[go: up one dir, main page]

JP2002201284A - Metal fine particle-carrying resin particle and its preparation process - Google Patents

Metal fine particle-carrying resin particle and its preparation process

Info

Publication number
JP2002201284A
JP2002201284A JP2001001508A JP2001001508A JP2002201284A JP 2002201284 A JP2002201284 A JP 2002201284A JP 2001001508 A JP2001001508 A JP 2001001508A JP 2001001508 A JP2001001508 A JP 2001001508A JP 2002201284 A JP2002201284 A JP 2002201284A
Authority
JP
Japan
Prior art keywords
metal
particles
resin
resin particles
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001001508A
Other languages
Japanese (ja)
Inventor
Satoshi Nagahata
敏 長畑
Hideo Ishibashi
秀夫 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP2001001508A priority Critical patent/JP2002201284A/en
Publication of JP2002201284A publication Critical patent/JP2002201284A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Catalysts (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal fine particle-carrying resin particle which efficiently displays the activity of the metals (especially precious metals) deposited on the resin particle surface and its preparation process. SOLUTION: The metal fine particle-carrying resin particle is prepared by adding a reducing agent to a solvent containing an emulsion type resin particle with an average particle size of from 10 nm to 100 μm, a gold, silver, copper, platinum or other metal ion with an average particle size of from 1 nm to 1 μm and a dispersant to form a metal colloid from the metal ion and depositing multiple metal fine particles onto the resin particle surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微小な樹脂粒子の
表面に、多数の金属微粒子が担持されている金属微粒子
担持樹脂粒子およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to fine metal particle-supported resin particles in which a large number of fine metal particles are supported on the surface of fine resin particles, and a method for producing the same.

【0002】[0002]

【従来の技術】プラスチックの帯電性改良材、電磁波シ
ールド材、導電性塗料、導電性インキ、自動車排気ガス
分解用触媒、抗原抗体反応に関する診断薬等、広い分野
に渡って金属被覆樹脂粒子が使用されている。
2. Description of the Related Art Metal-coated resin particles are used in a wide range of fields, such as a charge-improving material for plastics, an electromagnetic shielding material, a conductive paint, a conductive ink, a catalyst for decomposing exhaust gas from automobiles, and a diagnostic agent for antigen-antibody reaction. Have been.

【0003】例えば特公昭62−28178号公報には
樹脂粒子表面に酸化ルテニウム、酸化鉄およびチタン酸
バリウムからなる被膜を形成した粒子が、特開平5−1
79303号および特開平6−248088号には樹脂
粒子表面に酸化チタン等の半導体無機粒子を付着させ、
その表面に金属被膜を析出させた粒子が開示されてい
る。
[0003] For example, Japanese Patent Publication No. 62-28178 discloses a resin particle having a film formed on its surface composed of ruthenium oxide, iron oxide and barium titanate.
No. 79303 and JP-A-6-248088 make semiconductor inorganic particles such as titanium oxide adhere to the surface of resin particles,
A particle having a metal coating deposited on its surface is disclosed.

【0004】また、特開平10−2592536号公報
にはカルボキシル基を有する重合体粒子にめっきまたは
蒸着で金属被覆した粒子が、特開平10−330948
号には樹脂粒子表面に連続した均一厚さの銀層を被覆し
た粒子が、特開2000−34582号には球状重合体
コアに金属鉄や金属銅のシェルが形成された球状重合体
−金属化合物複合粒子が開示されている。
Japanese Patent Application Laid-Open No. 10-259,536 discloses a polymer particle having a carboxyl group coated with metal by plating or vapor deposition.
Japanese Patent Application Laid-Open No. 2000-34582 discloses a spherical polymer-metal in which a shell of metallic iron or metallic copper is formed on a spherical polymer core. Compound composite particles are disclosed.

【0005】上記各公報に記載された発明は、いずれも
樹脂粒子表面に金属被膜を設けて導電性を持たせること
により種々の分野に適用しようとするものである。しか
し、金属は被膜として形成されているため、その表面積
は樹脂粒子の表面積と大差がなく、たとば貴金属による
抗菌作用、触媒作用等の活性を効率的に発揮させるには
不十分であった。
The inventions described in each of the above publications are intended to be applied to various fields by providing a metal coating on the surface of resin particles to impart conductivity. However, since the metal is formed as a coating, the surface area thereof is not much different from the surface area of the resin particles, and it is not sufficient to efficiently exert, for example, an antibacterial action, a catalytic action and the like by a noble metal.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、樹脂
粒子表面に担持された金属(特に貴金属)の活性を効率
的に発揮することができる金属微粒子担持樹脂粒子およ
びその製造方法を提供することにある。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide metal fine particle-supported resin particles capable of efficiently exhibiting the activity of a metal (particularly a noble metal) supported on the surface of the resin particles, and a method for producing the same. It is in.

【0007】[0007]

【課題を解決するための手段】本発明の金属微粒子担持
樹脂粒子は、樹脂粒子表面に複数個の金属微粒子が担持
されている。この樹脂粒子は、平均粒径10nm〜10
0μmの合成樹脂粒子であることが好ましい。また、金
属微粒子が平均粒径1nm〜1μm、かつ、Au、A
g、Cu、Ni、Co、Pt、Pd、Ir、Ru、Rh
およびOsから選ばれる少なくとも1種類の金属から構
成されること、金属微粒子と樹脂粒子との質量比が、1
/1000〜2/1であることも好ましい。
The resin particles carrying metal fine particles of the present invention have a plurality of metal fine particles supported on the surface of the resin particles. The resin particles have an average particle size of 10 nm to 10 nm.
It is preferably a synthetic resin particle of 0 μm. Further, the metal fine particles have an average particle size of 1 nm to 1 μm, and Au, A
g, Cu, Ni, Co, Pt, Pd, Ir, Ru, Rh
And at least one metal selected from Os, and the mass ratio between the metal fine particles and the resin particles is 1
/ 1000 to 2/1 is also preferable.

【0008】本発明の金属微粒子担持樹脂粒子の製造方
法は、エマルジョン型樹脂粒子、金属イオンおよび分散
剤を含有する溶媒中の金属イオンを還元し、この金属イ
オンから金属コロイドを形成させることにより、樹脂粒
子表面に複数個の金属微粒子を担持させるものである。
The method for producing resin particles carrying metal fine particles of the present invention comprises reducing metal ions in a solvent containing emulsion-type resin particles, metal ions and a dispersant, and forming metal colloids from the metal ions. A plurality of metal fine particles are supported on the surface of the resin particles.

【0009】[0009]

【発明の実施の形態】以下、本発明について詳細に述べ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0010】本発明で使用する樹脂粒子は、用途によっ
て適宜選択すればよいため粒子径や樹脂種類に限定はな
いが、乳化重合により分散媒中に分散されたエマルジョ
ンタイプのものが好適に使用でき、平均粒径は10nm
〜100μm、さらには100nmから10μmであれ
ば使用し易い。また樹脂種類としては合成樹脂が物性を
制御する上で好ましく、このような樹脂の例としてはア
クリル樹脂、ポリオレフィン樹脂、ポリエステル樹脂、
塩ビ酢ビ共重合樹脂、ポリアミド樹脂、エポキシ樹脂、
ポリイミド樹脂、ウレタン樹脂、シリコン樹脂、フェノ
ール樹脂を挙げることができる。
The resin particles used in the present invention are not particularly limited in terms of particle size and resin type, since they may be appropriately selected according to the intended use. However, emulsion-type resin particles dispersed in a dispersion medium by emulsion polymerization can be suitably used. , Average particle size is 10 nm
It is easy to use if it is 100 μm, more preferably 100 nm to 10 μm. In addition, as a resin type, a synthetic resin is preferable in controlling physical properties, and examples of such a resin include an acrylic resin, a polyolefin resin, a polyester resin,
PVC-vinyl acetate copolymer resin, polyamide resin, epoxy resin,
Examples include a polyimide resin, a urethane resin, a silicone resin, and a phenol resin.

【0011】なお、樹脂粒子に透明性を要求する場合は
ポリスチレンあるいはアクリル樹脂が好ましく、このよ
うなアクリル樹脂の例としては、(メタ)アクリル酸ヒ
ドロキシメチル、(メタ)アクリル酸ヒドロキシエチ
ル、(メタ)アクリル酸2−ヒドロキシエチルのカプロ
ラクトン開環付加物類、(メタ)アクリル酸ヒドロキシ
ブチル、N−メチロールアクリルアミド等の水酸基含有
(メタ)アクリル酸エステルモノマー類、(メタ)アク
リル酸グリシジル等のオキシラン環含有モノマー類、
(メタ)アクリル酸、クロトン酸、イタコン酸、フマル
酸、マレイン酸等のカルボキシル基を有するエチレン性
不飽和モノマー類、および(メタ)アクリル酸メチル、
(メタ)アクリル酸エチル、(メタ)アクリル酸プロピ
ル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2
−エチルヘキシル、(メタ)アクリル酸n−オクチル、
(メタ)アクリル酸n−ドデシル等の(メタ)アクリル
酸アルキルエステルモノマー類から合成されるアクリル
樹脂を挙げることができる。
When transparency is required for the resin particles, polystyrene or acrylic resin is preferable. Examples of such acrylic resin include hydroxymethyl (meth) acrylate, hydroxyethyl (meth) acrylate, and (meth) acrylate. ) Caprolactone ring-opening adducts of 2-hydroxyethyl acrylate, hydroxybutyl (meth) acrylate monomers such as hydroxybutyl (meth) acrylate, N-methylolacrylamide, and oxirane rings such as glycidyl (meth) acrylate Contained monomers,
(Meth) acrylic acid, crotonic acid, itaconic acid, fumaric acid, ethylenically unsaturated monomers having a carboxyl group such as maleic acid, and methyl (meth) acrylate;
Ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylate 2
-Ethylhexyl, n-octyl (meth) acrylate,
An acrylic resin synthesized from alkyl (meth) acrylate monomers such as n-dodecyl (meth) acrylate can be given.

【0012】上記アクリル樹脂にはさらに、エチレング
リコールジメタクリレート、ネオペンチルグリコールジ
メタクリレート、ジビニルベンゼン等の架橋性モノマー
類、その他(メタ)アクリロニトリル、(メタ)アクリ
ル酸アミド、ジメチルアクリルアミド、N,N−ジメチ
ルプロピルアクリルアミド、N−ブトキシメチルアクリ
ルアミド、スチレン、α−メチルスチレン、イタコン
酸、マレイン酸、酢酸ビニル等も共重合させることがで
きる。
The acrylic resin further includes crosslinking monomers such as ethylene glycol dimethacrylate, neopentyl glycol dimethacrylate, and divinylbenzene, and other (meth) acrylonitrile, (meth) acrylamide, dimethylacrylamide, N, N- Dimethylpropylacrylamide, N-butoxymethylacrylamide, styrene, α-methylstyrene, itaconic acid, maleic acid, vinyl acetate and the like can also be copolymerized.

【0013】上記モノマーを重合させるための重合開始
剤としては、水溶性または非水溶性のラジカル重合開始
剤を挙げることができ、例えば過硫酸ナトリウム、過硫
酸カリウム、過硫酸アンモニウム等の過硫酸塩類、過酸
化水素、過酸化ナトリウム、過酸化アンモニウム等の過
酸化物類、これらの塩とチオ硫酸ナトリウム、塩化鉄、
塩化銅等の還元剤を組み合わせたレドックス触媒系の重
合開始剤が挙げられる。また、2,2’−アゾビスイソ
ブチロニトリル,2,2’−アゾビス(2−ジアミノプ
ロパン)ハイドロクロライド,2,2’−アゾビス
(2,4−ジメチルバレロニトリル)等のアゾビス化合
物類も使用することができる。これら重合開始剤の添加
量は、重合させるモノマー量の0.01〜30質量%が
好ましい。
Examples of the polymerization initiator for polymerizing the above monomers include water-soluble or water-insoluble radical polymerization initiators, such as persulfates such as sodium persulfate, potassium persulfate and ammonium persulfate; Peroxides such as hydrogen peroxide, sodium peroxide, ammonium peroxide, their salts and sodium thiosulfate, iron chloride,
A redox catalyst-based polymerization initiator obtained by combining a reducing agent such as copper chloride is exemplified. Also, azobis compounds such as 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-diaminopropane) hydrochloride, and 2,2′-azobis (2,4-dimethylvaleronitrile) are available. Can be used. The amount of the polymerization initiator to be added is preferably 0.01 to 30% by mass of the amount of the monomer to be polymerized.

【0014】また、上記乳化重合時に使用することがで
きる乳化剤の例としては、ポリオキシエチレンアルキル
アミン、ポリオキシアルキルエーテル硫酸エステル塩、
アルキルジフェニルエーテルジスルホン酸塩、ポリオキ
シエチレンアルキルフェニルエーテル硫酸エステル塩等
のアニオン活性剤単独、または、これらアニオン活性剤
と、ポリオキシエチレンアルキルエーテル、ポリオキシ
エチレンアルキルエステル等のノニオン活性剤との組み
合わせが挙げられ、フルオロアルキルカルボン酸、パー
フルオロアルキルスルホン酸塩、モノパーフルオロアル
キルエチルりん酸エステル等のふっ素系乳化剤、ラジカ
ル重合性の二重結合を有する反応性乳化剤も使用でき
る。これら乳化剤の添加量は重合させるモノマー量の
0.001〜5質量%が好ましい。
Examples of the emulsifier which can be used in the above emulsion polymerization include polyoxyethylene alkylamine, polyoxyalkyl ether sulfate,
Alkyl diphenyl ether disulfonate, anionic activator alone such as polyoxyethylene alkyl phenyl ether sulfate, or a combination of these anionic activators with a nonionic activator such as polyoxyethylene alkyl ether or polyoxyethylene alkyl ester. For example, a fluoroemulsifier such as a fluoroalkyl carboxylic acid, a perfluoroalkyl sulfonate, a monoperfluoroalkyl ethyl phosphate, and a reactive emulsifier having a radical polymerizable double bond can be used. The addition amount of these emulsifiers is preferably 0.001 to 5% by mass of the amount of the monomer to be polymerized.

【0015】本発明に使用する金属微粒子は金、銀、
銅、白金、ニッケル、コバルト、パラジウム、イリジウ
ム、ルビジウム、ロジウム、オスミウム、ルテニウム等
の、主として貴金属類であり、これらの1種類またはそ
れ以上を選択することができる。また金属微粒子の平均
粒径は1nm〜1μm、さらには10nm〜500nm
が好ましい。このような金属微粒子を形成するための金
属イオンの供給原料として上記各金属の塩類、たとえば
塩化第二銅、三塩化ロジウム、三塩化ルテニウム等の塩
化物、硝酸銀等の硝酸塩、硫酸銅や硫酸ニッケル等の硫
酸塩、過塩素酸銀等の過塩素酸塩、酢酸銀等の酢酸塩お
よびこれらの含水化合物が挙げられる。さらには、塩化
金酸、ヘキサクロロ白金酸等の酸類およびこれらの含水
化合物、ならびに、これら酸類や含水化合物と金属との
塩(例えばテトラクロロ白金酸等)も使用することがで
きる。
The fine metal particles used in the present invention are gold, silver,
It is mainly a noble metal such as copper, platinum, nickel, cobalt, palladium, iridium, rubidium, rhodium, osmium, ruthenium, and one or more of these can be selected. The average particle size of the metal fine particles is 1 nm to 1 μm, and further 10 nm to 500 nm.
Is preferred. Salts of the above-mentioned metals, for example, chlorides such as cupric chloride, rhodium trichloride, ruthenium trichloride, nitrates such as silver nitrate, copper sulfate and nickel sulfate are used as a raw material for supplying metal ions for forming such metal fine particles. And the like, sulfates such as silver perchlorate, acetates such as silver acetate, and hydrated compounds thereof. Furthermore, acids such as chloroauric acid and hexachloroplatinic acid and hydrated compounds thereof, and salts of these acids and hydrated compounds with metals (for example, tetrachloroplatinic acid and the like) can also be used.

【0016】本発明の金属微粒子担持樹脂粒子は次のよ
うな方法で製造する。すなわち、上記金属塩をまず溶媒
に溶解する。ここで溶媒としては上記金属塩を溶解する
ことができるものであれば特に限定されず、例えば、
水、アセトン、メタノール、エタノール、イソプロピル
アルコール、エチレングリコール、酢酸エチルを挙げる
ことができる。これらは単独で使用してもよく、2種以
上を併用してもよい。なお、水と有機溶媒とを混合して
使用する場合には、上記有機溶媒としては水可溶性のも
のが好ましい。
The resin particles carrying fine metal particles of the present invention are produced by the following method. That is, the metal salt is first dissolved in a solvent. Here, the solvent is not particularly limited as long as it can dissolve the metal salt, for example,
Examples include water, acetone, methanol, ethanol, isopropyl alcohol, ethylene glycol, and ethyl acetate. These may be used alone or in combination of two or more. When water and an organic solvent are used as a mixture, the organic solvent is preferably a water-soluble organic solvent.

【0017】上記溶媒が水および水可溶性有機溶媒から
なる混合溶媒である場合、まず、上記金属塩を水に溶解
した後、後述する量の分散剤を溶解した水可溶性有機溶
媒を添加して溶媒とすることが好ましい。上記金属塩を
水に溶解することにより、オルガノゾルをより高濃度に
調製することができる。このとき、上記金属塩は、50
mmol/l以上となるように水に溶解されることが好
ましい。50mmol/l未満であると、金属コロイド
粒子を高い割合で含有した高濃度の固体ゾルおよびコロ
イド溶媒を得ることができない。より好ましくは、10
0mmol/l以上である。
When the solvent is a mixed solvent composed of water and a water-soluble organic solvent, the above-mentioned metal salt is first dissolved in water, and then a water-soluble organic solvent in which a dispersant described below is dissolved is added. It is preferable that By dissolving the metal salt in water, the organosol can be prepared at a higher concentration. At this time, the metal salt is 50
It is preferable to be dissolved in water so as to be at least mmol / l. If it is less than 50 mmol / l, a high-concentration solid sol and colloid solvent containing a high proportion of metal colloid particles cannot be obtained. More preferably, 10
0 mmol / l or more.

【0018】金属塩を水に溶解するために、酸もしくは
塩基を加えてpHを調整することがある。例えば、金属
として銀、溶媒として水を使用する場合、この水溶液
は、pH7以下であることが好ましい。pH7を超える
と、例えば、金属塩として硝酸銀を用いる場合、銀イオ
ンを還元する際に酸化銀等の副生成物が生成し、溶液が
白濁するので好ましくない。上記水溶液のpHが7を超
える場合には、例えば、0.1mol/l程度の濃度の
硝酸等を添加して、pHを7以下に調整することが好ま
しい。
In order to dissolve the metal salt in water, the pH may be adjusted by adding an acid or a base. For example, when silver is used as the metal and water is used as the solvent, the aqueous solution preferably has a pH of 7 or less. When the pH exceeds 7, for example, when silver nitrate is used as a metal salt, by-products such as silver oxide are generated when silver ions are reduced, and the solution becomes cloudy, which is not preferable. When the pH of the aqueous solution exceeds 7, for example, it is preferable to adjust the pH to 7 or less by adding nitric acid or the like having a concentration of about 0.1 mol / l.

【0019】次に上記金属塩の溶液に分散剤を添加し、
その後エマルジョンタイプの樹脂粒子を加える。なお、
分散剤と金属塩の添加順序に決まりはなく、たとえば先
に分散剤と溶媒との混合液を作成してpH調整を行って
おき、その後に金属塩を加えてもよい。また、エマルジ
ョンタイプの樹脂粒子も分散剤が添加された後であれば
いつでも加えることができる。
Next, a dispersant is added to the metal salt solution,
Thereafter, emulsion type resin particles are added. In addition,
The order of adding the dispersant and the metal salt is not limited. For example, a mixed solution of the dispersant and the solvent may be prepared first to adjust the pH, and then the metal salt may be added. Emulsion-type resin particles can also be added any time after the dispersant is added.

【0020】上記金属塩と樹脂粒子との質量比は、製造
される金属微粒子担持樹脂粒子における金属微粒子と樹
脂粒子との質量比が1/1000〜2/1、さらには1
/100〜1/1となるように制御することが好まし
い。金属微粒子が2/1を超えると担持されない金属の
量が増えるため効率的でなく、一方、1/1000未満
では金属微粒子の機能が十分に発揮されないことがあ
る。
The mass ratio of the metal salt to the resin particles is such that the mass ratio of the metal particles to the resin particles in the produced metal particle-supporting resin particles is 1/1000 to 2/1, and more preferably 1 to 1000.
It is preferable to control so as to be / 100 to 1/1. When the amount of the metal fine particles exceeds 2/1, the amount of unsupported metal increases, which is not efficient. On the other hand, when it is less than 1/1000, the function of the metal fine particles may not be sufficiently exhibited.

【0021】上記分散剤としては一般的な界面活性剤や
分散剤を使用することができ、特に限定はなく上述の乳
化重合時に使用する乳化剤を使用することができる。上
記乳化剤以外の例としてはドデシル硫酸ナトリウム、ド
デシルベンゼンスルホン酸ナトリウム、ヘキサメタリン
酸ナトリウム等の界面活性剤、その他市販品として、例
えば、アビシア社製のソルスパース20000、ソルス
パース24000、ソルスパース26000、ソルスパ
ース27000、ソルスパース28000、ソルスパー
ス32550、ソルスパース41090、ビックケミー
社製のディスパービック160、ディスパービック16
1、ディスパービック162、ディスパービック16
3、ディズパービック166、ディスパービック17
0、ディスパービック180、ディスパービック18
2、ディスパービック184、ディスパービック19
0、ディスパービック191、ディスパービック19
2、ディスパービック2000、ディスパービック20
01、EFKAケミカル社製のEFKA−46、EFK
A−47、EFKA−48、EFKA−49、EFKA
−4540、EFKA−4550、ポリマー100、ポ
リマー120、ポリマー150、ポリマー400、ポリ
マー401、ポリマー402、ポリマー403、ポリマ
ー450、ポリマー451、ポリマー452、ポリマー
453、味の素社製のアジスパーPB711、アジスパ
ーPA111、アジスパーPB811、アジスパーPW
911、共栄社化学社製のフローレンDOPA−15
8、フローレンDOPA−22、フローレンDOPA−
17、フローレンTG−730W、フローレンG−70
0、フローレンTG−720W、フローレンTG−74
0W、フローレンTG−745Wを挙げることができ
る。
As the dispersant, a general surfactant or dispersant can be used, and there is no particular limitation, and the emulsifier used in the above-mentioned emulsion polymerization can be used. Examples of other emulsifiers include surfactants such as sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, and sodium hexametaphosphate, and other commercially available products such as Solsperse 20000, Solsperse 24000, Solsperse 26000, Solsperse 27000 and Solsperse manufactured by Avicia. 28000, Solsperse 32550, Solsperse 41090, Dispervic 160, Dispervic 16 manufactured by Big Chemie
1, Dispervic 162, Dispervic 16
3, Dispervic 166, Dispervic 17
0, Dispervik 180, Dispervik 18
2, Dispervic 184, Dispervic 19
0, Dispervik 191, Dispervik 19
2, Dispervic 2000, Dispervic 20
01, EFKA-46, EFK manufactured by EFKA Chemical
A-47, EFKA-48, EFKA-49, EFKA
-4540, EFKA-4550, polymer 100, polymer 120, polymer 150, polymer 400, polymer 401, polymer 402, polymer 403, polymer 450, polymer 451, polymer 452, polymer 453, Ajispar PB711 and Azispar PA111 manufactured by Ajinomoto Co. Addispar PB811, Addispar PW
911, Floren DOPA-15 manufactured by Kyoeisha Chemical Co., Ltd.
8, Floren DOPA-22, Floren DOPA-
17, Floren TG-730W, Floren G-70
0, Floren TG-720W, Floren TG-74
0W and Floren TG-745W.

【0022】分散剤の使用量は、金属(金属塩中の金属
量)100質量部に対し、0.5〜100質量部が好ま
しい。この量が0.5質量部未満では金属イオンが還元
される過程で金属コロイドを得にくいため、金属微粒子
担持粒子を形成することが困難である。一方、100質
量部を超えると、生成する金属コロイドが分散剤に保護
されて溶媒中に単独で安定してしまい、樹脂粒子表面に
吸着・担持させることが困難となることがある。担持さ
れる金属微粒子の平均粒径は上述の通り1nm〜1μ
m、さらには5nm〜100nmの超微粒子であること
が好ましい。
The amount of the dispersant to be used is preferably 0.5 to 100 parts by mass with respect to 100 parts by mass of the metal (the amount of metal in the metal salt). If the amount is less than 0.5 parts by mass, it is difficult to obtain metal colloids in the process of reducing metal ions, so that it is difficult to form metal fine particle-carrying particles. On the other hand, when the amount exceeds 100 parts by mass, the formed metal colloid is protected by the dispersant and becomes stable alone in the solvent, so that it may be difficult to adsorb and support the resin particle surface. The average particle size of the supported metal fine particles is 1 nm to 1 μm as described above.
m, and preferably ultrafine particles of 5 nm to 100 nm.

【0023】既述の通りの工程を経て用意された、金属
塩、分散剤およびエマルジョンタイプの樹脂粒子を含有
する溶液中には、金属イオンが存在する。次に、この金
属イオンを還元して金属コロイドを析出させ、この金属
コロイドを樹脂粒子表面に吸着させる。
In the solution prepared through the above-described steps and containing the metal salt, the dispersant and the emulsion type resin particles, metal ions are present. Next, the metal ions are reduced to precipitate a metal colloid, and the metal colloid is adsorbed on the surface of the resin particles.

【0024】金属イオンの還元方法に限定はなく、化学
的還元、高圧水銀灯を用いる光照射による還元等、公知
の方法を用いることができる。化学的に還元する方法に
おける還元剤の添加は、上記分散剤の添加後に行われて
もよく、また先に分散剤と還元剤とを混合しておき、金
属イオンを含む溶媒にこの混合物を加える形態をとって
もよい。
The method for reducing metal ions is not limited, and known methods such as chemical reduction and reduction by light irradiation using a high-pressure mercury lamp can be used. The addition of the reducing agent in the method of chemically reducing may be performed after the addition of the above-mentioned dispersing agent, or the dispersing agent and the reducing agent are mixed in advance, and this mixture is added to a solvent containing metal ions. It may take a form.

【0025】使用できる還元剤に限定はなく従来公知の
ものでよいが、その例を挙げると、水素化ホウ素ナトリ
ウム等のアルカリ金属水素化ホウ素塩類、ヒドラジン化
合物、ヒドロキシルアミン化合物、亜二チオン酸塩、ス
ルホキシル酸塩誘導体類、ホルムアルデヒド、蟻酸また
はその塩、クエン酸またはその塩、コハク酸またはその
塩、酒石酸またはその塩、L−アスコルビン酸またはそ
の塩等を使用することができる。
The reducing agent that can be used is not limited and may be a conventionally known reducing agent. Examples thereof include alkali metal borohydrides such as sodium borohydride, hydrazine compounds, hydroxylamine compounds, and dithionite. , Sulfoxylate derivatives, formaldehyde, formic acid or its salts, citric acid or its salts, succinic acid or its salts, tartaric acid or its salts, L-ascorbic acid or its salts, and the like.

【0026】上記還元剤として水素化ホウ素ナトリウム
を使用する場合、上記水素化ホウ素ナトリウムは、高価
であり、取り扱いにも留意しなければならないが、常温
で還元することができるので、加熱や特別な光照射装置
を用意する必要がない。
When sodium borohydride is used as the reducing agent, the sodium borohydride is expensive, and care must be taken in handling it. There is no need to prepare a light irradiation device.

【0027】また、上記スルホキシル酸塩誘導体として
は、スルホキシル酸塩のホルムアルデヒド誘導体が好ま
しく、ナトリウムホルムアルデヒドスルホキシレートお
よび亜鉛ホルムアルデヒドスルホキシレートを具体例と
して挙げることができる。
As the sulfoxylate derivative, a formaldehyde derivative of a sulfoxylate is preferable, and specific examples thereof include sodium formaldehyde sulfoxylate and zinc formaldehyde sulfoxylate.

【0028】一方、上記還元剤としてクエン酸またはそ
の塩を使用する場合、アルコールの存在下で加熱還流す
ることによって金属イオンを還元することができる。上
記クエン酸またはその塩は、非常に安価であり、入手が
容易である利点がある。上記クエン酸またはその塩とし
ては、クエン酸ナトリウムを使用することが好ましい。
クエン酸ナトリウムを使用する場合、硫酸鉄(I)とを
併用すると還元作用が向上するのでより温和な条件で還
元反応を進行させることができる。ただし、クエン酸ナ
トリウムと硫酸鉄(I)とを混合させるとき、クエン酸
および鉄(I)イオンの化学論量を合わせると不溶性の
クエン酸鉄(I)が生成し、沈降するといった不具合が
生じる。このために、クエン酸ナトリウムの量が過剰と
なるように硫酸鉄(I)を添加する必要がある。
On the other hand, when citric acid or a salt thereof is used as the reducing agent, the metal ions can be reduced by heating and refluxing in the presence of an alcohol. The citric acid or a salt thereof has an advantage that it is very inexpensive and easily available. As the citric acid or a salt thereof, sodium citrate is preferably used.
When sodium citrate is used, the reduction action is improved when iron (I) sulfate is used in combination, so that the reduction reaction can proceed under milder conditions. However, when sodium citrate and iron (I) sulfate are mixed, an insoluble iron (I) citrate is formed when the stoichiometric amounts of the citric acid and iron (I) ions are adjusted, and a problem such as precipitation occurs. . For this purpose, it is necessary to add iron (I) sulfate so that the amount of sodium citrate becomes excessive.

【0029】上記の従来からの還元剤を使用する場合の
添加量は、上記金属塩1molに対して1〜50mo1
が好ましい。1mol未満であると、還元が充分に行わ
れず、50molを超えると、耐凝集安定性が低下す
る。より好ましくは、1.5〜10molである。
When the above-mentioned conventional reducing agent is used, the amount of addition is 1 to 50 mol per 1 mol of the metal salt.
Is preferred. When the amount is less than 1 mol, the reduction is not sufficiently performed, and when the amount exceeds 50 mol, the aggregation resistance stability is reduced. More preferably, it is 1.5 to 10 mol.

【0030】また公知の還元剤のほかに、通常は還元剤
として使用されないアミンを使用することもできる。上
記アミンを使用することにより、危険性や有害性の高い
還元剤を使用する必要がなく、加熱や特別な光照射装置
を使用することなしに、5〜100℃程度、好ましくは
20〜80℃程度の反応温度で、金属イオンを還元する
ことができる。したがって、還元剤としてアミンを使用
する場合には、上記分散剤の併用によって、本発明の目
的を極めて有利に達成することができる。
In addition to known reducing agents, amines that are not usually used as reducing agents can also be used. By using the amine, it is not necessary to use a highly dangerous or harmful reducing agent, and without heating or using a special light irradiation device, about 5 to 100 ° C., preferably 20 to 80 ° C. At moderate reaction temperatures, metal ions can be reduced. Therefore, when an amine is used as a reducing agent, the object of the present invention can be extremely advantageously achieved by using the above-mentioned dispersant in combination.

【0031】上記アミンとしては特に限定されず、例え
ば、プロピルアミン、ブチルアミン、ヘキシルアミン、
ジエチルアミン、ジプロピルアミン、ジメチルエチルア
ミン、ジエチルメチルアミン、トリエチルアミン、エチ
レンジアミン、N,N,N′,N′−テトラメチルエチ
レンジアミン、1,3−ジアミノプロパン、N,N,
N′,N′−テトラメチル−1,3−ジアミノプロパ
ン、トリエチレンテトラミン、テトラエチレンペンタミ
ン等の脂肪族アミン類、ピペリジン、N−メチルピペリ
ジン、ピペラジン、N,N′−ジメチルピペラジン、ピ
ロリジン、N−メチルピロリジン、モルホリン等の脂環
式アミン類、アニリン、N−メチルアニリン、N,N−
ジメチルアニリン、トルイジン、アニシジン、フェネチ
ジン等の芳香族アミン類、ベンジルアミン、N−メチル
ベンジルアミン、N,N−ジメチルベンジルアミン、フ
ェネチルアミン、キシリレンジアミン、N,N,N′,
N′−テトラメチルキシリレンジアミン等のアラルキル
アミン類、2−メチルアミノエタノール、2−ジメチル
アミノエタノール、トリエタノールアミン、エタノール
アミン、ジエタノールアミン、メチルジエタノールアミ
ン、プロパノールアミン、2−(3−アミノプロピルア
ミノ)エタノール、ブタノールアミン、ヘキサノールア
ミン、ジメチルアミノプロパノール等のアルカノールア
ミン類を挙げることができる。水溶媒を採用する場合に
は、水親和性の高いアルカノールアミン類が好ましい。
The above amine is not particularly restricted but includes, for example, propylamine, butylamine, hexylamine,
Diethylamine, dipropylamine, dimethylethylamine, diethylmethylamine, triethylamine, ethylenediamine, N, N, N ', N'-tetramethylethylenediamine, 1,3-diaminopropane, N, N,
Aliphatic amines such as N ', N'-tetramethyl-1,3-diaminopropane, triethylenetetramine, tetraethylenepentamine, piperidine, N-methylpiperidine, piperazine, N, N'-dimethylpiperazine, pyrrolidine; Alicyclic amines such as N-methylpyrrolidine and morpholine, aniline, N-methylaniline, N, N-
Aromatic amines such as dimethylaniline, toluidine, anisidine, and phenetidine, benzylamine, N-methylbenzylamine, N, N-dimethylbenzylamine, phenethylamine, xylylenediamine, N, N, N ′,
Aralkylamines such as N'-tetramethylxylylenediamine, 2-methylaminoethanol, 2-dimethylaminoethanol, triethanolamine, ethanolamine, diethanolamine, methyldiethanolamine, propanolamine, 2- (3-aminopropylamino) Alkanolamines such as ethanol, butanolamine, hexanolamine and dimethylaminopropanol can be mentioned. When a water solvent is employed, alkanolamines having high water affinity are preferred.

【0032】上記アミンを用いる場合の添加量は、上記
金属塩1molに対して1〜20mol、さらには2〜
8molが好ましい。1mol未満であると、還元が充
分に行われず、20molを超えると、生成した金属コ
ロイド粒子の耐凝集安定性が低下することがある。
When the above-mentioned amine is used, the amount of addition is 1 to 20 mol, preferably 2 to 2 mol per mol of the metal salt.
8 mol is preferred. If it is less than 1 mol, the reduction is not sufficiently performed, and if it exceeds 20 mol, the aggregation stability of the produced metal colloid particles may be reduced.

【0033】なお、必要に応じて、上記アミンと従来か
らの還元剤とを混合して用いてもよい。さらに、単独使
用の場合を含め、上記アミンおよび従来からの還元剤は
それぞれ2種以上であってよい。
If necessary, the above amine and a conventional reducing agent may be mixed and used. Further, including the case of single use, the amine and the conventional reducing agent may be two or more kinds respectively.

【0034】本発明の金属微粒子担持樹脂粒子は、金属
表面の活性機能を効果的に発揮させたい場合に好適に使
用できる。また導電性等、従来の金属薄片で機能が発揮
できる種類の特性であっても、本発明の微小な粒子径の
金属コロイドを担持させた樹脂粒子であれば、僅かな量
で相当程度の機能を発揮することができるため、貴金属
の使用量を減らしてコストを削減することや、金属の重
量が難点となっていた分野への展開が容易となる。
The resin particles carrying fine metal particles of the present invention can be suitably used when it is desired to exert the active function of the metal surface effectively. In addition, even if the properties of the kind such as conductivity can be exhibited by the conventional metal flakes, the resin particles carrying the metal colloid having a fine particle diameter of the present invention can provide a considerable amount of function in a small amount. Therefore, it is possible to reduce the cost by reducing the amount of the noble metal used, and to facilitate development in a field where the weight of the metal is a difficulty.

【0035】また、一般的な機能性金属を媒体中に分散
して塗料、ペースト、フィルム状等に加工する場合に
は、比較的大きいミクロンオーダーのサイズと、媒体に
適したなじみやすい表面を有することが望ましい。本発
明の金属微粒子担持樹脂粒子は、その構造が金属コロイ
ド粒子をポリマー粒子表面に担持した複合粒子であるた
め、媒体への易分散性と効率的な表面機能発揮の両立が
可能となる。
When a general functional metal is dispersed in a medium and processed into a paint, paste, film, or the like, it has a relatively large micron-order size and a surface suitable for the medium. It is desirable. Since the structure of the metal-particle-supported resin particles of the present invention is a composite particle in which metal colloid particles are supported on the surface of the polymer particles, both easy dispersibility in a medium and efficient surface function can be achieved.

【0036】本発明の金属微粒子担持樹脂粒子の金属微
粒子として銀を採用すれば、抗菌剤用途での応用が考え
られ、貴金属を採用すれば、種々の触媒用途に使用する
ことができる。さらに、金、銅、銀を担持した粒子で
は、導電性フィルム、ペースト用の導電性フィラーとし
て使用することが考えられる。
If silver is used as the metal fine particles of the metal fine particle-supporting resin particles of the present invention, application for antibacterial agents is considered, and if noble metals are used, they can be used for various catalyst applications. Further, particles supporting gold, copper, and silver may be used as conductive fillers for conductive films and pastes.

【0037】上記抗菌剤についていえば、微小粒子であ
るコロイド状の金属を担持させたことで、金属の表面積
を大きくすることができ、抗菌性金属イオンの溶出、抗
菌活性成分の発現等により優れた抗菌効果が期待でき
る。また、塗料、プラスチックへの用途については、分
散ポリマー担体表面に担持した金属微粒子を使用するこ
とで、塗料やプラスチックへの分散を良好にすることが
できる。さらに、導電性フィラーとして使用する場合に
は、付着した金属微粒子の濃度を調整することで、電気
伝導度の制御が可能となる。
With respect to the above-mentioned antibacterial agent, by supporting a colloidal metal as fine particles, the surface area of the metal can be increased, and the antibacterial metal ion is eluted, and the antibacterial active ingredient is expressed more excellently. Antibacterial effect can be expected. For use in paints and plastics, the use of metal fine particles carried on the surface of the dispersed polymer carrier can improve the dispersion in paints and plastics. Further, when used as a conductive filler, the electric conductivity can be controlled by adjusting the concentration of the attached metal fine particles.

【0038】[0038]

【実施例】次に、実施例および比較例を挙げて、本発明
をさらに具体的に説明する。なお各例中に記載された部
は、断りのない限り質量部を示す。
Next, the present invention will be described more specifically with reference to examples and comparative examples. In addition, the part described in each example shows a mass part unless there is a notice.

【0039】実施例1 〔エマルジョン粒子(A)の作製〕撹拌機、温度計、還
流冷却器、加熱装置、および窒素ガス導入管を有する重
合反応用容器に脱イオン水230部を仕込み80℃に昇
温後、スチレン、アクリル酸2−エチルヘキシル、エチ
レングリコールジメタクリレート(質量比80/10/
10)の混合モノマー1部と、10質量%濃度の過硫酸
アンモニウム水溶液10部を加えた。次にその中へ、上
記混合モノマーと同じ組成の混合モノマー99部を、3
時間かけながら滴下して反応させ、エマルジョン粒子
(A)を得た。得られた粒子を電子顕微鏡で観察したと
ころ、平均粒子径は200nmであった。
Example 1 [ Preparation of emulsion particles (A)] 230 parts of deionized water was charged into a polymerization reaction vessel having a stirrer, a thermometer, a reflux condenser, a heating device, and a nitrogen gas inlet tube, and the temperature was raised to 80 ° C. After heating, styrene, 2-ethylhexyl acrylate, ethylene glycol dimethacrylate (mass ratio 80/10 /
1 part of the mixed monomer of 10) and 10 parts of a 10% by mass aqueous solution of ammonium persulfate were added. Next, 99 parts of the mixed monomer having the same composition as the above-mentioned mixed monomer was added to the mixture.
The reaction was carried out by dropping over time to obtain emulsion particles (A). When the obtained particles were observed with an electron microscope, the average particle size was 200 nm.

【0040】〔銀微粒子担持樹脂粒子の作製〕マグネチ
ック撹拌子を入れたビーカーに分散剤1.19g(DI
SPERBYK−190、ビックケミー社製)を測り取
り、脱イオン水207.4gと1N硝酸59.0gを加
えて撹拌し溶解した。そこへ脱イオン水で濃度10質量
%に調整した上記エマルジョン粒子(A)を31.3g
入れて撹拌し、さらに硝酸銀10.0gを加えて撹拌し
ながら70℃に加熱昇温した。そして最後に2−ジメチ
ルアミノエタノール26.2gを添加し70℃で2時間
加温撹拌し、銀微粒子担持樹脂粒子を含む水分散体を得
た。
[Preparation of Resin Particles Carrying Silver Fine Particles] 1.19 g of dispersant (DI
(SPERBYK-190, manufactured by BYK-Chemie Co., Ltd.), 207.4 g of deionized water and 59.0 g of 1N nitric acid were added, and the mixture was stirred and dissolved. 31.3 g of the emulsion particles (A) adjusted to a concentration of 10% by mass with deionized water.
The mixture was stirred, and 10.0 g of silver nitrate was further added. The mixture was heated and heated to 70 ° C. with stirring. Finally, 26.2 g of 2-dimethylaminoethanol was added, and the mixture was stirred while heating at 70 ° C. for 2 hours to obtain an aqueous dispersion containing resin particles carrying silver fine particles.

【0041】次に、この水分散体を遠心分離器にかけて
分散物を沈降させ、上澄みを捨てた。さらに脱イオン水
を加えてよく分散した後、遠心で沈降させるという操作
を繰り返して3回洗浄した。得られた沈降物を乾燥後、
透過型電子顕微鏡で観察したところ、樹脂粒子表面に銀
の微粒子が担持された複合粒子であった。この粒子の写
真を図1に示す。上記の通り、本図の樹脂粒子の平均粒
子径は200nmであるため、その表面に20nm〜6
0nm程度の銀微粒子が多数担持されていることが判
る。
Next, the aqueous dispersion was centrifuged to settle the dispersion, and the supernatant was discarded. Further, the operation of adding deionized water to disperse well and then sedimenting by centrifugation was repeated and washed three times. After drying the obtained sediment,
Observation with a transmission electron microscope revealed that the resin particles were composite particles in which silver fine particles were supported. A photograph of the particles is shown in FIG. As described above, since the average particle diameter of the resin particles in this drawing is 200 nm,
It turns out that many silver fine particles of about 0 nm are carried.

【0042】実施例2 〔銀微粒子担持樹脂粒子の作製〕実施例1と同様の方法
で、エマルジョン粒子のみをポリスチレン粒子(ニッペ
ラテックスSY314、日本ペイント社製。粒子径19
0nm)に変えて複合粒子を作製した。得られた粒子を
透過型電子顕微鏡で観察したところ、実施例1と同様に
銀微粒子担持樹脂粒子が形成されていることが判明し
た。この粒子の写真を図2に示す。
Example 2 [Preparation of resin particles carrying silver fine particles] In the same manner as in Example 1, only emulsion particles were replaced with polystyrene particles (Nippe Latex SY314, manufactured by Nippon Paint Co., Ltd., particle size 19).
0 nm) to produce composite particles. Observation of the obtained particles with a transmission electron microscope revealed that resin particles carrying silver fine particles were formed in the same manner as in Example 1. A photograph of the particles is shown in FIG.

【0043】実施例3 〔銀微粒子担持樹脂粒子の作製〕実施例1と同様の方法
で、分散剤のみをSDS(ドデシル硫酸ナトリウム)に
変えた配合で複合粒子を作製した。得られた粒子の透過
型電子顕微鏡写真を図3に示す。
Example 3 [Preparation of Resin Particles Carrying Silver Fine Particles] Composite particles were prepared in the same manner as in Example 1, except that only the dispersant was changed to SDS (sodium dodecyl sulfate). FIG. 3 shows a transmission electron micrograph of the obtained particles.

【0044】実施例4 〔銀微粒子担持樹脂粒子の作製〕実施例1と同様の方法
で、エマルジョン粒子のみをスチレン−ジビニルベンゼ
ン共重合ラテックス(日新化成社製。平均粒径5μm。
図4に走査型電子顕微鏡写真を示す)に変えて複合粒子
を作製した。得られた粒子の走査型電子顕微鏡写真を図
5に示す。樹脂粒子が比較的大きいため担持された銀微
粒子が判りにくいが、図4の樹脂粒子の写真と比較する
と銀微粒子が担持された複合粒子であることが確認でき
る。
Example 4 [Production of Resin Particles Carrying Silver Fine Particles] In the same manner as in Example 1, emulsion particles alone were used as styrene-divinylbenzene copolymer latex (manufactured by Nissin Chemical Co., Ltd .; average particle size: 5 μm).
(A scanning electron micrograph is shown in FIG. 4) to produce composite particles. FIG. 5 shows a scanning electron micrograph of the obtained particles. Although the supported silver fine particles are difficult to recognize because the resin particles are relatively large, it can be confirmed that the silver fine particles are supported composite particles as compared with the photograph of the resin particles in FIG.

【0045】実施例5 〔金微粒子担持樹脂粒子の作製〕マグネチック撹拌子を
入れたビーカーに分散剤0.36g(DISPERBY
K−191、ビックケミー社製)を測り取り、脱イオン
水187gを加えて撹拌し溶解した。次に脱イオン水で
濃度10%に調整したエマルジョン粒子(A)を31.
3g入れて撹拌後、さらに塩化金酸(HAuCl4・4
2O)10.0gを加えて、撹拌しながら50℃に加
熱昇温した。最後に2−ジメチルアミノエタノール1
1.7gを添加し、50℃で2時間加温撹拌し、金微粒
子担持樹脂粒子を含む水分散体を得た。さらに、この水
分散体を遠心分離器を使用して実施例1に記載の方法で
洗浄、乾燥して金微粒子担持樹脂粒子を作製した。この
ものを透過型電子顕微鏡で粒子を観察したところ、実施
例1と同様の形態を持つ、樹脂粒子表面に金微粒子が担
持された複合粒子であった。
Example 5 [ Preparation of Gold-Supported Resin Particles] In a beaker containing a magnetic stirrer, 0.36 g of a dispersant (DISPERBY) was added.
K-191, manufactured by Big Chemie Co., Ltd.), 187 g of deionized water was added, and the mixture was stirred and dissolved. Next, 30% of the emulsion particles (A) adjusted to a concentration of 10% with deionized water.
3g placed followed by stirring, further chloroauric acid (HAuCl 4 · 4
Adding H 2 O) 10.0g, it was Atsushi Nobori with stirring to 50 ° C.. Finally, 2-dimethylaminoethanol 1
1.7 g was added, and the mixture was heated and stirred at 50 ° C. for 2 hours to obtain an aqueous dispersion containing resin particles carrying gold fine particles. Further, this aqueous dispersion was washed and dried by the method described in Example 1 using a centrifugal separator to produce resin particles carrying gold fine particles. Observation of the particles under a transmission electron microscope revealed that the particles were the same as in Example 1, and were composite particles having fine resin particles supported on the surface of resin particles.

【0046】実施例6 〔銀微粒子担持樹脂粒子の作製〕実施例1の2−ジメチ
ルアミノエタノール26.2gを濃度2Mの水素化ホウ
素ナトリウム60mlに代えた以外は実施例1と同様に
して銀微粒子担持樹脂粒子を作製した。このものを透過
型電子顕微鏡で観察したところ、実施例1と同様の樹脂
粒子表面に銀の微粒子が担持された複合粒子であった。
Example 6 [Production of resin particles carrying silver fine particles] Silver fine particles were prepared in the same manner as in Example 1 except that 26.2 g of 2-dimethylaminoethanol in Example 1 was replaced with 60 ml of 2M sodium borohydride. Supported resin particles were produced. Observation of this by a transmission electron microscope revealed that it was a composite particle in which silver fine particles were supported on the same resin particle surface as in Example 1.

【0047】実施例7 〔銅微粒子担持樹脂粒子の作製〕マグネチック撹拌子を
入れたビーカーに分散剤0.36g(DISPERBY
K−191、ビックケミー社製)を測り取り、脱イオン
水400gを加えて撹拌し溶解した。次に脱イオン水で
濃度10%に調整したエマルジョン粒子(A)を31.
3g入れて撹拌後、さらに硫酸銅5水和物(CuSO4
・5H2O)10.0gを加えて、撹拌しながら50℃
に加熱昇温した。最後にナトリウム・ホルムアルデヒド
・スルホキシレート12.5gを水20gに溶解して得
られた水溶液を添加し、50℃で3時間加温撹拌して銅
微粒子担持樹脂粒子を含む水分散体を得た。さらに、こ
の水分散体を遠心分離器を使用して実施例1に記載の方
法で洗浄、乾燥して銅微粒子担持樹脂粒子を作製した。
このものを透過型電子顕微鏡で粒子を観察したところ、
実施例1と同様の形態を持つ、樹脂粒子表面に銅微粒子
が担持された複合粒子であった。
Example 7 [Preparation of resin particles carrying copper fine particles] In a beaker containing a magnetic stirrer, 0.36 g of a dispersant (DISPERBY) was added.
K-191, manufactured by BYK-Chemie), and 400 g of deionized water was added thereto, followed by stirring and dissolving. Next, 30% of the emulsion particles (A) adjusted to a concentration of 10% with deionized water.
After adding 3 g and stirring, copper sulfate pentahydrate (CuSO 4
.5H 2 O) at 50 ° C. while stirring.
And heated. Finally, an aqueous solution obtained by dissolving 12.5 g of sodium formaldehyde sulfoxylate in 20 g of water was added, and the mixture was heated and stirred at 50 ° C. for 3 hours to obtain an aqueous dispersion containing resin particles carrying copper fine particles. . Further, this aqueous dispersion was washed and dried by the method described in Example 1 using a centrifugal separator to produce resin particles carrying copper fine particles.
Observing the particles with a transmission electron microscope,
It was a composite particle having the same form as that of Example 1 and copper fine particles supported on the resin particle surface.

【0048】比較例 分散剤を除いた以外は実施例1と同様の方法で複合粒子
を作製した。反応中、混合液は不均一で部分的に箔状に
なった銀が見られた。得られた粒子の透過型電子顕微鏡
写真を図6に示す。この写真によれば、樹脂粒子表面に
は部分的に銀粒子が担持されているがその量は少なくか
つ不均一であり、全く銀粒子担持がされていない樹脂粒
子も散見される。すなわち、銀微粒子粒子を効率的に生
成するには分散剤の使用は必須である。
Comparative Example A composite particle was prepared in the same manner as in Example 1 except that the dispersant was omitted. During the reaction, the mixture was found to be heterogeneous and partially foil-like silver. FIG. 6 shows a transmission electron micrograph of the obtained particles. According to this photograph, the silver particles are partially supported on the surface of the resin particles, but the amount is small and non-uniform. That is, the use of a dispersant is indispensable for efficiently producing silver fine particles.

【0049】[0049]

【発明の効果】本発明の金属微粒子担持樹脂粒子は、樹
脂粒子表面に、複数個の金属微粒子が担持されているた
め、金属表面の活性機能を効果的に発揮させたい場合に
好適に使用できる。たとえば、抗菌作用のある銀等の微
粒子を担持させれば、金属の表面積が大きいため、金属
イオンの溶出、活性成分の発現等により優れた抗菌効果
を顕わすことが期待できる。また、金属微粒子としてパ
ラジウム、プラチナ等の貴金属を採用すれば、種々の触
媒として高機能を発揮することが期待される。
The metal particle-carrying resin particles of the present invention have a plurality of metal particles supported on the surface of the resin particles, and thus can be suitably used when it is desired to effectively exert the active function of the metal surface. . For example, if fine particles of silver or the like having an antibacterial effect are carried, the surface area of the metal is large, so that an excellent antibacterial effect can be expected due to elution of metal ions, expression of active ingredients, and the like. In addition, if noble metals such as palladium and platinum are used as the metal fine particles, it is expected that various catalysts will exhibit high functions.

【0050】また導電性フィルム、ペースト用の導電性
フィラー等、従来の金属粉末添加による手段で機能が発
揮できる場合あっても、本発明の金属微粒子担持樹脂粒
子であれば、僅かな量で相当程度の機能を発揮すること
ができ、また金属微粒子の担持量を調整することで電気
伝導度の制御も可能となるため、金、銅、銀等の貴重な
金属の使用量を減らすことや、金属の重量が難点となっ
ていた分野への展開が容易となる。
Even if the function can be exerted by means of conventional metal powder addition such as a conductive film, a conductive filler for a paste, etc., a small amount of the resin particles carrying the metal fine particles of the present invention can be used. It is possible to control the electrical conductivity by adjusting the loading amount of metal fine particles, so that the amount of precious metals such as gold, copper and silver can be reduced, It will be easy to expand into fields where the weight of metal is a drawback.

【0051】さらに、一般的な機能性金属を媒体中に分
散して塗料、ペースト、フィルム状等に加工する場合に
は、比較的大きいミクロンオーダーのサイズと、媒体に
適したなじみやすい表面を有することが望ましいが、本
発明の金属微粒子担持樹脂粒子は、その構造が金属コロ
イド粒子をポリマー粒子表面に担持した複合粒子である
ため、媒体への易分散性と効率的な表面機能発揮の両立
が可能となる。
Furthermore, when a general functional metal is dispersed in a medium and processed into a paint, paste, film, or the like, it has a relatively large micron-order size and a surface suitable for the medium and easy to conform to. Preferably, the metal fine particle-supported resin particles of the present invention are composite particles having a structure in which metal colloid particles are supported on polymer particle surfaces, so that both easy dispersibility in a medium and efficient surface function can be exhibited. It becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1によって作製した銀微粒子担持樹脂粒
子の透過型電子顕微鏡写真である。
FIG. 1 is a transmission electron micrograph of silver-particle-supported resin particles produced in Example 1.

【図2】実施例2によって作製した銀微粒子担持樹脂粒
子の透過型電子顕微鏡写真である。
FIG. 2 is a transmission electron micrograph of silver fine particle-supported resin particles produced in Example 2.

【図3】実施例3によって作製した銀微粒子担持樹脂粒
子の透過型電子顕微鏡写真である。
FIG. 3 is a transmission electron micrograph of silver fine particle-carrying resin particles produced in Example 3.

【図4】実施例4で使用したスチレン−ジビニルベンゼ
ン共重合ラテックスの走査型電子顕微鏡写真である。
FIG. 4 is a scanning electron micrograph of a styrene-divinylbenzene copolymer latex used in Example 4.

【図5】実施例4によって作製した銀微粒子担持樹脂粒
子の走査型電子顕微鏡写真である。
FIG. 5 is a scanning electron micrograph of silver-particle-supported resin particles produced in Example 4.

【図6】比較例によって作製した銀微粒子担持樹脂粒子
の透過型電子顕微鏡写真である。
FIG. 6 is a transmission electron micrograph of silver fine particle-supported resin particles produced by a comparative example.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F070 DC02 DC11 4G069 AA03 AA08 AA09 AA11 BA22A BA22B BB02A BB02B BC31A BC31B BC32A BC32B BC33A BC33B BC67A BC68A BC70A BC71A BC72A BC73A BC74A BC75A CA03 DA06 FA02 FB21 4J002 DA066 DA076 DA086  ──────────────────────────────────────────────────続 き Continued on front page F term (reference) 4F070 DC02 DC11 4G069 AA03 AA08 AA09 AA11 BA22A BA22B BB02A BB02B BC31A BC31B BC32A BC32B BC33A BC33B BC67A BC68A BC70A BC71A BC72A BC73A BC74A BC75A CA03 DA06 FA

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】樹脂粒子表面に、複数個の金属微粒子が担
持されていることを特徴とする金属微粒子担持樹脂粒
子。
1. A resin particle carrying metal fine particles, wherein a plurality of metal fine particles are supported on the surface of the resin particle.
【請求項2】前記樹脂粒子が、平均粒径10nm〜10
0μmの合成樹脂粒子である請求項1記載の金属微粒子
担持樹脂粒子。
2. The method according to claim 1, wherein the resin particles have an average particle size of 10 nm to 10 nm.
The resin particles carrying fine metal particles according to claim 1, which are synthetic resin particles of 0 µm.
【請求項3】前記金属微粒子が平均粒径1nm〜1μ
m、かつ、Au、Ag、Cu、Ni、Co、Pt、P
d、Ir、Ru、RhおよびOsから選ばれる少なくと
も1種類の金属から構成される請求項1または2記載の
金属微粒子担持樹脂粒子。
3. The method according to claim 1, wherein the fine metal particles have an average particle size of 1 nm to 1 μm.
m, and Au, Ag, Cu, Ni, Co, Pt, P
The resin particles carrying fine metal particles according to claim 1, comprising at least one metal selected from d, Ir, Ru, Rh and Os.
【請求項4】前記金属微粒子と樹脂粒子との質量比が、
1/1000〜2/1である請求項1〜3のいずれか1
項記載の金属微粒子担持樹脂粒子。
4. The mass ratio between the metal fine particles and the resin particles is as follows:
4. The method according to claim 1, wherein the ratio is 1/1000 to 2/1.
4. The resin particles carrying fine metal particles according to the above item 1.
【請求項5】エマルジョン型樹脂粒子、金属イオンおよ
び分散剤を含有する溶媒中の金属イオンを還元し、この
金属イオンから金属コロイドを形成させることにより、
樹脂粒子表面に複数個の金属微粒子を担持させることを
特徴とする金属微粒子担持樹脂粒子の製造方法。
5. A method comprising reducing metal ions in a solvent containing emulsion-type resin particles, metal ions and a dispersant, and forming a metal colloid from the metal ions.
A method for producing metal fine particle-supported resin particles, wherein a plurality of metal fine particles are supported on the surface of the resin particles.
JP2001001508A 2001-01-09 2001-01-09 Metal fine particle-carrying resin particle and its preparation process Pending JP2002201284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001001508A JP2002201284A (en) 2001-01-09 2001-01-09 Metal fine particle-carrying resin particle and its preparation process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001001508A JP2002201284A (en) 2001-01-09 2001-01-09 Metal fine particle-carrying resin particle and its preparation process

Publications (1)

Publication Number Publication Date
JP2002201284A true JP2002201284A (en) 2002-07-19

Family

ID=18870140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001001508A Pending JP2002201284A (en) 2001-01-09 2001-01-09 Metal fine particle-carrying resin particle and its preparation process

Country Status (1)

Country Link
JP (1) JP2002201284A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197591A (en) * 2006-01-27 2007-08-09 Tokyo Metropolitan Univ Polymer material having gold fine particles attached to its surface and method for producing the same
JP2007269847A (en) * 2006-03-30 2007-10-18 Dainippon Ink & Chem Inc Organic-inorganic composite, non-woven fabric comprising the composite, and method for producing the same
JP2008055425A (en) * 2007-10-29 2008-03-13 Toyota Central R&D Labs Inc Method for decomposing and removing aldehydes
US7560051B2 (en) 2005-03-18 2009-07-14 Seiko Epson Corporation Metal particle dispersion liquid, method for manufacturing metal particle dispersion liquid, method for manufacturing conductive-film-forming substrate, electronic device and electronic apparatus
JP2009220017A (en) * 2008-03-17 2009-10-01 Tokyo Metropolitan Univ Method of dispersing and fixing gold fine particle on carrier, and material obtained by this method
JP2012211342A (en) * 2012-08-06 2012-11-01 Tokyo Metropolitan Univ Polymer material
WO2012157693A1 (en) * 2011-05-17 2012-11-22 Necトーキン株式会社 Conductive polymer suspension and method for producing same, conductive polymer material, and electrolytic capacitor and method for producing same
WO2013035270A1 (en) * 2011-09-06 2013-03-14 住友ベークライト株式会社 Resin-supported catalyst and method for producing resin-supported catalyst
JP2013052373A (en) * 2011-09-06 2013-03-21 Sumitomo Bakelite Co Ltd Resin-supported catalyst and method for producing the same
JP2014030817A (en) * 2012-08-06 2014-02-20 Sumitomo Bakelite Co Ltd Production method of resin-supported catalyst
WO2016063931A1 (en) * 2014-10-24 2016-04-28 ナミックス株式会社 Conductive composition and electronic component using same
JP2020131167A (en) * 2019-02-25 2020-08-31 大学共同利用機関法人自然科学研究機構 Silver nanoparticle resin composite and hydrogenation catalyst
CN117300147A (en) * 2023-11-28 2023-12-29 长春黄金研究院有限公司 Superfine gold powder and preparation method thereof

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7560051B2 (en) 2005-03-18 2009-07-14 Seiko Epson Corporation Metal particle dispersion liquid, method for manufacturing metal particle dispersion liquid, method for manufacturing conductive-film-forming substrate, electronic device and electronic apparatus
US7767115B2 (en) 2005-03-18 2010-08-03 Seiko Epson Corporation Metal particle dispersion liquid, method for manufacturing metal particle dispersion liquid, method for manufacturing conductive-film-forming substrate, electronic device and electronic apparatus
JP2007197591A (en) * 2006-01-27 2007-08-09 Tokyo Metropolitan Univ Polymer material having gold fine particles attached to its surface and method for producing the same
JP2007269847A (en) * 2006-03-30 2007-10-18 Dainippon Ink & Chem Inc Organic-inorganic composite, non-woven fabric comprising the composite, and method for producing the same
JP2008055425A (en) * 2007-10-29 2008-03-13 Toyota Central R&D Labs Inc Method for decomposing and removing aldehydes
JP2009220017A (en) * 2008-03-17 2009-10-01 Tokyo Metropolitan Univ Method of dispersing and fixing gold fine particle on carrier, and material obtained by this method
US9455092B2 (en) 2011-05-17 2016-09-27 Nec Tokin Corporation Electric conductive polymer suspension and method for producing the same, electric conductive polymer material, and electrolytic capacitor and method for producing the same
JP2012241068A (en) * 2011-05-17 2012-12-10 Nec Tokin Corp Conductive polymer suspension and production method thereof, conductive polymer material, and electrolytic condenser and production method thereof
WO2012157693A1 (en) * 2011-05-17 2012-11-22 Necトーキン株式会社 Conductive polymer suspension and method for producing same, conductive polymer material, and electrolytic capacitor and method for producing same
US9314783B2 (en) 2011-09-06 2016-04-19 Sumitomo Bakelite Co., Ltd. Resin-supported catalyst and method for preparing resin-supported catalyst
WO2013035270A1 (en) * 2011-09-06 2013-03-14 住友ベークライト株式会社 Resin-supported catalyst and method for producing resin-supported catalyst
JP2013052373A (en) * 2011-09-06 2013-03-21 Sumitomo Bakelite Co Ltd Resin-supported catalyst and method for producing the same
CN103764283A (en) * 2011-09-06 2014-04-30 住友电木株式会社 Resin-supported catalyst and method for producing resin-supported catalyst
JP2012211342A (en) * 2012-08-06 2012-11-01 Tokyo Metropolitan Univ Polymer material
JP2014030817A (en) * 2012-08-06 2014-02-20 Sumitomo Bakelite Co Ltd Production method of resin-supported catalyst
WO2016063931A1 (en) * 2014-10-24 2016-04-28 ナミックス株式会社 Conductive composition and electronic component using same
JPWO2016063931A1 (en) * 2014-10-24 2017-08-03 ナミックス株式会社 Conductive composition and electronic component using the same
US20170243849A1 (en) * 2014-10-24 2017-08-24 Namics Corporation Conductive composition and electronic parts using the same
US10541222B2 (en) 2014-10-24 2020-01-21 Namics Corporation Conductive composition and electronic parts using the same
JP2020131167A (en) * 2019-02-25 2020-08-31 大学共同利用機関法人自然科学研究機構 Silver nanoparticle resin composite and hydrogenation catalyst
JP7280596B2 (en) 2019-02-25 2023-05-24 大学共同利用機関法人自然科学研究機構 Silver nanoparticle resin composite and hydrogenation catalyst
CN117300147A (en) * 2023-11-28 2023-12-29 长春黄金研究院有限公司 Superfine gold powder and preparation method thereof
CN117300147B (en) * 2023-11-28 2024-03-01 长春黄金研究院有限公司 Superfine gold powder and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2002201284A (en) Metal fine particle-carrying resin particle and its preparation process
KR101474040B1 (en) METAL NANOPARTICLE DISPERSION, METHOD FOR PRODUCING THE SAME, AND METHOD FOR SYNTHESIS
CN103817319B (en) A kind of cupric bimetal nano material with dendritic structure and preparation method thereof
JP5543021B2 (en) Preparation method of core-shell magnetic alloy nanoparticles
JP5827341B2 (en) Reactor for silver powder production and continuous production method
KR20090045508A (en) Apparatus and method for producing silver powder by double-jet continuous solution reduction
CN102064311A (en) Preparation method of carbon nanometer tube metal particle composite
JP2010043350A (en) Alloy nanoparticle, method for production thereof, and ink and paste using the alloy nanoparticle
CN109365830A (en) A kind of preparation method of the spherical super fine silver powder of high jolt ramming
JPWO2003068674A1 (en) Noble metal nanowire structure and manufacturing method thereof
CN106270545A (en) A kind of high-tap density noble metal raw powder's production technology
JP4903932B2 (en) Method for producing binary metal particle colloidal dispersion
CN102407329A (en) Method for preparing nickel-silver coreshell structure nanoparticles
WO2012017446A2 (en) Improved process for the preparation of stable suspension of nano silver particles having antibacterial activity
JP7361464B2 (en) AgPd core-shell particles and their use
US4943482A (en) Metallized particles of crosslinked polymer, process for their preparation and their application in the manufacture of electrically conductive materials
CN118682140A (en) Spherical gold powder and preparation method thereof
JP2011017071A (en) Method for producing nanoparticle of binary metal
JP4112945B2 (en) Core-shell type metal nano colloidal fine particles
KR20120026923A (en) A method for preparing silver nanoparticles using ionic liquid
JPH09225317A (en) Nickel / noble metal bimetallic cluster, catalyst comprising the same, and process for producing the same
KR101066545B1 (en) Metal nanoparticles of various sizes and shapes having functional groups on their surfaces, and methods of manufacturing the same
CN102861573A (en) Carrier type platinum-ruthenium catalyst and application to hydrogenation of halide-containing nitro compound
TWI460125B (en) Method for making carbon nanotube based composite
TW201402206A (en) Nano carbon tube metal particle composite and catalyst material containing the same