[go: up one dir, main page]

JP2002200480A - Soil decontamination process - Google Patents

Soil decontamination process

Info

Publication number
JP2002200480A
JP2002200480A JP2000400977A JP2000400977A JP2002200480A JP 2002200480 A JP2002200480 A JP 2002200480A JP 2000400977 A JP2000400977 A JP 2000400977A JP 2000400977 A JP2000400977 A JP 2000400977A JP 2002200480 A JP2002200480 A JP 2002200480A
Authority
JP
Japan
Prior art keywords
soil
oxygen
supply
purified
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000400977A
Other languages
Japanese (ja)
Other versions
JP4636679B2 (en
Inventor
Shojiro Osumi
省二郎 大隅
Jun Tsubota
潤 坪田
Masabumi Shinohara
正文 篠原
Shinichi Ueda
進一 上田
Ryosuke Ito
亮介 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000400977A priority Critical patent/JP4636679B2/en
Publication of JP2002200480A publication Critical patent/JP2002200480A/en
Application granted granted Critical
Publication of JP4636679B2 publication Critical patent/JP4636679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a soil decontamination process which is used for removing organic matter contained in soil to be treated, with microorganisms and enables uniform decontamination of the whole soil to be treated by widely distributing oxygen over the whole soil to be treated. SOLUTION: This process for removing organic matter contained in to-be- purified soil 1 with microorganisms has a suction stage for sucking out soil pore water in the to-be-treated soil 1 from it.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は土壌浄化方法に関
し、特に、浄化対象土壌に含まれる有機物を、この有機
物を分解可能な微生物を用いて除去する土壌浄化方法に
関する。
The present invention relates to a soil purification method, and more particularly to a soil purification method for removing organic substances contained in soil to be purified using microorganisms capable of decomposing the organic substances.

【0002】[0002]

【従来の技術】従来、この種の土壌浄化方法を用いて、
土壌間隙に地下水等の水分が充満した状態の汚染土壌か
ら有機物を分解除去しようとすると、前記地下水等の滞
留によって地表からの酸素供給が制限され、これによ
り、前記土壌間隙が酸素不足の状態となり、前記微生物
の前記有機物の分解活動が抑制されることが知られてい
た。よって、酸素不足を解消するため、前記土壌の内
部、もしくは土壌下部に空気注入用のパイプや散気盤を
埋設し、このパイプから前記土壌中に酸素を含む空気を
供給していた。
2. Description of the Related Art Conventionally, using this kind of soil purification method,
When trying to decompose and remove organic matter from contaminated soil in a state where the soil gap is filled with moisture such as groundwater, the supply of oxygen from the ground surface is limited by the stagnation of the groundwater and the like, whereby the soil gap becomes in a state of lack of oxygen. It has been known that the activity of decomposing the organic matter by the microorganism is suppressed. Therefore, in order to solve the oxygen deficiency, a pipe or air diffuser for injecting air is buried inside or under the soil, and the air containing oxygen is supplied from the pipe into the soil.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た従来の土壌浄化方法によれば、前記パイプや散気盤か
ら放出された酸素を含んだ気泡は、その浮力によって鉛
直上方に移動しようとするので、水平方向への拡散があ
まり起こらない。又、前記気泡は、前記土壌間隙に均等
に行き亘るのではなく、進入が容易な比較的大きな径の
土壌間隙に偏って地表方向に上昇する傾向がある。よっ
て、土壌内部或いは下方から空気を供給しても、供給源
の鉛直上方の限られた領域(通り道)のみを気泡が通過
し、浄化対象となる土壌全体に亘って、均一に酸素を供
給することは困難であったので、前記微生物による前記
有機物の分解を効率よく行なうことは困難であるという
問題点があった。
However, according to the above-mentioned conventional soil purification method, the bubbles containing oxygen released from the pipes and the air diffusers tend to move vertically upward due to their buoyancy. , Horizontal diffusion does not occur much. In addition, the air bubbles do not spread evenly over the soil gap, but tend to rise in the direction of the ground surface in a relatively large diameter soil gap where entry is easy. Therefore, even if air is supplied from inside or below the soil, the air bubbles pass only through a limited area (passage) vertically above the supply source, and oxygen is supplied uniformly over the entire soil to be purified. Therefore, there is a problem that it is difficult to efficiently decompose the organic matter by the microorganism.

【0004】従って、本発明の目的は、上記欠点に鑑
み、浄化対象土壌に含まれる有機物を微生物を用いて除
去する際に、浄化対象土壌中に広く酸素を行き亘らせる
ことによって、浄化対象土壌全体を均一に浄化する土壌
浄化方法を提供することにある。
[0004] Accordingly, an object of the present invention is to provide a method for removing organic substances contained in a soil to be purified by using a microorganism to remove oxygen from the soil to be purified by widely spreading oxygen in the soil to be purified. An object of the present invention is to provide a soil purification method for uniformly purifying the entire soil.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
の本発明の土壌浄化方法の特徴手段は、請求項1に記載
されているように、浄化対象土壌に含まれる有機物を微
生物を用いて除去する土壌浄化方法において、前記浄化
対象土壌中の土壌間隙水を吸引する吸引工程を有する点
にある。更に、上記特徴手段において、請求項2に記載
されているように、間欠的に、前記吸引工程を行なって
もよい。
According to a first aspect of the present invention, there is provided a soil purification method for achieving the above object by using microorganisms to remove organic matter contained in a soil to be purified using a microorganism. The method for purifying soil to be removed is characterized in that the method comprises a suction step of sucking soil pore water in the soil to be purified. Further, in the above-mentioned characteristic means, the suction step may be performed intermittently as described in claim 2.

【0006】又は、請求項3に記載されているように、
前記吸引工程で吸引した前記土壌間隙水と比べて溶存酸
素濃度の高い酸素供給用水を前記浄化対象土壌に供給す
る供給工程を有していてもよく、請求項4に記載されて
いるように、前記供給工程において、前記土壌間隙水に
酸素を添加して前記酸素供給用水を得てもよく、請求項
5に記載されているように、間欠的に、前記吸引工程と
前記供給工程とを行なってもよく、請求項6に記載され
ているように、前記吸引工程において、前記土壌間隙水
に含まれる微細土粒子を前記土壌間隙水から分離しても
よく、請求項7に記載されているように、前記浄化対象
土壌に前記有機物を分解可能な前記微生物を添加する微
生物添加工程を有していてもよい。そして、これらの作
用効果は、以下の通りである。
Alternatively, as described in claim 3,
It may have a supply step of supplying oxygen supply water having a higher dissolved oxygen concentration than the soil pore water sucked in the suction step to the purification target soil, as described in claim 4, In the supply step, the oxygen supply water may be obtained by adding oxygen to the soil pore water, and the suction step and the supply step are performed intermittently as described in claim 5. The fine soil particles contained in the soil pore water may be separated from the soil pore water in the suctioning step, as described in claim 6, as described in claim 7. As described above, the method may include a microorganism addition step of adding the microorganism capable of decomposing the organic matter to the soil to be purified. And these effects are as follows.

【0007】先ず、発明者らは、上記課題の解決を目指
すに際し、前記土壌間隙が水で飽和された土壌(以下、
飽和土壌)中に空気や酸素を供給した場合に、浄化対象
土壌の浄化が均一に進まない理由を考察し、以下のよう
な仮説を立てた。即ち、飽和土壌中に気体を供給する場
合、上述したように数本の気体(気泡)の通り道がで
き、その通り道以外の部分は気体と直接接触することが
ない。よって、エアレーションによって気体状の酸素を
飽和土壌に供給すると、通り道付近の土壌へは十分な酸
素が供給されるが、通り道から離れたところに存在する
土壌への酸素供給は、土壌間隙水に溶解した酸素が、水
の移動、もしくは拡散により運ばれることになる。しか
しながら、水中の溶存酸素の拡散速度は非常に遅く、
又、一般に、前記飽和土壌における土壌間隙水の移動速
度も非常に遅いためほとんど滞留しているような状態で
あるので、前記通り道から離れた場所に存在する土壌に
到達する前に微生物活動などにより酸素は消費されてい
ると推定される。結果として、従来法では、前記気体の
供給源から離れた土壌に、酸素を供給するのは非常に困
難であると考えられる。
First, when aiming at solving the above-mentioned problems, the inventors have set forth a soil in which the soil gap is saturated with water (hereinafter referred to as “soil”).
When air or oxygen was supplied to the saturated soil, the reason why the purification of the purification target soil did not proceed uniformly was considered, and the following hypothesis was made. That is, when supplying gas into the saturated soil, as described above, several gas (bubble) passages are formed, and portions other than the passages do not come into direct contact with the gas. Therefore, when gaseous oxygen is supplied to the saturated soil by aeration, sufficient oxygen is supplied to the soil near the passage, but the oxygen supply to the soil located away from the passage is dissolved in the soil pore water. The resulting oxygen is carried by the movement or diffusion of water. However, the diffusion rate of dissolved oxygen in water is very slow,
Further, generally, since the movement speed of the soil pore water in the saturated soil is very slow, it is almost in a state of staying there.Therefore, before reaching the soil existing in a place away from the path, microbial activity may occur. It is estimated that oxygen has been consumed. As a result, it would be very difficult to provide oxygen to the soil remote from the gas source with conventional methods.

【0008】この仮説に基づけば、前記土壌間隙中に酸
素を含む気体或いは酸素を豊富に溶存する液体を広く流
通させる通り道を確保することができれば、浄化対象で
ある土壌全体に亘って酸素を行き亘らせることができ
る。そして、浄化対象土壌全体に亘って酸素を行き亘ら
せることができれば、この浄化対象土壌に存在する、前
記有機物を分解する微生物を活性化することができるの
で、浄化対象となる土壌全体に亘って前記有機物の分解
を促進して浄化対象土壌を浄化することができると考え
られる。発明者らは、このような点に着目して鋭意研究
した結果、本願発明に想到するに至った。
[0008] Based on this hypothesis, if it is possible to secure a path for widely distributing a gas containing oxygen or a liquid rich in oxygen in the above-mentioned soil gap, oxygen will be transferred throughout the soil to be purified. Can be spanned. If oxygen can be spread over the entire soil to be purified, the microorganisms that decompose the organic matter present in the soil to be purified can be activated, so that the entire soil to be purified can be activated. Therefore, it is considered that the decomposition of the organic matter can be promoted to purify the soil to be purified. The inventors of the present invention have conducted intensive studies focusing on such points, and as a result, have come to the present invention.

【0009】即ち、請求項1に記載されているように、
浄化対象土壌に含まれる有機物を微生物を用いて除去す
る土壌浄化方法において、前記浄化対象土壌中の土壌間
隙水を吸引する吸引工程を設ければ、前記地下水等の土
壌間隙水の移動と比べて前記土壌間隙水の吸引速度を大
きくなるように吸引することによって、吸引された土壌
間隙水の体積と移動により他の領域から進入した土壌間
隙水の体積の差の基づく負圧が生じ、前記土壌間隙内が
前記浄化対象土壌の間隙に存在する流体(液体、気体)
が、遠方から吸引箇所に向かって流動することを促進す
ることができる。これによって、前記土壌間隙水に流れ
を作ることができ、地表付近その他の領域にある溶存酸
素量の高い土壌間隙水を、他の領域に移動させることが
できる。そして、溶存酸素量の多い土壌間隙水が、従来
法では酸素を運搬することが困難であった微細な土壌間
隙や遠隔にある土壌間隙を通過することによって、酸素
供給が困難であった領域にまで速やかに酸素を供給する
ことができる。特に、土壌間隙水の水平方向への移動が
容易となることによって、地表から離れた深部や吸引箇
所から水平方向に離れた領域にまで酸素を容易に供給す
ることができる点で、気泡のみを供給する曝気などの方
法では酸素供給が困難であった領域にまで酸素を供給す
ることができる。
That is, as described in claim 1,
In a soil purification method for removing organic substances contained in the purification target soil using microorganisms, if a suction step of sucking soil pore water in the purification target soil is provided, compared with the movement of soil pore water such as the groundwater, By suctioning the soil pore water so as to increase the suction speed, a negative pressure is generated based on the difference between the volume of the soil pore water sucked and the volume of the soil pore water that has entered from another area due to the movement, and Fluid (liquid, gas) in the gap between the soils to be purified
Can be promoted to flow from a distance toward the suction point. As a result, a flow can be created in the soil pore water, and soil pore water having a high dissolved oxygen content near the ground surface and in other regions can be moved to other regions. In addition, soil pore water with a large amount of dissolved oxygen passes through fine soil gaps and remote soil gaps where it was difficult to transport oxygen by the conventional method, and is supplied to areas where oxygen supply was difficult. Oxygen can be supplied promptly up to this point. In particular, since it is easy to move soil pore water in the horizontal direction, oxygen can be easily supplied to the deep part away from the ground surface and the area horizontally away from the suction point, Oxygen can be supplied to a region where it was difficult to supply oxygen by a method such as supply aeration.

【0010】上述した理由により、本願請求項1に係る
発明は、原位置バイオレメディエーションを広い領域で
行なうのに適している。或いは、原位置で処理を行なわ
ないで、リアクター等に浄化対象である土壌を収容して
浄化処理を行なう場合であっても、同様にして、前記リ
アクター等に収容した浄化対象土壌全体に対して、効率
よく酸素を供給することができる。
For the reasons described above, the invention according to claim 1 of the present application is suitable for performing in situ bioremediation in a wide area. Alternatively, even in the case where the purification target is accommodated in a reactor or the like and the purification treatment is performed without performing the treatment in situ, the entire purification target soil contained in the reactor or the like may be similarly used. Oxygen can be supplied efficiently.

【0011】尚、有機物を微生物を用いて除去する方法
としては、上述した酸素供給の改善による土着微生物に
よる有機物分解の活性化や、分解対象有機物を分解可能
な微生物を外部から添加する方法を採用することができ
る。
As the method of removing organic substances using microorganisms, the above-described method of activating organic substance decomposition by indigenous microorganisms by improving the oxygen supply and the method of externally adding microorganisms capable of decomposing organic substances to be decomposed are employed. can do.

【0012】又、請求項2に記載されているように、こ
の吸引工程を間欠的に行なえば、吸引処理終了後に前記
土壌間隙内に生じた負圧を利用して、大気中にある酸素
に富んだ空気を、土壌表層側から深部の土壌間隙に向か
って引き込むことができる。このとき、空気がキャリア
になって、この空気に含まれる気体状酸素そのものが、
前記土壌間隙内の気圧が大気圧と平衡に達するまで土壌
間隙にくまなく浸透するので、地表から離れた深部や吸
引箇所から水平方向に離れた微細な土壌間隙にまで酸素
を容易に供給することができる。
Further, if the suction step is performed intermittently as described in claim 2, the negative pressure generated in the soil gap after the end of the suction processing is used to reduce the oxygen in the atmosphere. The rich air can be drawn in from the soil surface to the deep soil gap. At this time, the air becomes a carrier, and the gaseous oxygen itself contained in the air becomes
Since the pressure in the soil gap penetrates all over the soil gap until it reaches equilibrium with the atmospheric pressure, it is possible to easily supply oxygen to a deep soil gap away from the ground surface or a fine soil gap horizontally separated from the suction point. Can be.

【0013】更には、請求項3に記載されているよう
に、前記吸引工程において前記土壌間隙水を前記浄化対
象土壌から抜き出して土壌間隙に負圧を形成すると共
に、この負圧が形成された前記浄化対象土壌に、前記吸
引工程で吸引した前記土壌間隙水と比べて溶存酸素濃度
の高い酸素供給用水を供給する供給工程を施すことによ
って、前記土壌間隙に前記流体を積極的に誘導し、前記
土壌間隙内をより流動させ易くすることができる。尚、
前記吸引工程を実施する位置と前記供給工程を実施する
位置が同位置であれば、前記吸引工程と前記供給工程と
を交互に実施すればよい。このようにすることで、前記
吸引工程で、前記土壌間隙中に土壌間隙水を抜き取って
土壌間隙に酸素が豊富な大気を導入して酸素供給をした
後、更に、溶存酸素濃度が高い酸素供給水を供給して、
前記浄化対象土壌中の微生物を活性化することができ
る。この場合、処理を行なうための井戸などを掘削する
ための手間を省くことができる。又、前記吸引工程を実
施する位置と前記供給工程を実施する位置とが別位置で
あれば、前記吸引工程と前記供給工程とを交互に実施し
ても同時に行なってもよいが、同時に実施した方が、前
記土壌間隙中の流体の移動が起こり易いと考えられるの
で好ましい。
Further, as described in claim 3, in the suction step, the soil pore water is extracted from the soil to be purified, and a negative pressure is formed in the soil gap, and the negative pressure is formed. By performing a supply step of supplying oxygen supply water having a higher dissolved oxygen concentration than the soil pore water sucked in the suction step to the purification target soil, the fluid is actively guided to the soil gap, It can be made easier to flow in the soil gap. still,
If the position where the suction step is performed and the position where the supply step is performed are the same position, the suction step and the supply step may be performed alternately. In this manner, in the suction step, after the soil pore water is drawn into the soil gap, oxygen-rich air is introduced into the soil gap to supply oxygen, and then the oxygen supply with a higher dissolved oxygen concentration is performed. Supply water,
The microorganisms in the soil to be purified can be activated. In this case, the labor for excavating a well or the like for performing the processing can be saved. If the position where the suction step is performed and the position where the supply step is performed are different positions, the suction step and the supply step may be performed alternately or simultaneously, but may be performed simultaneously. It is preferable that the fluid is likely to move in the soil gap.

【0014】又、前記酸素供給用水を供給するにあたっ
て、前記請求項4に記載されているように、前記供給工
程において、前記吸引工程で前記浄化対象土壌から取り
出した前記土壌間隙水に酸素を添加して前記酸素供給用
水を得ることによって、前記土壌間隙水を酸素供給用水
として再利用することができる。これによって、前記吸
引工程で前記浄化対象土壌から取り出した前記土壌間隙
水を廃棄する必要が無くなるので、廃水処理設備の建設
・運転コストを削減することができる。又、同時に、別
個に前記酸素供給用水を調達する必要が無くなるので、
前記酸素供給用水の採取・運搬コストを削減することが
できる。
Further, in supplying the oxygen supply water, in the supply step, oxygen is added to the interstitial water removed from the soil to be purified in the suction step. By obtaining the oxygen supply water as above, the soil pore water can be reused as the oxygen supply water. This eliminates the need to discard the interstitial water taken out of the purification target soil in the suction step, thereby reducing the construction and operation costs of the wastewater treatment facility. At the same time, it is not necessary to separately procure the oxygen supply water,
The cost for collecting and transporting the oxygen supply water can be reduced.

【0015】又、前記浄化対象土壌への酸素供給は連続
的に行なうこともできるが、前記有機物の分解に必要と
される酸素の量が連続供給により供給される酸素量を下
回るのであれば、請求項5に記載されているように、間
欠的に、前記吸引工程と前記供給工程とを行なってもよ
い。これによって、酸素供給に要する処理を省力化する
ことができ、コストを削減することができる。尚、前記
供給工程は、前記吸引工程を行なうことによって生じた
土壌間隙中の負圧が存在する間に行なうと、前記酸素供
給用水の移動が促進されるので好ましい。
The supply of oxygen to the soil to be purified can be performed continuously, but if the amount of oxygen required for the decomposition of the organic matter is less than the amount of oxygen supplied by the continuous supply, As described in claim 5, the suction step and the supply step may be performed intermittently. Thereby, the processing required for oxygen supply can be saved, and the cost can be reduced. Note that it is preferable that the supply step be performed while the negative pressure in the soil gap generated by performing the suction step exists, because the movement of the oxygen supply water is promoted.

【0016】ここで、除去対象である有機物が疎水性の
高いものである場合、前記土壌間隙水に溶解し難いの
で、前記微細土粒子の表面に吸着等して存在している比
率が高い。このような場合に、請求項6に記載されてい
るように、前記吸引工程において、前記土壌間隙水に含
まれる微細土粒子を前記土壌間隙水から分離すると、微
生物による前記浄化対象土壌中における除去とは別に、
前記有機物を前記浄化対象土壌外に集約して回収するこ
とができる。そして、前記微細土粒子に付着した有機物
を微生物の存在する浄化対象土壌から分離し、低濃度に
なった有機物に前記微生物を接触させることで、前記浄
化対象土壌から前記有機物を短い期間で更に低濃度にま
で除去することができる。特に、除去対象が微生物に対
して毒性がある有機物の場合等に、微生物による有機物
分解活性阻害を抑制することができるという意味で非常
に有効である。
Here, when the organic matter to be removed is highly hydrophobic, it is difficult to dissolve in the interstitial water of the soil, and therefore, the ratio of the organic matter adsorbed on the surface of the fine soil particles is high. In such a case, as described in claim 6, when the fine soil particles contained in the soil pore water are separated from the soil pore water in the suction step, removal in the soil to be purified by microorganisms is performed. Apart from that,
The organic matter can be collected and collected outside the purification target soil. Then, the organic matter attached to the fine soil particles is separated from the soil to be purified in which microorganisms are present, and the microorganisms are brought into contact with the low-concentration organic matter to further reduce the organic matter from the soil to be purified in a short period of time. It can be removed to a concentration. In particular, when the object to be removed is an organic substance that is toxic to microorganisms, it is very effective in that the inhibition of organic substance decomposition activity by microorganisms can be suppressed.

【0017】又、土着微生物による除去対象有機物の分
解に依存するのみならず、請求項7に記載されているよ
うに、前記浄化対象土壌に前記有機物を分解可能な微生
物を外部から添加する微生物添加工程を設けて、外来微
生物によって除去対象有機物の分解反応を促進すること
によって、更に効率よく浄化対象土壌の浄化を行なうこ
とができる。この場合、添加する微生物の選択は、分解
対象である有機物との関係で任意に選択することができ
る。例えば、分解対象有機物の分解速度が速い微生物、
一般の微生物の生育を阻害する濃度の分解対象有機物に
抵抗性を示す微生物、他の微生物と協働して有機物分解
を促進する微生物などが好適であり、1種だけでなく複
数種を混合し或いは浄化処理ステージに合わせて順次添
加することができる。
In addition, as described in claim 7, the microorganisms which add microorganisms capable of decomposing the organic matter to the soil to be purified from the outside not only depend on the decomposition of the organic matter to be removed by indigenous microorganisms. By providing a process and promoting the decomposition reaction of the organic matter to be removed by the foreign microorganisms, the soil to be purified can be more efficiently purified. In this case, the microorganism to be added can be arbitrarily selected in relation to the organic substance to be decomposed. For example, microorganisms that have a high rate of decomposition of organic substances to be decomposed,
Microorganisms that are resistant to organic matter at a concentration that inhibits the growth of general microorganisms, and microorganisms that promote the decomposition of organic matter in cooperation with other microorganisms, etc., are preferred. Alternatively, they can be added sequentially according to the purification stage.

【0018】[0018]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。図1に、本発明に係る土壌浄化方
法を実施するための原位置レメディエーション設備の一
実施形態を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of an in-situ remediation facility for implementing a soil purification method according to the present invention.

【0019】この設備が設置される浄化対象土壌1は、
表層付近の土壌間隙が水分で飽和されていない不飽和土
壌11となっており、この領域では、土壌間隙における
酸素供給が比較的容易に行なわれる。この不飽和土壌1
1の下層には、地下水で土壌間隙が満たされた飽和土壌
12が存在する。この飽和土壌12領域では、水の滞留
によって前記土壌間隙内での空気の移動が起こり難く、
微生物による有機物分解が行なわれ難い。
The soil 1 to be purified in which this facility is installed is:
The soil gap near the surface layer is the unsaturated soil 11 that is not saturated with moisture. In this region, oxygen supply in the soil gap is relatively easily performed. This unsaturated soil 1
In the lower layer of 1, there is a saturated soil 12 in which the soil gap is filled with groundwater. In this saturated soil 12 region, the movement of air in the soil gap hardly occurs due to the accumulation of water,
Organic substances are hardly decomposed by microorganisms.

【0020】前記原位置レメディエーション設備は、前
記飽和土壌12中に取水部(図示省略)を設けた回収部
2(例えば、細孔を多数穿設したパイプ、井戸)と、前
記飽和土壌12中に注入部(図示省略)を設けた供給部
3(例えば、細孔を多数穿設したパイプ、井戸)とを有
し、これらを前記浄化対象土壌1中に離間して設けてあ
る。前記回収部2と前記供給部3とは貯液槽5を介して
気液流通可能に接続されていて、前記回収部2と前記貯
液槽5の収容部51とは回収管21で接続され、ポンプ
P1を駆動することによって前記回収部2から前記貯液
槽5に前記飽和土壌12中の土壌間隙水が吸引されるよ
うに構成されている。又、前記収容部51と前記供給部
3とは供給管31で接続され、ポンプP2を駆動するこ
とによって、前記収容部51中に蓄えられた回収液52
(土壌間隙水)が前記供給部3に注入されるように構成
されている。尚、前記回収部2から前記土壌間隙水と共
に吸引された気体は、前記貯液槽5に設けられたガス抜
き孔53から排出される。
The in-situ remediation equipment includes a collection unit 2 (for example, a pipe or a well having a large number of pores) provided with a water intake unit (not shown) in the saturated soil 12, And a supply section 3 (for example, a pipe or a well with a large number of pores) provided with an injection section (not shown), which are provided separately in the soil 1 to be purified. The collection unit 2 and the supply unit 3 are connected via a liquid storage tank 5 so as to allow gas-liquid circulation. The collection unit 2 and the storage unit 51 of the liquid storage tank 5 are connected by a collection pipe 21. By driving the pump P1, the interstitial water in the saturated soil 12 is sucked from the recovery unit 2 into the liquid storage tank 5. The storage section 51 and the supply section 3 are connected by a supply pipe 31, and the pump P2 is driven to recover the collected liquid 52 stored in the storage section 51.
(Soil interstitial water) is injected into the supply unit 3. In addition, the gas sucked together with the soil pore water from the recovery unit 2 is discharged from a gas vent hole 53 provided in the liquid storage tank 5.

【0021】更に、前記供給部3の近傍の前記飽和土壌
12には、ポンプP3から空気を注入される通気部4
(例えば、細孔を多数穿設したパイプ)が穿設されてお
り、前記飽和土壌12に対して、空気(気泡)を供給す
る。
Further, in the saturated soil 12 near the supply section 3, a ventilation section 4 into which air is injected from a pump P3.
(For example, a pipe having a large number of pores) is bored, and air (bubbles) is supplied to the saturated soil 12.

【0022】前記回収部2、供給部3、通気部4は、浄
化対象である土壌に対して、同数ずつ設けてあってもよ
いが、何れかが他方に対して高い比率で設けられてもよ
く、これらの設置比率、基数は、土質、浄化範囲、浄化
深度などを考慮して定めることができる。
The same number of the recovery unit 2, the supply unit 3, and the ventilation unit 4 may be provided for the soil to be purified, but one of them may be provided at a higher ratio than the other. Often, these installation ratios and base numbers can be determined in consideration of soil quality, purification range, purification depth, and the like.

【0023】上述した原位置レメディエーション設備の
前記ポンプP1を駆動すると、前記飽和土壌12中の土
壌間隙水は、前記回収管21を通じて、前記貯液槽5に
移送され、回収液52となる。これにより、前記飽和土
壌12の土壌間隙は他の領域に比べると減圧状態にな
り、他の領域から水が流入し易くなる。他方、前記供給
部3には、前記貯液槽5から供給管31を通じて前記回
収液52が流入し、他の領域に比べると加圧状態とな
り、前記回収液52は前記供給部3から遠方に浸透し易
くなる。よって、前記回収液52は、図1の矢印に示す
ように、前記供給部3から前記回収部2に向かって略水
平方向に流れることとなる。このとき、前記3の近傍に
設けられた通気部4から空気が供給されることによっ
て、前記供給部3から前記回収部2に向かう水流には、
前記回収部2から回収された土壌間隙水と比べて溶存酸
素濃度の高い回収液52(酸素供給用水)が流れ、前記
飽和土壌12の広い範囲に亘って、前記酸素供給用水が
浸透する。このようにすることによって、前記飽和土壌
12内を流動する前記土壌間隙水が酸素キャリアとなっ
て前記土壌間隙の隅々に行きわたり、前記飽和土壌12
に存在する好気的微生物の生育及び活動を促進すること
ができるので、微生物による有機物分解が促進される。
尚、前記取水部及び前記注入部の設置面積を広くした
り、垂直方向の設置長さを調節することによっても、前
記酸素供給用水の浸透範囲や速度を調整することができ
る。
When the pump P1 of the above-mentioned in-situ remediation facility is driven, the soil pore water in the saturated soil 12 is transferred to the liquid storage tank 5 through the recovery pipe 21 to become a recovered liquid 52. As a result, the soil gap of the saturated soil 12 is in a reduced pressure state as compared with other regions, and water easily flows in from other regions. On the other hand, the recovered liquid 52 flows into the supply unit 3 from the liquid storage tank 5 through the supply pipe 31, and is in a pressurized state as compared with other regions, so that the recovered liquid 52 is distant from the supply unit 3. Easy to penetrate. Therefore, the recovery liquid 52 flows in a substantially horizontal direction from the supply unit 3 toward the recovery unit 2 as shown by an arrow in FIG. At this time, when air is supplied from the ventilation part 4 provided in the vicinity of the part 3, the water flow from the supply part 3 to the collection part 2
A recovery liquid 52 (oxygen supply water) having a higher dissolved oxygen concentration than the soil pore water recovered from the recovery unit 2 flows, and the oxygen supply water permeates over a wide range of the saturated soil 12. By doing so, the soil pore water flowing in the saturated soil 12 becomes an oxygen carrier and reaches every corner of the soil gap.
Can promote the growth and activity of the aerobic microorganisms present in the microorganisms, so that the decomposition of organic substances by the microorganisms is promoted.
The permeation range and speed of the oxygen supply water can also be adjusted by increasing the installation area of the water intake section and the injection section or by adjusting the installation length in the vertical direction.

【0024】前記微生物は、土着のものでもよいが、特
に除去対象となる有機物の分解能力の高い微生物を外部
から導入することによって、更に、効率よく有機物の分
解が進行する。前記微生物の導入方法としては、地表に
散布して前記飽和土壌12への移住を待ってもよいし、
前記供給部3、通気部4から、前記回収液52や空気と
共に前記飽和土壌12に送り込んでもよい。
The microorganisms may be indigenous, but the decomposition of the organic substances proceeds more efficiently by introducing a microorganism having a high ability to decompose the organic substances to be removed from the outside. As a method of introducing the microorganisms, it may be spread on the ground surface and wait for migration to the saturated soil 12,
It may be sent from the supply unit 3 and the ventilation unit 4 to the saturated soil 12 together with the recovered liquid 52 and air.

【0025】又、前述した酸素供給用液の供給は、連続
的に行なって循環サイクルを常時形成しておいてもよい
が、連続的に循環させなければならないほど酸素要求量
が高くない場合には、間欠的に前記土壌間隙水を循環さ
せることによって運転コストを削減することができる。
The supply of the oxygen supply liquid may be continuously performed to form a circulation cycle at all times. However, when the oxygen demand is not so high as to require continuous circulation. The operation cost can be reduced by intermittently circulating the soil pore water.

【0026】又、前記取水部を通過する粒子径をある程
度大きくして(例えば、75μm以下の粒子を通過させ
る)、図1に示すように、土壌間隙水と同時に微細な土
粒子も前記貯液槽5に回収し、前記収容部51において
上澄み52と土粒子54とを分離し、前記上澄み52の
みを前記供給部3に再度供給すると、前記土粒子に吸着
した有機物を前記微生物による分解の場から除去するこ
とができる。これにより、前記処理対象土壌中の前記有
機物の濃度を下げることによって、微生物に与える付加
を削減し、微生物分解を促進することができる。
Further, the diameter of the particles passing through the water intake section is increased to some extent (for example, particles having a size of 75 μm or less are passed), and as shown in FIG. When collected in the tank 5, the supernatant 52 and the soil particles 54 are separated in the storage section 51, and only the supernatant 52 is supplied to the supply section 3 again, the organic matter adsorbed on the soil particles is decomposed by the microorganism. Can be removed from Thereby, by lowering the concentration of the organic matter in the soil to be treated, addition to microorganisms can be reduced, and microbial decomposition can be promoted.

【0027】又、前記浄化対象土壌は、掘削してリアク
ターに投入してもよく、又、掘削することなく現場にパ
イプを設置することにより処理することも可能である。
更には、前記回収液52を前記飽和土壌12に再度供給
する際に、除去対象有機物を分解する微生物が好む養分
を供給すると、前記微生物より効果が高まる。
The soil to be purified may be excavated and put into a reactor, or may be treated by installing a pipe at the site without excavation.
Further, when supplying the recovered liquid 52 to the saturated soil 12 again, supplying nutrients preferred by microorganisms that decompose the organic matter to be removed is more effective than the microorganisms.

【0028】尚、前記ポンプP1を一定期間駆動して前
記回収部2から前記飽和土壌12中の土壌間隙水を抜き
取り、その後、一定期間放置することを繰り返すことに
よっても、前記飽和土壌12への効率的な酸素供給を行
なうことができる。即ち、前記ポンプP1を停止した
後、前記土壌間隙は他の領域に比べて減圧状態になるの
で他の領域から流体を受け入れ易くなるが、このとき、
前記飽和土壌12を満たす土壌間隙水より空気の方が移
動し易い場合、前記土壌間隙水を抜き取った後の土壌間
隙には地上部から酸素を豊富に含んだ空気が広範囲に亘
って流入し、前記微生物への酸素供給が行なわれる。こ
の後、前記飽和土壌12の他の領域から徐々に地下水が
浸透して土壌間隙が地下水で充満するが、再度、土壌間
隙水を抜き取れば、前記空気をキャリアとして酸素を補
給することができる。
It should be noted that the pump P1 is driven for a certain period of time to extract soil pore water in the saturated soil 12 from the collecting part 2 and then to stand for a certain period of time. Efficient oxygen supply can be performed. That is, after stopping the pump P1, the soil gap is in a reduced pressure state as compared with other areas, so that it becomes easier to receive fluid from other areas.
If the air is easier to move than the soil pore water that fills the saturated soil 12, oxygen-rich air from the above-ground portion flows into the soil gap after extracting the soil pore water over a wide range, Oxygen is supplied to the microorganism. Thereafter, the groundwater gradually penetrates from other regions of the saturated soil 12 to fill the soil gap with the groundwater. However, if the soil porewater is extracted again, oxygen can be supplied using the air as a carrier. .

【0029】[0029]

【実施例】以下に、本発明の実施例を、浄化による除去
対象たる有機物がタールである場合を例示して、図面に
基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings, exemplifying a case where an organic substance to be removed by purification is tar.

【0030】人工的にタールを含有させた浄化対象土壌
(タール含浸土壌)を作製し、このタール含浸土壌とタ
ール分解微生物との混合物62を以下に説明する実験に
供した。
A soil to be purified containing tar artificially (tar-impregnated soil) was prepared, and a mixture 62 of this tar-impregnated soil and tar-degrading microorganisms was subjected to an experiment described below.

【0031】〔実施例1〕前記混合物62のうち400
gを分取し、図2に示すように、容積260mLの収容
部61を有するカラム6の前記収容部61内部に圧密し
て収容した。前記収容部61には、上下端に10〜20
μmの孔径をもつ焼結ステンレスのフィルタ63、63
を取り付けてあって、前記タール含浸土壌が前記収容部
61から流出しないようにしてある。さらに、ガス抜き
孔71を備えた貯水槽7を設け、この貯水槽7と前記収
容部61の上下端とを送水管81,82により連結して
送液ポンプP4で前記送水管81,82内の水溶液を循
環させる水溶液循環経路を形成すると共に、前記貯水槽
7と前記収容部61の下端とを連結する前記送水管81
に空気供給管9を接続して、エアポンプP5からの酸素
供給経路を形成した。このようにして、原位置でのバイ
オレメディエーション及びリアクターに浄化対象土壌を
収容した非スラリー法による土壌処理系を模した実験系
を構築した。
Example 1 400 of the mixture 62
g was collected and, as shown in FIG. 2, housed in a compacted manner in the storage section 61 of the column 6 having a storage section 61 with a volume of 260 mL. The accommodating portion 61 has 10-20
Sintered stainless steel filters 63, 63 having a pore size of μm
Is attached so that the tar-impregnated soil does not flow out of the storage section 61. Further, a water storage tank 7 provided with a gas vent hole 71 is provided, and the water storage tank 7 and the upper and lower ends of the storage section 61 are connected by water supply pipes 81 and 82, and the liquid supply pump P4 is used to connect the water storage pipes 7 and Forming an aqueous solution circulating path for circulating the aqueous solution, and connecting the water tank 7 and the lower end of the housing portion 61 to the water supply pipe 81.
Was connected to an air supply pipe 9 to form an oxygen supply path from the air pump P5. Thus, an in-situ bioremediation and experimental system simulating a non-slurry soil treatment system in which the soil to be purified was accommodated in a reactor was constructed.

【0032】前記水溶液循環系に、0.1%K2HPO4
及び0.1%NH4NO3を含有する水溶液(以下、NP
培地)を流通させることによって、前記NP培地を、前
記カラム6の収容部61内を下部から上部に向かって移
動する方向に浸入させ、前記タール含浸土壌の土壌間隙
を前記NP培地で満たした。
In the aqueous solution circulation system, 0.1% K 2 HPO 4
And an aqueous solution containing 0.1% NH 4 NO 3 (hereinafter referred to as NP
By flowing the medium, the NP medium was infiltrated in the direction of moving from the lower part to the upper part in the storage part 61 of the column 6, and the soil gap of the tar-impregnated soil was filled with the NP medium.

【0033】前記送液ポンプP4を駆動して、前記収容
部61の内部に、下部から上部に向かって0.01、
0.05、又は0.1mL/分の流速で前記NP培地を
供給しながら、前記エアポンプP5を駆動して、前記空
気供給管9から前記NP培地に対して10mL/分の流
速で前記収容部61の下部から上部に向かって空気を供
給した。このようにして、前記NP培地を前記タール含
浸土壌から吸引する工程と酸素富化した前記NP培地を
供給する工程を同時に進行させることで、前記NP培地
は、酸素キャリアとして前記収容部61内を移動するこ
とになる。
By driving the liquid feed pump P4, the inside of the accommodation part 61 is moved from the lower part to the upper part by 0.01,
While supplying the NP medium at a flow rate of 0.05 or 0.1 mL / min, the air pump P5 is driven to drive the storage section at a flow rate of 10 mL / min from the air supply pipe 9 to the NP medium. Air was supplied from the lower part of 61 to the upper part. In this way, by simultaneously proceeding with the step of sucking the NP medium from the tar-impregnated soil and the step of supplying the oxygen-enriched NP medium, the NP medium serves as an oxygen carrier in the storage section 61 as an oxygen carrier. Will move.

【0034】前記収容部61上部から排出された前記N
P培地は、前記送液管82を通じて一旦貯液槽7に運ば
れて貯留され、再び、前記貯液槽7から前記送液管81
を通じて前記収容部61に送られて前記タール含浸土壌
に供給された。尚、前記収容部61上部から前記NP培
地と共に排出された気体は、前記ガス抜き孔71から大
気中へ放出した。
The N discharged from the upper part of the housing 61
The P medium is once conveyed to and stored in the liquid storage tank 7 through the liquid supply pipe 82, and is again transferred from the liquid storage tank 7 to the liquid supply pipe 81.
And then supplied to the tar-impregnated soil. In addition, the gas discharged together with the NP medium from the upper part of the storage part 61 was discharged into the atmosphere from the vent hole 71.

【0035】この操作を7週間続けた時の前記タール含
浸土壌中のタール残存濃度を、その主成分である総PA
H(多環芳香族炭化水素;polycyclic ar
omatic hydrocarbon)濃度の経時変
化でモニタした。この結果を図3に示す。尚、前記PA
H濃度は、次のようにして測定した。採取した前記ター
ル含浸土壌をドラフト内で2日以上風乾した。この風乾
した前記タール含浸土壌を粉砕し、前記タール含浸土壌
1gに対して2mLのアセトニトリルを添加して、60
℃で30分間湯浴した後、3000rpmで10分間遠
心分離を行ない、これによって得られた上清をHPLC
にて分析した。
When this operation was continued for 7 weeks, the residual concentration of tar in the tar-impregnated soil was determined by measuring the total PA as the main component.
H (polycyclic aromatic hydrocarbon; polycyclic ar
, and the concentration was monitored with time. The result is shown in FIG. The PA
The H concentration was measured as follows. The collected tar-impregnated soil was air-dried in a fume hood for at least two days. The tar-impregnated soil dried in the air is pulverized, and 2 mL of acetonitrile is added to 1 g of the tar-impregnated soil to obtain 60 g of the tar-impregnated soil.
And then centrifuged at 3000 rpm for 10 minutes.
Was analyzed.

【0036】〔比較例1−1〕比較のために、前記NP
培地を前記収容部61内に充満させた後、前記NP培地
を循環させることなく空気のみを、10mL/分の流速
で前記収容部61の下部から上部に向かって供給した結
果についても、図3に示す。ここで、前記空気(気泡)
の移動は、前記タール含浸土壌の土壌間隙内を浮上する
に任せてあり、前記収容部61内にある前記NP培地
は、酸素キャリアとして積極的な働きをしていない。
Comparative Example 1-1 For comparison, the NP
After the medium was filled in the container 61, only air was supplied from the lower part to the upper part of the container 61 at a flow rate of 10 mL / min without circulating the NP medium. Shown in Where the air (bubbles)
Is left to float in the soil gap of the tar-impregnated soil, and the NP medium in the storage section 61 does not actively work as an oxygen carrier.

【0037】〔比較例1−2〕又、スラリー法によって
処理した場合の結果を、図3に併せて示す。この方法
は、攪拌することによって、培地中への酸素の拡散が促
進されるので、微生物への酸素供給が行ない易いことが
知られている。前記スラリー法による処理は、以下のよ
うにして実施した。上述したタール含浸土壌とタール分
解微生物との混合物12gと前記NP培地20mLとを
300mL容三角フラスコに収容し、通気性のある綿栓
で封をして、30℃、175rpmで、7週間振とう培
養した。
[Comparative Example 1-2] The results of the treatment by the slurry method are also shown in FIG. In this method, it is known that the diffusion of oxygen into the culture medium is promoted by stirring, so that oxygen can be easily supplied to the microorganism. The treatment by the slurry method was performed as follows. 12 g of the mixture of the above-mentioned tar-impregnated soil and tar-degrading microorganisms and 20 mL of the NP medium were placed in a 300 mL Erlenmeyer flask, sealed with a breathable cotton plug, and shaken at 30 ° C. and 175 rpm for 7 weeks. Cultured.

【0038】前記NP培地を循環させず、実験開始時に
投入したNP培地を滞留させたままの場合、即ち、前記
微生物への酸素供給を前記NP培地への酸素の拡散に依
存した場合、図3に示すように、7週間の処理後の総P
AH分解率は10%にも及ばず、PAH分解速度は遅か
った(比較例1−1)。スラリー法による処理(比較例
1−2)の場合、図3に示すように、前記タール含浸土
壌中の総PAH濃度は急速に減少し、処理開始4週間後
には約60%の総PAHが分解されていた。しかし、ス
ラリー法は、浄化対象となる土壌を大量の培地(溶液)
中に懸濁して攪拌通気するものであるので、原位置バイ
オレメディエーションに適用するのが非常に困難であ
り、本出願の課題を解決する方法としては不向きであ
る。
In the case where the NP medium was not circulated and the NP medium charged at the start of the experiment was kept, that is, when the supply of oxygen to the microorganism depended on the diffusion of oxygen into the NP medium, FIG. As shown in FIG.
The AH decomposition rate was as low as 10%, and the PAH decomposition rate was low (Comparative Example 1-1). In the case of the treatment by the slurry method (Comparative Example 1-2), as shown in FIG. 3, the total PAH concentration in the tar-impregnated soil rapidly decreased, and about 60% of the total PAH was decomposed four weeks after the start of the treatment. It had been. However, the slurry method uses a large amount of medium (solution)
Since it is suspended and aerated with stirring, it is very difficult to apply it to in situ bioremediation, and it is not suitable as a method for solving the problems of the present application.

【0039】一方、実施例1にあるように、前記タール
含浸土壌内に空気と共に前記NP培地を強制的に循環さ
せることによって、土壌間隙の隅々にまで酸素を溶存さ
せた前記NP培地を供給した場合、7週間の処理後の総
PAH分解率は50%にまで達し、前記タールの分解が
大幅に促進されることが分かった。これは、前掲のスラ
リー法(比較例1−2)による処理と比較すると初期段
階における分解速度は遅いものの、7週間経過後におい
ては前記スラリー法とほとんど分解率に差が無かった。
これらの結果から、飽和土壌に対して空気を直接気泡と
して供給するより、酸素を含んだ水を循環させることに
よって、生物による有機物質の分解速度が増大し、スラ
リー法による処理とほとんど同じレベルまで浄化できる
ことが明らかとなった。尚、前記実施例1において、前
記NP培地の循環速度を0.01、0.05、0.1m
L/分に夫々設定して処理を行なったが、流量の違いに
よる前記総PAH分解速度の差はほとんどなかった。
On the other hand, as in Example 1, the NP medium having oxygen dissolved therein was supplied to every corner of the soil gap by forcibly circulating the NP medium together with air in the tar-impregnated soil. In this case, the total PAH decomposition rate after the treatment for 7 weeks reached 50%, indicating that the decomposition of the tar was greatly accelerated. Although the decomposition rate in the initial stage was slower than the treatment by the above-mentioned slurry method (Comparative Example 1-2), there was almost no difference in the decomposition rate from the slurry method after 7 weeks.
From these results, rather than supplying air directly to saturated soil as air bubbles, circulating oxygenated water increases the rate of decomposition of organic matter by living organisms, almost to the same level as treatment by the slurry method. It became clear that it could be purified. In Example 1, the circulation speed of the NP medium was 0.01, 0.05, 0.1 m
The treatment was carried out with each set to L / min, but there was almost no difference in the total PAH decomposition rate due to the difference in flow rate.

【0040】上記結果によれば、中長期的な浄化処理に
おいては、本法を採用することによって、浄化対象であ
る土壌を流動化させて攪拌すること無く、前記スラリー
法と同程度に土壌浄化を進めることができると考えられ
る。
According to the above results, in the medium- to long-term purification process, by employing this method, the soil to be purified is not fluidized and stirred, and the soil purification is performed to the same degree as the slurry method. It is thought that it can advance.

【0041】〔実施例2〕実施例1と同様に、前記収容
部61内に前記混合物62を400g圧密し、10〜2
0μmの孔径をもつ焼結ステンレスのフィルタ63、6
3を前記収容部61の上下端側に取り付け、前記タール
含浸土壌が前記収容部61から流出しないようにした。
この収容部61の内部に、前記NP培地を、収容部61
下部から供給して前記土壌間隙を前記NP培地で満たし
た。この後、前記送液ポンプP4を用いて、前記NP培
地をこの収容部61下部から引き抜き、ほぼ全ての土壌
間隙水を除去することによって、前記土壌間隙に空気を
満たした(吸引操作)。これにより、空になった土壌間
隙に空気が直接酸素を供給する。この後、前記送液ポン
プP4を用いて、引き抜いたNP培地を再び収容部61
に注入して、前記タール含浸土壌の間隙を前記NP培地
で満たした(注入操作)。(この注入操作は、他領域か
らの地下水の浸透を模したものである。) 尚、上述した前記NP培地の吸引操作、注入操作を実施
していないときには、前記土壌間隙を前記NP培地で満
たした状態で、前記エアポンプP5を用いて、空気を1
0mL/分の流速で供給した。上記吸引・注入操作を1
回/日、7週間継続したとき、即ち、前記タール含浸土
壌の土壌間隙の多くの領域を空気が容易に流通すること
ができる状態とし、空気を酸素キャリアとして土壌間隙
に酸素を1回/日供給したときの前記総PAH濃度の経
時変化を図4に示す。
Example 2 In the same manner as in Example 1, 400 g of the mixture 62 was compacted in
Sintered stainless steel filters 63 and 6 having a pore size of 0 μm
3 was attached to the upper and lower ends of the storage section 61 so that the tar-impregnated soil did not flow out of the storage section 61.
The NP culture medium is stored in the housing 61.
The soil gap was filled with the NP medium supplied from below. Thereafter, the NP medium was pulled out from the lower part of the storage section 61 using the liquid sending pump P4 to remove almost all the soil pore water, thereby filling the soil gap with air (suction operation). This allows the air to supply oxygen directly to the emptied soil gap. Thereafter, the extracted NP medium is again stored in the storage unit 61 by using the liquid sending pump P4.
To fill the interstices of the tar-impregnated soil with the NP medium (injection operation). (This injection operation simulates the infiltration of groundwater from another area.) When the above-mentioned suction operation and injection operation of the NP medium are not performed, the soil gap is filled with the NP medium. In this state, the air is pumped to 1 using the air pump P5.
It was fed at a flow rate of 0 mL / min. The above suction / injection operation
Times / day for 7 weeks, that is, the air can easily flow through many areas of the soil gap of the tar-impregnated soil, and oxygen is supplied once a day to the soil gap using air as an oxygen carrier. FIG. 4 shows the change over time in the total PAH concentration when supplied.

【0042】〔比較例2−1〕比較のために、上述した
前記NP培地の吸引操作、注入操作を実施しないで空気
の供給を続けた以外は、実施例2と同様に処理を行なっ
た結果を図4に示す。
[Comparative Example 2-1] For comparison, the result of performing the same process as in Example 2 except that the supply of air was continued without performing the above-described suction and injection operations of the NP medium. Is shown in FIG.

【0043】〔比較例2−2〕比較例1−2と同様に、
スラリー法によって前記タール含浸土壌を7週間処理し
た結果を、図4に示す。
[Comparative Example 2-2] As in Comparative Example 1-2,
FIG. 4 shows the results of treating the tar-impregnated soil by the slurry method for 7 weeks.

【0044】図4に示すように、前記土壌間隙水の吸引
を行なわず、空気の供給だけを続けたときには、7週間
の処理後の総PAH分解率は10%にも及ばず、総PA
H分解速度は遅かった(比較例2−1)。一方、スラリ
ー法により処理した場合は、前記タール含浸土壌中の総
PAH濃度は急速に減少し、処理開始4週間後には約6
0%の総PAHが分解されていた(比較例2−2)。
As shown in FIG. 4, when only the supply of air was continued without suctioning the soil pore water, the total PAH decomposition rate after the treatment for 7 weeks did not reach 10%, and the total PAH decomposition rate did not reach 10%.
The H decomposition rate was low (Comparative Example 2-1). On the other hand, when the slurry was treated by the slurry method, the total PAH concentration in the tar-impregnated soil rapidly decreased, and was reduced to about 6
0% of the total PAH was decomposed (Comparative Example 2-2).

【0045】ここで、前記タール含浸土壌の間隙から間
欠的に土壌間隙水を吸引・注入することにより土壌間隙
中に空気(酸素)を行き亘らせた実施例2にあっては、
7週間の処理後の総PAH分解率は50%にまで達し、
前記タールの分解が大幅に促進され、前記スラリー法を
採用した場合と近いレベルまで土壌浄化の効果を改善で
きることが明らかとなった。
Here, in the second embodiment in which air (oxygen) spreads in the soil gap by intermittently sucking / injecting the soil pore water from the gap of the tar impregnated soil,
After 7 weeks of treatment the total PAH degradation rate reaches 50%,
It has been clarified that the decomposition of the tar is greatly promoted, and the soil purification effect can be improved to a level close to the case where the slurry method is employed.

【0046】〔実施例3〕実施例1と同様に、前記カラ
ム6の収容部61内に前記混合物62を400g圧密し
た。ここで、実施例3にあっては、10〜20μmの孔
径をもつ焼結ステンレスフィルタに代えて、カラムの下
部には20〜40μmの孔径を持つガラスフィルタを取
り付けて土壌を保持し、上部には1mmの孔径の穴を多
数をもつテフロン(登録商標)フィルタを取り付けて、
微細な土粒子が前記NP培地と共に前記収容部61の外
部に流出するようにした。
Example 3 In the same manner as in Example 1, 400 g of the mixture 62 was compacted in the storage portion 61 of the column 6. Here, in Example 3, instead of the sintered stainless steel filter having a pore size of 10 to 20 μm, a glass filter having a pore size of 20 to 40 μm was attached to the lower part of the column to hold the soil, Attaches a Teflon (registered trademark) filter with many holes of 1 mm in diameter,
The fine soil particles flowed out of the housing part 61 together with the NP medium.

【0047】この収容部61の内部に、前記NP培地
を、収容部61下部から供給して前記土壌間隙を前記N
P培地で満たした後、前記送液ポンプP4を駆動して、
前記収容部61の内部に下部から上部に向かって0.0
1又は0.1mL/分の流速で前記NP培地を供給しな
がら、前記エアポンプP5を駆動して、前記空気供給管
4から前記NP培地に対して10mL/分の流速で前記
カラム6の下部から上部に向かって空気を供給した。前
記カラム上部から排出された前記NP培地は、前記送液
管82を通じて一旦貯液槽7に運ばれて貯留され、再
び、前記貯液槽7から前記送液管81を通じて前記収容
部61に送られて前記タール含浸土壌に供給された。前
記収容部61上部から排出された気体は、前記貯液槽7
のガス抜き孔71から大気中へ放出した。又、前記収容
部61から流出して前記貯液槽7に流入した微細な土粒
子は、前記貯液槽7底部に沈降し、再び前記収容部61
へは供給しないようにした。このように、前記タール含
浸土壌から微細な土粒子を除去しつつ、前記NP培地の
吸引と供給を同時に行なって酸素キャリアとしてのNP
培地を循環させ、これを7週間続けたときの土壌中の総
PAH濃度の経時変化を図5に示す。
The NP culture medium is supplied from the lower part of the storage part 61 into the storage part 61 to remove the soil gap from the N.
After filling with the P medium, the liquid sending pump P4 is driven,
0.0 from the lower part to the upper part in the accommodation portion 61.
While supplying the NP culture medium at a flow rate of 1 or 0.1 mL / min, the air pump P5 is driven to drive the air supply pipe 4 from the lower part of the column 6 at a flow rate of 10 mL / min with respect to the NP culture medium. Air was supplied to the top. The NP medium discharged from the upper part of the column is once carried to and stored in the liquid storage tank 7 through the liquid supply pipe 82, and is again sent from the liquid storage tank 7 to the storage section 61 through the liquid supply pipe 81. And fed to the tar impregnated soil. The gas discharged from the upper part of the storage part 61
Was released into the atmosphere from the gas vent hole 71 of the above. Further, the fine soil particles flowing out of the storage section 61 and flowing into the liquid storage tank 7 settle at the bottom of the liquid storage tank 7 and again return to the storage section 61.
Not to be supplied. As described above, while removing fine soil particles from the tar-impregnated soil, the suction and supply of the NP medium are performed at the same time, and the NP as an oxygen carrier is removed.
FIG. 5 shows the time course of the total PAH concentration in soil when the medium was circulated and continued for 7 weeks.

【0048】〔比較例3〕比較のために、前記NP培地
を循環することなく滞留させた状態で、空気のみを供給
した場合の結果を、図5に併せて示す。
Comparative Example 3 For comparison, FIG. 5 also shows the result when only the air was supplied while the NP medium was kept without circulating.

【0049】図5に示すように、前記NP培地を循環さ
せなかった比較例3では、処理開始から4週間まで殆ど
PAHの分解は進んでいなかったが、7週間の処理後は
約40%分解されていた。一方、実施例3にあるよう
に、前記NP培地を通気しながら循環させて、かつ、微
細な土粒子を除去すると、処理開始から4週間後には、
前記タール含浸土壌中のPAHは分解され尽くしてい
て、タールの分解速度が大幅に改善されていた。この実
施例3の結果を、上記実施例1及び2と比較すると、実
施例3の処理後の総PAH濃度が極めて低くなってお
り、微細な土粒子を除去することによって、浄化対象土
壌から、効率よく有機物を除去することができることは
明らかである。ここで、前記タール含浸土壌から消失し
たPAHは、一部は前記貯水槽7に堆積した土粒子に付
着して滞留していることが確認されており、他は前記タ
ール分解微生物によって分解されたと考えられる。尚、
前記NP培地の流量の違いによる分解速度の差はほとん
どなかった。
As shown in FIG. 5, in Comparative Example 3 in which the NP medium was not circulated, the decomposition of PAH hardly progressed until 4 weeks from the start of the treatment, but about 40% after the treatment for 7 weeks. Had been disassembled. On the other hand, as in Example 3, when the NP medium was circulated while being aerated and fine soil particles were removed, four weeks after the start of the treatment,
PAH in the tar-impregnated soil had been completely decomposed, and the decomposition rate of tar had been greatly improved. Comparing the results of Example 3 with those of Examples 1 and 2, the total PAH concentration after the treatment of Example 3 was extremely low. By removing fine soil particles, It is clear that organic matter can be removed efficiently. Here, it was confirmed that the PAH that had disappeared from the tar-impregnated soil was partially adhered to the soil particles deposited in the water storage tank 7 and stayed there, and the other was decomposed by the tar-degrading microorganisms. Conceivable. still,
There was almost no difference in the decomposition rate due to the difference in the flow rate of the NP medium.

【0050】〔別実施形態〕以下に別実施形態を説明す
る。上記実施例においては、除去対象たる有機物がター
ルである場合を例示したが、本発明に係る土壌浄化方法
は、除去対象が有機物であれば特に制限されるものでは
ない。従って、本法を用いて、浄化対象土壌に存在す
る、除去対象となる有機物を分解可能な微生物に対して
酸素供給を促進することによって、前記有機物の分解を
促進し、土壌浄化効率を向上させることができる。又、
上記実施形態において、前記通気部4を前記飽和土壌1
2に穿設したが、前記回収部2より下流側に曝気槽を設
けたり、前記回収管21や前記供給管31にエアポンプ
を用いて給気することによって、前記浄化対象土壌1に
供給する前記回収液を酸素富化して酸素供給用水とする
こともできる。又、上記実施例においては、除去対象で
ある有機物を分解する微生物を浄化対象土壌に外部より
添加して、その浄化対象土壌に元来生息する土着の微生
物の働きを補強したが、本法は、前記浄化対象土壌に生
息する土着の微生物を活性化することによって、前記有
機物の分解効率を向上させるために用いることもでき
る。又、前記実施例においては、微生物の栄養源となる
NP培地を循環させたが、循環させる流体は、浄化対象
となる有機物を分解するのに有用な微生物の栄養要求性
を考慮して適宜変更することができる。或いは、浄化対
象土壌の土壌間隙から回収した液体を、そのまま再利用
してもよく、この液体に栄養分を補給して再供給しても
よい。
[Another Embodiment] Another embodiment will be described below. In the above embodiment, the case where the organic matter to be removed is tar is illustrated, but the soil purification method according to the present invention is not particularly limited as long as the removal target is an organic matter. Therefore, by using this method, by promoting oxygen supply to microorganisms present in the soil to be purified and capable of decomposing the organic matter to be removed, the decomposition of the organic matter is promoted, and the soil purification efficiency is improved. be able to. or,
In the above embodiment, the ventilation section 4 is connected to the saturated soil 1.
2, but provided to the purification target soil 1 by providing an aeration tank downstream of the recovery unit 2 or by supplying air to the recovery pipe 21 and the supply pipe 31 using an air pump. The recovered liquid can be enriched with oxygen to provide oxygen supply water. Further, in the above embodiment, microorganisms that decompose the organic matter to be removed are added to the soil to be purified from the outside to reinforce the function of indigenous microorganisms that naturally inhabit the soil to be purified. It can also be used to improve the efficiency of decomposing the organic matter by activating indigenous microorganisms that inhabit the soil to be purified. Further, in the above embodiment, the NP medium serving as a nutrient source of the microorganism was circulated, but the circulating fluid was appropriately changed in consideration of the nutritional requirement of the microorganism useful for decomposing the organic matter to be purified. can do. Alternatively, the liquid collected from the soil gap of the soil to be purified may be reused as it is, or the liquid may be replenished with nutrients and re-supplied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本法の実施形態を表わす概略図FIG. 1 is a schematic diagram illustrating an embodiment of the present method.

【図2】本法の実施例で使用した土壌浄化モデル系の概
略図
FIG. 2 is a schematic diagram of a soil purification model system used in an example of the present method.

【図3】本法によるタール分解結果を表わすグラフFIG. 3 is a graph showing the results of tar decomposition by the present method.

【図4】本法の別実施形態によるタール分解結果を表わ
すグラフ
FIG. 4 is a graph showing the results of tar decomposition according to another embodiment of the present method.

【図5】本法の別実施形態によるタール分解結果を表わ
すグラフ
FIG. 5 is a graph showing the results of tar decomposition according to another embodiment of the present method.

【符号の説明】[Explanation of symbols]

1 浄化対象土壌 2 回収部 3 供給部 4 通気部 5 貯液槽 11 不飽和土壌 12 飽和土壌 DESCRIPTION OF SYMBOLS 1 Soil to be purified 2 Collection unit 3 Supply unit 4 Ventilation unit 5 Storage tank 11 Unsaturated soil 12 Saturated soil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上田 進一 兵庫県神戸市西区井吹台東町5丁目14番19 号 (72)発明者 伊藤 亮介 大阪府八尾市柏村町2番58号 曙川健友寮 北405号 Fターム(参考) 4D004 AA41 AB05 AC07 CA18 CC03 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shinichi Ueda 5-14-19 Ibukidai Higashicho, Nishi-ku, Kobe City, Hyogo Prefecture No. F-term (reference) 4D004 AA41 AB05 AC07 CA18 CC03

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 浄化対象土壌に含まれる有機物を微生物
を用いて除去する土壌浄化方法において、前記浄化対象
土壌中の土壌間隙水を吸引する吸引工程を有する土壌浄
化方法。
1. A soil purification method for removing organic matter contained in a soil to be purified using a microorganism, comprising a suction step of sucking soil pore water in the soil to be purified.
【請求項2】 間欠的に、前記吸引工程を行なう請求項
1に記載の土壌浄化方法。
2. The soil purification method according to claim 1, wherein the suction step is performed intermittently.
【請求項3】 前記吸引工程で吸引した前記土壌間隙水
と比べて溶存酸素濃度の高い酸素供給用水を前記浄化対
象土壌に供給する供給工程を有する請求項1に記載の土
壌浄化方法。
3. The soil purification method according to claim 1, further comprising a supply step of supplying oxygen supply water having a higher dissolved oxygen concentration than the soil pore water sucked in the suction step to the purification target soil.
【請求項4】 前記供給工程において、前記土壌間隙水
に酸素を添加して前記酸素供給用水を得る請求項3に記
載の土壌浄化方法。
4. The soil purification method according to claim 3, wherein, in the supply step, oxygen is added to the soil pore water to obtain the oxygen supply water.
【請求項5】 間欠的に、前記吸引工程と前記供給工程
とを行なう請求項3又は4項に記載の土壌浄化方法。
5. The soil purification method according to claim 3, wherein the suction step and the supply step are performed intermittently.
【請求項6】 前記吸引工程において、前記土壌間隙水
に含まれる微細土粒子を前記土壌間隙水から分離する請
求項1〜5の何れか1項に記載の土壌浄化方法。
6. The soil purification method according to claim 1, wherein in the suction step, fine soil particles contained in the soil pore water are separated from the soil pore water.
【請求項7】 前記浄化対象土壌に前記有機物を分解可
能な前記微生物を添加する微生物添加工程を有する請求
項1〜6の何れか1項に記載の土壌浄化方法。
7. The soil purification method according to claim 1, further comprising a microorganism addition step of adding the microorganism capable of decomposing the organic matter to the soil to be purified.
JP2000400977A 2000-12-28 2000-12-28 Soil purification method Expired - Fee Related JP4636679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000400977A JP4636679B2 (en) 2000-12-28 2000-12-28 Soil purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000400977A JP4636679B2 (en) 2000-12-28 2000-12-28 Soil purification method

Publications (2)

Publication Number Publication Date
JP2002200480A true JP2002200480A (en) 2002-07-16
JP4636679B2 JP4636679B2 (en) 2011-02-23

Family

ID=18865472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000400977A Expired - Fee Related JP4636679B2 (en) 2000-12-28 2000-12-28 Soil purification method

Country Status (1)

Country Link
JP (1) JP4636679B2 (en)

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57209692A (en) * 1981-07-09 1982-12-23 Groundwater Decontamin Syst Method and device for treating soil and underground water polluted by hydrocarbon and hydrocarbon halide
JPH04501231A (en) * 1989-08-16 1992-03-05 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Methods for decontaminating subsurface soil and groundwater in situ
JPH05261360A (en) * 1991-12-20 1993-10-12 Hughes Aircraft Co Recoverable enhanced gradient decontamination sweep extraction and injection tubes
JPH06212155A (en) * 1992-10-20 1994-08-02 Canon Inc Microorganism carrier, soil amendment using the same, and method for soil improvement
JPH06238260A (en) * 1993-02-15 1994-08-30 Karuto Kk Removal of soil contamination with organochlorine compound
JPH06322796A (en) * 1993-05-14 1994-11-22 Shimizu Corp Groundwater purification equipment
JPH08243541A (en) * 1995-03-08 1996-09-24 Kokusai Kogyo Kk Method of removing underground pollutant
JPH0910752A (en) * 1995-06-30 1997-01-14 Nippon Sogo Kenkyusho:Kk Method and apparatus for purifying contaminated soil using soil bacteria
JPH0994558A (en) * 1995-09-29 1997-04-08 Maezawa Ind Inc Device for collecting underground pollutants
JPH09234491A (en) * 1996-02-29 1997-09-09 Shimizu Corp How to remediate contaminated groundwater and soil
JPH09253688A (en) * 1996-03-21 1997-09-30 Japan Organo Co Ltd Method for purifying stratum and ground water polluted with organic chlorine compound
JPH09276837A (en) * 1996-04-12 1997-10-28 Canon Inc Contaminated soil purification method
JPH1084947A (en) * 1996-09-17 1998-04-07 Toshiba Corp Activation of microorganism, decomposition of organic compound and decomposing system of carrier and organic compound
JPH10180237A (en) * 1996-12-26 1998-07-07 Hitachi Plant Eng & Constr Co Ltd How to remove organic chlorine compounds
JPH10216696A (en) * 1997-02-10 1998-08-18 Shimizu Corp Air supply method and apparatus for remediation of contaminated soil
JPH10249325A (en) * 1997-03-17 1998-09-22 Toshiba Corp Treating device
JPH10249326A (en) * 1997-03-07 1998-09-22 Ebara Corp Method for purifying polluted aquifer and purifying device therefor
JPH10277531A (en) * 1997-04-03 1998-10-20 Shimizu Corp How to clean contaminated soil by groundwater circulation
JPH1157776A (en) * 1997-08-26 1999-03-02 Japan Organo Co Ltd Method for cleaning polluted ground water and polluted stratum and device therefor
JPH1190410A (en) * 1997-09-16 1999-04-06 Ohbayashi Corp In-situ remediation system of contaminant
JPH11207373A (en) * 1998-01-29 1999-08-03 Japan Organo Co Ltd Purifying method of contaminated underground water and/or contaminated stratum, and device therefor
WO2000002676A1 (en) * 1998-07-10 2000-01-20 Hazama Corp. Method for purifying polluted soil and cleaning agent for soil purification
JP2000042524A (en) * 1998-08-03 2000-02-15 Kurita Water Ind Ltd Method for decomposing pollutants in soil and / or groundwater
JP2000051834A (en) * 1998-08-11 2000-02-22 Hazama Gumi Ltd Method for remedying polluted soil
JP2000325937A (en) * 1999-05-20 2000-11-28 Kurita Water Ind Ltd Biological purification method of polluted environment
JP2000325935A (en) * 1999-04-28 2000-11-28 It Group Inc:The Ozone treatment method for contaminated soil
JP2001009059A (en) * 1999-06-28 2001-01-16 Maezawa Ind Inc How to remove harmful substances in soil
JP2002086130A (en) * 2000-09-12 2002-03-26 Shimizu Corp Contaminated soil and groundwater purification method and stirred well for purification
JP2002159959A (en) * 2000-11-22 2002-06-04 Japan Organo Co Ltd Method and device for purifying underground polluted region

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57209692A (en) * 1981-07-09 1982-12-23 Groundwater Decontamin Syst Method and device for treating soil and underground water polluted by hydrocarbon and hydrocarbon halide
JPH04501231A (en) * 1989-08-16 1992-03-05 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Methods for decontaminating subsurface soil and groundwater in situ
JPH05261360A (en) * 1991-12-20 1993-10-12 Hughes Aircraft Co Recoverable enhanced gradient decontamination sweep extraction and injection tubes
JPH06212155A (en) * 1992-10-20 1994-08-02 Canon Inc Microorganism carrier, soil amendment using the same, and method for soil improvement
JPH06238260A (en) * 1993-02-15 1994-08-30 Karuto Kk Removal of soil contamination with organochlorine compound
JPH06322796A (en) * 1993-05-14 1994-11-22 Shimizu Corp Groundwater purification equipment
JPH08243541A (en) * 1995-03-08 1996-09-24 Kokusai Kogyo Kk Method of removing underground pollutant
JPH0910752A (en) * 1995-06-30 1997-01-14 Nippon Sogo Kenkyusho:Kk Method and apparatus for purifying contaminated soil using soil bacteria
JPH0994558A (en) * 1995-09-29 1997-04-08 Maezawa Ind Inc Device for collecting underground pollutants
JPH09234491A (en) * 1996-02-29 1997-09-09 Shimizu Corp How to remediate contaminated groundwater and soil
JPH09253688A (en) * 1996-03-21 1997-09-30 Japan Organo Co Ltd Method for purifying stratum and ground water polluted with organic chlorine compound
JPH09276837A (en) * 1996-04-12 1997-10-28 Canon Inc Contaminated soil purification method
JPH1084947A (en) * 1996-09-17 1998-04-07 Toshiba Corp Activation of microorganism, decomposition of organic compound and decomposing system of carrier and organic compound
JPH10180237A (en) * 1996-12-26 1998-07-07 Hitachi Plant Eng & Constr Co Ltd How to remove organic chlorine compounds
JPH10216696A (en) * 1997-02-10 1998-08-18 Shimizu Corp Air supply method and apparatus for remediation of contaminated soil
JPH10249326A (en) * 1997-03-07 1998-09-22 Ebara Corp Method for purifying polluted aquifer and purifying device therefor
JPH10249325A (en) * 1997-03-17 1998-09-22 Toshiba Corp Treating device
JPH10277531A (en) * 1997-04-03 1998-10-20 Shimizu Corp How to clean contaminated soil by groundwater circulation
JPH1157776A (en) * 1997-08-26 1999-03-02 Japan Organo Co Ltd Method for cleaning polluted ground water and polluted stratum and device therefor
JPH1190410A (en) * 1997-09-16 1999-04-06 Ohbayashi Corp In-situ remediation system of contaminant
JPH11207373A (en) * 1998-01-29 1999-08-03 Japan Organo Co Ltd Purifying method of contaminated underground water and/or contaminated stratum, and device therefor
WO2000002676A1 (en) * 1998-07-10 2000-01-20 Hazama Corp. Method for purifying polluted soil and cleaning agent for soil purification
JP2000042524A (en) * 1998-08-03 2000-02-15 Kurita Water Ind Ltd Method for decomposing pollutants in soil and / or groundwater
JP2000051834A (en) * 1998-08-11 2000-02-22 Hazama Gumi Ltd Method for remedying polluted soil
JP2000325935A (en) * 1999-04-28 2000-11-28 It Group Inc:The Ozone treatment method for contaminated soil
JP2000325937A (en) * 1999-05-20 2000-11-28 Kurita Water Ind Ltd Biological purification method of polluted environment
JP2001009059A (en) * 1999-06-28 2001-01-16 Maezawa Ind Inc How to remove harmful substances in soil
JP2002086130A (en) * 2000-09-12 2002-03-26 Shimizu Corp Contaminated soil and groundwater purification method and stirred well for purification
JP2002159959A (en) * 2000-11-22 2002-06-04 Japan Organo Co Ltd Method and device for purifying underground polluted region

Also Published As

Publication number Publication date
JP4636679B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
JP3728510B2 (en) Soil pollution countermeasure method and soil pollution countermeasure system
US7077208B2 (en) Method and system for directing fluid flow
EP1361002A2 (en) Method and apparatus for purifying a layer of contaminated soil
JPH07265898A (en) Method and device for pollutant removal
US20070000841A1 (en) Directing fluid flow in remediation and other applications
CN102774965A (en) In-situ repair system for treating pollution of underground water
JP4756651B2 (en) Purification system and method for oil-contaminated soil
CN213763431U (en) Pollute good oxygen biological repair system of soil normal position
KR100983532B1 (en) Method and apparatus for purification of contaminated soil and groundwater
US7007759B2 (en) Method and system for directing fluid flow
JP2002143828A (en) Countermeasure method for cleaning of soil and soil cleaning system
JP2017209599A (en) Purification method of oil contaminated soil and purification system thereof
JP3051047B2 (en) Purification method and purification system for contaminated soil using soil microorganisms
JP4556471B2 (en) Purification method for contaminated soil
JP4091511B2 (en) Landfill waste purification method
JP3975239B2 (en) Contaminated groundwater purification method and apparatus
JP4636679B2 (en) Soil purification method
JP3930785B2 (en) Contaminated strata purification method and polluted strata purification system used therefor
JP4375592B2 (en) Soil and groundwater purification methods
JP2002066532A (en) How to clean contaminated ground
CN206838757U (en) A kind of stripping of Organic Pollution place soil and biodegradable joint repair system
JP4988989B2 (en) Soil purification method
CA2574120C (en) Method and apparatus for the purification of ground water
JP2005074297A (en) Cleaning method for hardly-gas/water-permeable contaminated soil and system
JP2019089049A (en) Contaminated soil purification system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees