JP2002205152A - Method for producing continuously cast product - Google Patents
Method for producing continuously cast productInfo
- Publication number
- JP2002205152A JP2002205152A JP2001002889A JP2001002889A JP2002205152A JP 2002205152 A JP2002205152 A JP 2002205152A JP 2001002889 A JP2001002889 A JP 2001002889A JP 2001002889 A JP2001002889 A JP 2001002889A JP 2002205152 A JP2002205152 A JP 2002205152A
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- consumable electrode
- slab
- alloy
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 119
- 239000010959 steel Substances 0.000 claims abstract description 119
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 96
- 239000000956 alloy Substances 0.000 claims abstract description 96
- 230000004907 flux Effects 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 34
- 238000009749 continuous casting Methods 0.000 claims abstract description 24
- 239000002344 surface layer Substances 0.000 claims description 32
- 238000005266 casting Methods 0.000 claims description 21
- 239000010410 layer Substances 0.000 claims description 21
- 238000002844 melting Methods 0.000 claims description 11
- 230000008018 melting Effects 0.000 claims description 11
- 230000003068 static effect Effects 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 238000010891 electric arc Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 abstract description 23
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 15
- 238000003756 stirring Methods 0.000 description 13
- 238000005275 alloying Methods 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 239000007772 electrode material Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000010955 niobium Substances 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910014455 Ca-Cb Inorganic materials 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910000914 Mn alloy Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910001096 P alloy Inorganic materials 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 description 1
- XWHPIFXRKKHEKR-UHFFFAOYSA-N iron silicon Chemical compound [Si].[Fe] XWHPIFXRKKHEKR-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- DPTATFGPDCLUTF-UHFFFAOYSA-N phosphanylidyneiron Chemical compound [Fe]#P DPTATFGPDCLUTF-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】鋼の連続鋳造において、鋳型
内の溶鋼に金属または化合物等を添加して種々の合金成
分組成の連続鋳造品を製造する方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a continuous cast product having various alloy component compositions by adding a metal or a compound to molten steel in a mold in continuous casting of steel.
【0002】[0002]
【従来の技術】鉄鋼製造プロセスにおいて多種多様な合
金成分組成の鋼鋳片を作り分けるには、溶鋼鍋毎に合金
成分濃度を調整して連続鋳造する方法が一般的となって
いる。しかしながら、こうした方法では同一組成の鋼を
少なくとも溶鋼鍋一杯分製造せざるを得ず、例えば数十
トンの注文に対して容量が数百トンもの溶鋼鍋を使用す
る場合、多量の在庫を抱えたり注文がまとまるまで長い
納期を設定せざるを得ないなど少量多鋼種の製造には応
じ難い状況となっており、鋳片製造の一連の工程の中
で、種々の合金成分組成の鋳片を作り分ける方法が模索
されている。2. Description of the Related Art In a steelmaking process, in order to separately produce steel slabs having various alloy component compositions, a method of continuously casting by adjusting the alloy component concentration for each molten steel ladle has been generally used. However, in such a method, the steel of the same composition must be manufactured at least for one full ladle.For example, when a molten steel ladle having a capacity of several hundred tons is used for an order of several tens of tons, a large amount of stock is required. It is difficult to manufacture small quantities of many types of steel, for example, it is necessary to set a long delivery time until the order is completed.In a series of slab production, slabs of various alloy component compositions are produced. A way to separate is being sought.
【0003】このような課題に対し、連続鋳造にて合金
成分を添加することで鍋一杯分の溶鋼から種々の合金成
分組成の鋳片を製造する方法が提案されつつある。[0003] In order to solve such a problem, there has been proposed a method of producing slabs of various alloying component compositions from a full pot of molten steel by adding alloying components by continuous casting.
【0004】例えば特開平8−243687号には、図
1(a)に示すように1台の鋳型に合金成分組成の異な
る2種の溶鋼を注入する方法が提案されている。しかし
ながらこの方法で目的の合金成分組成の鋳片を製造する
には、鋳型に注入する2種類の溶鋼の比率を厳密に制御
する必要がある。即ち1種類の溶鋼であれば、鋳片の引
抜き速度と鋳型内の溶鋼湯面レベルを制御して注入流量
を厳密に測定することが可能であるが、この様に2種以
上の溶鋼を注入する場合には、溶鋼注入量を別々に測定
するのが困難であるため、目的の合金成分組成とするの
が難しいという問題がある。また、既存の連続鋳造設備
に対して大幅な設備変更が必要となり、新設する場合の
設備コストが大きいという問題もある。For example, Japanese Patent Application Laid-Open No. Hei 8-243687 proposes a method of injecting two types of molten steel having different alloy component compositions into a single mold as shown in FIG. However, in order to produce a slab having the desired alloy composition by this method, it is necessary to strictly control the ratio of the two types of molten steel to be injected into the mold. In other words, if one type of molten steel is used, it is possible to precisely measure the injection flow rate by controlling the slab drawing speed and the molten steel level in the mold. In such a case, it is difficult to separately measure the injection amount of molten steel, so that there is a problem that it is difficult to obtain a target alloy component composition. In addition, there is a problem that a large equipment change is required for the existing continuous casting equipment, and the equipment cost when a new one is installed is large.
【0005】上記公報には、図1(b)に示されるよう
な合金成分をフラックスに含有させて鋳型内の溶鋼湯面
上に添加する方法も提案されている。しかしながら、操
業に適したフラックスにはその成分組成範囲に制約があ
り、フラックスに添加できる合金成分も制限されるた
め、得られる鋳片の種類も限られることとなる。The above publication also proposes a method in which an alloy component as shown in FIG. 1 (b) is contained in a flux and added to a molten steel surface in a mold. However, the flux suitable for the operation is restricted in the range of its component composition, and the alloy components that can be added to the flux are also limited, so that the types of slabs obtained are also limited.
【0006】更に図1(c)に示されるように、合金元
素を含有するワイヤーを鋳型内の溶鋼中に直接供給する
方法も提案されている。しかしながらこの方法では、合
金添加量が溶鋼中のワイヤー溶解速度に左右されるため
その制御が難しいことや、溶鋼中でワイヤーが溶け残っ
たままとなり濃度ムラが生じ易い等の問題が生じる。ま
たワイヤーの溶融熱源を溶鋼に頼っているため、溶鋼の
熱量が部分的に奪われて凝固するなどして品質欠陥を招
き易い。Further, as shown in FIG. 1C, there has been proposed a method of directly supplying a wire containing an alloy element into molten steel in a mold. However, in this method, there are problems such as difficulties in controlling the alloy addition amount because it depends on the wire melting rate in the molten steel, and concentration unevenness due to the remaining molten wire in the molten steel. Further, since the heat source for melting the wire depends on the molten steel, the heat quantity of the molten steel is partially taken away and solidified to easily cause quality defects.
【0007】一方、特許第3020127号には、タン
ディッシュ内の溶鋼中にワイヤー形状の金属を添加する
際に、予めワイヤーに電流を通して加熱することで溶鋼
から抜熱される熱量を小さくし、溶鋼の局部冷却を防止
する方法が提案されている。On the other hand, Japanese Patent No. 3012727 discloses that when adding a metal in the form of a wire to molten steel in a tundish, the amount of heat extracted from the molten steel is reduced by applying a current to the wire in advance and heating the wire. Methods have been proposed to prevent local cooling.
【0008】しかしながら、上記方法ではワイヤーを室
温から溶融温度にまで加熱しているにすぎず、依然とし
てワイヤーの溶融は溶鋼の熱量に頼らざるを得ないた
め、溶鋼から熱量が奪われて溶鋼の局部冷却は避けられ
ないという状況にある。また、上記方法ではワイヤー溶
解のための熱量を調整することができないため、合金添
加量を調整することができず、得られる鋳片の合金成分
組成も制限を受けることとなる。更にワイヤーを溶鋼中
に直接添加しているため、前述したようにワイヤーが溶
け残って鋳片中に合金成分のムラが生じ易いという問題
がある。加えて上記方法では、消耗電極以外の電極を高
温の溶鋼に直接差し込んでいるため、該電極の耐久性が
必然的に低下することや、電極材が溶鋼の汚染源となり
やすいため、例えば極低炭素鋼を鋳造する場合にカーボ
ン電極を用いた場合に溶鋼中のC濃度が高くなってしま
うという問題が生じる。However, in the above method, the wire is merely heated from room temperature to the melting temperature, and the melting of the wire still depends on the calorific value of the molten steel. Cooling is inevitable. Further, in the above method, the amount of heat for melting the wire cannot be adjusted, so that the amount of the alloy added cannot be adjusted, and the composition of the alloy component of the obtained slab is also limited. Further, since the wire is directly added to the molten steel, there is a problem that the wire is left undissolved and the alloy component is likely to be uneven in the slab as described above. In addition, in the above method, electrodes other than the consumable electrode are directly inserted into the high-temperature molten steel, so that the durability of the electrodes is inevitably reduced, and the electrode material tends to become a contamination source of the molten steel. When carbon steel is used in casting steel, there is a problem that the C concentration in molten steel increases.
【0009】[0009]
【発明が解決しようとする課題】本発明は上記事情に鑑
みてなされたものであって、その目的は、連続鋳造にて
多種多様な合金成分組成の鋳片を安定して製造すること
のできる連続鋳造品の有用な製造方法を提供することに
ある。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to make it possible to stably produce slabs of various alloy component compositions by continuous casting. An object of the present invention is to provide a useful method for producing a continuous casting.
【0010】[0010]
【課題を解決するための手段】本発明に係る連続鋳造品
の製造方法とは、連鋳鋳型内の溶鋼表面に形成したフラ
ックス層に消耗電極を差し込み、該消耗電極の先端をフ
ラックス層中での通電により溶融させて溶鋼中に添加す
ることを要旨とするものであり、前記消耗電極の溶融
は、該消耗電極の先端と溶鋼の間のアーク放電、または
抵抗加熱によって行うことを好ましいとする。The method of manufacturing a continuous cast product according to the present invention comprises inserting a consumable electrode into a flux layer formed on the surface of molten steel in a continuous casting mold, and placing the tip of the consumable electrode in the flux layer. The melting point of the consumable electrode is preferably performed by arc discharge between the tip of the consumable electrode and the molten steel, or resistance heating. .
【0011】また複数の前記消耗電極を前記フラックス
層中に供給して該消耗電極間にて通電させ、前記通電は
銅製端子を介して行うことを好ましい形態とする。In a preferred embodiment, a plurality of the consumable electrodes are supplied into the flux layer to supply a current between the consumable electrodes, and the current is supplied through a copper terminal.
【0012】合金成分の濃度勾配を軽減するには、溶鋼
に周波数1〜100Hz、磁束密度0.01〜0.2T
の移動磁場を作用させればよい。また鋳片の表層部と内
部の間に合金成分の濃度勾配を形成するには、消耗電極
を鋳型の壁面近傍に差し込み、溶鋼に磁束密度0.05
〜5Tの静磁場を作用させればよく、上記電極として鋳
型への注入溶鋼よりも合金元素濃度の高い消耗電極を用
いて、鋳片内部よりも合金元素濃度の高い鋳片表層を形
成したり、鋳型への注入溶鋼よりも合金元素濃度の低い
消耗電極を用いて、鋳片内部よりも合金元素濃度の低い
鋳片表層を形成することができる。In order to reduce the concentration gradient of the alloy components, the molten steel is applied with a frequency of 1 to 100 Hz and a magnetic flux density of 0.01 to 0.2 T
May be applied. In order to form a concentration gradient of the alloy component between the surface layer and the inside of the slab, a consumable electrode is inserted near the wall surface of the mold, and a magnetic flux density of 0.05 is applied to the molten steel.
A static magnetic field of up to 5 T may be applied, and a consumable electrode having a higher alloy element concentration than the molten steel injected into the mold is used as the electrode to form a slab surface layer having a higher alloy element concentration than the inside of the slab. By using a consumable electrode having a lower alloying element concentration than the molten steel injected into the mold, a slab surface layer having an alloying element concentration lower than the inside of the slab can be formed.
【0013】更に本発明は、表層部の合金元素濃度が内
部よりも高いかまたは低い連続鋳造品も含むものとす
る。Further, the present invention includes a continuous cast product in which the alloying element concentration in the surface layer is higher or lower than that in the inside.
【0014】[0014]
【発明の実施の形態】本発明者らは前述した様な状況の
下で、連続鋳造の鋳型内で溶鋼に合金成分や純鉄、また
はその他の化合物等を添加することで、連続鋳造にて種
々の合金成分組成の鋳片を安定して製造できる方法の実
現を目指し、鋭意研究を進めた。その結果、合金成分を
消耗電極の形態で溶鋼に添加する際に、連鋳鋳型内の溶
鋼表面に形成したフラックス層に該消耗電極を差し込
み、フラックス層中での通電により溶融させて溶鋼中に
添加すれば、鋳片に不必要なムラを生じさせることなく
添加合金元素量を正確に調整して、多種多様な合金成分
組成の鋳片を連続鋳造にて製造できることを見出したの
である。BEST MODE FOR CARRYING OUT THE INVENTION Under the above-described circumstances, the present inventors add alloying components, pure iron, or other compounds to molten steel in a continuous casting mold, thereby making continuous casting possible. We have conducted intensive research with the aim of realizing a method for stably producing slabs of various alloy component compositions. As a result, when the alloy component is added to the molten steel in the form of a consumable electrode, the consumable electrode is inserted into a flux layer formed on the surface of the molten steel in the continuous casting mold, and is melted by energization in the flux layer to be introduced into the molten steel. It has been found that if added, slabs having a variety of alloy component compositions can be manufactured by continuous casting by accurately adjusting the amount of the added alloy element without causing unnecessary unevenness in the slab.
【0015】本発明は、図2に示すように、連鋳鋳型1
内の溶鋼2表面に形成したフラックス層3に消耗電極4
を差し込み、該消耗電極4の先端をフラックス層3中で
の通電により溶融させて溶鋼中に添加することを特徴と
するものである。即ち本発明では、消耗電極4を溶鋼2
中に浸漬するのではなく、消耗電極4の先端を溶鋼湯面
上のフラックス層3中に保持しながら通電を行う。この
様な形態で消耗電極に通電することによって、消耗電極
4の先端と溶鋼湯面の間に大きな電圧差を設けてアーク
放電5を生じさせることができるので、消耗電極溶融の
ための十分な熱量を得ることができる。更に電気抵抗率
の大きい酸化物等から形成されているフラックス層中で
抵抗加熱効果も得られるので、より大きな発熱効果を得
ることができる。The present invention, as shown in FIG.
The consumable electrode 4 is applied to the flux layer 3 formed on the surface of the molten steel 2
And the tip of the consumable electrode 4 is melted by energization in the flux layer 3 and added to the molten steel. That is, in the present invention, the consumable electrode 4 is
Rather than being immersed in the electrode, current is supplied while the tip of the consumable electrode 4 is held in the flux layer 3 on the surface of the molten steel. By supplying a current to the consumable electrode in this manner, a large voltage difference can be provided between the tip of the consumable electrode 4 and the surface of the molten steel, and an arc discharge 5 can be generated. The amount of heat can be obtained. Further, since a resistance heating effect can be obtained in a flux layer formed of an oxide or the like having a large electric resistivity, a larger heat generation effect can be obtained.
【0016】この様に大きな発熱効果が得られることに
よって、消耗電極を室温から溶融温度まで昇温するのに
必要な熱量と、溶解するのに必要な熱量の両方を電気エ
ネルギーとして供給することができ、消耗電極を溶鋼に
浸漬して溶融するのに比べて、消耗電極の溶融能力、即
ち合金成分添加能力を飛躍的に向上させることができる
のである。この様に、本発明法では消耗電極溶融のため
の熱源を溶鋼に頼らないため、溶鋼温度を変化させるこ
となく安定した操業を行うことができる。また上記通電
量を制御することで、消耗電極の溶融量、即ち合金等の
添加量を正確に調整することができるのである。By obtaining such a large heat generation effect, it is possible to supply both the amount of heat required to raise the temperature of the consumable electrode from room temperature to the melting temperature and the amount of heat required to melt it as electric energy. As a result, the melting ability of the consumable electrode, that is, the ability to add alloy components, can be dramatically improved as compared with the case where the consumable electrode is immersed in molten steel and melted. As described above, in the method of the present invention, the heat source for melting the consumable electrode does not depend on molten steel, so that stable operation can be performed without changing the molten steel temperature. Further, by controlling the amount of current, the amount of melting of the consumable electrode, that is, the amount of addition of an alloy or the like can be accurately adjusted.
【0017】前記フラックス層の厚さが薄過ぎると、メ
ニスカス保温性の確保や、溶鋼湯面からの酸化防止を十
分に図ることができなくなる。従って、フラックス層の
厚さは10mm以上とするのが好ましい。If the thickness of the flux layer is too small, it is not possible to ensure the meniscus heat retention and sufficiently prevent oxidation from the molten steel surface. Therefore, the thickness of the flux layer is preferably set to 10 mm or more.
【0018】尚、上記消耗電極には、製造する鋳片の合
金成分組成に応じて種々の材質のものを用いることがで
き、例えば鉄−シリコン合金、鉄−マンガン合金、鉄−
燐合金、ニッケル、クロム、モリブデン、銅、ニオブ、
チタン、ジルコニウム等が用いられ、更にこれらにアル
ミニウム、鉛、希土類元素、ホウ素、硫黄等を添加した
ものを用いることができる。また合金成分濃度の低い層
を得るには、純鉄を消耗電極として利用すればよい。消
耗電極の形状にはワイヤー、薄帯状、棒状等のものが挙
げられる。The consumable electrode may be made of various materials depending on the alloy composition of the cast slab to be produced. For example, iron-silicon alloy, iron-manganese alloy, iron-
Phosphorus alloy, nickel, chromium, molybdenum, copper, niobium,
Titanium, zirconium and the like are used, and those further added with aluminum, lead, rare earth element, boron, sulfur and the like can be used. In order to obtain a layer having a low alloy component concentration, pure iron may be used as a consumable electrode. Examples of the shape of the consumable electrode include a wire, a ribbon, and a rod.
【0019】本発明を実施するに当たっては、1本の消
耗電極を用いて溶鋼に合金を添加することも可能である
が、消耗電極が1本の場合には、電気回路形成のために
別の電極を溶鋼に浸漬させることが必要になる。そうす
ると、該電極の耐久性や電極材による溶鋼の汚染が問題
となり、例えば別の電極としてカーボン電極を使用した
ときには、材質のカーボンが溶鋼に溶損し易いため安定
して長く使用することが難しい。また溶損したカーボン
が溶鋼中に溶出することで、例えば炭素濃度0.005
%以下の極低炭素鋼を鋳造するときに炭素濃度を必要以
上に高めてしまうこととなる。In carrying out the present invention, it is possible to add an alloy to molten steel by using one consumable electrode. However, when one consumable electrode is used, another alloy is used for forming an electric circuit. It is necessary to immerse the electrode in molten steel. Then, the durability of the electrode and the contamination of the molten steel by the electrode material become a problem. For example, when a carbon electrode is used as another electrode, it is difficult to use the carbon material stably for a long time because carbon of the material easily melts into the molten steel. Further, the dissolved carbon is eluted into the molten steel, so that, for example, the carbon concentration is 0.005.
% Or less, the carbon concentration is unnecessarily increased when casting ultra-low carbon steel of less than 10%.
【0020】従って、差し込む消耗電極を複数本にする
ことが望ましい。複数本の消耗電極を用いることで合金
元素添加用以外の電極を用いる必要がなくなり、電極の
耐久性や電極材による溶鋼の汚染を防止することができ
る他、合金元素のトータル添加量も増加させることがで
きるのである。Therefore, it is desirable to insert a plurality of consumable electrodes. By using a plurality of consumable electrodes, it is not necessary to use an electrode other than for adding an alloy element, which can prevent the durability of the electrode and the contamination of molten steel by the electrode material, and also increases the total amount of the alloy element added. You can do it.
【0021】通電には直流電流を用いることも可能であ
るが、電極間の電圧のバラツキを低減させるには、単相
または多相の交流電流を用いることが望ましい。また消
耗電極と端子の間の電気抵抗を低減して確実に通電する
には、前記図2に示すような銅製端子6を介して消耗電
極に給電することが望ましく、消耗電極の表面に銅鍍金
を施してもよい。Although a direct current can be used for energization, it is desirable to use a single-phase or multi-phase alternating current in order to reduce the variation in voltage between the electrodes. Further, in order to reduce the electric resistance between the consumable electrode and the terminal and to supply electricity reliably, it is desirable to supply power to the consumable electrode via the copper terminal 6 as shown in FIG. May be applied.
【0022】交流電流を通電する場合、i=2n(nは
整数)本の消耗電極に単相交流電流を通電してもよい
し、またi=3n(nは整数)本の消耗電極に3相交流
電流を通電してもよい。When applying an alternating current, a single-phase alternating current may be applied to i = 2n (n is an integer) consumable electrodes, or 3 = 3n (n is an integer) consumable electrodes. A phase alternating current may be supplied.
【0023】消耗電極1本当たりに通電する電流値は、
電極材料や電極断面積にもよるが、200〜2000A
とすることが望ましい。電流値が低すぎると合金成分添
加能力を確保するのに多数の電極を要して設備が複雑に
なり、逆に電流値が高すぎると合金成分を均一に混合す
ることが困難となるからである。The value of the current flowing per consumable electrode is:
200 to 2000 A, depending on the electrode material and electrode cross-sectional area
It is desirable that If the current value is too low, a large number of electrodes are required to secure the alloying component addition capability, and the equipment becomes complicated, and if the current value is too high, it becomes difficult to uniformly mix the alloying components. is there.
【0024】図3は、鋳造速度1.8m/minの条件
で幅1500mmのスラブを鋳造する際に、鋳型壁面か
ら内部に約120mmの位置に電極を各々2本、4本、
8本差し込んで表層部に集中的に合金成分(Ni)を添
加しながら、鋳型内湯面から深さ500〜700mmの
領域に0.3Tの静磁場を作用させた場合の、電極1本
当たりの電流値と鋳片表層部のNi濃度の関係を電極数
別に示したグラフである。この図から明らかなように、
電流値を高め且つ電極数を増加させることで合金添加能
力を飛躍的に高めることができることが分かる。FIG. 3 shows that when a slab having a width of 1500 mm is cast under a condition of a casting speed of 1.8 m / min, two and four electrodes are respectively placed at a position of about 120 mm inside the mold wall.
When a static magnetic field of 0.3 T is applied to a region having a depth of 500 to 700 mm from the surface of the molten metal in the mold while the alloy component (Ni) is intensively added to the surface layer portion by inserting eight of them, a per-electrode per electrode It is the graph which showed the relationship between the current value and the Ni concentration of the slab surface layer part according to the number of electrodes. As is clear from this figure,
It can be seen that increasing the current value and increasing the number of electrodes can dramatically increase the alloy addition capacity.
【0025】注入される溶鋼の湯面レベルが変化し、且
つ消耗電極の先端が溶融していく状況において、消耗電
極の先端が溶鋼湯面に浸漬しないようにするには、消耗
電極の先端と溶鋼湯面との間隔を一定に制御する必要が
ある。具体的な制御方法として、例えば上記間隔が増大
した場合に消耗電極の溶解速度を低減して間隔を狭め、
上記間隔が小さくなった場合には消耗電極の溶解速度を
速める等の方法があり、これらを自動制御で行なうこと
が望ましい。自動制御の一形態として次の様な方法が挙
げられる。即ち、消耗電極の先端と溶鋼湯面の間隔は、
系の電気抵抗(=電圧/電流)と比例関係にあるので、
例えば電圧を一定にしておけば、間隔が小さくなった場
合に電気抵抗が低下して必然的に電流が増大し、溶解速
度が速まって上記間隔が広がることとなる。また間隔が
広まった場合には、電気抵抗が増大して必然的に電流値
が小さくなるため、溶解速度が減少して間隔が狭まるの
である。In a situation where the molten steel surface level of the molten steel to be injected changes and the tip of the consumable electrode melts, the tip of the consumable electrode is not immersed in the molten steel surface. It is necessary to control the distance from the molten steel surface to a constant value. As a specific control method, for example, when the interval is increased, the dissolution rate of the consumable electrode is reduced to reduce the interval,
When the interval becomes small, there are methods such as increasing the dissolving speed of the consumable electrode, and it is desirable to perform these by automatic control. The following method can be cited as one form of automatic control. That is, the distance between the tip of the consumable electrode and the molten steel surface is
Since it is proportional to the electrical resistance (= voltage / current) of the system,
For example, if the voltage is kept constant, when the interval is reduced, the electric resistance is reduced and the current is inevitably increased, so that the dissolution speed is increased and the interval is expanded. Also, when the interval is widened, the electric resistance increases and the current value inevitably decreases, so that the dissolution rate decreases and the interval narrows.
【0026】合金成分組成の均一な鋳片を得るには、合
金添加後の溶鋼を十分に撹拌・混合して溶鋼の濃度ムラ
をなくすことが必要となる。特に、鋳型内の溶鋼に合金
を添加する場合、溶鋼の濃度ムラが直接鋳片の濃度ムラ
となりやすいため溶鋼の撹拌・混合が重要となる。撹拌
の方法として溶鋼中にAr等の不活性ガスを吹込んで行
うガス撹拌等もあるが、より安定した撹拌効果を得るに
は移動磁場を利用して電磁撹拌を行うことが望ましい。In order to obtain a slab having a uniform alloy composition, it is necessary to sufficiently stir and mix the molten steel after the addition of the alloy to eliminate the unevenness in the concentration of the molten steel. In particular, when the alloy is added to the molten steel in the mold, it is important to stir and mix the molten steel because the concentration unevenness of the molten steel tends to directly cause the concentration unevenness of the slab. As a method of stirring, there is gas stirring performed by blowing an inert gas such as Ar into molten steel, and the like, but to obtain a more stable stirring effect, it is desirable to perform electromagnetic stirring using a moving magnetic field.
【0027】移動磁場の周波数は、低すぎると撹拌力が
弱くなるため1Hz以上とすることが好ましく、より好
ましくは2Hz以上である。また上記周波数が高すぎて
も溶鋼中への磁場の浸透が弱くなるため、100Hz以
下とすることが好ましく、より好ましくは4Hz以下で
ある。The frequency of the moving magnetic field is preferably set to 1 Hz or more, and more preferably 2 Hz or more, because the stirring power is weakened if it is too low. Further, even if the frequency is too high, the penetration of the magnetic field into the molten steel is weakened. Therefore, the frequency is preferably 100 Hz or less, more preferably 4 Hz or less.
【0028】移動磁場の磁束密度は、低すぎると撹拌力
が弱く溶鋼中の合金濃度が均一とならないため、0.0
1T以上とすることが好ましく、より好ましくは0.0
5T以上である。また上記磁束密度が大きすぎても溶鋼
湯面が乱れて安定した鋳造が行い難くなるため、移動磁
場の磁束密度は0.2T以下とすることが好ましく、よ
り好ましくは0.12T以下である。If the magnetic flux density of the moving magnetic field is too low, the stirring power is weak and the alloy concentration in the molten steel is not uniform.
It is preferably at least 1T, more preferably at least 0.0T.
5T or more. Further, even if the magnetic flux density is too large, the molten steel surface is disturbed and stable casting is difficult to perform. Therefore, the magnetic flux density of the moving magnetic field is preferably 0.2 T or less, more preferably 0.12 T or less.
【0029】電磁撹拌の領域が湯面から深すぎる場合に
は、溶鋼湯面の撹拌効果が弱まって濃度ムラが生じ易く
なるため、溶鋼湯面から深さ300mm以内の領域を順
次撹拌していくことが望ましい。If the region of the electromagnetic stirring is too deep from the surface of the molten metal, the effect of stirring the surface of the molten steel is weakened and the concentration unevenness is likely to occur. Therefore, the region within a depth of 300 mm from the surface of the molten steel is sequentially stirred. It is desirable.
【0030】また合金濃度分布の均一化を図るには、フ
ラックス層中で消耗電極を図4に示すように鋳造方向に
対して垂直に揺動させることも有効である。In order to make the alloy concentration distribution uniform, it is also effective to swing the consumable electrode in the flux layer perpendicularly to the casting direction as shown in FIG.
【0031】消耗電極を用いて鋳型内の溶鋼に合金を添
加する場合、溶鋼の濃度ムラが生じ易く、特に合金添加
直後の鋳型内上部の方が下部よりも溶鋼の成分組成が偏
り易い。また鋳片の表層部は鋳型上部で凝固し鋳片内部
は下方側で凝固するが、本発明ではこれらの性質を利用
して、鋳片の表層部と内部の間に合金成分の濃度勾配を
設け、表層部のみを有益な合金成分組成とした連続鋳造
品を製造することができたのである。When an alloy is added to molten steel in a mold using a consumable electrode, unevenness in the concentration of the molten steel tends to occur, and the composition of the molten steel tends to be more uneven in the upper part of the mold immediately after the addition of the alloy than in the lower part. Also, the surface layer of the slab solidifies at the top of the mold and the inside of the slab solidifies at the lower side, but in the present invention, by utilizing these properties, the concentration gradient of the alloy component between the surface layer and the inside of the slab is reduced. Thus, it was possible to manufacture a continuous cast product in which only the surface layer portion had a beneficial alloy component composition.
【0032】この様な合金成分の濃度勾配を積極的に形
成するには、上記消耗電極を鋳型の壁面近傍に差し込め
ばよいが、表層部における鋳片幅方向の濃度分布を均一
化する必要があることから、鋳型のコーナー近傍に差し
込むことが好ましい。In order to positively form such a concentration gradient of the alloy component, the above consumable electrode may be inserted near the wall surface of the mold, but it is necessary to make the concentration distribution in the slab width direction in the surface layer uniform. For this reason, it is preferable to insert near the corner of the mold.
【0033】鋳型内溶鋼上下部の相互の撹拌を抑制する
には、溶鋼に静磁場を作用させることが有効であるが、
静磁場の磁束密度が小さすぎる場合には十分な撹拌抑制
効果が得られないため、0.05T以上とすることが好
ましく、より好ましくは0.15T以上である。磁束密
度が大きすぎても適正な混合抑制効果が得られず、また
磁束を発生させるための設備費用や電力消費量が増大す
るため、静磁場の磁束密度は5T以下とすることが好ま
しく、より好ましくは0.5T以下である。In order to suppress the mutual stirring of the upper and lower portions of the molten steel in the mold, it is effective to apply a static magnetic field to the molten steel.
If the magnetic flux density of the static magnetic field is too small, a sufficient stirring suppression effect cannot be obtained, so that it is preferably 0.05 T or more, more preferably 0.15 T or more. Even if the magnetic flux density is too large, an appropriate mixing suppression effect cannot be obtained, and equipment cost and power consumption for generating the magnetic flux increase, so that the magnetic flux density of the static magnetic field is preferably 5T or less, Preferably it is 0.5T or less.
【0034】尚、静磁場は、溶鋼湯面より下方、かつ鋳
型内に溶鋼を流入する浸漬ノズル吐出孔の上方にて作用
させることが好ましい。It is preferable that the static magnetic field acts below the molten steel surface and above the immersion nozzle discharge hole through which molten steel flows into the mold.
【0035】鋳片の表層部と内部の間に合金成分の濃度
勾配を設ける場合の一態様として、鋳片内部よりも合金
元素濃度の高い鋳片表層を形成する場合がある。As one mode of providing a concentration gradient of the alloy component between the surface layer portion and the inside of the slab, there is a case where a slab surface layer having a higher alloy element concentration than the inside of the slab is formed.
【0036】例えば、厚板用鋼の耐食性を向上させる場
合、Ni、Cr、P、Ti、Cu等の合金成分が一般に
添加されるが、耐食性は鋼片表層部にのみ要求されるこ
とが多いので、上記元素を消耗電極として鋳型の壁面近
傍から溶鋼に添加すれば、鋳片表層部の耐食性を確保し
つつ鋳片内部への合金添加量を抑えることができる。従
って、鋳片内部にまで均一に上記元素を添加した従来品
と比較して、高価な上記合金元素の使用量を抑制するこ
とができ、より安価に耐食性の高い鋼片を提供できるこ
ととなるのである。For example, when improving the corrosion resistance of steel for thick plates, alloy components such as Ni, Cr, P, Ti, and Cu are generally added, but the corrosion resistance is often required only on the surface layer of the slab. Therefore, if the above element is added to the molten steel as a consumable electrode from the vicinity of the wall surface of the mold, the amount of alloy added to the inside of the slab can be suppressed while ensuring the corrosion resistance of the surface layer of the slab. Therefore, compared to a conventional product in which the above elements are uniformly added to the inside of the cast slab, the amount of the expensive alloy element used can be suppressed, and a steel slab with high corrosion resistance can be provided at lower cost. is there.
【0037】この様に鋳片内部よりも合金元素濃度の高
い鋳片表層を形成するには、鋳型の壁面近傍に、鋳型へ
の注入溶鋼よりも合金元素濃度の高い消耗電極を差し込
めばよく、上記耐食性向上を目的とする他、鋼材表層部
の硬度を高めるには、C,Mn,Cr,Mo,V,Nb
等の元素を含む消耗電極を用いればよい。また、鋼材全
体の被削性を高めるためPb,希土類元素,B,S等を
添加する場合でも、これらの元素を溶鋼鍋に添加して鋳
造する場合と比較して、蒸発や浮上により生ずる前記合
金元素のロスを低減することが可能であり、添加合金元
素の歩留まりを高めることができる。鋳片内部よりも合
金元素濃度の高い鋳片表層を形成する方法には、上記方
法の他、鋳型の中心近傍に、鋳型への注入溶鋼よりも合
金元素濃度の低い消耗電極を差し込む方法が挙げられ
る。In order to form a slab surface layer having a higher alloying element concentration than the inside of the slab, a consumable electrode having a higher alloying element concentration than the molten steel injected into the mold may be inserted near the wall surface of the mold. In addition to the purpose of improving the corrosion resistance, in order to increase the hardness of the surface layer of the steel material, C, Mn, Cr, Mo, V, Nb
A consumable electrode containing such elements may be used. Further, even when Pb, rare earth elements, B, S, etc. are added in order to enhance the machinability of the entire steel material, compared with the case where these elements are added to a molten steel pot and cast, the above-mentioned phenomenon caused by evaporation and floating occurs. The loss of the alloy element can be reduced, and the yield of the added alloy element can be increased. As a method of forming a slab surface layer having a higher alloy element concentration than the inside of the slab, in addition to the above-described method, a method of inserting a consumable electrode having a lower alloy element concentration than molten steel injected into the mold near the center of the mold is cited. Can be
【0038】鋳片の表層部と内部の間に合金成分の濃度
勾配を設ける別の態様として、鋳片内部よりも合金元素
濃度の低い鋳片表層を形成する場合がある。As another mode for providing a concentration gradient of the alloy component between the surface layer portion and the inside of the slab, there is a case where a slab surface layer having a lower alloy element concentration than the inside of the slab is formed.
【0039】例えば、薄板用鋼の加工性を向上させる目
的でSi等の合金を多量に添加することがあるが、加工
性が向上する一方で、亜鉛等をめっきしたときのめっき
密着性が低下するという問題がある。従って加工性とめ
っき密着性とを同時に高めた鋼として、鋼片表層部のS
i濃度が低く内部のSi濃度の高い鋼片が求められる
が、この様な場合、溶鋼鍋から鋳型内へはSi濃度の高
い溶鋼を注入しつつ、Siを含まない鋼を消耗電極とし
て鋳型の壁面近傍から溶鋼に添加することで、上記両特
性を備えた鋼片を得ることができるのである。For example, an alloy such as Si may be added in a large amount for the purpose of improving the workability of steel for thin sheets. However, while the workability is improved, the adhesion of plating when zinc is plated is reduced. There is a problem of doing. Therefore, as a steel with improved workability and plating adhesion at the same time, S
A steel slab having a low i concentration and a high internal Si concentration is required. In such a case, while injecting molten steel having a high Si concentration into the mold from a molten steel pot, steel containing no Si is used as a consumable electrode to form a mold of the mold. By adding to the molten steel from the vicinity of the wall surface, a steel slab having both of the above characteristics can be obtained.
【0040】この様に鋳片内部よりも合金元素濃度の低
い鋳片表層を形成するには、鋳型の壁面近傍に、鋳型へ
の注入溶鋼よりも合金元素濃度の低い消耗電極を差し込
めばよいが、その他、鋳型の中心近傍に鋳型への注入溶
鋼よりも合金元素濃度の高い消耗電極を差し込む方法も
挙げられる。鋳片全体に合金元素を添加した場合に、添
加した該合金成分に起因して、鋳造時、鋳片内部にワレ
が生じることがあるが、上記方法で鋳片表層部に集中的
に合金を添加すれば、上記欠陥の発生を防止することが
できるのである。In order to form a slab surface layer having a lower alloy element concentration than the inside of the slab, a consumable electrode having a lower alloy element concentration than the molten steel injected into the mold may be inserted near the wall surface of the mold. Another method is to insert a consumable electrode having a higher alloying element concentration than the molten steel injected into the mold near the center of the mold. When the alloy element is added to the entire slab, cracks may occur inside the slab during casting due to the added alloy component, but the alloy is concentrated on the slab surface layer by the above method. If added, the occurrence of the above-mentioned defects can be prevented.
【0041】[0041]
【実施例】以下、実施例を挙げて本発明をより具体的に
説明するが、本発明はもとより下記実施例によって制限
を受けるものではなく、前・後記の趣旨に適合し得る範
囲で適当に変更を加えて実施することも可能であり、そ
れらはいずれも本発明の技術的範囲に含まれる。 (1)消耗電極の供給方法についての実施例 幅が一定(1230mm)のスラブを図5上図に示すよ
うに鋳造速度を変化させながら連続鋳造する場合に、2
台のリールに巻き付けたワイヤー状のNi消耗電極を、
それぞれ電極自動送給装置を用いて、溶鋼供給速度に連
動するように送給速度を調節しながら鋳型内のフラック
ス層中に連続的に供給した。合金成分としてNiを、鋳
片表面から深さ5mm位置の濃度が鋳造速度1.8m/
minにおいて0.1mass%となるよう添加した。
それぞれのリールは絶縁フレームにセットしてリール間
の電気絶縁性を確保した。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention is not limited thereto. Modifications can be made and implemented, all of which are included in the technical scope of the present invention. (1) Embodiment of Supplying Consumable Electrodes When continuously casting a slab having a constant width (1230 mm) while changing the casting speed as shown in the upper diagram of FIG.
A wire-shaped Ni consumable electrode wound around a reel
Using an automatic electrode feeder, the feed rate was adjusted so as to be linked to the feed rate of the molten steel, and the feed rate was continuously supplied into the flux layer in the mold. Ni was used as an alloy component, and the concentration at a position 5 mm deep from the slab surface was such that the casting speed was 1.8 m / m.
Min was added to be 0.1 mass%.
Each reel was set on an insulating frame to ensure electrical insulation between the reels.
【0042】また、連続鋳造速度に関係なく消耗電極の
供給速度を一定とした以外は、上記方法と同様にして連
続鋳造を行なった場合を比較例とした。A comparative example was a case where continuous casting was performed in the same manner as described above, except that the supply speed of the consumable electrode was kept constant irrespective of the continuous casting speed.
【0043】図5下図に、上記電極供給速度制御の有無
別に連続鋳造を行なった場合の、鋳造速度の変動が及ぼ
す鋳片表面から深さ5mm位置でのNi濃度(mass
%)の変化を示したグラフを示す。Ni濃度は、鋳造後
のスラブ鋳片の狭面から深さ5mmの厚み中央位置より
ドリルでサンプルを削り出し、化学分析を行って求め
た。図5は、実施例と比較例について、それぞれ鋳片の
鋳造方向に15箇所づつ、両狭面から5gづつ小計10
gのサンプルを計30回採取して測定した結果である。
この図より、連続鋳造速度の変化に応じて消耗電極の供
給速度、即ちNi添加量を調整することで、鋳片表面か
ら一定深さにおけるNi濃度の変化を抑制できることが
分かる。FIG. 5B shows the Ni concentration (mass) at a position 5 mm deep from the slab surface where the casting speed varies when continuous casting is performed with or without the above-mentioned electrode supply speed control.
%) Shows a graph showing the change of The Ni concentration was determined by cutting a sample from a narrow surface of the cast slab slab from the narrow surface at a depth of 5 mm with a drill and performing chemical analysis. FIG. 5 shows the subtotal 10 for each of the Examples and Comparative Examples, 15 g each in the casting direction of the slab and 5 g from both narrow surfaces.
g is a result of measuring a total of 30 samples.
From this figure, it can be seen that by adjusting the supply speed of the consumable electrode, that is, the amount of Ni added, according to the change in the continuous casting speed, the change in the Ni concentration at a certain depth from the slab surface can be suppressed.
【0044】尚、図5下図に示されるように、溶鋼中の
合金成分濃度は鋳造開始直後から所定の合金成分濃度に
到達するまでに時間を要するが、この所要時間を短縮
し、鋳造方向に垂直な鋳片断面の特定位置のNi濃度を
早期に一定にして歩留まりを向上させるには、合金添加
開始直後に消耗電極の供給速度を上げて溶鋼の合金成分
濃度を急激に上昇させた後、所定の濃度に到達した時点
で溶鋼注入流量に応じた供給速度となるよう切り替わる
自動制御にすればよい。As shown in the lower diagram of FIG. 5, the alloy component concentration in the molten steel takes time from the time immediately after the start of casting to reach a predetermined alloy component concentration. In order to improve the yield by keeping the Ni concentration at a specific position in the vertical slab cross section at an early stage to improve the yield, immediately after the alloy addition is started, the supply rate of the consumable electrode is increased, and the alloy component concentration of the molten steel is rapidly increased. Automatic control may be performed so that the supply speed is switched to the supply speed according to the molten steel injection flow rate when the predetermined concentration is reached.
【0045】また本実施例では鋳造中の鋳型幅を一定と
したが、鋳造中に鋳型幅を変化させる場合でも、{(鋳
造速度+湯面レベル上昇速度)×鋳型幅×鋳型厚み}に
比例する溶鋼注入流量に消耗電極の供給速度を連動させ
るようにすれば、例えば渦流式湯面レベル計によって鋳
型内の湯面レベルが一定となるように鋳型への溶鋼注入
量を自動制御すれば、鋳造方向における各鋳片断面の添
加合金濃度を一定とすることができる。鋳型内溶鋼の湯
面レベルが変化した場合に、その湯面レベル変化に応じ
て溶鋼注入流量を制御することで、更に精度良く、鋳造
方向における各鋳片断面の添加合金濃度のばらつきを抑
制することができる。 (2)溶鋼の撹拌・混合方法についての実施例 電極の配置場所、移動磁場の有無および静磁場の有無
が、鋳片の合金濃度の幅方向不均一度、および内部に対
する表層部の合金濃縮度に及ぼす影響について調べた。In this embodiment, the width of the mold during casting is fixed. However, even when the width of the mold is changed during casting, the mold width is proportional to {(casting speed + metal surface level rise speed) × mold width × mold thickness}. If the supply speed of the consumable electrode is linked to the molten steel injection flow rate, for example, if the molten steel injection amount into the mold is automatically controlled so that the level of the molten metal in the mold is constant by an eddy current level meter, The concentration of the added alloy in the cross section of each slab in the casting direction can be made constant. When the level of molten steel in the mold changes, by controlling the molten steel injection flow rate according to the change in the level of the molten steel, it is possible to more accurately suppress the variation in the concentration of the added alloy in the cross section of each slab in the casting direction. be able to. (2) Example of Method for Stirring and Mixing Molten Steel The location of electrodes, the presence or absence of a moving magnetic field, and the presence or absence of a static magnetic field are determined by the non-uniformity of the alloy concentration in the slab in the width direction and the alloy concentration of the surface layer with respect to the inside The effect on the water was examined.
【0046】電極の配置場所は、スラブの片側のみまた
は両側に配置し、移動磁場として鋳型内湯面から深さ3
00mmまでの範囲に3Hzで水平に旋回する磁場を作
用させた。また、静磁場として鋳型内湯面からの深さが
500〜700mmの範囲に磁場を作用させた。得られ
た鋳片の合金濃度分布の評価は、図6に示すa,b,c
の3ヶ所からサンプルを採取し、それぞれのサンプルの
Ni濃度(mass%)、即ち、Ca,Cb,Ccを測
定して下記式(1)および(2)に挿入し、A;合金濃
度の幅方向不均一度、およびB;内部に対する表層の合
金濃縮度を求めて行なった。その結果を表1に示す。The electrode may be placed on only one side or both sides of the slab.
A magnetic field circling horizontally at 3 Hz was applied to a range up to 00 mm. In addition, a magnetic field was applied as a static magnetic field to a depth of 500 to 700 mm from the inner surface of the mold. The evaluation of the alloy concentration distribution of the obtained slab was performed by using a, b, and c shown in FIG.
Samples were taken from the three locations described above, and the Ni concentration (mass%) of each sample, ie, Ca, Cb, Cc, was measured and inserted into the following equations (1) and (2). The orientation nonuniformity, and B; the alloy enrichment of the surface layer with respect to the inside was determined. The results are shown in Table 1.
【0047】 合金濃度の幅方向不均一度;A=|Ca−Cb|/(Ca+Cb) …(1) 内部に対する表層の合金濃縮度;B=(Ca+Cb)/2Cc …(2)A = | Ca−Cb | / (Ca + Cb) (1) Alloy concentration of surface layer with respect to the inside; B = (Ca + Cb) / 2Cc (2)
【0048】[0048]
【表1】 [Table 1]
【0049】表1におけるNo.4より、消耗電極の配
置場所を両側とし鋳型内湯面から300mm以内の領域
を水平に旋回する移動磁場を作用させれば、合金成分の
濃度勾配発生を抑制でき、合金組成の均一な鋳片が得ら
れることが分かった。またNo.5およびNo.6よ
り、鋳片内部に対して表層部の合金濃度を高めるには、
鋳型内の溶鋼に静磁場を作用させて、静磁場作用領域の
上下の領域の溶鋼が互いに混合するのを抑制すればよい
ことが分かった。No. 1 in Table 1. From FIG. 4, it is possible to suppress the generation of a concentration gradient of the alloy component by applying a moving magnetic field that horizontally turns an area within 300 mm from the surface of the mold inside with the disposing place of the consumable electrode on both sides, and can suppress the occurrence of a concentration gradient of the alloy component. It turned out to be obtained. No. 5 and No. 5 From 6, it is necessary to increase the alloy concentration of the surface layer inside the slab.
It has been found that it is sufficient to apply a static magnetic field to the molten steel in the mold to suppress the molten steels in the upper and lower regions of the static magnetic field application region from being mixed with each other.
【0050】[0050]
【発明の効果】本発明は以上の様に構成されており、連
続鋳造の鋳型内の溶鋼に合金成分や純鉄、またはその他
の化合物等を添加するに際して、連鋳鋳型内の溶鋼表面
に形成したフラックス層に上記合金成分等を含む消耗電
極を差し込み、該フラックス層中での通電により溶融さ
せて溶鋼中に添加すれば、添加合金元素量を幅広く且つ
正確に調整でき、連続鋳造にて多種多様な合金成分組成
の鋳片を製造できることとなったのである。The present invention is constituted as described above, and is formed on the surface of the molten steel in the continuous casting mold when adding an alloy component, pure iron, or other compounds to the molten steel in the continuous casting mold. By inserting a consumable electrode containing the above-mentioned alloy component and the like into the flux layer thus melted and added to the molten steel by energization in the flux layer, the amount of the added alloy element can be adjusted widely and accurately, and various kinds of continuous casting can be performed. It was possible to produce slabs of various alloy component compositions.
【0051】また、上記注入する溶鋼よりも合金濃度の
高いかまたは低い消耗電極を鋳型近傍に差し込んで、表
層部の合金濃度を内部よりも高くしたりまたは低くする
ことで、表層部にのみ有益な層を有する経済的な鋼片を
製造できることとなったのである。Also, by inserting a consumable electrode having a higher or lower alloy concentration than the molten steel to be injected into the vicinity of the mold to make the alloy concentration in the surface layer higher or lower than that in the inside, it is beneficial only to the surface layer. Thus, an economical billet having various layers can be manufactured.
【図面の簡単な説明】[Brief description of the drawings]
【図1】連続鋳造にて合金成分を添加する方法の従来例
を示す概略図であり、(a)は合金成分組成の異なる2
種の溶鋼を供給する方法、(b)は合金成分をフラック
ス中に添加して供給する方法、(c)は合金ワイヤーを
鋳型内の溶鋼中に直接供給する方法を示している。FIG. 1 is a schematic view showing a conventional example of a method of adding an alloy component by continuous casting, wherein (a) shows a method of adding an alloy component having different compositions.
(B) shows a method of supplying an alloy component by adding it to a flux, and (c) shows a method of directly supplying an alloy wire into molten steel in a mold.
【図2】本発明にて連鋳鋳型内に合金成分を添加する方
法を例示する概略図である。FIG. 2 is a schematic view illustrating a method for adding an alloy component into a continuous casting mold according to the present invention.
【図3】電流値と鋳片表層部のNi濃度との関係を示す
グラフである。FIG. 3 is a graph showing a relationship between a current value and a Ni concentration in a surface layer portion of a slab.
【図4】消耗電極の供給位置を例示した鋳造方向に対し
て垂直な鋳型断面図である。FIG. 4 is a cross-sectional view of a mold perpendicular to a casting direction illustrating a supply position of a consumable electrode.
【図5】鋳片速度の変動が鋳片表面から一定深さのNi
濃度(mass%)に与える影響を消耗電極の供給速度
制御の有無別に示したグラフである。FIG. 5 shows a variation in slab speed of Ni at a constant depth from the slab surface.
6 is a graph showing the influence on the concentration (mass%) depending on whether or not supply speed control of a consumable electrode is performed.
【図6】実施例における合金濃度測定位置を示す鋳造方
向に対して垂直な鋳片断面図である。FIG. 6 is a cross-sectional view of a slab perpendicular to a casting direction showing an alloy concentration measurement position in an example.
1 鋳型 2 溶鋼 3 フラックス層 4 消耗電極 5 アーク放電 6 銅製端子 Reference Signs List 1 mold 2 molten steel 3 flux layer 4 consumable electrode 5 arc discharge 6 copper terminal
フロントページの続き (72)発明者 森 秀夫 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 山本 裕基 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 Fターム(参考) 4E004 AA09 MB12 MB14 NB01 NC01Continued on the front page (72) Inventor Hideo Mori 1 Kanazawa-cho, Kakogawa City, Hyogo Prefecture Inside Kobe Steel Kakogawa Works (72) Inventor Yuki Yamamoto 1 Kanazawa-cho, Kakogawa City, Hyogo Prefecture Kobe Steel Corporation Kakogawa Co. F term in steelworks (reference) 4E004 AA09 MB12 MB14 NB01 NC01
Claims (9)
クス層に消耗電極を差し込み、該消耗電極の先端をフラ
ックス層中での通電により溶融させて溶鋼中に添加する
ことを特徴とする連続鋳造品の製造方法。A continuous electrode characterized in that a consumable electrode is inserted into a flux layer formed on the surface of molten steel in a continuous casting mold, and the tip of the consumable electrode is melted by energization in the flux layer and added to the molten steel. Manufacturing method for castings.
消耗電極の先端と溶鋼の間のアーク放電によって行う請
求項1に記載の連続鋳造品の製造方法。2. The method according to claim 1, wherein melting of the consumable electrode is performed by resistance heating or arc discharge between a tip of the consumable electrode and molten steel.
中に供給して該消耗電極間に通電する請求項1または2
に記載の連続鋳造品の製造方法。3. The consumable electrode according to claim 1, wherein a plurality of said consumable electrodes are supplied into said flux layer to supply a current between said consumable electrodes.
3. The method for producing a continuous casting according to item 1.
て行う請求項1〜3のいずれかに記載の連続鋳造品の製
造方法。4. The method for producing a continuous casting according to claim 1, wherein the power supply to the consumable electrode is performed via a copper terminal.
0.01〜0.2Tの移動磁場を作用させて合金成分の
濃度勾配を軽減する請求項1〜4のいずれかに記載の連
続鋳造品の製造方法。5. The continuous cast product according to claim 1, wherein a moving magnetic field having a frequency of 1 to 100 Hz and a magnetic flux density of 0.01 to 0.2 T is applied to the molten steel to reduce the concentration gradient of the alloy component. Manufacturing method.
溶鋼に磁束密度0.05〜5Tの静磁場を作用させて鋳
片の表層部と内部の間に合金成分の濃度勾配を形成する
請求項1〜4のいずれかに記載の連続鋳造品の製造方
法。6. Inserting a consumable electrode near a wall surface of a mold,
The production of a continuous casting according to any one of claims 1 to 4, wherein a static magnetic field having a magnetic flux density of 0.05 to 5 T is applied to the molten steel to form a concentration gradient of an alloy component between the surface layer portion and the inside of the slab. Method.
高い消耗電極を用いて、鋳片内部よりも合金元素濃度の
高い鋳片表層を形成する請求項6に記載の連続鋳造品の
製造方法。7. The production of a continuous cast product according to claim 6, wherein a slab surface layer having a higher alloy element concentration than the inside of the slab is formed by using a consumable electrode having a higher alloy element concentration than molten steel injected into a mold. Method.
低い消耗電極を用いて、鋳片内部よりも合金元素濃度の
低い鋳片表層を形成する請求項6に記載の連続鋳造品の
製造方法。8. The production of a continuous cast product according to claim 6, wherein a consumable electrode having a lower alloy element concentration than the molten steel injected into the mold is used to form a slab surface layer having a lower alloy element concentration than the inside of the slab. Method.
かまたは低いことを特徴とする連続鋳造品。9. A continuous cast product wherein the surface layer portion has an alloy element concentration higher or lower than the inside.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001002889A JP2002205152A (en) | 2001-01-10 | 2001-01-10 | Method for producing continuously cast product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001002889A JP2002205152A (en) | 2001-01-10 | 2001-01-10 | Method for producing continuously cast product |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002205152A true JP2002205152A (en) | 2002-07-23 |
Family
ID=18871320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001002889A Withdrawn JP2002205152A (en) | 2001-01-10 | 2001-01-10 | Method for producing continuously cast product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002205152A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106111927A (en) * | 2016-07-28 | 2016-11-16 | 湖南科美达电气股份有限公司 | The grain refining of a kind of continuous casting billet solidified structure and the method that homogenizes |
CN106141126A (en) * | 2015-03-25 | 2016-11-23 | 宝山钢铁股份有限公司 | Improve the device and method of continuous casting billet solidified structure |
CN115815541A (en) * | 2023-01-06 | 2023-03-21 | 陕西有色榆林新材料集团有限责任公司 | Casting method and device for high-uniformity large-size aluminum alloy ingot |
-
2001
- 2001-01-10 JP JP2001002889A patent/JP2002205152A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106141126A (en) * | 2015-03-25 | 2016-11-23 | 宝山钢铁股份有限公司 | Improve the device and method of continuous casting billet solidified structure |
CN106111927A (en) * | 2016-07-28 | 2016-11-16 | 湖南科美达电气股份有限公司 | The grain refining of a kind of continuous casting billet solidified structure and the method that homogenizes |
CN115815541A (en) * | 2023-01-06 | 2023-03-21 | 陕西有色榆林新材料集团有限责任公司 | Casting method and device for high-uniformity large-size aluminum alloy ingot |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102138156B1 (en) | Continuous casting device and continuous casting method for double-layer cast pieces | |
JP6855806B2 (en) | Continuous casting method and continuous casting equipment for multi-layer slabs | |
JP6123549B2 (en) | Manufacturing method of continuous cast slab | |
CN102216485B (en) | Method and device for controlling the introduction of several metals into a cavity designed to melt said metals | |
JP6515286B2 (en) | Method and apparatus for continuous casting of multi-layer cast slab | |
JP6330542B2 (en) | Manufacturing method of continuous cast slab | |
WO1993022085A1 (en) | Method of obtaining double-layered cast piece | |
JP2002205152A (en) | Method for producing continuously cast product | |
JP3456311B2 (en) | Continuous casting method of multilayer slab | |
JP2002210546A (en) | Method for producing continuously cast product | |
JP4519600B2 (en) | Electromagnetic stirring coil | |
JP2661797B2 (en) | Multi-layer slab casting method | |
JP4734073B2 (en) | Manufacturing method of hot dip galvanized steel | |
JP2020015047A (en) | Continuous casting method of thin slab | |
JP3849471B2 (en) | Uniform heating method for molten steel in tundish | |
JP2001321907A (en) | Manufacturing method of continuous cast slab and continuous cast slab | |
JP5004626B2 (en) | Appearance of solidified shell thickness in S-print | |
JP2008290136A (en) | Continuous casting method for low carbon high sulfur steel | |
JPS5847257B2 (en) | Manufacturing method of clad steel ingot | |
JP2017030013A (en) | Continuous casting method of double-layered cast slab and continuous casting apparatus | |
JP2000273581A (en) | Continuous cast slab of extremely low carbon steel and method for producing the same | |
JPH09122833A (en) | Method of solute enrichment on surface of slab in continuous casting | |
JPH0760408A (en) | Manufacturing method of steel plate for thin plate | |
JP2004291034A (en) | Continuous casting method of molten steel | |
JPH10193058A (en) | Continuous casting method of steel slab |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080401 |