JP2002216800A - Composite polymer electrolyte membrane and method for producing the same - Google Patents
Composite polymer electrolyte membrane and method for producing the sameInfo
- Publication number
- JP2002216800A JP2002216800A JP2001012490A JP2001012490A JP2002216800A JP 2002216800 A JP2002216800 A JP 2002216800A JP 2001012490 A JP2001012490 A JP 2001012490A JP 2001012490 A JP2001012490 A JP 2001012490A JP 2002216800 A JP2002216800 A JP 2002216800A
- Authority
- JP
- Japan
- Prior art keywords
- ion exchange
- exchange capacity
- polymer compound
- sulfonated polymer
- sulfonated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Reinforced Plastic Materials (AREA)
- Conductive Materials (AREA)
- Fuel Cell (AREA)
Abstract
(57)【要約】
【課題】 温度及び湿度の変化によらず十分な発電性能
を有し、かつ耐熱水性、耐酸化性及び耐クリープ性の高
い複合高分子電解質膜及びその製造方法を提供する。
【解決手段】 複合高分子電解質膜は、イオン交換容量
が高いスルホン化高分子化合物からなる母材と、イオン
交換容量が低いスルホン化高分子化合物の繊維状物又は
多孔質膜からなる補強材とを有する。スルホン化高分子
化合物はいずれも非フッ素系スルホン化高分子化合物で
あり、またイオン交換容量が高いスルホン化高分子化合
物とイオン交換容量が低いスルホン化高分子化合物はイ
オン交換容量を除いて同一の骨格構造を有する。イオン
交換容量が低いスルホン化高分子化合物のスルホン酸基
のH+は少なくとも部分的にNa+に置換されている。PROBLEM TO BE SOLVED: To provide a composite polymer electrolyte membrane having sufficient power generation performance regardless of changes in temperature and humidity, and having high hot water resistance, oxidation resistance and creep resistance, and a method for producing the same. . SOLUTION: The composite polymer electrolyte membrane comprises a base material made of a sulfonated polymer compound having a high ion exchange capacity, and a reinforcing material made of a fibrous or porous membrane of a sulfonated polymer compound having a low ion exchange capacity. Having. Each of the sulfonated polymer compounds is a non-fluorinated sulfonated polymer compound, and a sulfonated polymer compound having a high ion exchange capacity and a sulfonated polymer compound having a low ion exchange capacity are the same except for the ion exchange capacity. It has a skeletal structure. H + of the sulfonic acid group of the sulfonated polymer compound having a low ion exchange capacity is at least partially substituted with Na + .
Description
【0001】[0001]
【発明の属する技術分野】本発明は燃料電池等に使用す
る複合高分子電解質膜及びその製造方法に関し、特に繊
維状又は多孔質膜状の低イオン交換容量のスルホン化高
分子化合物により補強した高イオン交換容量のスルホン
化高分子化合物からなる複合高分子電解質膜及びその製
造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite polymer electrolyte membrane used for a fuel cell or the like and a method for producing the same, and more particularly to a high polymer reinforced with a fibrous or porous membrane-like sulfonated polymer compound having a low ion exchange capacity. The present invention relates to a composite polymer electrolyte membrane comprising a sulfonated polymer compound having an ion exchange capacity and a method for producing the same.
【0002】[0002]
【従来の技術】石油資源の枯渇化と地球温暖化等の環境
問題の深刻化により、クリーンな電動機用電力源として
燃料電池が注目され、広範に開発されているとともに、
一部実用化もされている。特に燃料電池を自動車等に搭
載する場合には高分子電解質膜式の燃料電池を使用する
のが好ましいが、高分子電解質膜としてはナフィオンの
ようなスルホン化フッ素系高分子化合物が広く利用され
ている。ところがナフィオンには非常に高価であるとい
う問題がある。また燃料電池の高出力化に応じて、高温
高圧下での運転に耐える耐熱水性、耐酸化性及び耐クリ
ープ性(機械的強度)を有する高分子電解質膜が必要と
なってきており、従来のナフィオンでは必ずしも十分で
はない。2. Description of the Related Art Fuel cells have attracted attention as a power source for clean electric motors due to the depletion of petroleum resources and the seriousness of environmental problems such as global warming.
Some have been put to practical use. In particular, when a fuel cell is mounted on an automobile or the like, it is preferable to use a polymer electrolyte membrane fuel cell, but as the polymer electrolyte membrane, a sulfonated fluorine-based polymer compound such as Nafion is widely used. I have. However, Nafion has a problem that it is very expensive. In addition, as the output of the fuel cell increases, a polymer electrolyte membrane having hot water resistance, oxidation resistance, and creep resistance (mechanical strength) that can withstand operation under high temperature and high pressure is required. Nafion is not always enough.
【0003】そこで高分子電解質膜のイオン交換特性を
劣化させることなく、機械的強度等を向上させる試みが
種々なされている。例えば特開平6-29032号は、延伸高
分子多孔質膜の孔内にイオン交換樹脂を含有させること
により、機械的強度を向上させた高分子電解質膜を提案
している。Therefore, various attempts have been made to improve the mechanical strength and the like without deteriorating the ion exchange characteristics of the polymer electrolyte membrane. For example, JP-A-6-29032 proposes a polymer electrolyte membrane having improved mechanical strength by containing an ion exchange resin in the pores of a stretched polymer porous membrane.
【0004】また特開平8-259710号は、延伸高分子多孔
質膜の孔内にイオン交換樹脂を含有させた構造とするこ
とにより、高分子電解質膜の機械的強度を向上させると
もに、膜抵抗を低減してエネルギー効率を向上させた高
分子電解質膜を提案している。Japanese Patent Application Laid-Open No. 8-259710 discloses a structure in which an ion-exchange resin is contained in the pores of a stretched polymer porous membrane to improve the mechanical strength of the polymer electrolyte membrane and increase the membrane resistance. Has proposed a polymer electrolyte membrane that has reduced energy consumption and improved energy efficiency.
【0005】また特開平2000-231928号は、スルホン酸
基を含有するパーフルオロカーボン重合体からなる高分
子電解質にポリエチレン繊維からなる補強材を添加して
なる高強度でイオン伝導性の高い(膜抵抗の低い)高分
子電解質膜を提案している。Japanese Patent Application Laid-Open No. 2000-231928 discloses a high strength and high ion conductivity (membrane resistance) obtained by adding a reinforcing material made of polyethylene fiber to a polymer electrolyte made of a perfluorocarbon polymer containing a sulfonic acid group. (Low) polymer electrolyte membrane.
【0006】しかしながら、これらの高分子電解質膜に
用いられている多孔質膜又は繊維はポリテトラフルオロ
エチレン(PTFE)やポリエチレン等の化学的に安定なポ
リマーからなり、イオン伝導性が低く温度及び湿度の変
化による膨張、収縮が小さい。これに対して、イオン伝
導性の高いイオン交換樹脂は温度及び湿度の変化による
膨張、収縮が大きい。そのため多孔質膜や繊維から高分
子電解質が剥離してしまうという問題があった。高分子
電解質が剥離すると膜抵抗が増大するので、燃料電池の
発電性能は低下する。However, the porous membranes or fibers used in these polymer electrolyte membranes are made of chemically stable polymers such as polytetrafluoroethylene (PTFE) and polyethylene, and have low ionic conductivity and low temperature and humidity. Expansion and contraction due to changes in On the other hand, ion exchange resins having high ion conductivity have large expansion and contraction due to changes in temperature and humidity. Therefore, there has been a problem that the polymer electrolyte is separated from the porous membrane or the fiber. When the polymer electrolyte peels off, the membrane resistance increases, so that the power generation performance of the fuel cell decreases.
【0007】高分子電解質膜のイオン伝導性を向上させ
るには、高分子電解質のイオン交換容量を高くする必要
があるが、イオン交換容量が高くなると高分子電解質膜
の機械的強度が低下したり、高分子電解質膜がクリープ
しやすくなってしまう。一方イオン交換容量を低下させ
ると十分なイオン伝導性が得られず、燃料電池の発電性
能が低下してしまうという問題が生じる。[0007] In order to improve the ion conductivity of the polymer electrolyte membrane, it is necessary to increase the ion exchange capacity of the polymer electrolyte. However, when the ion exchange capacity is increased, the mechanical strength of the polymer electrolyte membrane may decrease. As a result, the polymer electrolyte membrane tends to creep. On the other hand, if the ion exchange capacity is reduced, sufficient ion conductivity cannot be obtained, and the power generation performance of the fuel cell is reduced.
【0008】[0008]
【発明が解決しようとする課題】従って本発明の目的
は、温度及び湿度の変化によらず十分な発電性能を有
し、かつ高い耐熱水性及び耐酸化性を有するとともに耐
クリープ性等の機械的強度に優れた高分子電解質膜、及
びその製造方法を提供することである。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a sufficient power generation performance irrespective of changes in temperature and humidity, as well as high hot water resistance and oxidation resistance and mechanical properties such as creep resistance. An object of the present invention is to provide a polymer electrolyte membrane having excellent strength and a method for producing the same.
【0009】[0009]
【課題を解決する手段】上記目的に鑑み鋭意研究の結
果、イオン交換容量が高いスルホン化高分子化合物を母
材に用いるととにも、イオン交換容量が低い繊維状又は
多孔質膜状のスルホン化高分子化合物を補強材として添
加することにより、イオン伝導性を低下させることなく
耐熱水性及び耐酸化性を向上させるとともに耐クリープ
性等の機械的強度が優れた高分子電解質膜が得られるこ
とを発見し、本発明に想到した。Means for Solving the Problems In view of the above-mentioned objects, as a result of intensive studies, it has been found that a sulfonated polymer compound having a high ion exchange capacity is used as a base material and a fibrous or porous membrane-like sulfone having a low ion exchange capacity is used. By adding a polymerized polymer compound as a reinforcing material, it is possible to obtain a polymer electrolyte membrane that improves hot water resistance and oxidation resistance without lowering ion conductivity and has excellent mechanical strength such as creep resistance. And found the present invention.
【0010】すなわち、本発明の複合高分子電解質膜
は、イオン交換容量が高いスルホン化高分子化合物から
なる母材と、イオン交換容量が低いスルホン化高分子化
合物の繊維状物又は多孔質膜からなる補強材とを有する
ことを特徴とする。That is, the composite polymer electrolyte membrane of the present invention comprises a base material composed of a sulfonated polymer compound having a high ion exchange capacity and a fibrous or porous membrane of a sulfonated polymer compound having a low ion exchange capacity. And a reinforcing material.
【0011】前記スルホン化高分子化合物はいずれも非
フッ素系スルホン化高分子化合物であるのが好ましい。
またイオン交換容量が高いスルホン化高分子化合物とイ
オン交換容量が低いスルホン化高分子化合物はイオン交
換容量を除いて同一の骨格構造を有するのが好ましい。
両スルホン化高分子化合物はいずれもフェニレン基を含
有するものであるのが好ましく、特にスルホン化ポリエ
ーテルエーテルケトンであるのが好ましい。It is preferable that all the sulfonated polymer compounds are non-fluorinated sulfonated polymer compounds.
The sulfonated polymer compound having a high ion exchange capacity and the sulfonated polymer compound having a low ion exchange capacity preferably have the same skeleton structure except for the ion exchange capacity.
Both sulfonated polymer compounds preferably contain a phenylene group, particularly preferably a sulfonated polyetheretherketone.
【0012】前記イオン交換容量が高いスルホン化高分
子化合物のイオン交換容量は1.0〜2.8 meq/gであるのが
好ましく、前記イオン交換容量が低いスルホン化高分子
化合物のイオン交換容量は0.5〜1.5 meq/gであるのが好
ましい。Preferably, the ion exchange capacity of the sulfonated polymer compound having a high ion exchange capacity is 1.0 to 2.8 meq / g, and the ion exchange capacity of the sulfonated polymer compound having a low ion exchange capacity is 0.5 to 1.5 meq / g. It is preferably meq / g.
【0013】前記イオン交換容量が低いスルホン化高分
子化合物のスルホン酸基のH+は少なくとも部分的にNa+
に置換されているのが好ましい。The sulfonic acid group H + of the sulfonated polymer compound having a low ion exchange capacity is at least partially Na +
Is preferably substituted.
【0014】イオン交換容量が高いスルホン化高分子化
合物からなる母材と、イオン交換容量が低いスルホン化
高分子化合物の繊維状物からなる補強材とを有する複合
高分子電解質膜を製造する本発明の法は、前記イオン交
換容量が低いスルホン化高分子化合物の繊維状物を前記
イオン交換容量が高いスルホン化高分子化合物の溶液に
均一に分散させ、キャスト法により製膜することを特徴
とする。The present invention for producing a composite polymer electrolyte membrane having a matrix composed of a sulfonated polymer compound having a high ion exchange capacity and a reinforcing material composed of a fibrous material of a sulfonated polymer compound having a low ion exchange capacity. The method is characterized in that the fibrous material of the sulfonated polymer compound having a low ion exchange capacity is uniformly dispersed in a solution of the sulfonated polymer compound having a high ion exchange capacity, and a film is formed by a casting method. .
【0015】イオン交換容量が高いスルホン化高分子化
合物からなる母材と、イオン交換容量が低いスルホン化
高分子化合物の多孔質膜からなる補強材とを有する複合
高分子電解質膜を製造する本発明の方法は、前記イオン
交換容量が低いスルホン化高分子化合物の多孔質膜に前
記イオン交換容量が高いスルホン化高分子化合物の溶液
を含浸させることにより製膜することを特徴とする。The present invention for producing a composite polymer electrolyte membrane having a matrix composed of a sulfonated polymer compound having a high ion exchange capacity and a reinforcing material composed of a porous membrane of a sulfonated polymer compound having a low ion exchange capacity. Is characterized in that the porous membrane of the sulfonated polymer compound having a low ion exchange capacity is impregnated with a solution of the sulfonated polymer compound having a high ion exchange capacity to form a membrane.
【0016】前記スルホン化高分子化合物としていずれ
も非フッ素系スルホン化高分子化合物を使用するのが好
ましい。前記イオン交換容量が高いスルホン化高分子化
合物及び前記イオン交換容量が低いスルホン化高分子化
合物を、同一の骨格構造を有する高分子化合物に対して
異なるイオン交換容量でスルホン化することにより得る
のが好ましい。It is preferable to use a non-fluorinated sulfonated polymer compound as the sulfonated polymer compound. The sulfonated polymer compound having a high ion exchange capacity and the sulfonated polymer compound having a low ion exchange capacity can be obtained by sulfonating a polymer compound having the same skeleton structure with a different ion exchange capacity. preferable.
【0017】[0017]
【発明の実施の形態】[1] 複合高分子電解質膜 本発明の複合高分子電解質膜は、イオン交換容量(1g
当たりのイオン交換性基(例えばスルホン酸基)のミリ
当量)が高いスルホン化高分子化合物からなる母材と、
イオン交換容量が低いスルホン化高分子化合物の繊維状
物又は多孔質膜からなる補強材とを有する。DETAILED DESCRIPTION OF THE INVENTION [1] Composite Polymer Electrolyte Membrane The composite polymer electrolyte membrane of the present invention has an ion exchange capacity (1 g).
A base material comprising a sulfonated polymer compound having a high ion-exchange group (for example, a milliequivalent of a sulfonic acid group) per unit;
And a reinforcing material comprising a fibrous material of a sulfonated polymer compound having a low ion exchange capacity or a porous membrane.
【0018】母材及び補強材を構成するスルホン化高分
子化合物は、イオン交換容量を除いて同一の骨格構造を
有するスルホン化高分子化合物からなるのが好ましい。
これにより、母材及び補強材の膨張率がほぼ等しくな
り、母材と補強材の剥離が防げる。The sulfonated polymer compound constituting the base material and the reinforcing material is preferably made of a sulfonated polymer compound having the same skeleton structure except for the ion exchange capacity.
Thereby, the expansion coefficients of the base material and the reinforcing material become substantially equal, and the separation of the base material and the reinforcing material can be prevented.
【0019】イオン伝導性、耐熱水性、耐酸化性及び耐
クリープ性等の機械的強度の要求を満たすとともに、低
コスト化するために、いずれのスルホン化高分子化合物
の骨格を形成する高分子化合物も非フッ素系高分子化合
物であるのが好ましい。母材及び補強材を構成するスル
ホン化高分子化合物は、主鎖にフェニレン基を有するス
ルホン化高分子化合物であるのが好ましく、特にスルホ
ン化ポリエーテルエーテルケトンであるのが好ましい。In order to satisfy the requirements of mechanical strength such as ionic conductivity, hot water resistance, oxidation resistance and creep resistance, and to reduce the cost, a high molecular compound forming a skeleton of any sulfonated high molecular compound is used. Is also preferably a non-fluorinated polymer compound. The sulfonated polymer compound constituting the base material and the reinforcing material is preferably a sulfonated polymer compound having a phenylene group in the main chain, and particularly preferably a sulfonated polyetheretherketone.
【0020】母材の高分子電解質はイオン交換容量が高
く、繊維状物又は多孔質膜の高分子電解質はイオン交換
容量が低い。具体的には、母材の高分子電解質のイオン
交換容量は1.0〜2.8 meq/gであり、繊維状物又は多孔質
膜の高分子電解質のイオン交換容量は0.5〜1.5 meq/gで
あるのが好ましい。The polymer electrolyte of the base material has a high ion exchange capacity, and the polymer electrolyte of a fibrous material or a porous membrane has a low ion exchange capacity. Specifically, the ion exchange capacity of the polymer electrolyte of the base material is 1.0 to 2.8 meq / g, and the ion exchange capacity of the polymer electrolyte of the fibrous material or the porous membrane is 0.5 to 1.5 meq / g. Is preferred.
【0021】母材用高分子電解質のイオン交換容量が1.
0 meq/g未満であると、イオン伝導率が不十分であり、
また2.8 meq/g超であると、耐クリープ性等の機械的強
度が不十分である。一方、繊維状物又は多孔質膜用高分
子電解質のイオン交換容量が0.5 meq/g未満であると、
イオン伝導率及び密着性が不十分であり、また1.5 meq/
g超であると、耐クリープ性が不十分である。The ion exchange capacity of the polymer electrolyte for the base material is 1.
If it is less than 0 meq / g, the ionic conductivity is insufficient,
If it exceeds 2.8 meq / g, the mechanical strength such as creep resistance is insufficient. On the other hand, if the ion exchange capacity of the fibrous material or the polymer electrolyte for a porous membrane is less than 0.5 meq / g,
Insufficient ionic conductivity and adhesion and 1.5 meq /
If it exceeds g, the creep resistance is insufficient.
【0022】母材用高分子電解質のイオン交換容量は繊
維状物又は多孔質膜用高分子電解質のイオン交換容量よ
り少なくとも0.5meq/g大きいのが好ましい。両者の差が
0.5meq/g未満であると、複合化の効果が不十分である。The ion exchange capacity of the polymer electrolyte for the base material is preferably at least 0.5 meq / g larger than the ion exchange capacity of the polymer electrolyte for the fibrous material or the porous membrane. The difference between the two
If it is less than 0.5 meq / g, the effect of compounding is insufficient.
【0023】低イオン交換容量のスルホン化高分子化合
物が繊維状の場合、長繊維でも短繊維でも良く、長繊維
の場合には織布でも不織布でも良い。不織布の場合には
カレンダー加工により繊維間を適当に融着するのが好ま
しい。いずれの場合も、低イオン交換容量のスルホン化
高分子化合物の直径は1〜15μm程度が好ましい。直径
が1μm未満であると補強硬化が不十分であり、また15
μm超であると複合高分子電解質膜のイオン伝導率が低
下する。When the sulfonated polymer compound having a low ion exchange capacity is fibrous, it may be a long fiber or a short fiber, and in the case of a long fiber, it may be a woven fabric or a nonwoven fabric. In the case of a non-woven fabric, it is preferable that the fibers are appropriately fused by calendering. In any case, the diameter of the sulfonated polymer compound having a low ion exchange capacity is preferably about 1 to 15 μm. If the diameter is less than 1 μm, the reinforcement hardening is insufficient, and
If it exceeds μm, the ionic conductivity of the composite polymer electrolyte membrane decreases.
【0024】また多孔質膜の場合、空孔率は50〜80%程
度であるのが好ましく、平均孔径は0.2〜3μm程度であ
るのが好ましい。空孔率及び平均孔径が上記下限値未満
であると複合高分子電解質膜のイオン伝導率が不十分で
あり、また上限値超であると補強硬化が不十分である。
また膜厚は、複合高分子電解質膜の性能を規制するの
で、15〜75μmであるのが好ましい。In the case of a porous membrane, the porosity is preferably about 50 to 80%, and the average pore diameter is preferably about 0.2 to 3 μm. When the porosity and the average pore diameter are less than the above lower limits, the ionic conductivity of the composite polymer electrolyte membrane is insufficient, and when the porosity and the average pore diameter are more than the upper limits, the reinforcing curing is insufficient.
Further, the thickness is preferably 15 to 75 μm because it regulates the performance of the composite polymer electrolyte membrane.
【0025】繊維状物又は多孔質膜を構成する低イオン
交換容量スルホン化高分子化合物のスルホン酸基の少な
くとも一部のH+はNa+に置換されているのが好ましい。
この置換により母材と繊維状物又は多孔質膜との密着性
が向上し、複合高分子電解質膜の膜抵抗が低下する。It is preferable that at least a part of H + of the sulfonic acid group of the low ion exchange capacity sulfonated polymer compound constituting the fibrous material or the porous membrane is substituted with Na + .
This substitution improves the adhesion between the base material and the fibrous material or the porous membrane, and lowers the membrane resistance of the composite polymer electrolyte membrane.
【0026】複合高分子電解質膜における母材と繊維状
物又は多孔質膜との重量比は3:1〜1:3であるのが
好ましい。母材/(繊維状物又は多孔質膜)の重量比が
3:1超であると繊維状物又は多孔質膜による補強効果
が不十分であり、また1:3未満であると複合高分子電
解質膜のイオン伝導率が不十分である。より好ましい母
材/(繊維状物又は多孔質膜)の重量比は2/1〜1/
1.25である。The weight ratio of the matrix and the fibrous or porous membrane in the composite polymer electrolyte membrane is preferably from 3: 1 to 1: 3. When the weight ratio of the base material / (fibrous material or porous film) is more than 3: 1, the reinforcing effect of the fibrous material or porous film is insufficient, and when it is less than 1: 3, the composite polymer is used. The ionic conductivity of the electrolyte membrane is insufficient. A more preferable weight ratio of the base material / (fibrous material or porous membrane) is 2/1 to 1/1.
1.25.
【0027】以上の通り、母材にイオン交換容量の高い
スルホン化高分子化合物を用い、補強材にイオン交換容
量の低いスルホン化高分子化合物の繊維状物又は多孔質
膜を用いることにより、イオン伝導性や耐クリープ性が
高いために、高効率で高耐久性の複合高分子電解質膜が
得られる。なお本発明の複合高分子電解質膜の膜厚は15
〜75μm程度であるのが好ましい。As described above, by using a sulfonated polymer compound having a high ion exchange capacity as the base material and using a fibrous material or a porous membrane of the sulfonated polymer compound having a low ion exchange capacity as the reinforcing material, Because of high conductivity and high creep resistance, a highly efficient and highly durable composite polymer electrolyte membrane can be obtained. The thickness of the composite polymer electrolyte membrane of the present invention is 15
It is preferably about 75 μm.
【0028】[2] 複合高分子電解質膜の製造方法 (A) 繊維状物又は多孔質膜の作製 低イオン交換容量のスルホン化高分子化合物をN-メチル
ピロドリン等の有機溶剤に溶解し、均一溶液とする。こ
の均一溶液から繊維状物又は多孔質膜を作製するには、
繊維の場合には公知の紡糸法を利用すれば良く、また多
孔質膜の場合には均一溶液に所定量の発泡剤を添加して
キャスト法により製膜し、有機溶剤が僅かに残留する状
態で加熱することにより発泡させ、多孔質化する方法を
利用すれば良い。勿論、低イオン交換容量のスルホン化
高分子化合物を繊維状又は多孔質膜状に成形するのは上
記方法に限定されず、任意の公知の方法を採用すること
ができる。[2] Method for Producing Composite Polymer Electrolyte Membrane (A) Preparation of Fibrous Material or Porous Membrane A low ion exchange capacity sulfonated polymer compound is dissolved in an organic solvent such as N-methylpyrroline, Make a homogeneous solution. To make a fibrous or porous membrane from this homogeneous solution,
In the case of fibers, a known spinning method may be used.In the case of a porous film, a predetermined amount of a foaming agent is added to a uniform solution to form a film by a casting method, and a state in which an organic solvent slightly remains. A method may be used in which foaming is performed by heating at a temperature to make the material porous. Of course, the formation of the low ion exchange capacity sulfonated polymer compound into a fibrous or porous membrane is not limited to the above method, and any known method can be adopted.
【0029】繊維状物又は多孔質膜を構成する低イオン
交換容量のスルホン化高分子化合物のスルホン酸基のH+
を少なくとも部分的にNa+に置換するのが好ましい。こ
の置換は、例えば塩化ナトリウム水溶液等のNa+を含む
水溶液に繊維状物又は多孔質膜を浸漬することにより行
うことができる。Na+を含む水溶液の濃度は0.01〜2mol
/l程度であれば良く、また温度は25℃程度で良い。浸漬
時間は、H+のNa+による置換度が5〜50%程度になるよ
うに調節するのが好ましい。H + of the sulfonic acid group of the low ion exchange capacity sulfonated polymer compound constituting the fibrous material or the porous membrane
Is preferably at least partially replaced by Na + . This replacement can be performed, for example, by immersing the fibrous material or the porous membrane in an aqueous solution containing Na + such as an aqueous sodium chloride solution. The concentration of the aqueous solution containing Na + is 0.01 to 2 mol
/ l and the temperature may be about 25 ° C. The immersion time is preferably adjusted so that the degree of substitution of H + by Na + is about 5 to 50%.
【0030】(B) 複合高分子電解質膜の作製 繊維状物を含有する複合高分子電解質膜を製造するに
は、高イオン交換容量のスルホン化高分子化合物の有機
溶剤溶液に繊維状物(低イオン交換容量のスルホン化高
分子化合物)を添加し、平坦な型にキャストし、乾燥す
る。(B) Preparation of Composite Polymer Electrolyte Membrane To prepare a composite polymer electrolyte membrane containing a fibrous material, a fibrous material (low) is added to an organic solvent solution of a sulfonated polymer compound having a high ion exchange capacity. (Ion exchange capacity sulfonated polymer compound) is added, cast into a flat mold, and dried.
【0031】また低イオン交換容量のスルホン化高分子
化合物の多孔質膜を含有する複合高分子電解質膜を製造
するには、高イオン交換容量のスルホン化高分子化合物
の溶液を多孔質膜に含浸させれば良い。In order to produce a composite polymer electrolyte membrane containing a porous membrane of a sulfonated polymer compound having a low ion exchange capacity, a porous membrane is impregnated with a solution of a sulfonated polymer compound having a high ion exchange capacity. You can do it.
【0032】[0032]
【実施例】本発明を以下の実施例によりさらに詳細に説
明するが、本発明はそれらに限定されるものではない。The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.
【0033】実施例1 イオン交換容量が1.5 meq/gの高スルホン化ポリエーテ
ルエーテルケトンとN-メチルピロドリンとを95:5の重
量比で混合し、高分子電解質溶液とした。またイオン交
換容量が1.0 meq/gの低スルホン化ポリエーテルエーテ
ルケトンをN-メチルピロドリンに溶解し、得られた溶液
(共重合体濃度:10重量%)を紡糸することにより、平
均直径5μmの繊維に成形した。なおイオン交換容量
は、酸処理条件(発煙硫酸濃度、浸漬時間)を変えるこ
とにより調節した。次いで25℃の2Nの塩化ナトリウム水
溶液に30分間浸漬し、スルホン酸基のH+をNa+に置換
し、繊維状補強材とした。この高分子電解質溶液に繊維
状補強材を90:10の固形分重量比で均一に混合し、キャ
スト法により乾燥膜厚50μmの複合高分子電解質膜を作
製した。 Example 1 A high-sulfonated polyetheretherketone having an ion exchange capacity of 1.5 meq / g and N-methylpyrroline were mixed at a weight ratio of 95: 5 to prepare a polymer electrolyte solution. Also, low-sulfonated polyetheretherketone having an ion exchange capacity of 1.0 meq / g is dissolved in N-methylpyrroline, and the resulting solution (copolymer concentration: 10% by weight) is spun to obtain an average diameter of 5 μm. Into fibers. The ion exchange capacity was adjusted by changing the acid treatment conditions (concentration of fuming sulfuric acid, immersion time). Then, it was immersed in a 2N aqueous solution of sodium chloride at 25 ° C. for 30 minutes to replace H + of the sulfonic acid group with Na + to obtain a fibrous reinforcing material. A fibrous reinforcing material was uniformly mixed with this polymer electrolyte solution at a solid content weight ratio of 90:10, and a composite polymer electrolyte membrane having a dry film thickness of 50 μm was prepared by a casting method.
【0034】実施例2 イオン交換容量が1.5 meq/gの高スルホン化ポリエーテ
ルエーテルケトンとN-メチルピロドリンとを95:5の重
量比で混合し、高分子電解質溶液とした。またイオン交
換容量が1.0 meq/gの低スルホン化ポリエーテルエーテ
ルケトンに耐酸性の劣る層状珪酸塩等の粒子を混ぜ、キ
ャストした。得られた膜を5Nの塩酸で酸処理することに
より粒子が欠落し、多孔膜が得られた。このようにして
膜厚30μmの多孔質膜に成形した。得られた多孔質膜の
平均孔径は2μmであり、空孔率は65%であった。この
多孔質膜を25℃の2N塩化ナトリウム水溶液に30分浸漬
し、スルホン酸基のH+をNa+に置換し、補強材とした。
この高分子電解質溶液を多孔質膜状の補強材に70:30の
固形分重量比で含浸させ、乾燥膜厚50μmの複合高分子
電解質膜を作製した。 Example 2 A high-sulfonated polyetheretherketone having an ion exchange capacity of 1.5 meq / g and N-methylpyrroline were mixed at a weight ratio of 95: 5 to prepare a polymer electrolyte solution. Further, particles such as layered silicates having poor acid resistance were mixed with low sulfonated polyetheretherketone having an ion exchange capacity of 1.0 meq / g and cast. By subjecting the obtained film to an acid treatment with 5N hydrochloric acid, particles were missing, and a porous film was obtained. Thus, a porous film having a thickness of 30 μm was formed. The average pore diameter of the obtained porous membrane was 2 μm, and the porosity was 65%. This porous membrane was immersed in a 2N aqueous solution of sodium chloride at 25 ° C. for 30 minutes to replace H + of the sulfonic acid group with Na + to obtain a reinforcing material.
This polymer electrolyte solution was impregnated into a porous membrane-like reinforcing material at a solid content weight ratio of 70:30 to prepare a composite polymer electrolyte membrane having a dry film thickness of 50 μm.
【0035】比較例1 特開平8-259710号の実施例1と同様にしてスチレンとジ
ビニルベンゼンの部分共重合体(スチレン:ジビニルベ
ンゼン=20:1)の溶液を作製した。この溶液に直径5
μmのPTFE繊維からなる補強材を均一に混合した。この
高分子電解質溶液にPTFE繊維補強材を90:10の固形分重
量比で添加し、キャスト法により乾燥膜厚50μmの複合
高分子電解質膜を作製した。 Comparative Example 1 A solution of a partial copolymer of styrene and divinylbenzene (styrene: divinylbenzene = 20: 1) was prepared in the same manner as in Example 1 of JP-A-8-259710. The solution has a diameter of 5
A reinforcement made of μm PTFE fiber was uniformly mixed. A PTFE fiber reinforcing material was added to the polymer electrolyte solution at a solid content weight ratio of 90:10, and a composite polymer electrolyte membrane having a dry film thickness of 50 μm was prepared by a casting method.
【0036】比較例2 特開平8-259710号の実施例6と同様にして、PTFE延伸多
孔膜(8cm×8cm、膜厚15μm:空孔率70%)を2枚用
意し、そのうち1枚の中央部に6cm×6cmの窓部を設け
た。窓部を設けたPTFE延伸多孔膜をガラス板(8cm×8
cm)2枚で挟持し、比較例1と同じイオン交換樹脂用原
料の溶液を延伸多孔膜の窓部に注入し(ギャップ幅:55
μm)、この状態で共重合を完了させた。ガラス板を除
去した後、発煙硫酸によりイオン交換樹脂原料をスルホ
ン化した。得られたイオン交換膜のPTFE延伸多孔膜の孔
中には、イオン交換樹脂が保持されていた(イオン交換
膜厚50μm)。 Comparative Example 2 In the same manner as in Example 6 of JP-A-8-259710, two PTFE-stretched porous membranes (8 cm × 8 cm, film thickness 15 μm, porosity 70%) were prepared. A 6 cm × 6 cm window was provided at the center. A PTFE-stretched porous membrane with a window is placed on a glass plate (8 cm × 8
cm), and the same solution of the raw material for ion exchange resin as in Comparative Example 1 was injected into the window of the stretched porous membrane (gap width: 55 cm).
μm), the copolymerization was completed in this state. After removing the glass plate, the ion exchange resin raw material was sulfonated with fuming sulfuric acid. The pores of the porous PTFE stretched membrane of the obtained ion exchange membrane retained the ion exchange resin (ion exchange thickness: 50 μm).
【0037】比較例3 低スルホン化ポリエーテルエーテルケトンの代わりにPT
FEを直径5μmの繊維状補強材に使用した以外実施例1
と同様にして、乾燥膜厚50μmの複合高分子電解質膜を
作製した。COMPARATIVE EXAMPLE 3 Instead of low sulfonated polyetheretherketone, PT
Example 1 except that FE was used for a fibrous reinforcing material having a diameter of 5 μm
In the same manner as described above, a composite polymer electrolyte membrane having a dry film thickness of 50 μm was produced.
【0038】評価 (1) Q値 実施例1及び2と比較例1〜3の高分子電解質膜につい
て、80℃の熱水と20℃の水に10分間ずつ浸漬するサイク
ルを30回繰り返した。その後各高分子電解質膜の両面に
電極を塗布し、0.2 A/cm2の電流を流した時の電位を測
定した。また母材と補強材との密着性の指標となるQ値
を、下記の方法に従って測定した。測定結果を表1に示
す。 Evaluation (1) Q value The cycle of immersing the polymer electrolyte membranes of Examples 1 and 2 and Comparative Examples 1 to 3 in hot water at 80 ° C. and water at 20 ° C. for 10 minutes was repeated 30 times. Thereafter, electrodes were applied to both surfaces of each polymer electrolyte membrane, and the potential when a current of 0.2 A / cm 2 was passed was measured. Further, a Q value as an index of the adhesion between the base material and the reinforcing material was measured according to the following method. Table 1 shows the measurement results.
【0039】Q値の測定は、図1に示す電解質膜−電極
複合体を用いて行う。この電解質膜−電極複合体は、高
分子電解質膜1の片面のみに電極10を有する。電極10
は、触媒層2と拡散層3(下地層4及びカーボンペーパ
ー5)とからなる。高分子電解質膜1の電極10を設けて
いない面はpH1の硫酸水溶液9と接触させ、電極10側は
窒素ガスと接触させる。参照極8を硫酸水溶液9中に、
対照極7を硫酸水溶液9と電極構造体の拡散層3につな
げる。The measurement of the Q value is performed using the electrolyte membrane-electrode complex shown in FIG. This electrolyte membrane-electrode complex has an electrode 10 only on one side of the polymer electrolyte membrane 1. Electrode 10
Consists of a catalyst layer 2 and a diffusion layer 3 (underlayer 4 and carbon paper 5). The surface of the polymer electrolyte membrane 1 where the electrode 10 is not provided is brought into contact with a sulfuric acid aqueous solution 9 having a pH of 1, and the electrode 10 side is brought into contact with nitrogen gas. The reference electrode 8 is placed in an aqueous sulfuric acid solution 9,
The control electrode 7 is connected to the sulfuric acid aqueous solution 9 and the diffusion layer 3 of the electrode structure.
【0040】ポテンショスタッド6により拡散層3と硫
酸水溶液9と間に電圧をかけると、硫酸水溶液9中のプ
ロトンが高分子電解質膜1を透過して電極10に達し、電
子のやり取りを行う。即ち、プロトンが触媒粒子中の白
金表面に着くことにより白金から電子が渡される。逆の
場合は、吸着した水素原子から電子が白金に渡されプロ
トンとして硫酸水溶液中に拡散する。When a voltage is applied between the diffusion layer 3 and the aqueous sulfuric acid solution 9 by the potentiostat 6, protons in the aqueous sulfuric acid solution 9 pass through the polymer electrolyte membrane 1 and reach the electrode 10, where electrons are exchanged. That is, electrons are transferred from platinum when the protons reach the platinum surface in the catalyst particles. In the opposite case, electrons are transferred from the adsorbed hydrogen atoms to platinum and diffuse as protons into the aqueous sulfuric acid solution.
【0041】電圧を−0.1 Vから+0.7 Vまでスキャン
し、プロトンの吸着側のピーク面積からQ値(C/cm2)を
求めることができる。代表的な測定例を図2に示す。図
2に示す放電曲線において、Q値は電極構造体の面積当
たりの電化量を示す。Q値は、電極10と高分子電解質膜
1との密着性の指標とすることができ、その値を0.09〜
0.18 C/cm2とすることにより、優れた電解質膜−電極複
合体が得られることが分かった。The voltage is scanned from -0.1 V to +0.7 V, and the Q value (C / cm 2 ) can be obtained from the peak area on the proton adsorption side. FIG. 2 shows a typical measurement example. In the discharge curve shown in FIG. 2, the Q value indicates the amount of charge per area of the electrode structure. The Q value can be used as an index of the adhesiveness between the electrode 10 and the polymer electrolyte membrane 1, and the value is 0.09 to 0.09.
It was found that an excellent electrolyte membrane-electrode composite can be obtained by adjusting to 0.18 C / cm 2 .
【0042】(2) 機械的強度 各複合高分子電解質膜の引張り強度をJIS K7127に従っ
て測定した。測定結果を表1に示す。(2) Mechanical strength The tensile strength of each composite polymer electrolyte membrane was measured according to JIS K7127. Table 1 shows the measurement results.
【0043】[0043]
【表1】 [Table 1]
【0044】上記測定結果から、本発明の複合高分子電
解質膜は従来の高分子電解質膜に比較して発電電位が向
上しており、また補強材との密着性も高く、機械的強度
も向上していることが分かる。From the above measurement results, the composite polymer electrolyte membrane of the present invention has improved power generation potential, higher adhesion to the reinforcing material, and improved mechanical strength as compared with the conventional polymer electrolyte membrane. You can see that it is doing.
【0045】[0045]
【発明の効果】本発明の複合高分子電解質膜は、高イオ
ン交換容量のスルホン化高分子化合物からなる母材と低
イオン交換容量のスルホン化高分子化合物からなる補強
材とを複合化させてなるので、良好なイオン伝導性を有
するとともに、両者の密着性に優れ、良好な機械的強度
を有する。そのため本発明の複合高分子電解質膜は優れ
た耐熱水性、耐酸化性及び耐クリープ性(耐久性)を有
する。The composite polymer electrolyte membrane of the present invention is obtained by compounding a matrix consisting of a sulfonated polymer compound having a high ion exchange capacity and a reinforcing material consisting of a sulfonated polymer compound having a low ion exchange capacity. As a result, they have good ionic conductivity, are excellent in adhesion between them, and have good mechanical strength. Therefore, the composite polymer electrolyte membrane of the present invention has excellent hot water resistance, oxidation resistance and creep resistance (durability).
【図1】 本発明の電極構造体のQ値を測定する装置を
示す概略断面図である。FIG. 1 is a schematic sectional view showing an apparatus for measuring a Q value of an electrode structure according to the present invention.
【図2】 本発明の電極構造体のQ値を求めるために、
その電流密度を一定の電圧範囲内で測定した結果得られ
た放電曲線を示すグラフである。FIG. 2 In order to determine the Q value of the electrode structure of the present invention,
5 is a graph showing a discharge curve obtained as a result of measuring the current density within a certain voltage range.
1・・・固体高分子電解質膜 2・・・触媒層 3・・・拡散層 4・・・下地層 5・・・カーボンペーパー 6・・・ポテンシオスタット 7・・・対照極 8・・・参照極 9・・・希硫酸水溶液 10・・・電極 DESCRIPTION OF SYMBOLS 1 ... Solid polymer electrolyte membrane 2 ... Catalyst layer 3 ... Diffusion layer 4 ... Underlayer 5 ... Carbon paper 6 ... Potentiostat 7 ... Control electrode 8 ... Reference electrode 9: Dilute sulfuric acid aqueous solution 10: Electrode
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C08L 71:00 C08L 71:00 101:02 101:02 (72)発明者 齋藤 信広 埼玉県和光市中央一丁目4番1号 株式会 社本田技術研究所内 (72)発明者 相馬 浩 埼玉県和光市中央一丁目4番1号 株式会 社本田技術研究所内 (72)発明者 七海 昌昭 埼玉県和光市中央一丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 4F071 AA51 AD01 AD03 AF42 BB02 BC01 FA03 FA11 FB07 FC01 FC04 FC05 FC06 FC11 FD03 4F072 AB05 AB15 AC15 AD46 AD53 AG16 AH04 AH23 AK05 AL12 5G301 CD01 CD10 CE01 5H026 AA06 BB03 BB04 BB08 CX02 CX05 EE18 HH00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // C08L 71:00 C08L 71:00 101: 02 101: 02 (72) Inventor Nobuhiro Saito Wako-shi, Saitama 1-4-1, Chuo, Honda R & D Co., Ltd. (72) Inventor Hiroshi Soma 1-4-1, Chuo, Wako, Saitama, Japan In Honda R & D Co., Ltd. (72) Inventor Masaaki Nanami, Wako, Saitama 1-4-1 Chuo F-term in Honda R & D Co., Ltd. (Reference) 4F071 AA51 AD01 AD03 AF42 BB02 BC01 FA03 FA11 FB07 FC01 FC04 FC05 FC06 FC11 FD03 4F072 AB05 AB15 AC15 AD46 AD53 AG16 AH04 AH23 AK05 AL12 5G301 CD01 CD10 5H026 AA06 BB03 BB04 BB08 CX02 CX05 EE18 HH00
Claims (15)
化合物からなる母材と、イオン交換容量が低いスルホン
化高分子化合物の繊維状物又は多孔質膜からなる補強材
とを有することを特徴とする複合高分子電解質膜。The present invention is characterized in that it has a matrix composed of a sulfonated polymer compound having a high ion exchange capacity and a reinforcing material composed of a fibrous material or a porous membrane of a sulfonated polymer compound having a low ion exchange capacity. Composite polymer electrolyte membrane.
おいて、前記スルホン化高分子化合物はいずれも非フッ
素系スルホン化高分子化合物であることを特徴とする複
合高分子電解質膜。2. The composite polymer electrolyte membrane according to claim 1, wherein each of the sulfonated polymer compounds is a non-fluorinated sulfonated polymer compound.
おいて、前記イオン交換容量が高いスルホン化高分子化
合物と前記イオン交換容量が低いスルホン化高分子化合
物はイオン交換容量を除いて同一の骨格を有することを
特徴とする複合高分子電解質膜。3. The composite polymer electrolyte membrane according to claim 2, wherein the sulfonated polymer compound having a high ion exchange capacity and the sulfonated polymer compound having a low ion exchange capacity are the same except for the ion exchange capacity. A composite polymer electrolyte membrane having a skeleton.
分子電解質膜において、前記イオン交換容量が高いスル
ホン化高分子化合物のイオン交換容量は1.0〜2.8 meq/g
であり、前記イオン交換容量が低いスルホン化高分子化
合物のイオン交換容量は0.5〜1.5 meq/gであることを特
徴とする複合高分子電解質膜。4. The composite polymer electrolyte membrane according to claim 1, wherein the ion exchange capacity of the sulfonated polymer compound having a high ion exchange capacity is 1.0 to 2.8 meq / g.
Wherein the ion exchange capacity of the sulfonated polymer compound having a low ion exchange capacity is 0.5 to 1.5 meq / g.
分子電解質膜において、前記イオン交換容量が低いスル
ホン化高分子化合物のスルホン酸基のH+が少なくとも部
分的にNa+に置換されていることを特徴とする複合高分
子電解質膜。5. The composite polymer electrolyte membrane according to claim 1, wherein H + of the sulfonic acid group of the sulfonated polymer compound having a low ion exchange capacity is at least partially replaced with Na + . A composite polymer electrolyte membrane characterized in that:
分子電解質膜において、前記スルホン化高分子化合物は
いずれもフェニレン基を含有することを特徴とする複合
高分子電解質膜。6. The composite polymer electrolyte membrane according to claim 3, wherein each of the sulfonated polymer compounds contains a phenylene group.
おいて、前記スルホン化高分子化合物はいずれもスルホ
ン化ポリエーテルエーテルケトンであることを特徴とす
る複合高分子電解質膜。7. The composite polymer electrolyte membrane according to claim 6, wherein each of the sulfonated polymer compounds is a sulfonated polyetheretherketone.
化合物からなる母材と、イオン交換容量が低いスルホン
化高分子化合物の繊維状物からなる補強材とを有する複
合高分子電解質膜の製造方法において、前記イオン交換
容量が低いスルホン化高分子化合物の繊維状物を前記イ
オン交換容量が高いスルホン化高分子化合物の溶液に均
一に分散させ、キャスト法により製膜することを特徴と
する方法。8. A method for producing a composite polymer electrolyte membrane comprising a base material comprising a sulfonated polymer compound having a high ion exchange capacity and a reinforcing material comprising a fibrous material of a sulfonated polymer compound having a low ion exchange capacity. 3. The method according to claim 1, wherein the fibrous material of the sulfonated polymer compound having a low ion exchange capacity is uniformly dispersed in a solution of the sulfonated polymer compound having a high ion exchange capacity, and the film is formed by a casting method.
化合物からなる母材と、イオン交換容量が低いスルホン
化高分子化合物の多孔質膜からなる補強材とを有する複
合高分子電解質膜の製造方法において、前記イオン交換
容量が低いスルホン化高分子化合物の多孔質膜に前記イ
オン交換容量が高いスルホン化高分子化合物の溶液を含
浸させることにより製膜することを特徴とする方法。9. A method for producing a composite polymer electrolyte membrane comprising a matrix composed of a sulfonated polymer compound having a high ion exchange capacity and a reinforcing material composed of a porous membrane of a sulfonated polymer compound having a low ion exchange capacity. 3. The method according to claim 1, wherein the porous membrane of the sulfonated polymer compound having a low ion exchange capacity is impregnated with a solution of the sulfonated polymer compound having a high ion exchange capacity.
前記スルホン化高分子化合物としていずれも非フッ素系
スルホン化高分子化合物を使用することを特徴とする方
法。10. The method according to claim 8 or claim 9, wherein
A method comprising using a non-fluorinated sulfonated polymer compound as the sulfonated polymer compound.
オン交換容量が高いスルホン化高分子化合物及び前記イ
オン交換容量が低いスルホン化高分子化合物を同一の骨
格構造を有する高分子化合物に対して異なるイオン交換
容量でスルホン化することにより得ることを特徴とする
方法。11. The method according to claim 10, wherein the sulfonated polymer compound having a high ion exchange capacity and the sulfonated polymer compound having a low ion exchange capacity are reacted with a polymer compound having the same skeleton structure. A process characterized by being obtained by sulfonation with different ion exchange capacities.
オン交換容量が高いスルホン化高分子化合物のイオン交
換容量を1.0〜2.8 meq/gとし、前記イオン交換容量が低
いスルホン化高分子化合物のイオン交換容量を0.5〜1.5
meq/gとすることを特徴とする方法。12. The method according to claim 11, wherein the ion exchange capacity of the sulfonated polymer compound having a high ion exchange capacity is 1.0 to 2.8 meq / g, and the ion exchange capacity of the sulfonated polymer compound having a low ion exchange capacity is not greater than 1.0. 0.5-1.5 ion exchange capacity
A method characterized by meq / g.
おいて、前記イオン交換容量が低いスルホン化高分子化
合物のスルホン酸基のH+を少なくとも部分的にNa+で置
換することを特徴とする方法。13. The method according to claim 8, wherein H + of a sulfonic acid group of the sulfonated polymer compound having a low ion exchange capacity is at least partially substituted with Na +. And how.
おいて、前記スルホン化高分子化合物はいずれもフェニ
レン基を含有することを特徴とする方法。14. The method according to claim 8, wherein each of the sulfonated polymer compounds contains a phenylene group.
おいて、前記スルホン化高分子化合物はいずれもスルホ
ン化ポリエーテルエーテルケトンであることを特徴とす
る複合高分子電解質膜。15. The composite polymer electrolyte membrane according to claim 14, wherein each of the sulfonated polymer compounds is a sulfonated polyetheretherketone.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001012490A JP3442741B2 (en) | 2001-01-19 | 2001-01-19 | Composite polymer electrolyte membrane and method for producing the same |
DE10201691A DE10201691A1 (en) | 2001-01-19 | 2002-01-17 | Polymer electrolyte membrane for electrolyte fuel cell, is obtained by subjecting ion-conductive, aromatic polymer membrane having preset water absorption to hot-water treatment |
US10/050,134 US6926984B2 (en) | 2001-01-19 | 2002-01-18 | Polymer electrolyte membrane, method for producing same, and membrane electrode assembly and polymer electrolyte fuel cell comprising same |
CA2368787A CA2368787C (en) | 2001-01-19 | 2002-01-21 | Polymer electrolyte membrane, membrane electrode assembly and polymer electrolyte fuel cell |
US11/110,696 US20050260475A1 (en) | 2001-01-19 | 2005-04-21 | Polymer electrolyte membrane, method for producing same, and membrane electrode assembly and polymer electrolyte fuel cell comprising same |
US11/110,695 US7749630B2 (en) | 2001-01-19 | 2005-04-21 | Polymer electrolyte membrane and polymer electrolyte fuel cell comprising same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001012490A JP3442741B2 (en) | 2001-01-19 | 2001-01-19 | Composite polymer electrolyte membrane and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002216800A true JP2002216800A (en) | 2002-08-02 |
JP3442741B2 JP3442741B2 (en) | 2003-09-02 |
Family
ID=18879490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001012490A Expired - Fee Related JP3442741B2 (en) | 2001-01-19 | 2001-01-19 | Composite polymer electrolyte membrane and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3442741B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006190627A (en) * | 2005-01-07 | 2006-07-20 | Asahi Kasei Chemicals Corp | Polymer solid electrolyte membrane with reinforcing material |
CN1324741C (en) * | 2005-04-14 | 2007-07-04 | 湖北大学 | Method for preparing humidifying-free proton exchange membrane for fuel battery |
WO2008041667A1 (en) * | 2006-10-02 | 2008-04-10 | Hitachi, Ltd. | Electrolyte membrane for fuel cell, membrane electrode assembly and fuel cell |
KR100833056B1 (en) * | 2006-03-31 | 2008-05-27 | 주식회사 엘지화학 | Reinforced-composite electrolyte membrane for fuel cell |
WO2013051189A1 (en) * | 2011-10-07 | 2013-04-11 | パナソニック株式会社 | Electrolyte membrane for solid polymer-type fuel cell, method for producing same, and solid polymer-type fuel cell |
JP2014506270A (en) * | 2011-03-31 | 2014-03-13 | コーロン インダストリーズ インク | POLYMER ELECTROLYTE AND METHOD FOR PRODUCING THE SAME |
JP2016539452A (en) * | 2013-09-30 | 2016-12-15 | コーロン インダストリーズ インク | POLYMER ELECTROLYTE MEMBRANE, MANUFACTURING METHOD THEREOF, AND MEMBRANE-ELECTRODE ASSEMBLY CONTAINING THE SAME |
WO2021157639A1 (en) * | 2020-02-06 | 2021-08-12 | Agc株式会社 | Ion exchange membrane with catalyst layer, ion exchange membrane, and electrolytic hydrogenation device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0900249B1 (en) | 1996-04-30 | 2003-10-22 | W.L. Gore & Associates, Inc. | Integral multi-layered ion-exchange composite membranes |
DE19754305A1 (en) | 1997-12-08 | 1999-06-10 | Hoechst Ag | Process for producing a membrane for operating fuel cells and electrolysers |
JP2001294706A (en) | 2000-04-12 | 2001-10-23 | Nitto Denko Corp | Porous proton-conductive membrane and proton- conductive film obtained therefrom |
-
2001
- 2001-01-19 JP JP2001012490A patent/JP3442741B2/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006190627A (en) * | 2005-01-07 | 2006-07-20 | Asahi Kasei Chemicals Corp | Polymer solid electrolyte membrane with reinforcing material |
CN1324741C (en) * | 2005-04-14 | 2007-07-04 | 湖北大学 | Method for preparing humidifying-free proton exchange membrane for fuel battery |
KR100833056B1 (en) * | 2006-03-31 | 2008-05-27 | 주식회사 엘지화학 | Reinforced-composite electrolyte membrane for fuel cell |
US9054357B2 (en) | 2006-03-31 | 2015-06-09 | Lg Chem, Ltd. | Reinforced composite electrolyte membrane for fuel cell |
WO2008041667A1 (en) * | 2006-10-02 | 2008-04-10 | Hitachi, Ltd. | Electrolyte membrane for fuel cell, membrane electrode assembly and fuel cell |
JP2014506270A (en) * | 2011-03-31 | 2014-03-13 | コーロン インダストリーズ インク | POLYMER ELECTROLYTE AND METHOD FOR PRODUCING THE SAME |
US9240607B2 (en) | 2011-03-31 | 2016-01-19 | Kolon Industries, Inc. | Polymer electrolyte and preparation method thereof |
US9553325B2 (en) | 2011-03-31 | 2017-01-24 | Kolon Industries, Inc. | Polymer electrolyte and preparation method thereof |
JP5362144B2 (en) * | 2011-10-07 | 2013-12-11 | パナソニック株式会社 | ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL, METHOD FOR PRODUCING THE SAME, AND SOLID POLYMER FUEL CELL |
WO2013051189A1 (en) * | 2011-10-07 | 2013-04-11 | パナソニック株式会社 | Electrolyte membrane for solid polymer-type fuel cell, method for producing same, and solid polymer-type fuel cell |
US9368822B2 (en) | 2011-10-07 | 2016-06-14 | Panasonic Intellectual Property Management Co., Ltd. | Electrolyte membrane for solid polymer-type fuel cell, method for producing same, and solid polymer-type fuel cell |
JP2016539452A (en) * | 2013-09-30 | 2016-12-15 | コーロン インダストリーズ インク | POLYMER ELECTROLYTE MEMBRANE, MANUFACTURING METHOD THEREOF, AND MEMBRANE-ELECTRODE ASSEMBLY CONTAINING THE SAME |
WO2021157639A1 (en) * | 2020-02-06 | 2021-08-12 | Agc株式会社 | Ion exchange membrane with catalyst layer, ion exchange membrane, and electrolytic hydrogenation device |
JP7619284B2 (en) | 2020-02-06 | 2025-01-22 | Agc株式会社 | Ion exchange membrane with catalyst layer, ion exchange membrane and electrolytic hydrogenation device |
Also Published As
Publication number | Publication date |
---|---|
JP3442741B2 (en) | 2003-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2368787C (en) | Polymer electrolyte membrane, membrane electrode assembly and polymer electrolyte fuel cell | |
Jiang et al. | Insights into the impact of the nafion membrane pretreatment process on vanadium flow battery performance | |
Luo et al. | Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery | |
US20220352534A1 (en) | Bipolar ionomer membrane | |
Sun et al. | A comparative study of Nafion and sulfonated poly (ether ether ketone) membrane performance for iron-chromium redox flow battery | |
US6444343B1 (en) | Polymer electrolyte membranes for use in fuel cells | |
KR100833056B1 (en) | Reinforced-composite electrolyte membrane for fuel cell | |
Venkatesan et al. | Characterization and performance study of phase inversed Sulfonated Poly Ether Ether Ketone–Silico tungstic composite membrane as an electrolyte for microbial fuel cell applications | |
JP2003203648A (en) | Solid polymer electrolyte composite membrane, membrane / electrode assembly, and polymer electrolyte fuel cell using the same | |
CN112717731B (en) | Ion conductive film and preparation method thereof | |
JP3442741B2 (en) | Composite polymer electrolyte membrane and method for producing the same | |
Munakata et al. | Properties of composite proton-conducting membranes prepared from three-dimensionally ordered macroporous polyimide matrix and polyelectrolyte | |
JP4062755B2 (en) | Method for producing solid polymer electrolyte membrane | |
García-Limón et al. | Preparation and characterization of PVDF/PES/NAFION® 117 membranes with potential application in vanadium flow batteries | |
JP2002317058A (en) | Membrane | |
JP2003297393A (en) | Electrolyte membrane for solid polymer fuel cell and membrane electrode assembly | |
JP2004235051A (en) | Polymer solid electrolyte and polymer electrolyte fuel cell using the same | |
Choudhury et al. | Studies on composite proton exchange membranes made from poly (vinyl alcohol-co-styrenesulfonic acid)/non-woven fabric for direct methanol fuel cell | |
JP2003526184A (en) | Method for producing electrode-membrane assembly, method for producing electrode-membrane-electrode assembly, assembly obtained in the manner described above, and fuel cell device provided with these assemblies | |
Cheng et al. | A robust composite proton exchange membrane of sulfonated poly (fluorenyl ether ketone) with an electrospun polyimide mat for direct methanol fuel cells application. Polymers. 2021; 13 (4): 523 | |
KR102811032B1 (en) | Preparation method of perfluorinated ionomer memebrane having highly ordered ion channel and uses thereof | |
KR100967627B1 (en) | Manufacturing Method of Polymer Electrolyte Composite Membrane for Fuel Cell | |
JP2011113671A (en) | Polymer electrolyte membrane, its manufacturing method, and direct methanol type fuel cell | |
Wu | Dually Crosslinked Composite Membrane as Cation Conducting Solid Electrolyte for Electrochemical Energy Conversion and Storage System | |
CN114583200A (en) | A high-performance ultra-thin porous membrane for flow battery and its preparation and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R150 | Certificate of patent or registration of utility model |
Ref document number: 3442741 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080620 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080620 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090620 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090620 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100620 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140620 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |