of a combustion chamber and a furnace of a boiler for a power plant.
【図3】 図2のメンブレンパネルの管壁結合部の詳細
図である。FIG. 3 is a detailed view of a tube wall connection part of the membrane panel of FIG. 2;
【図4】 図2のメンブレンパネルにおける亀裂の発生
例を示す図である。FIG. 4 is a diagram showing an example of occurrence of cracks in the membrane panel of FIG.
【図5】 従来方法による炉内側伝熱管表面温度測定方
法を説明するメンブレンパネルの断面図(図5(a))
と図5(a)のA−A線断面詳細図(図5(b))であ
る。FIG. 5 is a cross-sectional view of a membrane panel for explaining a method of measuring a surface temperature of a heat transfer tube inside a furnace according to a conventional method (FIG. 5A).
FIG. 6 is a detailed cross-sectional view taken along the line AA of FIG. 5A (FIG. 5B).
【図6】 メンブレンパネルの温度分布の一例を示す図
である。FIG. 6 is a diagram illustrating an example of a temperature distribution of a membrane panel.
【図7】 本発明の実施の形態のメンブレンパネル断面
図である。FIG. 7 is a cross-sectional view of the membrane panel according to the embodiment of the present invention.
【図8】 図7の実施の形態の温度測定点数と温度推定
誤差との関係を表す図である。8 is a diagram illustrating a relationship between the number of temperature measurement points and a temperature estimation error in the embodiment of FIG. 7;
【図9】 図7の実施の形態の炉内側伝熱管表面温度の
推定結果と実測結果の比較図である。9 is a comparison diagram of the estimation result and the measurement result of the surface temperature of the heat transfer tube inside the furnace in the embodiment of FIG. 7;
【図10】 本発明の他の実施の形態のメンブレンパネ
ルの斜視図である。FIG. 10 is a perspective view of a membrane panel according to another embodiment of the present invention.
【図11】 本発明の実施の形態の炉内側伝熱管表面温
度の推定方法の手順を示す図である。FIG. 11 is a diagram illustrating a procedure of a method for estimating a surface temperature of a heat transfer tube inside a furnace according to the embodiment of the present invention.
1 伝熱管 2 メンブレンバー 3 溶接部 4 演算器 5 温度計 6 温度予測点 7 前壁 8 側壁 9 ケージ側壁 10 ケージ底部壁 11 天井壁 12 結合部 13 亀裂 14 溝 15 メンブレンバー 16 引出し線 17 側壁管 18 ケージ側壁管 19 ケージ底部管 20 ケージ側壁管
寄せ 21 伝熱管の温度測定点 22 溶接部の温度
測定点 23 メンブレンパネルの温度測定点 24〜27 温度測定点 28 保護板DESCRIPTION OF SYMBOLS 1 Heat transfer tube 2 Membrane 3 Welded part 4 Computing unit 5 Thermometer 6 Temperature prediction point 7 Front wall 8 Side wall 9 Cage side wall 10 Cage bottom wall 11 Ceiling wall 12 Connection part 13 Crack 14 Groove 15 Membrane bar 16 Lead wire 17 Side wall pipe Reference Signs List 18 Cage side wall tube 19 Cage bottom tube 20 Cage side wall header 21 Temperature measurement point of heat transfer tube 22 Temperature measurement point of welded part 23 Temperature measurement point of membrane panel 24 to 27 Temperature measurement point 28 Protective plate
Claims (2)
ネルにおいて、炉外側の2点以上のメンブレンパネル表
面温度を計測し、これらの値から炉内側の任意のメンブ
レンパネル表面温度を推定することを特徴とするメンブ
レンパネル炉内側温度の測定方法。In a tube panel having a plurality of heat transfer tubes, two or more membrane panel surface temperatures outside the furnace are measured, and an arbitrary membrane panel surface temperature inside the furnace is estimated from these values. A method for measuring a temperature inside a furnace of a membrane panel.
レンバー及びそれらの境界部の3点であることを特徴と
する請求項1記載のメンブレンパネル炉内側表面温度の
測定方法。2. The method according to claim 1, wherein two or more points on the outside of the furnace are three points on the surface of the heat transfer tube, the membrane bar, and a boundary between them.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001016216A JP2002221303A (en) | 2001-01-24 | 2001-01-24 | Method of measuring furnace interior side temperature of membrane panel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001016216A JP2002221303A (en) | 2001-01-24 | 2001-01-24 | Method of measuring furnace interior side temperature of membrane panel |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002221303A true JP2002221303A (en) | 2002-08-09 |
Family
ID=18882627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001016216A Pending JP2002221303A (en) | 2001-01-24 | 2001-01-24 | Method of measuring furnace interior side temperature of membrane panel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002221303A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103196128A (en) * | 2013-03-29 | 2013-07-10 | 上海锅炉厂有限公司 | Power station boiler heating surface design method |
GB2502373A (en) * | 2012-05-21 | 2013-11-27 | Rowan Technologies Ltd | Thermal scanner |
JP2015124991A (en) * | 2013-12-27 | 2015-07-06 | 川崎重工業株式会社 | Scale adhesion amount estimation system |
CN105927962A (en) * | 2016-05-05 | 2016-09-07 | 国网天津市电力公司 | Method for calculating and selecting throttling shrinkage holes of parallel pipes of steam heating surfaces |
CN105972441A (en) * | 2016-07-04 | 2016-09-28 | 新疆电力建设调试所 | Method for detecting leakage from heat distribution pipeline with heat preservation structure |
KR101859309B1 (en) * | 2013-12-27 | 2018-05-17 | 가와사끼 쥬고교 가부시끼 가이샤 | Heat transfer tube life estimating system |
-
2001
- 2001-01-24 JP JP2001016216A patent/JP2002221303A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2502373A (en) * | 2012-05-21 | 2013-11-27 | Rowan Technologies Ltd | Thermal scanner |
GB2502373B (en) * | 2012-05-21 | 2014-07-02 | Rowan Technologies Ltd | Non-intrusive scanner |
CN103196128A (en) * | 2013-03-29 | 2013-07-10 | 上海锅炉厂有限公司 | Power station boiler heating surface design method |
JP2015124991A (en) * | 2013-12-27 | 2015-07-06 | 川崎重工業株式会社 | Scale adhesion amount estimation system |
KR101859309B1 (en) * | 2013-12-27 | 2018-05-17 | 가와사끼 쥬고교 가부시끼 가이샤 | Heat transfer tube life estimating system |
CN105927962A (en) * | 2016-05-05 | 2016-09-07 | 国网天津市电力公司 | Method for calculating and selecting throttling shrinkage holes of parallel pipes of steam heating surfaces |
CN105927962B (en) * | 2016-05-05 | 2018-06-01 | 国网天津市电力公司 | A kind of calculating of steam heating surface parallel transistor throttling shrinkage cavity and selection method |
CN105972441A (en) * | 2016-07-04 | 2016-09-28 | 新疆电力建设调试所 | Method for detecting leakage from heat distribution pipeline with heat preservation structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101859309B1 (en) | Heat transfer tube life estimating system | |
US7249885B2 (en) | Heat flux measuring device for pressure pipes, method for producing a measuring device, method for monitoring an operating state of a heat exchanger, heat exchanger and method for measuring a heat flux | |
US6485174B1 (en) | Attachable heat flux measuring device | |
JP5380219B2 (en) | Method for estimating metal temperature and life of boiler heat transfer tubes | |
EP4071655A1 (en) | Straight pipeline inner wall surface temperature measurement and transient identification method and computer terminal | |
JP6538243B6 (en) | Vacuum measuring device | |
JP2006010229A (en) | Boiler deterioration diagnosis method, apparatus, system, and recording medium recording program | |
JP2002221303A (en) | Method of measuring furnace interior side temperature of membrane panel | |
CN112629685A (en) | Device and method for measuring temperature in boiler heating surface pipe | |
JP6510755B2 (en) | Scale adhesion amount estimation system | |
Jaremkiewicz et al. | Monitoring of transient thermal stresses in pressure components of steam boilers using an innovative technique for measuring the fluid temperature | |
JP2011158362A (en) | Thermal fatigue evaluation method | |
JP3171285B2 (en) | Creep damage evaluation method for heat transfer tubes. | |
EP0165675B2 (en) | Apparatus for measuring thermal stress of pressure-tight tube | |
JP2003065984A (en) | Method and apparatus for assessing remaining life of furnace heat conduction wall panel | |
JP4594887B2 (en) | Lined damage detection method and corrosive fluid container | |
JP2023005279A (en) | Remaining lifetime evaluation method for heat transfer tube, and remaining lifetime evaluation device for heat transfer tube | |
JPS59128429A (en) | Life monitoring method for pressure resisting parts | |
Taler et al. | Monitoring of thermal stresses in pressure components of steam boilers | |
Vakili‐Tahami et al. | Experimental Study of the Creep Lifetime of the 1.25 Cr 0.5 Mo Steel Pipes | |
JPH05223658A (en) | Temperature abnormality detecting structure in fluid pipeline | |
MacPherson et al. | Development testing of liquid metal and molten salt heat exchangers | |
CN111356877A (en) | Boiler tube, boiler tube unit and melting furnace | |
JPH0127378B2 (en) | ||
Ganta | Alternate Analytical Methodology to ASME Section I Design for Membrane Walls with Bimetallic Tube for High Temperature Sections of Advanced Ultrasupercritical (AUSC) Boilers |