JP2002199668A - Manufacturing method of cylindrical-shaped magnet for polar magnetizing - Google Patents
Manufacturing method of cylindrical-shaped magnet for polar magnetizingInfo
- Publication number
- JP2002199668A JP2002199668A JP2000396393A JP2000396393A JP2002199668A JP 2002199668 A JP2002199668 A JP 2002199668A JP 2000396393 A JP2000396393 A JP 2000396393A JP 2000396393 A JP2000396393 A JP 2000396393A JP 2002199668 A JP2002199668 A JP 2002199668A
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- magnetic
- cylindrical
- pole
- magnetized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000005452 bending Methods 0.000 claims abstract description 14
- 239000006247 magnetic powder Substances 0.000 claims description 21
- 239000011230 binding agent Substances 0.000 claims description 11
- 230000005347 demagnetization Effects 0.000 claims description 2
- 238000000465 moulding Methods 0.000 abstract description 9
- 230000003068 static effect Effects 0.000 abstract description 2
- 230000004907 flux Effects 0.000 description 33
- 230000005415 magnetization Effects 0.000 description 16
- 238000009826 distribution Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 239000000696 magnetic material Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 239000000806 elastomer Substances 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 229910001172 neodymium magnet Inorganic materials 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 239000004709 Chlorinated polyethylene Substances 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910020674 Co—B Inorganic materials 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910011208 Ti—N Inorganic materials 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- PRQMIVBGRIUJHV-UHFFFAOYSA-N [N].[Fe].[Sm] Chemical compound [N].[Fe].[Sm] PRQMIVBGRIUJHV-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Landscapes
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は小型モータに使用される
円筒状のボンド磁石に関するものであり、特に磁気性能
の高い極着磁円筒状磁石を容易に得るための技術に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical bonded magnet used for a small motor, and more particularly to a technique for easily obtaining a pole-magnetized cylindrical magnet having high magnetic performance.
【0002】[0002]
【従来技術】永久磁石型モーターは永久磁石から発せら
れる磁束を利用して回転力を得るため、磁束密度の高い
円筒状の永久磁石が必要とされる。この磁束密度は、残
留磁束密度、保磁力、最大エネルギー積等の磁石材料そ
のものの磁気特性による要因、および磁石の配向や着磁
のパターンに関係する磁束のパターンとパーミアンスに
より決定される。2. Description of the Related Art A permanent magnet type motor requires a cylindrical permanent magnet having a high magnetic flux density in order to obtain a rotational force using a magnetic flux generated from the permanent magnet. The magnetic flux density is determined by factors such as residual magnetic flux density, coercive force, maximum energy product, and the like due to the magnetic properties of the magnet material itself, and the pattern and permeance of the magnetic flux related to the orientation and magnetization pattern of the magnet.
【0003】円筒状磁石の磁束のパターンとパーミアン
スを得るための配向および着磁について多くの検討が成
されており、例えば特開平5−144630号公報、特
開平6−132113号公報などには集束配向技術が示
されている。また、小型モータのステータに使用する円
筒磁石を、一旦複数個のシート材を着磁しておき、それ
を円周方向の内周面に交互にNS磁極が出現するように
ケース内に固着することでラジアル着磁する技術につい
て特開平6−253516号公報に開示されている。Many studies have been made on the orientation and magnetization for obtaining the magnetic flux pattern and the permeance of a cylindrical magnet. An orientation technique is shown. In addition, a cylindrical magnet used for a stator of a small motor is once magnetized with a plurality of sheet materials, and is fixed in a case so that NS magnetic poles appear alternately on an inner circumferential surface in a circumferential direction. Japanese Patent Application Laid-Open No. 6-253516 discloses a technique for radial magnetization.
【0004】一般に、小径の円筒状の磁石成形体をステ
ータとして、内周面の磁束を利用する場合、図1(a)
に示すラジアル着磁よりも、図1(b)に示す極着磁の
方が漏洩磁束が少なくなる点、或いはパーミアンスの点
から有利である。ところが、同径の円筒磁石を極方向に
配向又は着磁を施すのは、コイルもしくは磁石を小径の
円筒内に設置する点においてラジアル着磁の場合に比べ
てより困難である。In general, when a small-diameter cylindrical magnet molded body is used as a stator and the magnetic flux on the inner peripheral surface is used, FIG.
1B is more advantageous than the radial magnetization shown in FIG. 1B in that the leakage magnetic flux is reduced or the permeance is reduced. However, it is more difficult to orient or magnetize a cylindrical magnet of the same diameter in the pole direction than in the case of radial magnetization in that a coil or magnet is installed in a small-diameter cylinder.
【0005】またさらに、好適な磁束パターンとパーミ
アンスを得るために異方性磁性材料を用い複雑な配向を
行う場合、磁場配向成形時の金型内には複雑な磁気回路
を設計する必要がある。そのため、成形体の大きさが小
さくなればなるほど良好な配向を得ることはより困難と
なる。小径の円筒状の磁石成形体をローターとして外周
面の磁束を利用する場合についても内周面の場合ほどで
はないにしても、磁気回路や金型の設計上の問題は同様
にあり、円筒状の極着磁磁石成形体を得ることは容易で
はない。Further, when performing complicated orientation using an anisotropic magnetic material in order to obtain a suitable magnetic flux pattern and permeance, it is necessary to design a complicated magnetic circuit in a mold at the time of magnetic field orientation molding. . Therefore, it becomes more difficult to obtain a good orientation as the size of the molded body becomes smaller. Even when the magnetic flux on the outer peripheral surface is used as a rotor using a small-diameter cylindrical magnet molded body as a rotor, there are similar problems in the design of the magnetic circuit and the mold, although not as much as the case on the inner peripheral surface. It is not easy to obtain the above-mentioned pole-magnetized magnet molded body.
【0006】従って、小型モーター等に使用される小径
の極着磁円筒状の成形体を得るには、多くは円筒外部か
らの磁界によるラジアル着磁もしくはアキシャル着磁を
余儀なくされ、漏洩磁束の増大、パーミアンス低下の点
から不利であった。Accordingly, in order to obtain a small-diameter pole-magnetized cylindrical molded body used for a small motor or the like, radial or axial magnetization by a magnetic field from the outside of the cylinder is inevitably required, and leakage magnetic flux is increased. Disadvantageous in terms of permeance reduction.
【0007】[0007]
【発明が解決しようとする課題】従って、本発明は上記
した問題を解決することを目的とし、小型モータのステ
ータ、或いはロータとして代表的に利用される極着磁円
筒状磁石に好適な静磁界を発生させる方法を提供する事
を目的とする。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a static magnetic field suitable for a pole-magnetized cylindrical magnet typically used as a stator or a rotor of a small motor. The purpose is to provide a method for generating the
【0008】[0008]
【課題を解決するための手段】本発明者は極着磁円筒状
磁石の成形方法及び磁場配向或いは着磁の方法について
鋭意検討した結果、極配向或いは極着磁が容易に行える
シート状磁石成形体を一旦作製しておき、それを更に円
筒状に曲げて円筒状磁石を作製すると、上記した課題を
解決出来ることを見出し本発明を完成するに到った。す
なわち、本発明の極着磁円筒状磁石の製造方法は、
(1)硬質磁性粉末と可撓性を有するバインダからなる
2つの主面を有する平板状磁石成形体を、第1の主面に
のみ少なくとも2つ以上の磁極がストライプ状に発生す
るように着磁する工程と、該ストライプ磁極が円筒の側
面に等間隔に配置するように該平板状磁石成形体を円筒
状に曲げる工程を有することを特徴とする。The inventors of the present invention have conducted intensive studies on a method of forming a pole-magnetized cylindrical magnet and a method of magnetic field orientation or magnetization, and as a result, have found that a sheet-like magnet can be easily magnetized or pole-magnetized. The inventors have found that if the body is prepared once and then further bent into a cylindrical shape to form a cylindrical magnet, the above-mentioned problems can be solved, and the present invention has been completed. That is, the manufacturing method of the pole-magnetized cylindrical magnet of the present invention is:
(1) A flat-plate magnet molded body having two main surfaces composed of a hard magnetic powder and a flexible binder is attached so that at least two or more magnetic poles are generated in a stripe shape only on the first main surface. The method includes a step of magnetizing, and a step of bending the flat magnet molded body into a cylindrical shape such that the stripe magnetic poles are arranged at equal intervals on the side surface of the cylinder.
【0009】また、本発明の極着磁円筒状磁石の製造方
法は、(2)硬質磁性粉末と可撓性を有するバインダか
らなる2つの主面を有する平板状磁石成形体を、第1の
主面にのみ少なくとも2つ以上の磁極がストライプ状に
発生するように配向する工程と、該ストライプ磁極が円
筒の側面に等間隔に配置するように該平板状磁石成形体
を円筒状に曲げる工程を有することを特徴とする極着磁
円筒状磁石の製造方法。The method of manufacturing a pole-magnetized cylindrical magnet according to the present invention is characterized in that (2) a flat-plate magnet molded body having two main surfaces comprising a hard magnetic powder and a flexible binder is provided by the first method. A step of orienting at least two or more magnetic poles in a stripe form only on the main surface, and a step of bending the flat magnet molded body into a cylindrical shape such that the stripe magnetic poles are arranged at equal intervals on the side surface of the cylinder. A method for producing a pole-magnetized cylindrical magnet, comprising:
【0010】さらに、(2)において本発明の実施態様
として、前記配向する工程と円筒状に曲げる工程の間に
着磁を行う工程を具備することを特徴とする。[0010] Further, (2), as an embodiment of the present invention, is characterized in that a step of performing magnetization is provided between the step of orienting and the step of bending into a cylinder.
【0011】さらにまた、(2)において本発明の実施
態様として、前記配向する工程の直後に脱磁を行い、円
筒状に曲げた後に、着磁を行うことを特徴とする。Further, in the embodiment (2), an embodiment of the present invention is characterized in that demagnetization is performed immediately after the orientation step, and magnetization is performed after bending into a cylindrical shape.
【0012】本発明に使用される硬質磁性材料としては
従来より使用されている異方性或いは等方性の磁性材料
が適用可能である。例えば異方性磁性粉末として通常ボ
ンド磁石に用いられているものが使用でき、フェライト
系、SmCo5 、Sm2(CoFeZrV)17等の希土
類コバルト系、Nd−Fe−Co−B系、Nd−Dy−
Fe−B系、Nd−Fe−B系等の希土類−鉄−ホウ素
系、Sm−Fe−N系、Nd−Fe−Ti−N系、Nd
−Fe−V−N系などの磁性粉が挙げられる。等方性磁
性粉末としても、通常ボンド磁石に用いられているSm
−Co系, Nd−Fe−B系のように希土類金属(R)
と遷移金属(M)とによる金属間化合物(R−M)が使
用できる。As the hard magnetic material used in the present invention, a conventionally used anisotropic or isotropic magnetic material can be applied. For example, as anisotropic magnetic powders, those commonly used for bonded magnets can be used, such as ferrite-based, rare-earth cobalt-based such as SmCo5, Sm2 (CoFeZrV) 17, Nd-Fe-Co-B-based, and Nd-Dy-.
Rare earth-iron-boron system such as Fe-B system, Nd-Fe-B system, Sm-Fe-N system, Nd-Fe-Ti-N system, Nd
Magnetic powder such as -Fe-V-N type. As the isotropic magnetic powder, Sm which is usually used for a bonded magnet is used.
Rare earth metals (R) such as -Co and Nd-Fe-B
And an intermetallic compound (RM) composed of a transition metal (M).
【0013】上記した磁性粉末は一種類単独でも二種以
上を混合物としても使用可能であるが、磁性粉末の平均
粒子径については、磁石成形体の可撓性に影響するので
10μm以下であることがより好ましく、更に好ましい
のは5μm以下である。The above-mentioned magnetic powders can be used singly or as a mixture of two or more. However, the average particle diameter of the magnetic powder should be 10 μm or less because it affects the flexibility of the molded magnet. Is more preferable, and still more preferably 5 μm or less.
【0014】硬質磁性粉末を混入する可撓性を有するバ
インダは、上記した硬質磁性粉末と混練して可撓性のあ
る良質の平板状磁石成形体が得ることができるようなバ
インダーで有れば従来より使用されているもの使用する
ことができる。The flexible binder into which the hard magnetic powder is mixed is a binder that can be kneaded with the above-described hard magnetic powder to obtain a flexible, high-quality flat magnet molded body. Conventionally used ones can be used.
【0015】そのようなバインダーとして、例えば合成
ゴムではスチレン−ブタジエンゴム、二トリルゴム、ブ
タジエンゴム、シリコンゴム、ブチルゴム、ウレタンゴ
ム、フッ素ゴム等があり、熱可塑性樹脂としてはポリエ
チレン、ポリプロピレン、ポリブテン、塩素化ポリエチ
レン、ポリスチレン等のポリオレフィン系樹脂、塩化ビ
ニル、ポリ酢酸ビニルなどのビニル樹脂、スチレン系樹
脂、ポリエステル、ポリアミド、ポリウレタン、エチレ
ン酢酸ビニル共重合体など可撓性が具有される限りにお
いて使用可能であり、またこれらを適宜混合して使用す
ることも可能である。さらに、無機バインダーであって
も使用する磁粉との組み合わせで良質のシート磁石成形
体が得られ、可撓性を損なわないものであれば使用でき
ることはいうまでもない。Examples of such a binder include styrene-butadiene rubber, nitrile rubber, butadiene rubber, silicone rubber, butyl rubber, urethane rubber, and fluoro rubber in the case of synthetic rubber, and polyethylene, polypropylene, polybutene, and chlorine as the thermoplastic resin. It can be used as long as it has flexibility, such as polyolefin resins such as chlorinated polyethylene and polystyrene, vinyl resins such as vinyl chloride and polyvinyl acetate, styrene resins, polyesters, polyamides, polyurethanes, and ethylene vinyl acetate copolymers. Yes, and it is also possible to mix and use these as appropriate. Further, it is needless to say that a high-quality sheet magnet molded article can be obtained even in the case of an inorganic binder in combination with the magnetic powder used, as long as it does not impair the flexibility.
【0016】磁性粉末とバインダの配合比率はバインダ
の種類、用途にもよるが一般的には平板状磁石成形体全
体に対する磁性粉末の割合は40〜70vol%とする
事が望ましい。また、従来から使用されている可塑剤や
滑剤、酸化防止剤、表面処理剤なども目的に応じて適宜
使用可能である。The mixing ratio of the magnetic powder and the binder depends on the kind and application of the binder, but it is generally desirable that the ratio of the magnetic powder to the entire plate-like magnet molded body be 40 to 70 vol%. In addition, conventionally used plasticizers, lubricants, antioxidants, surface treatment agents and the like can be appropriately used according to the purpose.
【0017】本発明において前述したように先ずシート
磁石成形体を作製する。この製造手段としては、押出成
形、ロール圧延は勿論のこと、成形用金型を使用する圧
縮成形および射出成形も適用可能であるり、成形作業を
磁場中において行なう磁場配向成形手段も使用すること
ができる。In the present invention, a molded sheet magnet is first prepared as described above. As the production means, not only extrusion molding and roll rolling, but also compression molding and injection molding using a molding die can be applied, and magnetic field orientation molding means for performing molding work in a magnetic field can also be used. Can be.
【0018】本発明において、2つの主面を有する平板
状磁石成形体を、第1の主面にのみ少なくとも2つ以上
の磁極がストライプ状に発生するように着磁する。この
様子を図2(a)に示す。このようにストライプ状の磁
極を発生させるには、通常の磁気回路を用いることで難
なく実現できる。ここで、磁性粉末に等方性材料を使用
する場合、この平板状磁石成形体を着磁しておくだけで
良い。In the present invention, the plate-shaped magnet molded body having two main surfaces is magnetized so that at least two or more magnetic poles are generated only on the first main surface in a stripe shape. This situation is shown in FIG. The generation of the stripe-shaped magnetic poles can be easily realized by using a normal magnetic circuit. Here, when an isotropic material is used for the magnetic powder, it is only necessary to magnetize the plate-like magnet molded body.
【0019】異方性材料は残留磁束密度が高い利点があ
るが、平板状磁石成形時に磁性粒子を配向する必要があ
るため磁場中での成形が必要になる。このときの配向パ
ターンを上記した図2(a)に説明したようなストライ
プ配向を行う。本発明において、この配向の後に平板状
磁石成形体のまま同パターンの極着磁を行っても良い
が、一旦脱磁を行い、円筒状に曲げてケース等に充填し
て固定した後、着磁することも可能である。Anisotropic materials have the advantage of high residual magnetic flux density, but need to be formed in a magnetic field because the magnetic particles need to be oriented when forming a flat magnet. At this time, the orientation pattern is subjected to stripe orientation as described with reference to FIG. In the present invention, after this orientation, the same pattern of polar magnetization may be performed on the flat magnet molded body, but once demagnetized, bent into a cylindrical shape, filled in a case or the like, and then fixed. It is also possible to magnetize.
【0020】等方性材料は磁石成形時の配向が必要でな
いため簡便である事や磁極のパターンが着磁のみで決ま
るため磁束のコントロールが容易である等利点がある
が、一般的に異方性材料と比較して残留磁束密度が低
く、高い磁束密度を発する永久磁石を得ることは異方性
材料より難しい。Isotropic materials have the advantage that they are simple because they do not require orientation during magnet molding, and that the magnetic pole pattern is determined solely by magnetization, making it easy to control the magnetic flux. It is more difficult to obtain a permanent magnet having a low residual magnetic flux density and a high magnetic flux density compared to anisotropic materials.
【0021】着磁された平板状磁石成形体を該ストライ
プ磁極が円筒の側面に等間隔に配置するように円筒状に
曲げることで、本発明の極着磁円筒状磁石を得ることが
できる。この円筒状磁石を磁気作用面が円筒の内側にあ
る小型モータのステータとして使用するには、図2
(b)に示すようにストライプ磁極が内向きに現れるよ
うに円筒状に曲げることで実現できる。逆に極着磁円筒
状磁石を磁気作用面が円筒の外側にあるロータとして使
用するには、図2(c)に示すようにストライプ磁極が
外向きに現れるように円筒状に曲げることで得ることが
できる。平板状磁石成形体を円筒状に曲げて固定するの
は、この成形体が可撓性を有するため、例えば円筒ケー
ス内に円弧状に曲げて挿入し固定することで簡単に実現
できる。The pole-magnetized cylindrical magnet of the present invention can be obtained by bending the magnetized plate-like magnet compact into a cylindrical shape such that the stripe magnetic poles are arranged at equal intervals on the side surface of the cylinder. In order to use this cylindrical magnet as a stator for a small motor whose magnetic working surface is inside the cylinder, FIG.
As shown in (b), it can be realized by bending in a cylindrical shape so that the stripe magnetic pole appears inward. Conversely, in order to use a pole-magnetized cylindrical magnet as a rotor whose magnetic working surface is outside the cylinder, it is obtained by bending it into a cylindrical shape such that the stripe magnetic poles appear outward as shown in FIG. be able to. Since the molded body has flexibility, bending and inserting the plate-shaped magnet molded body into an arc shape and fixing the same can be easily realized, for example, because the molded body has flexibility.
【0022】[0022]
【実施例】本発明の製造方法により、作用面が円筒の内
側にある内径が20mmの極小径の極着磁円筒状磁石を
作製し、比較のために同じ内径のラジアル配向磁石を作
製した。それぞれの円筒状磁石は次のようにして作製し
た。EXAMPLES According to the manufacturing method of the present invention, a pole-magnetized cylindrical magnet having an extremely small diameter of 20 mm and an inner surface having a working surface inside the cylinder was produced, and a radially oriented magnet having the same inside diameter was produced for comparison. Each cylindrical magnet was produced as follows.
【0023】(1) 磁性粉末は次の2種類を選択し
た。 ・磁性粉末A:ストロンチウム系マグネトプランバイト
型フェライト(平均粒子径1.5μm) ・磁性粉末B:異方性サマリウム−鉄−窒素(平均粒子
径3μm)(1) The following two types of magnetic powder were selected. Magnetic powder A: strontium-based magnetoplumbite ferrite (average particle diameter 1.5 μm) Magnetic powder B: anisotropic samarium-iron-nitrogen (average particle diameter 3 μm)
【0024】(2)ボンド磁石組成物 の配合は次の2
種類とした。 ・配合A 磁性粉末 :50vol% ポリアミドエラストマー:48vol% シランカップリング剤 :1.2vol% 滑剤(ステアリン酸) :0.8vol% ・配合B 磁性粉末 :50vol% ポリエステルエラストマー:48vol% シランカップリング剤 :1.2vol% 滑剤(ステアリン酸) :0.8vol%(2) The composition of the bonded magnet composition is as follows:
Type. -Formulation A Magnetic powder: 50 vol% Polyamide elastomer: 48 vol% Silane coupling agent: 1.2 vol% Lubricant (stearic acid): 0.8 vol%-Formulation B Magnetic powder: 50 vol% Polyester elastomer: 48 vol% Silane coupling agent: 1.2 vol% Lubricant (stearic acid): 0.8 vol%
【0025】(3)得られたA,Bの組成物についてい
ずれも次の方法で成形した。 成形方法 : 磁場中射出成形法 成形条件 : 射出シリンダー温度: 230℃ ノズル温度 : 240℃ 金型温度 : 85℃ 射出圧力 : 1400kg/cm2 冷却時間 : 30s 配向磁界励磁方法 : 永久磁石配向(3) Each of the obtained compositions A and B was molded by the following method. Molding method: Injection molding in a magnetic field Molding condition: Injection cylinder temperature: 230 ° C Nozzle temperature: 240 ° C Mold temperature: 85 ° C Injection pressure: 1400 kg / cm2 Cooling time: 30 s Orientation magnetic field excitation method: Permanent magnet orientation
【0026】(4)磁石組成物の成形体の形状は次の2
種類とした。 ・磁石成形体A :平板状(ストライフ゜に垂直方向69mm
×ストライフ゜に平行方向10mm×厚み1.0mm) ・磁石成形体B :円筒状(外形22mm×長さ10m
m×厚み1.0mm)(4) The shape of the molded body of the magnet composition is as follows:
Type.・ Magnet molded body A: flat plate (69 mm perpendicular to Strife ゜)
× 10 mm in the direction parallel to Strife × × 1.0 mm in thickness) ・ Magnet molded body B: cylindrical (outer diameter 22 mm × length 10 m)
mx thickness 1.0mm)
【0027】(5) 得られた成形体は次の2種類の方
法で配向した。 ・配向A : 図3(a) (平板状 : 極配向、4極) ・配向B : 図3(b) (円筒状 : ラジアル配向、4極)(5) The obtained molded article was oriented by the following two methods. -Orientation A: Fig. 3 (a) (flat: polar orientation, 4 poles)-Orientation B: Fig. 3 (b) (cylindrical: radial orientation, 4 poles)
【0028】(6) 磁場配向の後成形体は次の2種類
の着磁を行った。 着磁A : 4極極着時 (着磁磁界 20kOe) 着磁B : ラジアル4極着磁(着磁磁界 20kOe)(6) After the magnetic field orientation, the molded body was subjected to the following two types of magnetization. Magnetization A: 4-pole pole magnetized (magnetizing magnetic field 20 kOe) Magnetization B: Radial quadrupole magnetizing (magnetizing magnetic field 20 kOe)
【0029】以上の条件で得られた各磁石成形体を平板
状、円筒状ともに同一形状になるように、プラスチック
製の円筒ケース内に挿入した。極配向の平板状磁石をケ
ースに挿入する際には円筒内周面が作用面(ストライプ
磁極が発現)となるようにした。得られた極着磁円筒状
磁石の内周面の表面磁束密度をガウスメーターを用いて
測定した。かくして得られた表面磁束密度分布の測定結
果と磁石作成条件の対応を表1に示す。Each of the molded magnets obtained under the above conditions was inserted into a plastic cylindrical case so that both the plate and the cylinder had the same shape. When inserting the polar-oriented plate-like magnet into the case, the inner peripheral surface of the cylinder was made to be the working surface (a stripe magnetic pole was developed). The surface magnetic flux density on the inner peripheral surface of the obtained pole-magnetized cylindrical magnet was measured using a Gauss meter. Table 1 shows the correspondence between the measurement results of the surface magnetic flux density distribution thus obtained and the magnet preparation conditions.
【0030】[0030]
【表1】 [Table 1]
【0031】磁性材料にフェライトを使用した実施例1
では、表面磁束密度の最大値は1347Gであり、ラジ
アル配向型である以外同様な条件で作製した比較例1の
708Gに比べ約2倍に改善されている。これは磁性材
料にSm2Fe17N3磁性粉末を使用した場合も同様であ
り、比較例2が1053Gであるのに比べ、実施例2は
2059Gと約2倍に改善されている。これはラジアル
配向の場合の磁束は円筒の内周方向、及び外周方向に発
生する結果、作用面として利用できるのは半減するのに
対し、一方、極着磁では磁束のすべてを作用面に利用で
きるためである。Example 1 using ferrite as a magnetic material
The maximum value of the surface magnetic flux density is 1347G, which is about twice as large as that of the 708G of Comparative Example 1 manufactured under the same conditions except that it is of the radial orientation type. The same applies to the case where Sm2Fe17N3 magnetic powder is used as the magnetic material. In comparison with Comparative Example 2 of 1053G, Example 2 is 2059G, which is about twice as much as that of Comparative Example 2. This is because the magnetic flux in the radial orientation is generated in the inner circumferential direction and the outer circumferential direction of the cylinder, and as a result, only half of the magnetic flux can be used as the working surface. This is because we can do it.
【0032】図4及び図5は、実施例1及び2に対応す
る極着磁円筒状磁石の磁束密度分布(磁束密度と角度の
関係)を、図6及び図7は比較例1及び2に対応するラ
ジアル着磁円筒状磁石の磁束密度分布を示している。実
施例1、2は比較例1、2に比べて磁束密度の振幅が大
きく正弦波の形に近いことが分かる。比較例は正弦波の
山及び谷において形が崩れ、扁平になっている。すなわ
ち、比較例の磁束密度分布は本発明による極着磁円筒状
磁石に比べ多くの高調波成分を含んでおり、この高調波
成分はコギングに少なからず影響を与える。FIGS. 4 and 5 show the magnetic flux density distribution (the relationship between the magnetic flux density and the angle) of the pole-magnetized cylindrical magnets corresponding to Examples 1 and 2, and FIGS. 6 and 7 show Comparative Examples 1 and 2. 5 shows a magnetic flux density distribution of a corresponding radially magnetized cylindrical magnet. It can be seen that the magnetic flux densities of Examples 1 and 2 are larger than those of Comparative Examples 1 and 2, which are closer to a sine wave. In the comparative example, the shape is collapsed at the peaks and valleys of the sine wave, and the sine wave is flat. That is, the magnetic flux density distribution of the comparative example includes more harmonic components than the pole-magnetized cylindrical magnet according to the present invention, and these harmonic components have a considerable effect on cogging.
【0033】上記したように、ここでは本発明の極着磁
円筒状磁石とラジアル着磁磁石の比較をしたが、円筒状
磁石成形体内部に磁気回路を挿入する方法で作製する従
来の方法による極着磁円筒状磁石は、円筒の内径が小さ
いために磁気回路上極めて困難なために実現できなかっ
た。As described above, the pole magnetized cylindrical magnet and the radial magnetized magnet of the present invention were compared here. However, according to the conventional method of manufacturing by inserting a magnetic circuit inside the cylindrical magnet molded body. A pole-magnetized cylindrical magnet could not be realized because the inner diameter of the cylinder was small and it was extremely difficult on a magnetic circuit.
【0034】また、実施例3、4より、バインダーにエ
ラストマの代わりにポリエステルエラストマーを用いた
ものも本発明に適用可能であり、小径の極着磁円筒状磁
石を作製するのに使用できた。Further, from Examples 3 and 4, those using a polyester elastomer as the binder instead of the elastomer were also applicable to the present invention, and could be used to produce a small-diameter pole-magnetized cylindrical magnet.
【0035】[0035]
【発明の効果】従って、上述したとおり本発明の極着磁
円筒状磁石の製造方法に従うと、通常の方法では実現で
きない小径の極着磁円筒状磁石を比較的簡単に得ること
ができ、しかも磁気特性は良好である。特に、小径なが
ら磁束密度の大きな極着磁円筒状磁石を実現できる。ま
た、円筒状に曲げる際の曲げ方向によって内周極着磁と
外周極着磁を選択できるため加工上非常に応用性があ
る。さらに、磁束密度分布は正弦波に極めて近く、これ
を用いた永久磁石モータのコギングは極めて低減され
る。As described above, according to the method for manufacturing a pole-magnetized cylindrical magnet of the present invention, a small-diameter pole-magnetized cylindrical magnet which cannot be realized by a normal method can be obtained relatively easily, and Magnetic properties are good. In particular, a pole-magnetized cylindrical magnet having a large magnetic flux density despite its small diameter can be realized. Further, the inner peripheral pole magnetization and the outer peripheral pole magnetization can be selected according to the bending direction at the time of bending into a cylindrical shape, so that they are very applicable in processing. Further, the magnetic flux density distribution is very close to a sine wave, and the cogging of a permanent magnet motor using the same is extremely reduced.
【図1】(a)ラジアル着磁円筒状磁石、及び(b)極
着磁円筒状磁石に発生する磁束を示す模式断面図FIG. 1 is a schematic cross-sectional view showing magnetic fluxes generated in (a) a radially magnetized cylindrical magnet and (b) a polarly magnetized cylindrical magnet.
【図2】本発明の極着磁円筒状磁石の製造過程と作用面
を示す説明図FIG. 2 is an explanatory view showing a manufacturing process and an operation surface of the pole-magnetized cylindrical magnet of the present invention.
【図3】(a)極着磁円筒状磁石、及び(b)ラジアル
着磁円筒状磁石に発生する磁束を示す模式断面図FIG. 3 is a schematic cross-sectional view showing magnetic fluxes generated in (a) a pole magnetized cylindrical magnet and (b) a radial magnetized cylindrical magnet.
【図4】極着磁円筒状磁石の磁束密度分布を示す特性図FIG. 4 is a characteristic diagram showing a magnetic flux density distribution of a pole-magnetized cylindrical magnet.
【図5】極着磁円筒状磁石の磁束密度分布を示す特性図FIG. 5 is a characteristic diagram showing a magnetic flux density distribution of a pole-magnetized cylindrical magnet.
【図6】ラジアル着磁円筒状磁石の磁束密度分布を示す
特性図FIG. 6 is a characteristic diagram showing a magnetic flux density distribution of a radially magnetized cylindrical magnet.
【図7】ラジアル着磁円筒状磁石の磁束密度分布を示す
特性図FIG. 7 is a characteristic diagram showing a magnetic flux density distribution of a radially magnetized cylindrical magnet.
Claims (4)
からなる2つの主面を有する平板状磁石成形体を、第1
の主面にのみ少なくとも2つ以上の磁極がストライプ状
に発生するように着磁する工程と、該ストライプ磁極が
円筒の側面に等間隔に配置するように該平板状磁石成形
体を円筒状に曲げる工程を有することを特徴とする極着
磁円筒状磁石の製造方法。1. A flat magnet molded body having two main surfaces comprising a hard magnetic powder and a flexible binder,
Magnetizing such that at least two or more magnetic poles are generated in a stripe shape only on the main surface of the plate, and forming the flat magnet into a cylindrical shape so that the stripe magnetic poles are arranged at equal intervals on the side surface of the cylinder. A method for producing a pole-magnetized cylindrical magnet, comprising a step of bending.
からなる2つの主面を有する平板状磁石成形体を、第1
の主面にのみ少なくとも2つ以上の磁極がストライプ状
に発生するように配向する工程と、該ストライプ磁極が
円筒の側面に等間隔に配置するように該平板状磁石成形
体を円筒状に曲げる工程を有することを特徴とする極着
磁円筒状磁石の製造方法。2. A flat magnet molded body having two main surfaces comprising a hard magnetic powder and a flexible binder,
Orienting so that at least two or more magnetic poles are generated only in the main surface of the cylindrical shape, and bending the plate-like magnet molded body into a cylindrical shape such that the stripe magnetic poles are arranged at equal intervals on the side surface of the cylinder. A method for producing a pole-magnetized cylindrical magnet, comprising the steps of:
の間に着磁を行う工程を具備することを特徴とする請求
項2記載の極着磁円筒状磁石の製造方法。3. The method for manufacturing a pole-magnetized cylindrical magnet according to claim 2, further comprising a step of magnetizing between the step of orienting and the step of bending into a cylindrical shape.
円筒状に曲げた後に、着磁を行うことを特徴とする請求
項2に記載の極着磁円筒状磁石の製造方法。4. Demagnetization is performed immediately after the aligning step,
3. The method for manufacturing a pole-magnetized cylindrical magnet according to claim 2, wherein the magnet is magnetized after being bent into a cylindrical shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000396393A JP2002199668A (en) | 2000-12-27 | 2000-12-27 | Manufacturing method of cylindrical-shaped magnet for polar magnetizing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000396393A JP2002199668A (en) | 2000-12-27 | 2000-12-27 | Manufacturing method of cylindrical-shaped magnet for polar magnetizing |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002199668A true JP2002199668A (en) | 2002-07-12 |
Family
ID=18861694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000396393A Pending JP2002199668A (en) | 2000-12-27 | 2000-12-27 | Manufacturing method of cylindrical-shaped magnet for polar magnetizing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002199668A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003088057A (en) * | 2001-09-14 | 2003-03-20 | Nichia Chem Ind Ltd | Motor field magnet and its manufacturing method |
JP2005223233A (en) * | 2004-02-09 | 2005-08-18 | Sumitomo Metal Mining Co Ltd | Metal mold for molding pole-anisotropic cylindrical magnet |
JP2007027245A (en) * | 2005-07-13 | 2007-02-01 | Matsushita Electric Ind Co Ltd | Anisotropic bond sheet magnet and manufacturing apparatus thereof |
JP2007235017A (en) * | 2006-03-03 | 2007-09-13 | Matsushita Electric Ind Co Ltd | Sheet-like rare earth bonded magnet, method of manufacturing the same, and motor using the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07250460A (en) * | 1994-03-11 | 1995-09-26 | C I Kasei Co Ltd | Polar magnetic field orientation die and method for manufacturing flexible magnet |
JPH07274450A (en) * | 1994-03-24 | 1995-10-20 | Sankyo Seiki Mfg Co Ltd | Motor field system and manufacture thereof |
-
2000
- 2000-12-27 JP JP2000396393A patent/JP2002199668A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07250460A (en) * | 1994-03-11 | 1995-09-26 | C I Kasei Co Ltd | Polar magnetic field orientation die and method for manufacturing flexible magnet |
JPH07274450A (en) * | 1994-03-24 | 1995-10-20 | Sankyo Seiki Mfg Co Ltd | Motor field system and manufacture thereof |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003088057A (en) * | 2001-09-14 | 2003-03-20 | Nichia Chem Ind Ltd | Motor field magnet and its manufacturing method |
JP2005223233A (en) * | 2004-02-09 | 2005-08-18 | Sumitomo Metal Mining Co Ltd | Metal mold for molding pole-anisotropic cylindrical magnet |
JP2007027245A (en) * | 2005-07-13 | 2007-02-01 | Matsushita Electric Ind Co Ltd | Anisotropic bond sheet magnet and manufacturing apparatus thereof |
JP2007235017A (en) * | 2006-03-03 | 2007-09-13 | Matsushita Electric Ind Co Ltd | Sheet-like rare earth bonded magnet, method of manufacturing the same, and motor using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003318052A (en) | Method of manufacturing flexible magnet and permanent magnet type motor thereof | |
US5416457A (en) | Lateral orientation anisotropic magnet | |
US7328500B2 (en) | Method of manufacturing laminated polar anisotropic hybrid magnet | |
TW200407919A (en) | Radial anisotropic ring magnet and its manufacturing method | |
JP2004056835A (en) | Bonded magnet for motor and motor | |
JP4478869B2 (en) | Method for manufacturing anisotropic bonded magnet | |
JP3007491B2 (en) | Side-oriented anisotropic magnet | |
JP2004023085A (en) | Method of orienting anisotropically bonded magnet for motor | |
US8044547B2 (en) | Radial-direction gap type magnet motor | |
JP2002199668A (en) | Manufacturing method of cylindrical-shaped magnet for polar magnetizing | |
JP4311063B2 (en) | Anisotropic rare earth bonded magnet and motor | |
JPS6312370B2 (en) | ||
JP4364487B2 (en) | Rare earth bonded magnet from sheet to film and permanent magnet motor using the same | |
JPS6134249B2 (en) | ||
JP4577604B2 (en) | Method for producing anisotropic rare earth bonded magnet | |
JP4427776B2 (en) | Manufacturing method of sheet-shaped resin magnet | |
JP3933040B2 (en) | Rare earth bonded magnet manufacturing method and permanent magnet motor having the same | |
JP4203646B2 (en) | Method for manufacturing flexible hybrid rare earth bonded magnet, magnet and motor | |
JPH0611014B2 (en) | Manufacturing method of cylindrical magnet | |
JP2003088057A (en) | Motor field magnet and its manufacturing method | |
JP2001167963A (en) | Method of manufacturing magnet and mold for molding magnet | |
JP2002198216A (en) | Sheet magnet and method of magnetizing the same | |
JP2002343623A (en) | Plastic sheet magnet molded body and manufacturing method therefor | |
JPH06349630A (en) | Anisortopical magmet | |
JPH05101956A (en) | Manufacture of anisotropic magnet of cylindrical shape |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071017 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100722 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100803 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101207 |