JP2002221280A - Drive device for fluid control valve - Google Patents
Drive device for fluid control valveInfo
- Publication number
- JP2002221280A JP2002221280A JP2001018380A JP2001018380A JP2002221280A JP 2002221280 A JP2002221280 A JP 2002221280A JP 2001018380 A JP2001018380 A JP 2001018380A JP 2001018380 A JP2001018380 A JP 2001018380A JP 2002221280 A JP2002221280 A JP 2002221280A
- Authority
- JP
- Japan
- Prior art keywords
- current
- electromagnetic coil
- control valve
- fluid control
- predetermined current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 32
- 230000004907 flux Effects 0.000 description 15
- 101100045694 Caenorhabditis elegans art-1 gene Proteins 0.000 description 7
- 239000000446 fuel Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2521—On-off valves controlled by pulse signals
Landscapes
- Magnetically Actuated Valves (AREA)
Abstract
(57)【要約】
【課題】 流体制御弁の駆動装置において、余分な部材
である抵抗が不要として省エネ性を高め、また、衝撃を
小さくして耐久性を高めることを目的とする。
【解決手段】 流体制御弁の開閉を駆動する電磁コイル
へ供給する電流を制御する。開動作の場合定格電流を例
えば3秒間印加し、閉動作の場合例えば逆方向に通電4
msと非通電1msのPWM駆動を3秒間繰り返す。定
格の80%の平均電流を印加する。または、電磁コイル
に供給する直流電流を、順方向(開動作)の場合定格電
流を3秒間通電、逆方向(閉動作)の場合定格電流の7
0.7%で3秒間通電する。MOS−FETによる駆動
回路を構成し、バイアス電流を0.1mA程度とする。
または、開動作時に徐々に平均電流を上げるPWM駆動
し、0.25秒毎に通電比率を10%ずつ上昇する。最
終的には、0.75秒間、定格電流を通電し「開動作」
を確実にする。
(57) [Problem] To provide a drive device for a fluid control valve, which eliminates the need for a resistor as an extra member, thereby improving energy saving and reducing impact to enhance durability. SOLUTION: A current supplied to an electromagnetic coil which drives opening and closing of a fluid control valve is controlled. In the case of the opening operation, a rated current is applied for, for example, 3 seconds.
The PWM drive of 1 ms and the non-energization of 1 ms is repeated for 3 seconds. An average current of 80% of the rating is applied. Alternatively, a direct current supplied to the electromagnetic coil is supplied with a rated current for 3 seconds in the forward direction (opening operation) and 7 times the rated current in the reverse direction (closing operation).
Energize at 0.7% for 3 seconds. A drive circuit is constituted by a MOS-FET, and a bias current is set to about 0.1 mA.
Alternatively, PWM driving is performed to gradually increase the average current during the opening operation, and the energization ratio is increased by 10% every 0.25 seconds. Finally, the rated current is applied for 0.75 seconds, and the "open operation"
To ensure.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電池や蓄電池を電
源とする電気機器、特に、電磁弁を数個以上用いる燃料
電池発電システム、あるいは空気調和装置などに用いら
れて流体を制御するラッチ式電磁弁等の流体制御弁の電
磁コイルを駆動制御する、流体制御弁の駆動装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric device powered by a battery or a storage battery, particularly a fuel cell power generation system using several or more solenoid valves, or a latch type for controlling a fluid used in an air conditioner or the like. The present invention relates to a drive device for a fluid control valve that drives and controls an electromagnetic coil of a fluid control valve such as an electromagnetic valve.
【0002】[0002]
【従来の技術】(背景技術)従来、燃料電池への燃料の
供給を制御するために電磁弁を用いるものが特開平11
−54141号に記載されている。この従来例では、そ
の公報の図1、図4に開示されているように6個の電磁
弁を使用しており、電磁弁は図5のような構成である。
また、同公報の段落[0027]〜[0030]に記載
されているように、「開動作」の場合は常時「ON」、
「閉動作」の場合は常時「OFF」で制御される電磁弁
である。2. Description of the Related Art Conventionally, Japanese Patent Laid-Open Publication No. Hei 11 (1999) discloses an electromagnetic valve for controlling the supply of fuel to a fuel cell.
No. 54141. In this conventional example, six electromagnetic valves are used as disclosed in FIGS. 1 and 4 of the publication, and the electromagnetic valves have a configuration as shown in FIG.
Further, as described in paragraphs [0027] to [0030] of the publication, in the case of “opening operation”, “ON” is always set,
In the case of the "close operation", the solenoid valve is always controlled to be "OFF".
【0003】燃料電池発電システムなどの電気機器は、
制御系の電力として直流電力が使用され、電池や蓄電池
を電源としている場合が多い。このような場合、前記公
報のようなON/OFF式の電磁弁ではなく、省エネを
目的としたラッチ式の電磁弁が用いられる。[0003] Electric equipment such as a fuel cell power generation system includes:
In many cases, DC power is used as power for a control system, and a battery or a storage battery is used as a power source in many cases. In such a case, a latch-type solenoid valve for energy saving is used instead of the ON / OFF-type solenoid valve described in the above publication.
【0004】(従来技術−1)図13はラッチ式の電磁
弁の閉状態の断面図、図14は同電磁弁の離脱時の動作
特性を示す図である。永久磁石1の磁束と同方向の磁束
を発生するように電圧を電磁コイル101に印加する
と、永久磁石1の磁束と電磁コイル101の磁束とで合
成された磁束による吸引力が発生し、プランジャ2がコ
イルバばね3の力に抗して吸引子4に吸着される。これ
により、弁5が弁座6から離間して弁開状態となる。こ
こで、電磁コイル101への通電を遮断しても、吸引子
4とプランジャ2とが吸着したのでギャップがなくな
り、より強力となった永久磁石1の磁束による吸引力が
コイルばね3の力よりもより強く設定されているので、
この位置(弁開状態)を保持し続ける。この状態で、永
久磁石1の磁束と逆方向の磁束を発生するように電圧を
電磁コイル101に印加すると、永久磁石1の磁束と電
磁コイル101の磁束とを減じた磁束による吸引力が発
生するが、この吸引力がコイルばね3の力より弱くなっ
た時、プランジャ2が吸引子4から離脱し、弁開状態と
なる。(Prior Art-1) FIG. 13 is a sectional view showing a closed state of a latch-type solenoid valve, and FIG. 14 is a view showing operating characteristics of the solenoid valve at the time of detachment. When a voltage is applied to the electromagnetic coil 101 so as to generate a magnetic flux in the same direction as the magnetic flux of the permanent magnet 1, an attractive force is generated by the magnetic flux synthesized from the magnetic flux of the permanent magnet 1 and the magnetic flux of the electromagnetic coil 101, and the plunger 2 Is attracted to the attraction element 4 against the force of the coil spring 3. As a result, the valve 5 is separated from the valve seat 6 to be in a valve open state. Here, even if the energization to the electromagnetic coil 101 is cut off, the gap is eliminated because the attracting element 4 and the plunger 2 are attracted, and the attracting force by the magnetic flux of the permanent magnet 1 which has become stronger is smaller than the force of the coil spring 3. Is also set stronger,
This position (valve open state) is maintained. In this state, when a voltage is applied to the electromagnetic coil 101 so as to generate a magnetic flux in the opposite direction to the magnetic flux of the permanent magnet 1, an attractive force is generated by the magnetic flux obtained by subtracting the magnetic flux of the permanent magnet 1 and the magnetic flux of the electromagnetic coil 101. However, when the suction force is weaker than the force of the coil spring 3, the plunger 2 is detached from the suction element 4, and the valve is opened.
【0005】ここで、図14に基づいて離脱時の説明を
行なう。電磁弁を「閉」状態にするため定格電圧を印加
した場合、減じた磁束により発生する合成の吸引力F3
(印加電圧=定格電圧)が発生するが、前述の減じた磁
束による合成の吸引力は磁性材で構成されるプランジャ
2と吸引子4とを吸着するように作用するので、前記吸
引力F3>コイルばねの力F1となり電磁弁は「閉」状
態にならない。図14は、印加電圧がV2〜V1の範囲
では、合成の吸引力≦コイルばねの力F1であり、
「閉」状態になることを示している。しかし、安定的な
「弁閉」動作をさせるには、印加電圧をV0とし合成の
吸引力を0として、コイルばねの力F1によって離脱さ
せ「閉」動作させることが望ましい。[0005] Here, description will be given of the time of separation with reference to FIG. When a rated voltage is applied to bring the solenoid valve into the "closed" state, the combined attractive force F3 generated by the reduced magnetic flux
(Applied voltage = rated voltage) is generated, but the combined attractive force due to the reduced magnetic flux acts to attract the plunger 2 made of a magnetic material and the attracting element 4, so that the attractive force F3> The force F1 of the coil spring results in the solenoid valve not being in the "closed" state. FIG. 14 shows that when the applied voltage is in the range of V2 to V1, the combined attractive force ≦ the force F1 of the coil spring,
It indicates that the state is "closed". However, in order to perform a stable "valve closing" operation, it is desirable that the applied voltage is set to V0 and the combined attractive force is set to 0, and the coil spring is separated by the force F1 to perform the "closing" operation.
【0006】(従来技術−2)特開平9−72633号
公報においては、同公報の図4に示すように空気調和機
の冷媒の流路を逆転させる四方弁のパイロット手段とし
て、ラッチ式のパイロット電磁弁が用いられている。ま
た、同公報の図3に開示されているように、交流電流を
整流して電磁コイルに印加しているが、冷房モード時と
暖房モード時とでは、抵抗74の有無により印加電圧が
異なっている。(Prior Art-2) In Japanese Patent Application Laid-Open No. 9-72633, a latch-type pilot is used as pilot means of a four-way valve for reversing the flow path of a refrigerant of an air conditioner as shown in FIG. Solenoid valves are used. Further, as disclosed in FIG. 3 of the publication, the alternating current is rectified and applied to the electromagnetic coil. However, the applied voltage differs between the cooling mode and the heating mode depending on the presence or absence of the resistor 74. I have.
【0007】[0007]
【発明が解決しようとする課題】従来技術−1のラッチ
式の電磁弁は、図15及び図16に示すように、「閉」
動作させる場合にも定格電圧を印加する構成としている
ため、電磁コイルの印加電圧V0、抵抗Rへの印加電圧
がVR(定格電圧−V0)となるような抵抗Rを余分に
備えなければならない。例えば、V0:VR=3:1で
あるように構成されている。ところが、抵抗Rの値はと
びとび(E−24系列)の値であり、最適のV0を選択
決定することは困難なため設計工数が増大し、ひいては
経済的に割高になること、回路部材(抵抗R)を余分に
必要とするので経済的に割高になること、「開」動作さ
せるに際して定格電力を印加するため、電磁コイルの磁
束による力と永久磁石の磁束による力との合成力が著し
く大きくなり、開弁時の衝撃音が大きくなる場合があ
り、また、その衝撃のため構造部材の耐久性(寿命)が
短くなること、及び「開」動作させるに際して短時間と
はいえ、抵抗Rが電力を消費するので省エネに反すると
いう問題点があった。また、従来技術−2のラッチ式の
電磁弁も、従来技術−1と同様に抵抗が必要である。As shown in FIGS. 15 and 16, the latch type solenoid valve of the prior art-1 is "closed".
Since the rated voltage is applied even when the device is operated, an extra resistor R must be provided so that the applied voltage V0 of the electromagnetic coil and the voltage applied to the resistor R become VR (rated voltage-V0). For example, it is configured such that V0: VR = 3: 1. However, the value of the resistor R is a discrete value (E-24 series), and it is difficult to select and determine the optimum V0, so that the number of design steps is increased, and the cost is increased economically. R) requires extra cost, so that it becomes economically expensive, and because the rated power is applied during the “open” operation, the combined force of the force by the magnetic flux of the electromagnetic coil and the force by the magnetic flux of the permanent magnet is extremely large. The impact noise at the time of opening the valve may increase, and the impact may shorten the durability (life) of the structural member. There is a problem in that it consumes power and is against energy saving. Further, the latch type solenoid valve of the prior art-2 also requires a resistance as in the case of the prior art-1.
【0008】すなわち、従来技術−1及び従来技術−2
では、電磁弁を「閉」動作させる場合、定格電圧を印加
するため、抵抗Rを余分に必要としているので、経済的
に割高である。また、従来技術−1は、短時間とはいえ
抵抗Rが電力を消費するので、省エネに反して地球環境
上好ましくなかった。また、従来技術−1は、望ましい
抵抗Rは構造側(流体制御弁)の構成要件により決定さ
れる。ところが、標準抵抗を選択することが困難であ
り、定格電圧を印加しても最適な「閉」動作の条件を満
たすことが不十分で流体制御弁の設計にあたり設計工数
が増大し、経済的に割高である。また、従来技術−1
は、「開」動作には定格電圧を印加するため、電磁力の
合成力が大きくなる場合があり、開弁時の衝撃音が大き
く、また衝撃のため構造部材の耐久性(寿命)を長くす
ることができなかった。また、従来技術−1は、「閉」
動作させるための抵抗Rが余分に必要であるため、IC
として広く多用されているH−スイッチ(ダブルアー
ム)を使用することが不可能で、省スペースを実現でき
なかった。That is, the prior art-1 and the prior art-2
Therefore, when the solenoid valve is operated to be "closed", an extra resistor R is required to apply the rated voltage, which is economically expensive. Further, in the prior art 1, since the resistor R consumes electric power even for a short time, it is not preferable in the global environment against energy saving. In the prior art-1, the desirable resistance R is determined by the structural requirements of the structure side (fluid control valve). However, it is difficult to select a standard resistor, and even if the rated voltage is applied, it is not sufficient to meet the optimal conditions for the "close" operation. It is expensive. In addition, conventional technology-1
Because the rated voltage is applied to the "open" operation, the combined force of the electromagnetic force may be large, the sound of the impact when opening the valve is large, and the durability (life) of the structural member is extended due to the impact. I couldn't. Further, the prior art-1 is “closed”.
Since an extra resistor R is required for operation, IC
It is impossible to use an H-switch (double arm) which is widely used widely, and space saving cannot be realized.
【0009】本発明は、余分な部材である抵抗が不要と
なる駆動装置を提供すること、また衝撃を小さくして流
体制御弁の耐久性(寿命)が長くなる駆動装置を提供す
ること、をそれぞれ目的とする。It is an object of the present invention to provide a drive device that does not require an extra member, ie, a resistance, and to provide a drive device in which impact is reduced and durability (life) of a fluid control valve is increased. To each purpose.
【0010】[0010]
【課題を解決するための手段】本発明の請求項1の流体
制御弁の駆動装置は、流路切換弁を構成する電磁コイル
を、第1所定電流で所定時間駆動して第1箇所に位置保
持させ、あるいは、前記電磁コイルを、第2所定電流で
所定時間駆動して第2箇所に位置保持させる流体制御弁
の駆動装置において、流体制御弁の電磁コイルを双方向
で通電駆動する接続切換手段を備え、第2所定電流は第
1所定電流よりも小さな印加電流により、電磁コイルを
駆動する工程を備えることを特徴とする。According to a first aspect of the present invention, there is provided a driving apparatus for a fluid control valve, wherein an electromagnetic coil constituting a flow path switching valve is driven at a first predetermined current for a predetermined time to be positioned at a first position. In the fluid control valve driving device for holding or holding the electromagnetic coil at a second location by driving the electromagnetic coil at a second predetermined current for a predetermined time, connection switching for energizing and driving the electromagnetic coil of the fluid control valve in two directions. Means for driving the electromagnetic coil with an applied current smaller than the first predetermined current.
【0011】本発明の請求項2の流体制御弁の駆動装置
は、流体制御弁を構成する電磁コイルを、第1所定電流
で所定時間駆動して第1箇所に位置保持させ、あるい
は、前記電磁コイルを、第1所定電流よりも小さい第2
所定電流で所定時間駆動して第2箇所に位置保持させる
流体制御弁の駆動装置において、第1所定電流は供給電
圧を印加して生成し、第2所定電流は供給電圧をPWM
駆動して生成することを特徴とする。According to a second aspect of the present invention, there is provided a fluid control valve driving device, wherein an electromagnetic coil constituting the fluid control valve is driven at a first predetermined current for a predetermined time to hold a position at a first location. A second coil having a second current smaller than the first predetermined current;
In a fluid control valve driving device that is driven by a predetermined current for a predetermined time and held at a second position, a first predetermined current is generated by applying a supply voltage, and a second predetermined current is generated by applying the supply voltage to PWM.
It is characterized by being driven and generated.
【0012】本発明の請求項3の流体制御弁の駆動装置
は、請求項2の構成を備え、前記第2所定電流は、前記
第1所定電流の値の70%であることを特徴とする。According to a third aspect of the present invention, there is provided a fluid control valve driving device according to the second aspect, wherein the second predetermined current is 70% of the value of the first predetermined current. .
【0013】本発明の請求項4の流体制御弁の駆動装置
は、流体制御弁を構成する電磁コイルを、第1所定電流
で所定時間駆動して第1箇所に位置保持させ、あるい
は、前記電磁コイルを、第1所定電流よりも小さい第2
所定電流で所定時間駆動して第2箇所に位置保持させる
流体制御弁の駆動装置において、第1所定電流は供給電
圧をPWM駆動して生成し、徐々に第1所定電流を大き
くし、次に、第1所定電流を、供給電圧を電磁コイルに
印加して生成することを特徴とする。According to a fourth aspect of the present invention, there is provided a fluid control valve driving device, wherein an electromagnetic coil constituting the fluid control valve is driven at a first predetermined current for a predetermined time to hold a position at a first location, or A second coil having a second current smaller than the first predetermined current;
In a fluid control valve driving device that is driven by a predetermined current for a predetermined time to maintain a position at a second location, a first predetermined current is generated by PWM driving a supply voltage, and the first predetermined current is gradually increased. The first predetermined current is generated by applying a supply voltage to the electromagnetic coil.
【0014】本発明の請求項5の流体制御弁の駆動装置
は、請求項1、2、または4の構成を備え、流体制御弁
を構成する電磁コイルを、第1所定電流で所定時間駆動
して第1箇所に位置保持させ、あるいは、前記電磁コイ
ルを、第1所定電流よりも小さい第2所定電流で所定時
間駆動して第2箇所に位置保持させる流体制御弁の駆動
装置において、MOS−FETによるH−スイッチによ
り構成された接続切換手段と、該接続切換手段を制御す
る制御部と、を備えたことを特徴とする。According to a fifth aspect of the present invention, there is provided a fluid control valve driving device having the configuration of the first, second, or fourth aspect, wherein an electromagnetic coil constituting the fluid control valve is driven by a first predetermined current for a predetermined time. In a fluid control valve driving device, the position is held at a first position by a predetermined time, or the electromagnetic coil is driven at a second predetermined current smaller than the first predetermined current for a predetermined time to hold the position at the second position. It is characterized by comprising a connection switching means constituted by an H-switch using an FET, and a control unit for controlling the connection switching means.
【0015】請求項1の流体制御弁の駆動装置によれ
ば、電磁コイルを双方向で通電駆動する接続切換手段
が、第1所定電流すなわち順方向(開動作)駆動には定
格電圧(定格電流)を印加し、逆方向(閉動作)駆動に
は第1所定電流よりも小さな第2所定電流を印加するの
で、抵抗Rが不要となる。According to the fluid control valve driving device of the first aspect, the connection switching means for energizing and driving the electromagnetic coil in both directions includes a first predetermined current, that is, a rated voltage (rated current) for forward (opening) driving. ), And a second predetermined current smaller than the first predetermined current is applied in the reverse direction (closing operation) drive, so that the resistor R is not required.
【0016】請求項2の流体制御弁の駆動装置によれ
ば、逆方向(閉動作)駆動の場合、PWM駆動を行い、
順方向(開動作に対して、例えば通電比率80%で通電
される。この場合、印加電流の平均値は定格電流の80
%、印加電力の平均値は定格電力の64%となる。ま
た、供給電圧自体を可変して印加電流としてもよい。According to the fluid control valve driving device of the second aspect, in the case of the reverse direction (closing operation) driving, PWM driving is performed,
In the forward direction (for the opening operation, for example, current is applied at an energizing ratio of 80%. In this case, the average value of the applied current is
%, And the average value of the applied power is 64% of the rated power. Further, the supply voltage itself may be varied and used as the applied current.
【0017】請求項3の流体制御弁の駆動装置によれ
ば、駆動回路を用いて、逆方向(閉動作)駆動の場合、
PWM駆動を行い、順方向(開駆動)に対して、通電比
率70%である。また、印加電流の平均値は定格電流の
70%、印加電力の平均値は定格電力の49%となる。According to the fluid control valve driving device of the third aspect, in the case of driving in the reverse direction (closing operation) using the driving circuit,
PWM drive is performed, and the energization ratio is 70% in the forward direction (open drive). The average value of the applied current is 70% of the rated current, and the average value of the applied power is 49% of the rated power.
【0018】請求項4の流体制御弁の駆動装置によれ
ば、駆動回路を用いて、順方向(開動作)駆動の場合、
PWM駆動を行い、通電開始時点から徐々に通電比率を
変化させ、最終時点では定格電流を印加する。印加電流
の平均値は徐々に上昇する。According to a fourth aspect of the present invention, in the case of forward (opening) drive using a drive circuit,
The PWM drive is performed, the energization ratio is gradually changed from the start of energization, and the rated current is applied at the final end. The average value of the applied current gradually increases.
【0019】請求項5の流体制御弁の駆動装置によれ
ば、制御部から所定の手順(プログラム)によって制御
信号が出力され、MOS−FETによるH−スイッチ
(接続切換手段)により、電磁弁のコイルを順方向(開
動作)駆動し、あるいは、逆方向(閉動作)駆動する。According to the fluid control valve driving device of the fifth aspect, a control signal is output from the control unit according to a predetermined procedure (program), and the H-switch (connection switching means) of the MOS-FET is used to control the solenoid valve. The coil is driven in a forward direction (opening operation) or in a reverse direction (closing operation).
【0020】[0020]
【発明の実施の形態】以下、本発明の流体制御弁の駆動
装置の実施形態を、図面を参照して説明する。なお、こ
の実施形態が対象とする電磁弁の一例を図13の電磁弁
とする。図1は本発明の流体制御弁の駆動装置のブロッ
ク図であり、供給電力10は、AC/DC変換器等で生
成された直流電力を正極側ラインBL+及び負極側ライ
ンBL−により接続切換手段406に供給する。この接
続切換手段406は制御部C1からの制御信号により制
御され、直流電力の極性を切換えて電磁弁の電磁コイル
101に供給する。電磁コイル101は実線の矢印の順
方向通電モードで開動作となり、破線の矢印の逆方向通
電モードで閉動作となる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a fluid control valve driving device according to the present invention will be described below with reference to the drawings. Note that an example of the electromagnetic valve targeted by this embodiment is the electromagnetic valve in FIG. FIG. 1 is a block diagram of a drive device for a fluid control valve according to the present invention. As for supply power 10, DC power generated by an AC / DC converter or the like is switched by a positive line BL + and a negative line BL-. 406. The connection switching unit 406 is controlled by a control signal from the control unit C1, switches the polarity of the DC power, and supplies the DC power to the electromagnetic coil 101 of the solenoid valve. The electromagnetic coil 101 is opened in the forward conduction mode indicated by the solid arrow, and closed in the reverse conduction mode indicated by the broken arrow.
【0021】図2は第1実施例におけるPWM駆動のシ
ーケンス図であり、開動作の場合は図2(A) のように供
給電圧を例えば3秒間印加し、閉動作の場合は図2(B)
のように、例えば逆方向に通電4msと非通電1msの
PWM駆動を3秒間繰り返すことで、定格の80%の平
均電流を印加する。FIG. 2 is a sequence diagram of the PWM driving in the first embodiment. In the case of the opening operation, a supply voltage is applied for, for example, 3 seconds as shown in FIG. 2A, and in the case of the closing operation, FIG. )
As described above, for example, by repeating the PWM drive of 4 ms for energization and 1 ms for non-energization in the reverse direction for 3 seconds, an average current of 80% of the rated current is applied.
【0022】図3は第2実施例におけるPWM駆動のシ
ーケンス図であり、順方向通電は図2(A) と同じである
が、閉動作の場合は、逆方向に通電3.5msと非通電
1.5msのPWM駆動を3秒間繰り返すことで、定格
電流の70%の平均電流を印加する。FIG. 3 is a sequence diagram of the PWM drive in the second embodiment. The forward energization is the same as that in FIG. 2A, but in the case of the closing operation, the energization is 3.5 ms in the reverse direction, and the non-energization is performed. By repeating the PWM drive of 1.5 ms for 3 seconds, an average current of 70% of the rated current is applied.
【0023】図4は図1における接続切換手段406の
第1例を示す図である。この回路は、代表的なバイポー
ラICの例であり、バイアス電流が10mA程度流れ
る。信号S1は、順方向/逆方向切換信号であり、信号
S2は通電/悲通電信号(ON/OFF)である。そし
て、正極側ラインBL+及び負極側ラインBL−を介し
て供給される直流電力を、信号S1,S2により信号変
換部70を介して第1〜第4のトランジスタTR1,T
R2,TR3,TR4の導通/非導通を切り換えること
で、順方向(実線の矢印)と逆方向(破線の矢印)のど
ちらかの向きで電磁コイル101に流すように構成され
ている。FIG. 4 is a diagram showing a first example of the connection switching means 406 in FIG. This circuit is a typical example of a bipolar IC, in which a bias current of about 10 mA flows. The signal S1 is a forward / reverse switching signal, and the signal S2 is a conduction / severe conduction signal (ON / OFF). The DC power supplied via the positive line BL + and the negative line BL− is converted into the first to fourth transistors TR1 and T1 by the signals S1 and S2 via the signal converter 70.
By switching between conduction and non-conduction of R2, TR3, and TR4, the current flows through the electromagnetic coil 101 in one of a forward direction (solid arrow) and a reverse direction (dashed arrow).
【0024】図5は第3実施例の回路図及び電磁コイル
の駆動電圧(電流)を変換する場合のシーケンス図であ
る。図5(A) の電圧可変型のDC/DC変換器40′及
び接続切換手段406は制御部C1により制御される。
制御部C1は、電磁コイル101に供給する直流電流を
順方向(実線の矢印)と逆方向(破線の矢印)で切り換
えて流すように構成されている。そして、順方向(開動
作)の場合は図5(B)のように供給電圧を例えば3秒間
通電、逆方向(閉動作)の場合は図5(B) のように供給
電圧の70.7%で3秒間通電する。これにより、電流
比を1:0.71、電力比を1:0.49と規定するこ
とができ、電磁弁(構造側)はこれを目標に構成要件を
決定すれば良い。FIG. 5 is a circuit diagram of the third embodiment and a sequence diagram for converting a drive voltage (current) of the electromagnetic coil. The variable voltage DC / DC converter 40 'and the connection switching means 406 shown in FIG. 5A are controlled by the control unit C1.
The control unit C1 is configured to flow a DC current supplied to the electromagnetic coil 101 in a forward direction (solid line arrow) and in a reverse direction (dashed arrow). In the forward direction (opening operation), the supply voltage is supplied, for example, for 3 seconds as shown in FIG. 5B, and in the reverse direction (closing operation), the supply voltage is 70.7% as shown in FIG. 5B. Energize at% for 3 seconds. As a result, the current ratio can be defined as 1: 0.71 and the power ratio can be defined as 1: 0.49, and the solenoid valve (structure side) may determine the constituent requirements with this as a target.
【0025】特に、燃料電池発電システム、自動車用機
器(電気自動車)において効果を得ることができる。す
なわち、DC9〜16Vと電源電圧が変化する自動車用
電気機器において、前記電圧をDC/DC変換(アップ
コンバージョン)して、開動作の場合、DC24V、ま
た、閉動作の場合、DC17Vを生成すればよく、電源
電圧の変動に対して安定に流体制御弁を駆動できるとい
う効果が得られる。In particular, the effect can be obtained in a fuel cell power generation system and an automobile device (electric vehicle). That is, in an automotive electrical device whose power supply voltage changes from 9 to 16 V DC, the voltage is DC / DC converted (up-converted) to generate 24 V DC for an open operation and 17 V DC for a closed operation. The effect is obtained that the fluid control valve can be driven stably with respect to fluctuations in the power supply voltage.
【0026】図6は第4実施例のMOS−FETによる
駆動回路を示す図であり、バイアス電流が0.1mA程
度流れる駆動回路の一例である。信号S3は順方向(開
動作)制御信号、信号S4は逆方向(閉動作)制御信号
(PWM制御)である。なお、制御部C1からの2つの
信号S3,S4は図4とは異なっている。さらにこの例
は、接続切換手段406への信号S3,S4の同時出力
を禁止する同時出力禁止手段を備えており、正極側ライ
ンBL+と負極側ラインBL−との短絡を防止してい
る。FIG. 6 is a diagram showing a drive circuit using a MOS-FET according to the fourth embodiment, which is an example of a drive circuit in which a bias current of about 0.1 mA flows. The signal S3 is a forward (opening) control signal, and the signal S4 is a reverse (closing) control signal (PWM control). The two signals S3 and S4 from the control unit C1 are different from those in FIG. Further, in this example, a simultaneous output prohibition unit for prohibiting simultaneous output of the signals S3 and S4 to the connection switching unit 406 is provided to prevent a short circuit between the positive line BL + and the negative line BL-.
【0027】図7は第4実施例に対する従来例を示す図
である。図7(A) は従来のトランジスタによる駆動回路
である。バッファを用いて後段のトランジスタにベース
電流(例えば、5〜10mA)を供給し駆動している。
1つのトランジスタのON時の残り電圧は略0.3Vと
少ないものの、多くのベース電流(弁1つで2倍)を必
要とし、多数の流体制御弁を使用する場合、無視できな
い電流が必要である。FIG. 7 is a diagram showing a conventional example for the fourth embodiment. FIG. 7A shows a driving circuit using a conventional transistor. A buffer is used to supply a base current (for example, 5 to 10 mA) to a subsequent transistor to drive the transistor.
Although the remaining voltage when one transistor is ON is as low as about 0.3 V, it requires a large amount of base current (double with one valve), and when a large number of fluid control valves are used, a considerable current is required. is there.
【0028】図7(B) はダーリントン式トランジスタに
よる駆動回路である。ダーリントン構成のためバッファ
は不要であるが、1つのトランジスタのON時の残り電
圧は略1.2Vと大きい。よって、ベース電流(例え
ば、0.3mA)は少ないもののON時の残り電圧が略
2.4Vとなり、例えば、供給電圧がDC12Vとする
と電磁コイルの駆動電圧は9.6Vとなり、広く多用さ
れている定格電圧DC12Vの電磁コイルにとっては
「開動作」時の電圧が定格電圧の80%となり、電磁弁
における弁ポートの間の差圧ΔPによっては「開動作」
の安定性に不安がある。また、トランジスタ自体がON
時の残り電圧によって、余分な電力を消費するので好ま
しくなかった。FIG. 7B shows a drive circuit using Darlington transistors. A buffer is not required because of the Darlington configuration, but the remaining voltage when one transistor is ON is as large as about 1.2V. Therefore, although the base current (for example, 0.3 mA) is small, the remaining voltage at the time of ON becomes approximately 2.4 V. For example, when the supply voltage is DC 12 V, the driving voltage of the electromagnetic coil becomes 9.6 V, which is widely used. For an electromagnetic coil with a rated voltage of 12 V DC, the voltage at the time of “opening operation” becomes 80% of the rated voltage, and “opening operation” depends on the differential pressure ΔP between valve ports of the solenoid valve.
I'm worried about the stability of. Also, the transistor itself is ON
This is not preferable because extra power is consumed depending on the remaining voltage at the time.
【0029】図8は第5実施例の駆動シーケンス図であ
り、開弁時に徐々に平均電流を上げるPWM駆動を示し
ている。前記の実施例では「開動作」の場合に例えば3
秒間定格電流を印加していたが、この第5実施例は衝撃
の緩和のためにPWM駆動する一例である。例えば、
0.25秒毎に通電比率を10%ずつ上昇する例を示し
ている。最終的には、0.75秒間、定格電流を通電し
「開動作」を確実にする。なお、図9は、弁ポートの間
の差圧ΔPと該差圧の時の「開動作」に必要な印加電流
の特性図である。流体制御弁に要求される最高作動圧力
差ΔPよりも大きい差圧ΔP1でも「開動作」する印加
電流を設定し、定格電流を決定している。FIG. 8 is a drive sequence diagram of the fifth embodiment, showing PWM drive for gradually increasing the average current when the valve is opened. In the above-described embodiment, for example, 3
Although the rated current is applied for a second, the fifth embodiment is an example in which PWM driving is performed to reduce impact. For example,
An example is shown in which the energization ratio is increased by 10% every 0.25 seconds. Finally, the rated current is supplied for 0.75 seconds to ensure the "open operation". FIG. 9 is a characteristic diagram of the differential pressure ΔP between the valve ports and the applied current necessary for the “opening operation” at the time of the differential pressure. The applied current for “opening operation” is set even at the differential pressure ΔP1 larger than the maximum operating pressure difference ΔP required for the fluid control valve, and the rated current is determined.
【0030】図10は第6実施例を示す回路図であり、
例えば2つの電磁コイル111,112を有する流体制
御弁の駆動回路である。いうまでもないが、電磁コイル
111と電磁コイル112は逆方向に巻かれている。接
続切換手段406′は、代表的にはNPNタイプのバイ
ポーラトランジスタ2個からなる構成である。(もちろ
ん、MOS−FETによる構成が望ましい。)制御部C
1は接続切換手段406′に制御信号を出力して電磁コ
イル111と電磁コイル112への通電を制御し、電磁
コイル111は定格電流駆動し、電磁コイル112はP
WM駆動する。FIG. 10 is a circuit diagram showing a sixth embodiment.
For example, it is a drive circuit of a fluid control valve having two electromagnetic coils 111 and 112. It goes without saying that the electromagnetic coil 111 and the electromagnetic coil 112 are wound in opposite directions. The connection switching means 406 'is typically composed of two NPN type bipolar transistors. (Of course, a configuration using a MOS-FET is desirable.) Control unit C
1 outputs a control signal to the connection switching means 406 'to control the energization of the electromagnetic coil 111 and the electromagnetic coil 112, the electromagnetic coil 111 is driven at a rated current, and the electromagnetic coil 112 is
WM drive is performed.
【0031】図11は第7実施例の回路図及び駆動シー
ケンス図である。図11(A) の回路は、交流電力を4つ
のトライアックt1,t2,t3,t4により、AC/
DC変換すると同時に電力分配を行う。トライアックt
1,t2,t3,t4のゲートは図11(B) の回路によ
りそれぞれトリガされる。光素子p1,p2,p3,p
4はトライアックt1,t2,t3,t4にそれぞれ隣
接して配設されており、各トライアックt1,t2,t
3,t4は対応する光素子p1,p2,p3,p4の発
光によりゲートがトリガされる。そして、電磁コイル1
01へ通電するとき、順方向通電の場合は、図11(C)
のbに示すようにゼロクロス点でトリガを開始し全波整
流することにより定格電圧を生成する。逆方向通電の場
合は、図11(C) のcに示すようにゼロクロス点から所
定時間(位相角)経過した後、トリガを開始し整流する
ことにより定格電圧よりも小さい所定の電圧を生成す
る。(これにより、印加する電流は異なることにな
る。)この第7実施例と後述する第8実施例は、交流電
力が供給される空気調和装置等に用いて好適である。FIG. 11 is a circuit diagram and a drive sequence diagram of the seventh embodiment. The circuit shown in FIG. 11A converts AC power into AC / AC by four triacs t1, t2, t3, and t4.
The power distribution is performed simultaneously with the DC conversion. Triac t
The gates at 1, t2, t3 and t4 are respectively triggered by the circuit of FIG. Optical elements p1, p2, p3, p
4 is disposed adjacent to the triacs t1, t2, t3, and t4, respectively.
At 3 and t4, the gates are triggered by the emission of the corresponding optical elements p1, p2, p3 and p4. And the electromagnetic coil 1
When energizing to 01, in the case of forward energizing, FIG.
As shown in (b), a trigger is started at the zero-cross point and full-wave rectification is performed to generate a rated voltage. In the case of reverse energization, after a predetermined time (phase angle) has elapsed from the zero cross point as shown in FIG. 11C, a trigger is started and rectified to generate a predetermined voltage smaller than the rated voltage. . (Thus, the applied currents are different.) The seventh embodiment and an eighth embodiment described later are suitable for use in an air conditioner or the like to which AC power is supplied.
【0032】図12は第8実施例の回路図及び駆動シー
ケンス図である。図12(A) の回路は、交流電源、トラ
イアックt5(整流器)及び電磁コイル101を直列に
接続し、コンデンサc1を電磁コイル101と並列に接
続したものである。また、トライアックt5のゲートに
は光素子p5によりトリガが与えられる。そして、電磁
コイル101へ通電するとき、順方向通電の場合、図1
2(B) のbに示すようにゼロクロス点で開始し整流し
て、コンデンサc1で平滑し定格電圧を生成する。逆方
向通電の場合は、図12(B) のcに示すようにゼロクロ
ス点から所定時間(位相角)経過した後、トリガを開始
し整流して、コンデンサc1で平滑することにより定格
電圧よりも小さい所定の電圧を生成する。(これによ
り、印加する電流は異なることになる。)FIG. 12 is a circuit diagram and a drive sequence diagram of the eighth embodiment. The circuit of FIG. 12A has an AC power supply, a triac t5 (rectifier) and an electromagnetic coil 101 connected in series, and a capacitor c1 connected in parallel with the electromagnetic coil 101. The trigger of the triac t5 is given by the optical element p5. Then, when energizing the electromagnetic coil 101, in the case of forward energizing, FIG.
Starting at the zero-crossing point as shown by b in FIG. 2 (B), the current is rectified, smoothed by the capacitor c1, and a rated voltage is generated. In the case of reverse energization, after a predetermined time (phase angle) elapses from the zero-cross point as shown by c in FIG. 12 (B), the trigger is started, rectified, and smoothed by the capacitor c1 so that the voltage becomes higher than the rated voltage. Generate a small predetermined voltage. (Thus, the applied current is different.)
【0033】[0033]
【発明の効果】以上説明したように請求項1の流体制御
弁の駆動装置によれば、電磁コイルを双方向で通電駆動
する接続切換手段が、第1所定電流すなわち順方向(開
動作)駆動には定格電圧(定格電流)を印加し、逆方向
(閉動作)駆動には第1所定電流よりも小さな第2所定
電流を印加するので、抵抗Rが不要となり、経済的に安
価となり、また、省エネを実現することができる。As described above, according to the fluid control valve driving device of the first aspect, the connection switching means for driving the electromagnetic coil in both directions is a first predetermined current, that is, a forward (opening) drive. Is applied with a rated voltage (rated current), and a second predetermined current smaller than the first predetermined current is applied in the reverse direction (closing operation) drive. , Energy saving can be realized.
【0034】請求項2の流体制御弁の駆動装置によれ
ば、請求項1と同様な効果が得られるとともに、「開
弁」時と「閉弁」時との印加電流の度合いを任意に選択
できるので制御部と電磁弁とのチューニング(マッチン
グ:整合性)が自在である。これは、1種類の電磁弁を
大量に生産する家電向機器に用いて好適である。According to the fluid control valve driving device of the second aspect, the same effect as that of the first aspect can be obtained, and the degree of the applied current at the time of "opening the valve" and at the time of "closing the valve" can be arbitrarily selected. Since it is possible, tuning (matching: matching) between the control unit and the solenoid valve can be freely performed. This is suitable for use in home electric appliances that mass-produce one type of solenoid valve.
【0035】請求項3の流体制御弁の駆動装置によれ
ば、請求項2と同様な効果が得られるとともに、駆動回
路を用いて、順方向(開駆動)時と逆方向(閉動作)時
の電流比を1:0.7、電力比を1:0.49と規制す
るので、構造側はこれを目標に構成要件を決定すればよ
い。これは、多数の種類の電磁弁を少量生産する産業用
機器に用いて好適である。特に、燃料電池発電システム
においては、電力を極力小さくすることが望まれてお
り、好適な駆動装置を提供できる。According to the fluid control valve driving device of the third aspect, the same effects as those of the second aspect can be obtained, and the driving circuit can be used to perform the forward direction (opening operation) and the reverse direction (closing operation). Is regulated to 1: 0.7 and the power ratio to 1: 0.49, so that the structural side may determine the constituent requirements with this as a target. This is suitable for use in industrial equipment that produces many types of solenoid valves in small quantities. In particular, in a fuel cell power generation system, it is desired to reduce the electric power as much as possible, and a suitable driving device can be provided.
【0036】請求項4の流体制御弁の駆動装置によれ
ば、駆動回路を用いて、順方向(開動作)駆動の場合、
PWM駆動を行い、通電開始時点から徐々に通電比率を
変化させ、最終時点では定格電流を印加するので、開弁
時の音が小さくなったり、また、衝撃が小さくなって構
造部材の寿命が長くなる。According to the fourth aspect of the present invention, in the case of forward (opening) drive using a drive circuit,
Since the PWM drive is performed and the energization ratio is gradually changed from the start of energization, and the rated current is applied at the final end, the sound at the time of opening the valve is reduced, and the impact is reduced and the life of the structural member is extended. Become.
【0037】請求項5の流体制御弁の駆動装置によれ
ば、制御部から所定の所定手順(プログラム)によって
制御子音号が出力され、MOS−FETによるH−スイ
ッチにより、電磁弁のコイルを順方向(開動作)駆動
し、あるいは、逆方向(閉動作)駆動するので、ICを
用いる構成とすることができ、構成が簡単で省スペース
を実現できる。According to the fluid control valve driving device of the fifth aspect, a control consonant is output from the control unit according to a predetermined procedure (program), and the coil of the solenoid valve is sequentially turned on by the H-switch using the MOS-FET. Since driving in the direction (opening operation) or driving in the opposite direction (closing operation) is performed, a configuration using an IC can be used, and the configuration is simple and space saving can be realized.
【図1】本発明の実施形態に係る流体制御弁の駆動装置
のブロック図である。FIG. 1 is a block diagram of a drive device for a fluid control valve according to an embodiment of the present invention.
【図2】本発明の第1実施例におけるPWM駆動のシー
ケンス図である。FIG. 2 is a sequence diagram of PWM driving according to the first embodiment of the present invention.
【図3】本発明の第2実施例におけるPWM駆動のシー
ケンス図である。FIG. 3 is a sequence diagram of PWM driving according to a second embodiment of the present invention.
【図4】本発明の実施形態の接続切換手段の第1例を示
す図である。FIG. 4 is a diagram showing a first example of connection switching means according to the embodiment of the present invention.
【図5】本発明の第3実施例の回路図及び電磁コイルの
駆動電圧を変換する場合のシーケンス図である。FIG. 5 is a circuit diagram of a third embodiment of the present invention and a sequence diagram in a case where a drive voltage of an electromagnetic coil is converted.
【図6】本発明の第4実施例のMOS−FETによる駆
動回路を示す図である。FIG. 6 is a diagram illustrating a drive circuit using a MOS-FET according to a fourth embodiment of the present invention.
【図7】本発明の第4実施例に対する従来例を示す図で
ある。FIG. 7 is a diagram showing a conventional example for a fourth embodiment of the present invention.
【図8】本発明の第5実施例の駆動シーケンス図であ
る。FIG. 8 is a drive sequence diagram according to a fifth embodiment of the present invention.
【図9】本発明の第5実施例に係る弁ポートの間の差圧
と該差圧の時の「開動作」に必要な印加電流の特性図で
ある。FIG. 9 is a characteristic diagram of a differential pressure between valve ports and an applied current necessary for an “opening operation” at the time of the differential pressure according to a fifth embodiment of the present invention.
【図10】本発明の第6実施例を示す回路図である。FIG. 10 is a circuit diagram showing a sixth embodiment of the present invention.
【図11】本発明の第7実施例の回路図及び駆動シーケ
ンス図である。FIG. 11 is a circuit diagram and a drive sequence diagram of a seventh embodiment of the present invention.
【図12】本発明の第8実施例の回路図及び駆動シーケ
ンス図である。FIG. 12 is a circuit diagram and a drive sequence diagram of an eighth embodiment of the present invention.
【図13】本発明に係るラッチ式の電磁弁の閉状態の断
面図である。FIG. 13 is a sectional view showing a closed state of a latch-type solenoid valve according to the present invention.
【図14】同電磁弁の離脱時の動作特性を示す図であ
る。FIG. 14 is a view showing operating characteristics when the solenoid valve is detached.
【図15】従来の駆動回路の第1例を示す図である。FIG. 15 is a diagram illustrating a first example of a conventional driving circuit.
【図16】従来の駆動回路の第2例を示す図である。FIG. 16 is a diagram illustrating a second example of a conventional driving circuit.
10 供給電力 406 接続切換手段 C1 制御部 101 電磁コイル TR1,TR2,TR3,TR4 トランジスタ t1,t2,t3,t4 トライアック P1,P2,P3,P4 光素子 Reference Signs List 10 supply power 406 connection switching means C1 control unit 101 electromagnetic coil TR1, TR2, TR3, TR4 transistor t1, t2, t3, t4 triac P1, P2, P3, P4 optical element
───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤崎 興至 埼玉県狭山市笹井535 株式会社鷺宮製作 所狭山事業所内 (72)発明者 秋田 勇治 埼玉県狭山市笹井535 株式会社鷺宮製作 所狭山事業所内 (72)発明者 中原 誠一 埼玉県狭山市笹井535 株式会社鷺宮製作 所狭山事業所内 Fターム(参考) 3H106 DA13 DA23 DB02 DB12 DB23 DC04 DD03 EE20 EE22 FA04 FA07 FB33 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Koji Fujisaki 535 Sasai, Sayama-shi, Saitama Prefecture Sagimiya Manufacturing Co., Ltd., Sayama Plant (72) Inventor Seiichi Nakahara 535 Sasai, Sayama-shi, Saitama F-term (reference) 3H106 DA13 DA23 DB02 DB12 DB23 DC04 DD03 EE20 EE22 FA04 FA07 FB33
Claims (5)
1所定電流で所定時間駆動して第1箇所に位置保持さ
せ、あるいは、前記電磁コイルを、第2所定電流で所定
時間駆動して第2箇所に位置保持させる流体制御弁の駆
動装置において、 流体制御弁の電磁コイルを双方向で通電駆動する接続切
換手段を備え、第2所定電流は第1所定電流よりも小さ
な印加電流により、電磁コイルを駆動する工程を備える
ことを特徴とする流体制御弁の駆動装置。An electromagnetic coil forming a flow path switching valve is driven at a first predetermined current for a predetermined time to hold a position at a first position, or the electromagnetic coil is driven at a second predetermined current for a predetermined time. And a connection switching means for energizing and driving an electromagnetic coil of the fluid control valve in both directions, wherein the second predetermined current is controlled by an applied current smaller than the first predetermined current. And a step of driving an electromagnetic coil.
1所定電流で所定時間駆動して第1箇所に位置保持さ
せ、あるいは、前記電磁コイルを、第1所定電流よりも
小さい第2所定電流で所定時間駆動して第2箇所に位置
保持させる流体制御弁の駆動装置において、 第1所定電流は供給電圧を印加して生成し、第2所定電
流は供給電圧をPWM駆動して生成することを特徴とす
る流体制御弁の駆動装置。2. An electromagnetic coil constituting a fluid control valve is driven at a first predetermined current for a predetermined time to hold a position at a first position, or the electromagnetic coil is moved to a second predetermined current smaller than the first predetermined current. In the fluid control valve driving device that is driven by an electric current for a predetermined time and held at a second position, a first predetermined current is generated by applying a supply voltage, and a second predetermined current is generated by PWM driving the supply voltage. A fluid control valve driving device, characterized in that:
の値の70%であることを特徴とする。3. The method according to claim 2, wherein the second predetermined current is 70% of a value of the first predetermined current.
1所定電流で所定時間駆動して第1箇所に位置保持さ
せ、あるいは、前記電磁コイルを、第1所定電流よりも
小さい第2所定電流で所定時間駆動して第2箇所に位置
保持させる流体制御弁の駆動装置において、 第1所定電流は供給電圧をPWM駆動して生成し、徐々
に第1所定電流を大きくし、次に、第1所定電流を、供
給電圧を電磁コイルに印加して生成することを特徴とす
る流体制御弁の駆動装置。4. An electromagnetic coil constituting the fluid control valve is driven at a first predetermined current for a predetermined time to hold a position at a first position, or the electromagnetic coil is moved to a second predetermined current smaller than the first predetermined current. In the fluid control valve driving device that is driven by the electric current for a predetermined time to maintain the position at the second location, the first predetermined current is generated by PWM driving the supply voltage, and the first predetermined current is gradually increased. A drive device for a fluid control valve, wherein a first predetermined current is generated by applying a supply voltage to an electromagnetic coil.
1所定電流で所定時間駆動して第1箇所に位置保持さ
せ、あるいは、前記電磁コイルを、第1所定電流よりも
小さい第2所定電流で所定時間駆動して第2箇所に位置
保持させる流体制御弁の駆動装置において、 MOS−FETによるH−スイッチにより構成された接
続切換手段と、該接続切換手段を制御する制御部と、を
備えたことを特徴とする請求項1、2、または4記載の
流体制御弁の駆動装置。5. An electromagnetic coil constituting a fluid control valve is driven at a first predetermined current for a predetermined time to hold a position at a first location, or the electromagnetic coil is driven at a second predetermined current smaller than the first predetermined current. A fluid control valve driving device that is driven by an electric current for a predetermined time to maintain a position at a second position, comprising: a connection switching unit configured by an H-switch using a MOS-FET; and a control unit that controls the connection switching unit. The drive device for a fluid control valve according to claim 1, 2, or 4, further comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001018380A JP2002221280A (en) | 2001-01-26 | 2001-01-26 | Drive device for fluid control valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001018380A JP2002221280A (en) | 2001-01-26 | 2001-01-26 | Drive device for fluid control valve |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002221280A true JP2002221280A (en) | 2002-08-09 |
Family
ID=18884414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001018380A Withdrawn JP2002221280A (en) | 2001-01-26 | 2001-01-26 | Drive device for fluid control valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002221280A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008281163A (en) * | 2007-05-14 | 2008-11-20 | Sharp Corp | Four-way valve drive circuit and heat transfer device furnished with it |
JP2009014185A (en) * | 2007-07-09 | 2009-01-22 | Smc Corp | Solenoid valve drive circuit and solenoid valve |
JP2009014184A (en) * | 2007-07-09 | 2009-01-22 | Smc Corp | Solenoid valve drive circuit and solenoid valve |
JP2011153686A (en) * | 2010-01-28 | 2011-08-11 | Noritz Corp | Method of driving solenoid valve, solenoid valve driving device and combustion device with the same |
EP1938026A4 (en) * | 2005-08-23 | 2011-12-14 | Carrier Corp | System reheat control by pulse width modulation |
JP2012202462A (en) * | 2011-03-25 | 2012-10-22 | Toto Ltd | Solenoid valve control |
CN109826996A (en) * | 2019-03-28 | 2019-05-31 | 甘逸然 | A kind of low-power consumption electromagnetic valve drive dynamic control device and method |
WO2020079822A1 (en) * | 2018-10-19 | 2020-04-23 | 日立ジョンソンコントロールズ空調株式会社 | Valve drive device, and, refrigerant cycle device comprising same |
-
2001
- 2001-01-26 JP JP2001018380A patent/JP2002221280A/en not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1938026A4 (en) * | 2005-08-23 | 2011-12-14 | Carrier Corp | System reheat control by pulse width modulation |
JP2008281163A (en) * | 2007-05-14 | 2008-11-20 | Sharp Corp | Four-way valve drive circuit and heat transfer device furnished with it |
JP2009014185A (en) * | 2007-07-09 | 2009-01-22 | Smc Corp | Solenoid valve drive circuit and solenoid valve |
JP2009014184A (en) * | 2007-07-09 | 2009-01-22 | Smc Corp | Solenoid valve drive circuit and solenoid valve |
US7903383B2 (en) | 2007-07-09 | 2011-03-08 | Smc Kabushiki Kaisha | Solenoid valve driving circuit and solenoid valve |
JP2011153686A (en) * | 2010-01-28 | 2011-08-11 | Noritz Corp | Method of driving solenoid valve, solenoid valve driving device and combustion device with the same |
JP2012202462A (en) * | 2011-03-25 | 2012-10-22 | Toto Ltd | Solenoid valve control |
WO2020079822A1 (en) * | 2018-10-19 | 2020-04-23 | 日立ジョンソンコントロールズ空調株式会社 | Valve drive device, and, refrigerant cycle device comprising same |
CN109826996A (en) * | 2019-03-28 | 2019-05-31 | 甘逸然 | A kind of low-power consumption electromagnetic valve drive dynamic control device and method |
CN109826996B (en) * | 2019-03-28 | 2020-05-08 | 甘逸然 | Low-power-consumption electromagnetic valve driving control device and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3134724B2 (en) | Valve drive for internal combustion engine | |
JP2002221280A (en) | Drive device for fluid control valve | |
CN109958816B (en) | Control system, electromagnetic valve and control method thereof | |
KR20010032844A (en) | Device for driving solenoid valve | |
US6201681B1 (en) | Control apparatus for electromagnetic actuator | |
JP5249704B2 (en) | Electromagnetic operating mechanism drive circuit | |
JP3424861B2 (en) | Step flow control valve | |
JP2001037238A (en) | Drive device for fluid control valve | |
JP3406373B2 (en) | Step flow control valve | |
JP3148252U (en) | Latch solenoid valve with drive circuit | |
JP2001351814A (en) | Electromagnetic actuator drive circuit | |
JP3794304B2 (en) | Air conditioner | |
JP5895171B2 (en) | Polarized electromagnetic relay | |
JP2003007532A (en) | Engine valve electromagnetic drive | |
JP2003097758A (en) | Solenoid valve control device and air conditioner equipped with solenoid valve control device | |
JP3530370B2 (en) | Method and apparatus for supplying electric power for driving cooling / heating unit | |
JP5717171B2 (en) | Control circuit, solenoid valve, valve selector and fluid transfer device | |
JPH0893956A (en) | Step flow control valve | |
JP2003021433A (en) | Driving device for fluid control valve and air conditioner | |
JP2006097806A (en) | Solenoid valve control device | |
JP2003240150A (en) | Hydraulic device | |
JP2001248752A (en) | Solenoid valve | |
JPH07220598A (en) | Electromagnetic operation switch | |
JP2002364769A (en) | Driving device for fluid control valve and air conditioner | |
JP2000304073A (en) | Low power consumption type nonexciting operative electromagnetic brake or electromagnetic clutch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080401 |