JP2002202364A - Method and apparatus for measuring distance - Google Patents
Method and apparatus for measuring distanceInfo
- Publication number
- JP2002202364A JP2002202364A JP2000401361A JP2000401361A JP2002202364A JP 2002202364 A JP2002202364 A JP 2002202364A JP 2000401361 A JP2000401361 A JP 2000401361A JP 2000401361 A JP2000401361 A JP 2000401361A JP 2002202364 A JP2002202364 A JP 2002202364A
- Authority
- JP
- Japan
- Prior art keywords
- station
- signal
- narrowband communication
- communication signal
- time difference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- 238000004891 communication Methods 0.000 claims abstract description 100
- 230000005540 biological transmission Effects 0.000 claims description 17
- 230000002596 correlated effect Effects 0.000 claims description 5
- 238000009792 diffusion process Methods 0.000 abstract 1
- 230000003595 spectral effect Effects 0.000 abstract 1
- 238000001228 spectrum Methods 0.000 description 12
- 238000005259 measurement Methods 0.000 description 9
- 238000001514 detection method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 1
Landscapes
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、狭帯域通信方式を
利用して無線機等の物体間の距離を測定する測距方法並
びに測距装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distance measuring method and a distance measuring apparatus for measuring a distance between objects such as radio equipment using a narrow band communication system.
【0002】[0002]
【従来の技術】測距方法として、電波(レーザー)を利
用して物体間の距離を測定するレーダー方式や、スペク
トル拡散通信方式を用いて、電波の折り返しを利用して
物体間の距離を測定する測距方式が知られている。レー
ダー方式では、測定物に電波(レーザー)を照射し、物
体から反射した電波の遅延時間を計測することで物体ま
での距離を求めている。また、スペクトル拡散通信を利
用した測距方式では、自局から送信されたスペクトル拡
散信号を、他局が受信し、その周波数を変換して自局に
送り返し、その信号の往復時間から物体間(自局及び他
局間)距離を算出するものである。2. Description of the Related Art As a distance measuring method, a radar method for measuring a distance between objects using a radio wave (laser) or a spread spectrum communication method is used to measure a distance between objects using a return of a radio wave. There are known distance measuring methods. In the radar system, a distance to an object is obtained by irradiating a measured object with a radio wave (laser) and measuring a delay time of a radio wave reflected from the object. In the ranging method using spread spectrum communication, a spread spectrum signal transmitted from the own station is received by another station, its frequency is converted and transmitted back to its own station, and the distance between objects (from the round trip time of the signal) is calculated. This is for calculating the distance between the own station and another station).
【0003】[0003]
【発明が解決しようとする課題】レーダー方式を用いた
測距方法では、測距に特化したシステムであるため、同
一のシステムを用いてのデータ通信が行えない。従っ
て、データ通信を行いたい場合はデータ通信用システム
が別途必要となる。また、スペクトル拡散通信方式を用
いた測距方法では、データ通信は可能となるが、変調方
式がスペクトル拡散変調方式を用いている無線機にしか
応用できないという問題がある。In the distance measuring method using the radar system, since the system is specialized for distance measuring, data communication using the same system cannot be performed. Therefore, when data communication is desired, a data communication system is separately required. In the ranging method using the spread spectrum communication method, data communication is possible, but there is a problem that the modulation method can be applied only to a radio device using the spread spectrum modulation method.
【0004】そこで、本発明の目的は、現在一般に使用
されている狭帯域通信方式を利用して、スペクトル拡散
通信方式で行われている測距方法を応用して無線機等の
物体間の距離を求める測距方法並びに測距装置を提供す
ることになる。Accordingly, an object of the present invention is to use a narrow band communication system generally used at present and apply a distance measurement method performed in a spread spectrum communication system to apply a distance measurement between objects such as radio equipment. To provide a distance measuring method and a distance measuring device.
【0005】[0005]
【課題を解決するための手段】請求項1記載の発明は、
狭帯域通信方式を用いて自局と他局間の距離を測定する
測距方法であって、自局から他局へ第一の狭帯域通信信
号を送信するステップと、他局で受信された第一の狭帯
域通信信号と他局から自局へ送信する第二の狭帯域通信
信号との相対時間差を検出し、その相対時間差のデータ
を第二の狭帯域通信信号に付加して自局に送信するステ
ップと、自局で受信された第二の狭帯域通信信号と自局
で送信した第一の狭帯域通信信号との時間差を検出し、
その検出値と復調された前記相対時間差のデータとから
自局と他局間の距離を算出するステップとを備えること
を特徴とするものである。According to the first aspect of the present invention,
A distance measuring method for measuring the distance between the own station and another station using a narrow band communication method, a step of transmitting a first narrow band communication signal from the own station to another station, and received by the other station The relative time difference between the first narrowband communication signal and the second narrowband communication signal transmitted from the other station to the own station is detected, and the data of the relative time difference is added to the second narrowband communication signal to control the local station. And transmitting the, to detect the time difference between the second narrowband communication signal received by the own station and the first narrowband communication signal transmitted by the own station,
Calculating a distance between the own station and the other station from the detected value and the demodulated data of the relative time difference.
【0006】請求項2記載の発明は、請求項1記載の測
距方法において、前記第一及び第二の狭帯域通信信号
は、位相変調(PM)、周波数変調(FM)及び振幅変
調(AM)のうちの一つの変調方式に基づいて変調され
た信号であることを特徴とするものである。According to a second aspect of the present invention, in the distance measuring method according to the first aspect, the first and second narrowband communication signals are phase-modulated (PM), frequency-modulated (FM) and amplitude-modulated (AM). ) Is a signal modulated based on one of the modulation methods.
【0007】請求項3記載の発明は、請求項1記載の測
距方法において、他局における第一の狭帯域通信信号と
第二の狭帯域通信信号との相対時間差を検出するステッ
プと、自局における第二の狭帯域通信信号と第一の狭帯
域通信信号との時間差を検出するステップの各々は、他
局及び自局においてそれぞれ相関クロック信号を生成
し、各局で相関用クロック信号と各狭帯域通信信号のベ
ースバンド信号との間で相関をとることにより、自局及
び他局での相対時間差を検出するステップを含むことを
特徴とするものである。According to a third aspect of the present invention, in the distance measuring method according to the first aspect, a step of detecting a relative time difference between the first narrowband communication signal and the second narrowband communication signal in another station; Each of the steps of detecting the time difference between the second narrowband communication signal and the first narrowband communication signal in the station generates a correlation clock signal in each of the other stations and the own station, and in each station, the correlation clock signal and each The method includes a step of detecting a relative time difference between the own station and another station by correlating the narrowband communication signal with a baseband signal.
【0008】請求項4記載の発明は、請求項3記載の測
距方法において、前記自局及び他局での相対時間差を検
出するステップは、第一の狭帯域通信信号及び第二の狭
帯域通信信号のベースバンド信号である送信データある
いはそれらから復調した受信データを基に、該送信デー
タまたは受信データのデータ波形を適宜なしきい値を設
けて2値化することによりデータの変化ポイントを検出
するステップと、変化ポイント毎にデータクロックの周
期より狭い適宜な幅の第一のパルス信号を生成するステ
ップと、自局及び他局にて前記データクロックの周波数
と異なる周波数で生成される相関クロックから、前記第
一のパルス信号と同程度の幅を有する第二のパルス信号
を生成するステップと、前記第一のパルス信号と前記第
二のパルス信号とを掛け合わせ、ローパスフィルタを通
すことによって相関信号を得るステップとを備えること
を特徴とするものである。According to a fourth aspect of the present invention, in the distance measuring method according to the third aspect, the step of detecting the relative time difference between the own station and the other station includes the first narrowband communication signal and the second narrowband communication signal. Based on transmission data that is a baseband signal of a communication signal or reception data demodulated from the transmission data, a data waveform of the transmission data or the reception data is binarized by providing an appropriate threshold value to detect a data change point. And generating a first pulse signal of an appropriate width smaller than the period of the data clock for each change point; and a correlated clock generated at its own station and another station at a frequency different from the frequency of the data clock. From, the step of generating a second pulse signal having the same width as the first pulse signal, and the first pulse signal and the second pulse signal Multiplied and is characterized by comprising the steps of: obtaining a correlation signal by passing the low-pass filter.
【0009】請求項5記載の発明は、請求項4記載の測
距方法において、ローパスフィルタ通過後に得られる相
関信号から包絡線信号を生成し、該包絡線信号のピーク
位置を検出してその位置を相関信号の基準位置とするス
テップをさらに有することを特徴とするものである。According to a fifth aspect of the present invention, in the distance measuring method according to the fourth aspect, an envelope signal is generated from a correlation signal obtained after passing through a low-pass filter, and a peak position of the envelope signal is detected to determine the position. As a reference position of the correlation signal.
【0010】請求項6記載の発明は、請求項5記載の測
距方法において、相関信号の包絡線信号を生成するステ
ップにおいて、相関信号パルスが欠落している場合は、
欠落の前後のパルスの波高値を基にそれらの中間値のパ
ルスを挿入してすることによって欠落パルスを補間する
補間ステップをさらに有することを特徴とするものであ
る。According to a sixth aspect of the present invention, in the distance measuring method of the fifth aspect, in the step of generating the envelope signal of the correlation signal, if the correlation signal pulse is missing,
The method further comprises an interpolation step of interpolating the missing pulse by inserting a pulse having an intermediate value between the peak values of the pulses before and after the missing pulse.
【0011】請求項7記載の発明は、請求項5記載の測
距方法において、各相関信号の基準位置の時間差に基づ
いて、他局では第一の狭帯域通信信号と第二の狭帯域通
信信号間の相対時間差を求め、自局では第二の狭帯域通
信信号と第一の狭帯域通信信号間の時間差を求めること
を特徴とするものである。According to a seventh aspect of the present invention, in the distance measuring method according to the fifth aspect, the other stations use the first narrowband communication signal and the second narrowband communication based on the time difference between the reference positions of the correlation signals. A relative time difference between signals is obtained, and a local station obtains a time difference between the second narrowband communication signal and the first narrowband communication signal.
【0012】請求項8記載の発明は、請求項7記載の測
距方法において、他局では前記相対時間差を表すデータ
を第二の狭帯域通信信号に付加して自局に送信し、自局
では自局で求めた時間差と、第二の狭帯域通信信号に付
加されていた時間差データとに基づいて、自局並びに他
局間の距離を算出することを特徴とするものである。According to an eighth aspect of the present invention, in the distance measuring method according to the seventh aspect, the other station adds the data representing the relative time difference to a second narrowband communication signal and transmits the second narrowband communication signal to the own station. Is characterized in that a distance between the own station and another station is calculated based on the time difference obtained by the own station and the time difference data added to the second narrowband communication signal.
【0013】請求項9記載の発明は、狭帯域通信方式を
用いて自局と他局間の距離を測定する、各局に設けられ
た測距装置であって、自局から他局へ第一の狭帯域通信
信号を送信する送信部と、該第一の狭帯域通信信号の受
信に応じて他局から送信された第二の狭帯域通信信号を
受信する受信部とからなり、該第二の狭帯域通信信号に
は、他局における前記第一の狭帯域通信信号と前記第二
の狭帯域通信信号間の相対時間差に関するデータが組み
込まれており、前記受信部は、自局から送信した前記第
一の狭帯域通信信号と他局から送信され自局により受信
された前記第二の狭帯域通信信号との時間差と、該第二
の狭帯域通信信号に組み込まれた前記相対時間差に基づ
いて、自局並びに他局間の距離を測定することを特徴と
するものである。According to a ninth aspect of the present invention, there is provided a distance measuring apparatus provided in each station for measuring a distance between the own station and another station by using a narrow band communication system, wherein the first station transmits the first station to the other station. A transmitting unit for transmitting a narrowband communication signal, and a receiving unit for receiving a second narrowband communication signal transmitted from another station in response to receiving the first narrowband communication signal, The narrowband communication signal incorporates data relating to the relative time difference between the first narrowband communication signal and the second narrowband communication signal in another station, and the receiving unit transmits from the own station. The time difference between the first narrowband communication signal and the second narrowband communication signal transmitted from another station and received by the own station, based on the relative time difference incorporated in the second narrowband communication signal. And measuring the distance between the own station and other stations.
【0014】請求項10記載の発明は、請求項9記載の
ものにおいて、前記受信部は、前記第一の狭帯域通信信
号の一部と前記第二の狭帯域通信信号とを受信する受信
手段と、受信信号をパルス化するパルス手段と、相関ク
ロックパルスを生成する相関クロックパルス生成手段
と、パルス化された受信信号と相関クロックパルスとの
間で相関処理を行い、相関信号を得る相関手段と、該相
関手段からの相関信号に補間処理を行うことで相関パル
スの欠落を補う補間手段と、該補間手段の出力信号に基
づいてそのピーク位置を検出し、基準ピーク信号として
出力するピーク検出手段と、該ピーク検出手段により得
られた、第一狭帯域通信信号並びに第二狭帯域通信信号
の基準ピーク信号に基づいて各信号間の遅延時間を算出
し、自局及び他局間の距離を測定する遅延時間算出手段
とを有することを特徴とするものである。According to a tenth aspect of the present invention, in the ninth aspect, the receiving unit receives a part of the first narrowband communication signal and the second narrowband communication signal. Pulse means for pulsing the received signal, correlation clock pulse generating means for generating a correlation clock pulse, and correlation means for performing a correlation process between the pulsed received signal and the correlation clock pulse to obtain a correlation signal Interpolating means for interpolating a correlation signal from the correlating means to compensate for the lack of a correlation pulse; and peak detection for detecting a peak position based on an output signal of the interpolating means and outputting it as a reference peak signal. Means, calculates the delay time between each signal based on the reference peak signal of the first narrowband communication signal and the second narrowband communication signal obtained by the peak detection means, and calculates the delay time between the own station and another station. It is characterized in that it has a delay time calculating means for measuring a distance.
【0015】本発明の測距方法並びに測距装置によれ
ば、スペクトル拡散通信で行われている測距方法を用い
て、従来使用されている狭帯域通信でも測距できる方法
が提供される。測距を実現するための方法として、スペ
クトル拡散通信で行われている相関動作ができるよう
に、まず、受信したデータ波形をパルス状に加工し、相
関動作を行わせる。次に、データが連続すると相関波形
の欠落が発生するために、それを補うために波形の補間
もしくは推測を行い希望する相関波形を生成する。これ
により、スペクトル拡散通信で行われている測距方法
を、狭帯域通信に対しても応用することが可能となる。According to the distance measuring method and the distance measuring apparatus of the present invention, there is provided a method capable of measuring a distance even in a narrow band communication conventionally used by using a distance measuring method performed in a spread spectrum communication. As a method for realizing the distance measurement, first, a received data waveform is processed into a pulse shape so that the correlation operation performed in the spread spectrum communication can be performed, and the correlation operation is performed. Next, when data is continuous, a missing correlation waveform occurs. To compensate for this, a desired correlation waveform is generated by interpolating or estimating the waveform. This makes it possible to apply the ranging method used in spread spectrum communication to narrowband communication.
【0016】[0016]
【発明の実施の形態】以下、本発明の実施形態を添付図
面を参照して説明する。Embodiments of the present invention will be described below with reference to the accompanying drawings.
【0017】まず、本発明の測距方法について説明す
る。First, a distance measuring method according to the present invention will be described.
【0018】図1は、電波の折り返しを利用して物体間
(例えば無線機間)の距離を測定する測距方式を説明す
るための概略図である。ここで測距を行う側の物体(無
線機等)、すなわち測距用変調信号を最初に送信した側
を自局と称し、測距を行われる側の物体(無線機等)、
すなわち最初の測距用変調信号を受信した側を他局と称
することにする。したがって、状況に応じて任意の物体
が自局又は他局となり得る。図2は、他局B側で受信し
た自局Aからの変調信号と他局Bからの送信信号とに時
間的な遅れが無い場合の、自局Aと他局Bの各信号のタ
イミング関係を示したものであり、図3は、他局B側で
受信した自局Aからの変調信号と他局Bからの送信信号
とに時間的な遅れがある場合の、自局Aと他局Bの各信
号のタイミング関係を示したものである。FIG. 1 is a schematic diagram for explaining a distance measuring method for measuring the distance between objects (for example, between wireless devices) using the return of a radio wave. Here, the object on the side that performs distance measurement (such as a wireless device), that is, the side that first transmitted the modulation signal for distance measurement is referred to as its own station, and the object that performs the distance measurement (such as a wireless device);
That is, the side receiving the first modulation signal for distance measurement is referred to as another station. Therefore, any object can be the own station or another station depending on the situation. FIG. 2 shows the timing relationship between the signals of the own station A and the other station B when there is no time delay between the modulated signal from the own station A received by the other station B and the transmission signal from the other station B. FIG. 3 shows a case where the local station A and the remote station B have a time delay between the modulated signal from the local station A received by the remote station B and the transmission signal from the remote station B. 4 shows the timing relationship of each signal of B.
【0019】図1,2において、電波の折り返しを利用
して自局A側と他局B側の間の距離Lを求めようとする
場合、自局Aから他局Bへ変調信号(第一の変調信号)
Sを送信する。この時、自局Aは自ら送信した変調信号
Sを受信し、あるいは変調信号Sの一部を受信部へ送り
(この受信信号をR’とする)、このときの受信タイミ
ングを基準として測距を行う。他局Bでは、自局A側か
らの変調信号と他局Bより送信すべき変調信号(第二の
変調信号)Rとの間に時間的遅れ(Δτ)が発生してな
い場合は、そのまま自局Aに変調信号Rを送信する。自
局Aでは、自局Aが送信し且つ受信した変調信号
(R’)と、他局Bが送信し且つ自局Aで受信した変調
信号Rとの位相差(T)を検出し、この位相差(T)に
基づいて距離Lを算出する。ここで、位相差(T)は自
局Aと他局B間の電波の往復遅延時間に相当するので、
距離Lは位相差Tを用いて下式のように表される。In FIGS. 1 and 2, when the distance L between the own station A and the other station B is to be obtained using the return of the radio wave, the modulated signal (first signal) is transmitted from the own station A to the other station B. Modulation signal)
Send S. At this time, the own station A receives the modulated signal S transmitted by itself, or sends a part of the modulated signal S to the receiving section (this received signal is referred to as R ′), and distance measurement is performed based on the reception timing at this time. I do. In the other station B, if there is no time delay (Δτ) between the modulated signal from the own station A and the modulated signal (second modulated signal) R to be transmitted from the other station B, The modulation signal R is transmitted to the own station A. The own station A detects a phase difference (T) between the modulated signal (R ') transmitted and received by the own station A and the modulated signal R transmitted and received by the other station B and received by the own station A. The distance L is calculated based on the phase difference (T). Here, the phase difference (T) corresponds to the round-trip delay time of the radio wave between the own station A and the other station B,
The distance L is expressed by the following equation using the phase difference T.
【0020】距離L=c・T/2(cは光の速度) 図1、2中、Δtは自局Aから他局B(他局Bから自局
A)へ電波が到達するのに要する時間である。また、τ
mは自局Aから送信された変調信号が自局A自身により
受信され、その基準位置が算出されるまでの遅延時間で
ある。Distance L = c · T / 2 (c is the speed of light) In FIGS. 1 and 2, Δt is required for a radio wave to reach another station B from own station A (other station B to own station A). Time. Also, τ
m is a delay time from when the modulated signal transmitted from the own station A is received by the own station A itself and the reference position is calculated.
【0021】一方、他局Bで受信した自局Aからの変調
信号(Rs)と、他局Bから自局Aへの送信変調信号
(Ss)とに時間的遅れ(Δτ)が発生している場合
は、変調信号(Rs,Ss)間の位相差(τs)を検出
し、この位相差情報を送信変調信号(Ss)に載せて自
局A側へ送信する。自局Aでは、自ら送信し且つ受信し
た変調信号(R’)と、他局Bからの受信信号Rとの位
相差(T)を検出し、さらに他局Bから送信された位相
差データ(τs)を復調し、他局B側での位相差によっ
て発生した誤差を補正し、他局Bまでの距離Lを算出す
る。ここで、距離Lは位相差Tとτsを用いて下式のよ
うに表される。On the other hand, a time delay (Δτ) occurs between the modulated signal (Rs) from the own station A received by the other station B and the modulated signal (Ss) from the other station B to the own station A. If there is, the phase difference (τs) between the modulated signals (Rs, Ss) is detected, and this phase difference information is carried on the transmission modulated signal (Ss) and transmitted to the local station A side. The own station A detects the phase difference (T) between the modulated signal (R ′) transmitted and received by itself and the received signal R from the other station B, and further detects the phase difference data (R ′) transmitted from the other station B (T). τs) is demodulated, the error generated by the phase difference on the other station B side is corrected, and the distance L to the other station B is calculated. Here, the distance L is represented by the following equation using the phase difference T and τs.
【0022】 距離L=c・(T−τs)/2(cは光の速度) 上述した変調信号は、スペクトル拡散方式以外の変調方
式、例えば、PM(位相変調)、FM(周波数変調)ま
たはAM(振幅変調)に基づいて変調された信号であ
る。スペクトル拡散通信を利用した測距方法の場合、変
調信号は基準PN符号により逆拡散(相関)を行うこと
で基準位置(基準ピーク)を検出することが可能である
が、上述した狭帯域通信の変調信号をそのまま用いて
は、スペクトル拡散通信のこのような相関動作を行わせ
ることができない。従って、狭帯域通信のデータ(R
D)をパルス化して、相関ができるようにする必要があ
る。Distance L = c · (T−τs) / 2 (c is the speed of light) The above-described modulation signal is a modulation method other than the spread spectrum method, for example, PM (phase modulation), FM (frequency modulation), or This is a signal modulated based on AM (amplitude modulation). In the case of the distance measuring method using spread spectrum communication, the reference position (reference peak) can be detected by performing despreading (correlation) on the modulated signal using the reference PN code. If the modulated signal is used as it is, such a correlation operation of spread spectrum communication cannot be performed. Therefore, the data (R
D) needs to be pulsed to enable correlation.
【0023】図4は狭帯域信号のパルス化と相関動作を
示したタイミングチャートであり、この動作により各変
調信号の基準位置(基準ピーク)を検出することが可能
となる。FIG. 4 is a timing chart showing the pulsing of the narrow band signal and the correlation operation. By this operation, the reference position (reference peak) of each modulated signal can be detected.
【0024】図4で示されるように、自局Aでは、他局
Bからの変調信号(受信データ(RD))の変化ポイン
ト(0→1,1→0)をあるしきい値で2値化し、幅の
狭いパルス信号(Rp)を生成する(図4(a),
(b),(c))。また、相関をとるもう一方のパルス
(Cp)を図4(d)で示される相関用クロック(C
K)から生成する(図4(e))。この相関用クロック
は、送受信データのクロックに対して、ごくわずかな周
波数が異なるものである。この2つのパルス信号の相関
動作(RpとCpとの掛け算)を行い(図4(f))、
フィルタを通過させることで相関波形(RCp)を生成
する(図4(g))。この時、受信データにデータの変
化ポイントがない場合は、相関信号が出力されない。従
って、この欠落した相関信号を補い(図4(h))、個
々の相関パルスのピーク値を基にした包絡線信号(R
C)を生成し(図4(i))、その信号の最大値の位置
を基準ピーク信号(R)とする(図4(j))。同様な
処理を、自局Aが送信し、且つ自ら受信した信号に対し
て行い、基準ピーク信号(R’)を生成する。As shown in FIG. 4, in the own station A, a change point (0 → 1, 1 → 0) of a modulated signal (received data (RD)) from another station B is binary-coded with a certain threshold value. To generate a narrow pulse signal (Rp) (FIG. 4A,
(B), (c)). Further, the other pulse (Cp) for obtaining the correlation is supplied to the correlation clock (Cp) shown in FIG.
K) (FIG. 4E). The correlation clock is slightly different in frequency from the clock of the transmission / reception data. A correlation operation (multiplication of Rp and Cp) of the two pulse signals is performed (FIG. 4F),
A correlation waveform (RCp) is generated by passing through a filter (FIG. 4 (g)). At this time, if there is no data change point in the received data, no correlation signal is output. Therefore, the missing correlation signal is supplemented (FIG. 4 (h)), and the envelope signal (R) based on the peak value of each correlation pulse is obtained.
C) (FIG. 4 (i)), and the position of the maximum value of the signal is set as a reference peak signal (R) (FIG. 4 (j)). A similar process is performed on the signal transmitted and received by the own station A to generate a reference peak signal (R ′).
【0025】以上の処理により狭帯域信号を用いても受
信信号の基準ピーク(基準位置)を検出することが可能
となり、受信信号の遅延時間差(位相差)に基づいた測
距が可能となる。The above processing makes it possible to detect the reference peak (reference position) of the received signal even if a narrow band signal is used, and to perform distance measurement based on the delay time difference (phase difference) of the received signal.
【0026】図5は上述した測距方法に基づく測距シス
テムの自局と他局とに設けた構成の一実施態様を示した
ものである。FIG. 5 shows an embodiment of the configuration provided in the own station and another station in the distance measuring system based on the above-described distance measuring method.
【0027】図5で示される測距システムは、測距用の
データ(変調信号)を送信する送信部と、該変調信号並
びに他局からの送信信号を受信する受信部とから構成さ
れている。The distance measuring system shown in FIG. 5 includes a transmitting unit for transmitting data (modulated signal) for distance measurement, and a receiving unit for receiving the modulated signal and a transmission signal from another station. .
【0028】送信部では、データクロック生成部1で生
成したデータクロック「FD」を基に送信データ2を放
出する。送信データは帯域通過フィルタ(BPF)3通
過後に、搬送波(f)で変調され、増幅器4にて増幅後
にアンテナを介して送信される。この時、送信信号の一
部は受信部側に送られる。一方受信部では、送信信号の
一部または受信信号の増幅を増幅器5で行い、搬送波
(f)で変調し、帯域通過フィルタ(BPF)6を通過
後にAGC(自動利得制御器)7により信号レベルを一
定にする。しかる後、AGC7からの出力信号はデータ
復調部8に送られ、受信データの復調を行う。受信デー
タは、パルス生成部9にてパルス化され、相関クロック
パルスと掛け算が行われ、相関がとられる。ここで、相
関クロックパルスは、相関用クロック生成部10で生成
された相関クロック「Fc」をパルス生成部11でパル
ス化することで得られる。その後、相関処理された信号
はLPF(低域フィルタ)12を通過後、波形整形部1
3にて相関パルスの欠落を補い、ピーク検出器14にて
相関パルスの包絡線信号を生成し、相関の基準ピーク信
号(R’、R)を発生する。相関パルスの欠落の補間
は、欠落前後のパルス波高値の中間値の波高のパルスを
挿入することで行われる。The transmitting section emits transmission data 2 based on the data clock “FD” generated by the data clock generating section 1. The transmission data is modulated by the carrier (f) after passing through the band-pass filter (BPF) 3, amplified by the amplifier 4, and transmitted through the antenna. At this time, a part of the transmission signal is sent to the receiving unit side. On the other hand, in the receiving unit, a part of the transmission signal or the reception signal is amplified by the amplifier 5, modulated by the carrier (f), passed through a band-pass filter (BPF) 6, and then subjected to an AGC (automatic gain controller) 7 to signal level Constant. After that, the output signal from the AGC 7 is sent to the data demodulation unit 8 to demodulate the received data. The received data is pulsed by the pulse generator 9, multiplied by a correlation clock pulse, and correlated. Here, the correlation clock pulse is obtained by pulsing the correlation clock “Fc” generated by the correlation clock generation unit 10 by the pulse generation unit 11. After that, the signal subjected to the correlation processing passes through an LPF (low-pass filter) 12 and then a waveform shaping unit 1
At 3, the lack of the correlation pulse is compensated, and the peak detector 14 generates an envelope signal of the correlation pulse to generate the reference peak signal (R ′, R) of the correlation. The interpolation of the missing of the correlation pulse is performed by inserting a pulse having a peak value of an intermediate value between the pulse values before and after the missing.
【0029】送信部のデータクロック「Fd」に対して
も同様な処理が施される。すなわち、データクロック生
成部1で生成したデータクロック「Fd」はパルス生成
部15でパルス化され、相関クロックパルスとの相関を
行った後、LPF(低域フィルタ)16を通過後、波形
整形部17にて波形の補間が行われ、さらにピーク検出
器18にて相関の基準ピーク信号が得られる(S)。A similar process is performed on the data clock "Fd" of the transmission unit. That is, the data clock “Fd” generated by the data clock generation unit 1 is pulsed by the pulse generation unit 15, correlated with a correlation clock pulse, passed through an LPF (low-pass filter) 16, and then subjected to a waveform shaping unit. Interpolation of the waveform is performed at 17, and a reference peak signal of the correlation is obtained at the peak detector 18 (S).
【0030】ここで、基準ピーク信号(SまたはR’)
を基準として、他局から送られてきた受信信号の基準ピ
ーク信号(R)とを比較器19で比較し、その位相差を
時間差検出部20で検出する。この時、無線機が他局側
になっているときは、時間差データが、受信した信号と
送信信号の時間的な遅れ(Δτ)を表しているため、自
局側へデータとして送信する。その後、遅延時間算出部
21で他局から送られてきた受信信号(Δτ)とともに
計算され距離が算出される。Here, the reference peak signal (S or R ')
Is compared with the reference peak signal (R) of the received signal transmitted from another station, and the phase difference is detected by the time difference detection unit 20. At this time, when the wireless device is on the other station side, the time difference data represents a time delay (Δτ) between the received signal and the transmission signal, and is transmitted to the own station side as data. Thereafter, the distance is calculated by the delay time calculation unit 21 together with the reception signal (Δτ) sent from another station.
【0031】[0031]
【発明の効果】以上説明したように、本発明によれば、
現在使用されている狭帯域無線機に、測距機能を簡単に
付加することができ、無線機の位置等が把握できる。As described above, according to the present invention,
A distance measuring function can be easily added to a narrow band radio currently used, and the position of the radio can be grasped.
【図1】電波の折り返しを利用して物体間の距離を測定
する測距方式を説明するための概略図である。FIG. 1 is a schematic diagram for explaining a distance measurement method for measuring a distance between objects by using a return of a radio wave.
【図2】他局B側で受信した自局Aからの変調信号と他
局Bからの送信信号とに時間的な遅れが無い場合の、自
局Aと他局Bの各信号のタイミング関係を示したもので
ある。FIG. 2 is a timing relationship between signals of the own station A and the other station B when there is no time delay between a modulated signal from the own station A received by the other station B and a transmission signal from the other station B; It is shown.
【図3】他局B側で受信した自局Aからの変調信号と他
局Bからの送信信号とに時間的な遅れがある場合の、自
局Aと他局Bの各信号のタイミング関係を示したもので
ある。本発明による測距方法を示した概略図である。FIG. 3 is a timing relationship between signals of the own station A and the other station B when a modulated signal from the own station A received by the other station B and a transmission signal from the other station B have a time delay. It is shown. FIG. 4 is a schematic diagram illustrating a distance measuring method according to the present invention.
【図4】狭帯域信号のパルス化と相関動作を示したタイ
ミングチャートである。FIG. 4 is a timing chart showing pulsing of a narrow band signal and a correlation operation.
【図5】本発明の測距方法に基づく測距システムの自局
と他局とに設けた構成の一実施態様を示したものであ
る。FIG. 5 shows an embodiment of a configuration provided in a local station and another station in a distance measuring system based on the distance measuring method of the present invention.
A 自局 B 他局 1 データクロック生成部 8 データ復調部 9,11,15 パルス生成部 10 相関用クロック生成部 13、17 波形整形部 14、18 ピーク検出部 20 時間差検出部 21 遅延時間算出部 A own station B other station 1 data clock generation section 8 data demodulation section 9, 11, 15 pulse generation section 10 correlation clock generation section 13, 17 waveform shaping section 14, 18 peak detection section 20 time difference detection section 21 delay time calculation section
Claims (10)
距離を測定する測距方法であって、自局から他局へ第一
の狭帯域通信信号を送信するステップと、他局で受信さ
れた第一の狭帯域通信信号と他局から自局へ送信する第
二の狭帯域通信信号との相対時間差を検出し、その相対
時間差のデータを第二の狭帯域通信信号に付加して自局
に送信するステップと、自局で受信された第二の狭帯域
通信信号と自局で送信した第一の狭帯域通信信号との時
間差を検出し、その検出値と復調された前記相対時間差
のデータとから自局と他局間の距離を算出するステップ
とを備えることを特徴とする測距方法。1. A distance measuring method for measuring a distance between a self-station and another station using a narrow-band communication method, comprising: transmitting a first narrow-band communication signal from the self-station to another station; Detect the relative time difference between the first narrowband communication signal received by the station and the second narrowband communication signal transmitted from another station to the own station, and convert the data of the relative time difference into a second narrowband communication signal. Adding and transmitting to the own station, detecting the time difference between the second narrowband communication signal received by the own station and the first narrowband communication signal transmitted by the own station, and the detected value is demodulated with the detected value. Calculating a distance between the own station and the other station from the relative time difference data.
位相変調(PM)、周波数変調(FM)及び振幅変調
(AM)のうちの一つの変調方式に基づいて変調された
信号であることを特徴とする請求項1記載の測距方法。2. The first and second narrowband communication signals are:
The distance measuring method according to claim 1, wherein the signal is a signal modulated based on one of a modulation method of phase modulation (PM), frequency modulation (FM), and amplitude modulation (AM).
二の狭帯域通信信号との相対時間差を検出するステップ
と、自局における第二の狭帯域通信信号と第一の狭帯域
通信信号との時間差を検出するステップの各々は、他局
及び自局においてそれぞれ相関クロック信号を生成し、
各局で相関用クロック信号と各狭帯域通信信号のベース
バンド信号との間で相関をとることにより、自局及び他
局での相対時間差を検出するステップを含むことを特徴
とする請求項1記載の測距方法。Detecting a relative time difference between a first narrowband communication signal and a second narrowband communication signal in another station; and transmitting a second narrowband communication signal and a first narrowband communication in the own station. In each of the steps of detecting a time difference from the signal, a correlated clock signal is generated in each of the other station and the own station,
2. The method according to claim 1, further comprising the step of detecting a relative time difference between the own station and another station by correlating between the correlation clock signal and the baseband signal of each narrowband communication signal at each station. Distance measuring method.
するステップは、第一の狭帯域通信信号及び第二の狭帯
域通信信号のベースバンド信号である送信データあるい
はそれらから復調した受信データを基に、該送信データ
または受信データのデータ波形を適宜なしきい値を設け
て2値化することによりデータの変化ポイントを検出す
るステップと、変化ポイント毎にデータクロックの周期
より狭い適宜な幅の第一のパルス信号を生成するステッ
プと、自局及び他局にて前記データクロックの周波数と
異なる周波数で生成される相関クロックから、前記第一
のパルス信号と同程度の幅を有する第二のパルス信号を
生成するステップと、前記第一のパルス信号と前記第二
のパルス信号とを掛け合わせ、ローパスフィルタを通す
ことによって相関信号を得るステップとを備えることを
特徴とする請求項3記載の測距方法。4. The step of detecting the relative time difference between the own station and the other station includes transmitting data as baseband signals of a first narrowband communication signal and a second narrowband communication signal, or receiving data demodulated therefrom. A step of detecting a data change point by binarizing the data waveform of the transmission data or the reception data based on the data by providing an appropriate threshold value; Generating a first pulse signal having a width, and from a correlated clock generated at a frequency different from the frequency of the data clock in the own station and another station, a second pulse signal having a width similar to that of the first pulse signal. Generating a second pulse signal; multiplying the first pulse signal and the second pulse signal; 4. A distance measuring method according to claim 3, further comprising the step of:
信号から包絡線信号を生成し、該包絡線信号のピーク位
置を検出してその位置を相関信号の基準位置とするステ
ップをさらに有することを特徴とする請求項4記載の測
距方法。5. The method according to claim 1, further comprising the step of generating an envelope signal from the correlation signal obtained after passing through the low-pass filter, detecting a peak position of the envelope signal, and using the detected peak position as a reference position of the correlation signal. 5. The distance measuring method according to claim 4, wherein:
プにおいて、相関信号パルスが欠落している場合は、欠
落の前後のパルスの波高値を基にそれらの中間値のパル
スを挿入してすることによって欠落パルスを補間する補
間ステップをさらに有することを特徴とする請求項5記
載の測距方法。6. In the step of generating an envelope signal of a correlation signal, if a correlation signal pulse is missing, a pulse having an intermediate value is inserted based on the peak values of the pulses before and after the missing. 6. The distance measuring method according to claim 5, further comprising an interpolation step of interpolating the missing pulse.
て、他局では第一の狭帯域通信信号と第二の狭帯域通信
信号間の相対時間差を求め、自局では第二の狭帯域通信
信号と第一の狭帯域通信信号間の時間差を求めることを
特徴とする請求項5記載の測距方法。7. The other station determines a relative time difference between the first narrowband communication signal and the second narrowband communication signal based on the time difference between the reference positions of the correlation signals, and the second station determines the second narrowband communication signal. The method according to claim 5, wherein a time difference between the communication signal and the first narrowband communication signal is obtained.
第二の狭帯域通信信号に付加して自局に送信し、自局で
は自局で求めた時間差と、第二の狭帯域通信信号に付加
されていた時間差データとに基づいて、自局並びに他局
間の距離を算出することを特徴とする請求項7記載の測
距方法。8. The other station adds data representing the relative time difference to the second narrowband communication signal and transmits the second narrowband communication signal to the own station. The own station compares the time difference obtained by the own station with the second narrowband communication signal. 8. The distance measuring method according to claim 7, wherein a distance between the own station and the other station is calculated based on the time difference data added to the distance.
距離を測定する、各局に設けられた測距装置であって、
自局から他局へ第一の狭帯域通信信号を送信する送信部
と、該第一の狭帯域通信信号の受信に応じて他局から送
信された第二の狭帯域通信信号を受信する受信部とから
なり、該第二の狭帯域通信信号には、他局における前記
第一の狭帯域通信信号と前記第二の狭帯域通信信号間の
相対時間差に関するデータが組み込まれており、前記受
信部は、自局から送信した前記第一の狭帯域通信信号と
他局から送信され自局により受信された前記第二の狭帯
域通信信号との時間差と、該第二の狭帯域通信信号に組
み込まれた前記相対時間差に基づいて、自局並びに他局
間の距離を測定することを特徴とする測距装置。9. A distance measuring device provided in each station for measuring a distance between the own station and another station using a narrow band communication system,
A transmitting unit that transmits a first narrowband communication signal from the own station to another station, and a receiving unit that receives a second narrowband communication signal transmitted from another station in response to receiving the first narrowband communication signal The second narrowband communication signal, the data related to the relative time difference between the first narrowband communication signal and the second narrowband communication signal in another station is incorporated, the reception The time difference between the first narrowband communication signal transmitted from the own station and the second narrowband communication signal transmitted from another station and received by the own station, and the second narrowband communication signal A distance measuring apparatus for measuring a distance between the own station and another station based on the incorporated relative time difference.
信号の一部と前記第二の狭帯域通信信号とを受信する受
信手段と、受信信号をパルス化するパルス手段と、相関
クロックパルスを生成する相関クロックパルス生成手段
と、パルス化された受信信号と相関クロックパルスとの
間で相関処理を行い、相関信号を得る相関手段と、該相
関手段からの相関信号に補間処理を行うことで相関パル
スの欠落を補う補間手段と、該補間手段の出力信号に基
づいてそのピーク位置を検出し、基準ピーク信号として
出力するピーク検出手段と、該ピーク検出手段により得
られた、第一狭帯域通信信号並びに第二狭帯域通信信号
の基準ピーク信号に基づいて各信号間の遅延時間を算出
し、自局及び他局間の距離を測定する遅延時間算出手段
とを有することを特徴とする請求項9記載の測距装置。10. A receiving unit for receiving a part of the first narrowband communication signal and the second narrowband communication signal, a pulse unit for pulsing the received signal, and a correlation clock. Correlation clock pulse generation means for generating a pulse, correlation processing between the pulsed received signal and the correlation clock pulse to obtain a correlation signal, and interpolation processing for the correlation signal from the correlation means Interpolating means for compensating for the lack of the correlation pulse, a peak detecting means for detecting the peak position based on the output signal of the interpolating means and outputting it as a reference peak signal, and a first peak obtained by the peak detecting means. A delay time calculating means for calculating a delay time between each signal based on a reference peak signal of the narrowband communication signal and the second narrowband communication signal, and measuring a distance between the own station and another station. The distance measuring apparatus according to claim 9, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000401361A JP4520633B2 (en) | 2000-12-28 | 2000-12-28 | Ranging method and ranging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000401361A JP4520633B2 (en) | 2000-12-28 | 2000-12-28 | Ranging method and ranging device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002202364A true JP2002202364A (en) | 2002-07-19 |
JP4520633B2 JP4520633B2 (en) | 2010-08-11 |
Family
ID=18865804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000401361A Expired - Fee Related JP4520633B2 (en) | 2000-12-28 | 2000-12-28 | Ranging method and ranging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4520633B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005345273A (en) * | 2004-06-03 | 2005-12-15 | Seiko Precision Inc | Distance measuring device and distance measuring method |
JP2009128299A (en) * | 2007-11-27 | 2009-06-11 | Nippon Soken Inc | Device and system for detecting object azimuth |
WO2015145993A1 (en) * | 2014-03-28 | 2015-10-01 | 日本電気株式会社 | Wireless device, distance estimation system, position estimation system, distance estimation method, position estimation method, distance-estimation-program recording medium, and position-estimation-program recording medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05297129A (en) * | 1992-04-21 | 1993-11-12 | Clarion Co Ltd | Distance measuring device |
JPH07226976A (en) * | 1994-02-15 | 1995-08-22 | Toshiba Corp | Radio communication system |
JPH10123243A (en) * | 1996-10-05 | 1998-05-15 | Oerlikon Contraves Ag | Method and equipment for measuring distance between two stations connected through communication channel |
JPH10234072A (en) * | 1997-02-20 | 1998-09-02 | Matsushita Electric Ind Co Ltd | Mobile communication device with distance measurement function |
JP2001183447A (en) * | 1999-12-24 | 2001-07-06 | Clarion Co Ltd | Range finding method and device |
-
2000
- 2000-12-28 JP JP2000401361A patent/JP4520633B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05297129A (en) * | 1992-04-21 | 1993-11-12 | Clarion Co Ltd | Distance measuring device |
JPH07226976A (en) * | 1994-02-15 | 1995-08-22 | Toshiba Corp | Radio communication system |
JPH10123243A (en) * | 1996-10-05 | 1998-05-15 | Oerlikon Contraves Ag | Method and equipment for measuring distance between two stations connected through communication channel |
JPH10234072A (en) * | 1997-02-20 | 1998-09-02 | Matsushita Electric Ind Co Ltd | Mobile communication device with distance measurement function |
JP2001183447A (en) * | 1999-12-24 | 2001-07-06 | Clarion Co Ltd | Range finding method and device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005345273A (en) * | 2004-06-03 | 2005-12-15 | Seiko Precision Inc | Distance measuring device and distance measuring method |
JP2009128299A (en) * | 2007-11-27 | 2009-06-11 | Nippon Soken Inc | Device and system for detecting object azimuth |
WO2015145993A1 (en) * | 2014-03-28 | 2015-10-01 | 日本電気株式会社 | Wireless device, distance estimation system, position estimation system, distance estimation method, position estimation method, distance-estimation-program recording medium, and position-estimation-program recording medium |
US20170115375A1 (en) * | 2014-03-28 | 2017-04-27 | Nec Corporation | Wireless device, distance estimation system, position estimation system, distance estimation method, position estimation method, distance-estimation-program recording medium, and position-estimation-program recording medium |
Also Published As
Publication number | Publication date |
---|---|
JP4520633B2 (en) | 2010-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7564400B2 (en) | Spread spectrum radar apparatus | |
JP4854003B2 (en) | Ranging system | |
US20110267924A1 (en) | Acoustic distance measurement system having cross talk immunity | |
EP1705498B1 (en) | Reception time determining apparatus and distance measuring apparatus using the same | |
US7830953B2 (en) | Receiving apparatus, communication apparatus and control apparatus using the same | |
US7822159B2 (en) | Master side communication apparatus and slave side communication apparatus | |
US10237001B2 (en) | Method and measuring device for intermodulation measurement | |
CN105099498A (en) | System and method for capturing spread-spectrum signals | |
JP2018066669A (en) | Ultrasonic distance measuring device, ultrasonic distance measuring method and ultrasonic distance measuring program | |
JP3056579B2 (en) | In-vehicle radar device | |
JP4520633B2 (en) | Ranging method and ranging device | |
JP4460698B2 (en) | Ranging method and apparatus | |
JP2008008748A (en) | Radio frequency signal source location device | |
JP5892288B2 (en) | Radar and object detection method | |
JPWO2011142211A1 (en) | Communication sensor device | |
JP3611115B2 (en) | Ranging device and radar device equipped with the ranging device | |
JP2006250777A (en) | Ranging system | |
JP3800157B2 (en) | Ranging system | |
JPH05297129A (en) | Distance measuring device | |
JPH05264729A (en) | Range finder | |
JP2005106470A5 (en) | ||
JP2922702B2 (en) | Ranging system | |
JP4877031B2 (en) | Wireless communication device | |
JP6966371B2 (en) | Communications system | |
JP2864930B2 (en) | Synchronization holding device in spread spectrum communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071220 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100112 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100304 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100304 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100518 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100521 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130528 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |