JP2002196085A - System for predicting road surface condition - Google Patents
System for predicting road surface conditionInfo
- Publication number
- JP2002196085A JP2002196085A JP2000393840A JP2000393840A JP2002196085A JP 2002196085 A JP2002196085 A JP 2002196085A JP 2000393840 A JP2000393840 A JP 2000393840A JP 2000393840 A JP2000393840 A JP 2000393840A JP 2002196085 A JP2002196085 A JP 2002196085A
- Authority
- JP
- Japan
- Prior art keywords
- road surface
- term
- prediction
- data
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000007774 longterm Effects 0.000 claims abstract description 21
- 238000001556 precipitation Methods 0.000 claims description 9
- 238000013480 data collection Methods 0.000 claims description 7
- 238000004891 communication Methods 0.000 claims description 6
- 238000013213 extrapolation Methods 0.000 claims description 6
- 238000005056 compaction Methods 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 238000007710 freezing Methods 0.000 claims description 5
- 230000008014 freezing Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- 238000007619 statistical method Methods 0.000 claims description 3
- 238000012937 correction Methods 0.000 claims description 2
- 238000012545 processing Methods 0.000 description 7
- 238000004422 calculation algorithm Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 6
- 230000010365 information processing Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004441 surface measurement Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Traffic Control Systems (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、冬季におけるスリ
ップ事故等の防止のための管理(道路状態の表示、融雪
材散布)に必要な路面状態データを、現在時刻から短期
(5時間)、中期(24時間)、長期(72時間)の予
測が可能な路面状態予測システムに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides road surface condition data necessary for management (display of road conditions, spraying of snow-melting material) for prevention of slip accidents and the like in winter, from the current time to short-term (5 hours), medium-term (24 hours) and a long-term (72 hours) road surface state prediction system.
【0002】[0002]
【従来の技術】建設省等の道路管理者は、冬季道路の安
全管理のため道路凍結抑止剤の散布対策を行う。この
際、資材や機器準備、人員配置、実行判断のために、長
期予測(3日先)、中期予測(1日先)、短期予測(5
時間先)の路面状態予測を行う必要があるとされてい
る。路面状態予測は、凍結、圧雪、乾燥、湿潤の4状態
予測と、路面温度予測を行う。2. Description of the Related Art Road managers such as the Ministry of Construction take measures to spray road freeze inhibitors for safety management of winter roads. At this time, long-term forecast (3 days ahead), medium-term forecast (1 day ahead), short-term forecast (5
It is said that it is necessary to predict the road surface state (time ahead). The road surface state prediction performs four state predictions of freezing, snow compaction, dryness, and wetness, and road surface temperature prediction.
【0003】[0003]
【発明が解決しようとする課題】気象庁等が配信する数
値計算予測データ(GPVデータ等)のみで路面状態予
測を行う場合、中長期予測の傾向は合うが、短期予測で
は合わない。現地気象データのみで路面状態予測を行う
場合、短期予測は可能であるが、中長期予測は難しい。
本発明では、両者を組み合わせることにより、合理的に
短期から中長期の路面状態予測を行うシステムの提供を
目的とする。When road surface condition prediction is performed using only numerical calculation prediction data (GPV data or the like) distributed by the Japan Meteorological Agency or the like, the tendency of medium- to long-term prediction matches, but not that of short-term prediction. When performing road surface condition prediction using only local weather data, short-term prediction is possible, but medium- to long-term prediction is difficult.
An object of the present invention is to provide a system that rationally predicts a short- to medium-long term road surface condition by combining the two.
【0004】[0004]
【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の発明は、被監視路面の路面形状セン
サーと気象センサー群よりなる、現地気象データ収集装
置からの現地データと、気象庁GPV(Grid Point Val
ue)天気予報データとを周期的に入力し、前記現地デー
タに基づいて被監視路面状態の短期予測を行い、前記気
象庁GPV天気予報データに基づいて被監視路面状態の
中期及び長期予測を行うことを特徴としている。In order to solve the above-mentioned problems, the invention according to claim 1 is characterized in that local data from a local weather data collection device comprising a road surface shape sensor of a monitored road surface and a group of weather sensors; Japan Meteorological Agency GPV (Grid Point Val
ue) periodically inputting weather forecast data, performing short-term prediction of the monitored road surface condition based on the local data, and performing medium-term and long-term prediction of the monitored road surface condition based on the Meteorological Agency GPV weather forecast data. It is characterized by.
【0005】また、請求項2記載の発明にあっては、前
記短期予測、中期及び長期予測は、路面凍結、路面湿
潤、路面圧雪、路面乾燥の4状態とすることを特徴とし
ている。[0005] Further, the invention according to claim 2 is characterized in that the short-term prediction, the medium-term prediction and the long-term prediction are four states of road surface freezing, road surface wetness, road surface snow compaction, and road surface drying.
【0006】また、請求項3記載の発明にあっては、前
記短期予測、中期及び長期予測は、路面凍結、路面湿
潤、路面圧雪、路面乾燥の4状態とすることを特徴とし
ている。Further, the invention according to claim 3 is characterized in that the short-term prediction, the medium-term prediction and the long-term prediction are four states of road surface freezing, road surface wetness, road surface snow compaction, and road surface drying.
【0007】また、請求項4記載の発明にあっては、前
記現地気象データ収集装置において、路面凸状態無し、
かつ路面水分有り、かつ路面温度マイナスの条件で路面
凍結と判別し、路面凸状態無し、かつ路面水分有り、か
つ路面温度プラスの条件で路面湿潤と判別し、路面凸状
態有り、かつ路面温度プラスの条件で路面湿潤・シャー
ベット状雪と判別し、路面凸状態有り、かつ路面温度マ
イナスの条件で路面圧雪判別し、路面凸状態無し、かつ
路面水分無しの条件で路面乾燥と判別することを特徴と
している。Further, according to the invention of claim 4, in the local weather data collecting apparatus, there is no road surface convex state,
And it is determined that the road surface is frozen when the road surface has moisture and the road surface temperature is minus, the road surface is not in a convex state, and the road surface is wet when the road surface temperature is plus and the road surface temperature is positive, and the road surface is in the convex state and the road surface temperature is plus. It is distinguished as road surface wet / sherbet-like snow under the condition of 凸, road surface snow condition is determined under the condition of road surface convexity and negative road surface temperature, and road surface dry is determined under the condition of no road surface convex condition and no road surface moisture. And
【0008】また、請求項5記載の発明にあっては、前
記短期予測は、所定時間前の温度変化に基づく外挿法で
路面温度を予測し、この予測路面温度と予測時刻での路
面状態に基づいて路面状態を判別することを特徴として
いる。[0008] In the invention according to claim 5, the short-term prediction predicts a road surface temperature by an extrapolation method based on a temperature change before a predetermined time, and calculates a road surface condition at the predicted road surface temperature and the predicted time. The road surface condition is determined based on
【0009】また、請求項6記載の発明にあっては、前
記中期及び長期予測は、前記気象庁GPV天気予報デー
タの気温データを統計的手法で求められる補正により路
面温度に変換推定し、この路面温度、気温、降水量、降
水種類の組み合わせにより路面状態を予測することを特
徴としている。Further, in the invention according to claim 6, the medium-term and long-term forecasts are obtained by converting the temperature data of the Meteorological Agency GPV weather forecast data into a road surface temperature by a correction obtained by a statistical method, and estimating the road surface temperature. It is characterized by predicting road surface conditions based on a combination of temperature, temperature, precipitation, and precipitation type.
【0010】また、請求項7記載の発明にあっては、前
記中期及び長期予測は、前期短期予測を初期値として用
いる点を特徴としている。Further, in the invention according to claim 7, the medium-term and long-term predictions are characterized in that the short-term prediction is used as an initial value.
【0011】また、請求項8記載の発明にあっては、予
測結果を有線又は無線通信回線を介して遠隔地に送信す
る通信部を具備した点を特徴としている。Further, the invention according to claim 8 is characterized in that a communication unit for transmitting the prediction result to a remote place via a wired or wireless communication line is provided.
【0012】[0012]
【発明の実施の形態】以下、図面を参照して、本発明の
実施形態について説明する。図1は、本発明の一実施形
態におけるシステム構成を示す概念図であり、1は本発
明システムの主要部をなす情報処理部であり、インター
フェイス部1aと予測演算部1bよりなる。2は現地デ
ータ収集部、3は気象庁等からのGPVデータ配信部、
4はインターネット、5は判別・予測結果情報の受信部
である。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a conceptual diagram showing a system configuration according to an embodiment of the present invention. Reference numeral 1 denotes an information processing unit which is a main part of the system of the present invention, and includes an interface unit 1a and a prediction operation unit 1b. 2 is a local data collection unit, 3 is a GPV data distribution unit from the Meteorological Agency, etc.
Reference numeral 4 denotes the Internet, and reference numeral 5 denotes a receiving unit for determining / predicting result information.
【0013】情報処理部1において、インターフェイス
部1aは、電子メール添付の形態でインターネット4を
経由して送られる現地データM1及びGPVデータM2
を受信して予測演算部1bに渡す。予測演算部1bで
は、所定のアルゴリズムに基づき短期、中期、長期の路
面状態を判別・予測演算を実行し、判別・予測結果M3
を、インターフェイス部1aより電子メール添付の形態
でインターネット4を経由して情報の受信部に配信す
る。In the information processing unit 1, an interface unit 1a includes local data M1 and GPV data M2 transmitted via the Internet 4 in the form of an electronic mail attachment.
And passes it to the prediction calculation unit 1b. The prediction calculation unit 1b performs a short-term, middle-term, and long-term road surface state determination / prediction calculation based on a predetermined algorithm, and determines a determination / prediction result M3.
Is transmitted from the interface unit 1a to the information receiving unit via the Internet 4 in the form of an electronic mail attachment.
【0014】図3、図4により、現地データM1の収集
部2の実施例を説明する。6は被監視路面、7はこの路
面脇に固定されたポールである。8はポール7の頂部取
り付けられた路面形状センサーであり、この実施例で
は、レーザービームを用いたレベル計を使用している。
路面6への照射レーザービームBの反射時間により、路
面の乾燥状態レベルL0と、雪や氷9による凸状態のレ
ベルL1との差ΔLを測定する。An embodiment of the collection unit 2 for local data M1 will be described with reference to FIGS. Reference numeral 6 denotes a monitored road surface, and reference numeral 7 denotes a pole fixed to the side of the road surface. Reference numeral 8 denotes a road surface shape sensor mounted on the top of the pole 7, and in this embodiment, a level meter using a laser beam is used.
The difference ΔL between the dry level L0 of the road surface and the level L1 of the convex state due to snow or ice 9 is measured based on the reflection time of the irradiation laser beam B on the road surface 6.
【0015】10はポール7に取り付けられた気温セン
サー、11は同じくポール7に取り付けられた露点セン
サー、12は被監視路面6に埋め込まれた温度センサー
である。13はデータ伝送装置であり、これらセンサー
群の測定信号を入力し、A/D変換正規化して定周期で
現地データM1を電子メール添付の形態でインターネッ
トを介して遠方のデータ処理部に発信する。14は、W
eb対応カメラであり、ブラウザによる道路状況のリア
ルタイム監視を行う。Reference numeral 10 denotes an air temperature sensor attached to the pole 7, reference numeral 11 denotes a dew point sensor also attached to the pole 7, and reference numeral 12 denotes a temperature sensor embedded in the monitored road surface 6. Reference numeral 13 denotes a data transmission device, which inputs measurement signals from these sensor groups, normalizes the A / D conversion, and transmits the local data M1 to the distant data processing unit via the Internet in the form of an e-mail attachment at regular intervals. . 14 is W
It is an eb-compatible camera, and performs real-time monitoring of road conditions using a browser.
【0016】図4の符号13は、データ伝送装置の構成
要素を示すものであり、A/D変換器13a、データ処
理部13b、データ蓄積部13c、通信部13dよりな
る。レーザー式路面形状センサー3の測定値ΔL、気温
センサーの測定値T1,露点センサーの測定値T2、路
面温度センサーの測定値T3がA/D変換器13aに入
力され、正規化ディジタル化され、データ蓄積部13c
に一時蓄積され、データ処理部13bで所定のファイル
形式にまとめられ、定周期で、通信部13dを経由しイ
ンターネットに電子メール発信される。同様にWeb対
応カメラ14の画像信号もインターネットに発信され
る。Reference numeral 13 in FIG. 4 indicates a component of the data transmission apparatus, and includes an A / D converter 13a, a data processing unit 13b, a data storage unit 13c, and a communication unit 13d. The measurement value ΔL of the laser type road surface shape sensor 3, the measurement value T1 of the air temperature sensor, the measurement value T2 of the dew point sensor, and the measurement value T3 of the road surface temperature sensor are input to the A / D converter 13a, and are normalized and digitized. Storage unit 13c
The data is temporarily stored in the data processing unit 13b, is collected into a predetermined file format by the data processing unit 13b, and is transmitted at regular intervals to the Internet via the communication unit 13d. Similarly, an image signal of the Web-compatible camera 14 is transmitted to the Internet.
【0017】次に、情報処理部1における現地データM
1による短期予測判のアルゴリズムについて説明する。
まず、リアルタイムの路面判別アルゴリズムは、路面形
状センサー8の測定値により、被監視路面6の定常レベ
ルからの変化ΔLが所定値β以上のときに路面に凸状態
有りと判別する。Next, the local data M in the information processing section 1
The algorithm of the short-term prediction judgment by No. 1 will be described.
First, the real-time road surface determination algorithm determines from the measured value of the road surface shape sensor 8 that the road surface has a convex state when the change ΔL from the steady level of the monitored road surface 6 is equal to or more than a predetermined value β.
【0018】つぎに、路面温度センサー12の測定値T
3と露点センサー11の測定値T2との差が所定値α以
上のときに路面に水分有りと判別する。Next, the measured value T of the road surface temperature sensor 12
When the difference between 3 and the measured value T2 of the dew point sensor 11 is equal to or more than a predetermined value α, it is determined that the road surface has moisture.
【0019】さらに、路面凸状態無し、かつ路面水分有
り、かつ路面温度センサーのT3測定値がマイナスの条
件で路面凍結と判別する。路面凸状態無し、かつ路面水
分有り、かつ路面温度プラスの条件で路面湿潤と判別す
る。Further, it is determined that the road surface is frozen under the condition that the road surface is not in a convex state, the road surface has moisture, and the measured T3 value of the road surface temperature sensor is negative. It is determined that the road surface is wet on the condition that there is no road surface convex state, there is road surface moisture, and the road surface temperature is plus.
【0020】路面凸状態有り、かつかつ路面温度プラス
の条件で路面湿潤・シャーベット状雪と判別する。路面
凸状態有り、かつかつ路面温度マイナスの条件で路面圧
雪と判別する。路面凸状態無し、かつ路面水分無しの条
件で路面乾燥と判別する。Under the condition that the road surface is in a protruding state and the road surface temperature is positive, it is determined that the road surface is wet or sherbet-like snow. Under the condition that the road surface is in a convex state and the road surface temperature is minus, it is determined that the road surface is snow-covered. Road surface drying is determined under the condition that there is no road surface convex state and there is no road surface moisture.
【0021】短期予測のアルゴリズムは、前記のリアル
タイムの現地気象データM1を初期値とする。路面温度
については、予測時間1時間前の温度変化を予測時間ま
で外挿する。但し単純外挿では朝方の日射などによる気
温上昇と、夕方の気温下降を考慮した外挿法を用いる。
路面状態予測は、路面温度予測と予測時刻での降水有無
(雨、みぞれ、雪)から判断する。降水有無(雨、みぞ
れ、雪)の判断は現地での直接目視、またはWeb対応
カメラ画像のブラウザによる監視情報による。The algorithm for short-term prediction uses the above-mentioned real-time local weather data M1 as an initial value. As for the road surface temperature, the temperature change one hour before the predicted time is extrapolated to the predicted time. However, the simple extrapolation uses an extrapolation method that takes into account the temperature rise due to solar radiation in the morning and the temperature fall in the evening.
The road surface state prediction is determined from the road surface temperature prediction and the presence or absence of rain (rain, sleet, snow) at the predicted time. The determination of the presence / absence of rain (rain, sleet, snow) is made by direct visual observation at the site or by monitoring information of a Web-compatible camera image by a browser.
【0022】(1)予測は毎正時に行い、予測時間は1
時間,2時間,3時間,4時間,5時間先を予測する。 (2)路面温度の予測 現地の路面温度データを基に5時間先までの路面温度を
単純外挿する。朝方(7時,8時の予測)は日射による
路面温度上昇を考慮して特別外挿を行う。 天候が晴れの場合:路面温度上昇=γ℃/h(γ値はパ
ラメータとして変更可能) 天候が晴れ以外の場合:路面温度上昇=δ℃/h(δ値
はパラメータとして変更可能) 夕方(15時,16時、17時,18時の予測)は放射
冷却による路面温度低下を考慮して特別外挿を行う。 天候が晴れの場合:路面温度低下=γ℃/h(γ値はパ
ラメータとして変更可能) 天候が晴れ以外の場合:路面温度低下=δ℃/h(δ値
はパラメータとして変更可能)(1) The prediction is made at every hour and the prediction time is 1
Predict the time, 2 hours, 3 hours, 4 hours, 5 hours ahead. (2) Prediction of road surface temperature Based on the local road surface temperature data, the road surface temperature up to 5 hours ahead is simply extrapolated. In the morning (at 7:00 and 8:00), extrapolation is performed in consideration of the rise in road surface temperature due to solar radiation. When the weather is sunny: road surface temperature rise = γ ° C / h (γ value can be changed as a parameter) When the weather is not sunny: road surface temperature rise = δ ° C / h (δ value can be changed as a parameter) Evening (15 At 16:00, 17:00, and 18:00), extrapolation is performed in consideration of the road surface temperature drop due to radiant cooling. When the weather is sunny: road surface temperature drop = γ ° C / h (γ value can be changed as a parameter) When the weather is not sunny: road surface temperature drop = δ ° C / h (δ value can be changed as a parameter)
【0023】図4は予測時刻における路面状態に対応し
て、予測路面温度TFに対して設定された閾値を適用し
た判断条件による路面状態判断結果を示すテーブルであ
り、湿潤、圧雪、凍結、乾燥の4状態が予測判別され
る。FIG. 4 is a table showing a road surface condition determination result based on a determination condition applying a threshold value set to the predicted road surface temperature TF, corresponding to the road surface condition at the predicted time. Are predicted and determined.
【0024】つぎに、気象庁GPV天気予測データM2
の利用による中期及び長期予測について説明する。気象
庁では、大型コンピュータによる数値予報結果として、
全国を20km間隔の網目にした網目の交点に当たる地
点の降水予測データ(降水なし、雨、みぞれ、雪等)を
提供している。このデータはGPV(Grid Point Valu
e)と呼ばれており、気象予報企業はこのデータを必要
ポイント数購入し、独自の解析を加えて天気予報を行っ
ている。このデータは、電子メール添付の形態で配信業
者より購入可能である。Next, the Meteorological Agency GPV weather forecast data M2
Medium-term and long-term forecasts by using GIS will be described. At the Japan Meteorological Agency, as a result of numerical forecasts using a large computer,
It provides rainfall prediction data (no precipitation, rain, sleet, snow, etc.) at points corresponding to the intersections of meshes at intervals of 20 km throughout the country. This data is GPV (Grid Point Valu
It is called e), and the weather forecasting company purchases the necessary number of points for this data and adds its own analysis to make the weather forecast. This data can be purchased from a distributor in the form of an e-mail attachment.
【0025】このGPVデータを道路の路面状態や路面
観測現地の気象予測に活用する場合には、路面状態観測
地点が丁度網目の交点にあれば良いが、ずれていること
が多いので観測地点を取り囲む4ポイント又は近傍の2
ポイントを加えた6ポイントのデータを補間演算し、さ
らに標高や地形を勘案し、また現地での観測データも加
えて予測値を補正し、より確度の高い予測を行う必要が
ある。When this GPV data is used for the prediction of the road surface condition of the road or the weather at the site of the road surface observation, the road surface condition observation point may be exactly at the intersection of the meshes. Surrounding 4 points or nearby 2
It is necessary to interpolate the data of the 6 points to which the points have been added, to further consider the altitude and the terrain, and to add the observation data at the site to correct the prediction value, thereby performing more accurate prediction.
【0026】本発明では、まず、GPVポイントの気温
データを統計的な手法により、現地気温に変換する。次
に気温から路面温度に変換する。短期予報結果を初期値
として用い、予測路面温度、気温、高水量、降水種類
(降水なし、雨、みぞれ、雪等)等の組み合わせで4段
階の予測を行う。In the present invention, first, the temperature data of the GPV point is converted into the local temperature by a statistical method. Next, the temperature is converted into the road surface temperature. Using the short-term forecast results as initial values, four-step prediction is performed using combinations of the predicted road surface temperature, air temperature, high water volume, and types of precipitation (no precipitation, rain, sleet, snow, etc.).
【0027】中期予測は、毎日2回(9時、16時)行
い、1時間間隔で24時間先までを予測する。長期予測
は、毎日1回(9時)行い、1時間間隔で72時間先ま
でを予測する。但し1時間先から24時間先までの予測
は中期予測結果を用いる。まず、予測する現地に近いG
PVデータの気温より路面温度を算出する。 路面温度=GPV気温データ+ζ ここで、ζは1日の時間帯によって変える。ζの値はあ
らかじめ現地条件を加味して、時間帯別に値を決定して
おく。The mid-term prediction is performed twice a day (at 9 o'clock and 16 o'clock), and prediction is made up to 24 hours ahead at one-hour intervals. The long-term prediction is performed once a day (at 9:00), and prediction is made up to 72 hours ahead at one-hour intervals. However, the prediction from 1 hour to 24 hours ahead uses the medium-term prediction result. First, G close to the predicted location
The road surface temperature is calculated from the temperature of the PV data. Road surface temperature = GPV air temperature data + ζ Here, 変 え る changes depending on the time of day. The value of ζ is determined in advance for each time zone in consideration of local conditions.
【0028】降水予測の導出は、GPVの湿度データに
より下記の判断式にて行う。 湿度データ<80% → 降水無し 湿度データ>80%で気温2.50℃以上(設定可能) → 雨 湿度データ>80%で気温1.20℃〜2.50℃(設定可能) → みぞれ 湿度データ>80%で気温1.20以下(設定可能) → 雪Derivation of the precipitation prediction is performed by the following judgment formula based on the humidity data of GPV. Humidity data <80% → No precipitation Humidity data> 80% and temperature 2.50 ° C or more (settable) → Rain Humidity data> 80% and temperature 1.20 ° C to 2.50 ° C (settable) → Sleet Humidity data> 80% and temperature 1.20 Below (can be set) → Snow
【0029】図5は、予測時刻1時間前の短期予測によ
る路面状態の情報に対応して、予測路面温度TFに対し
て設定された閾値を適用した判断条件による路面状態判
断結果を示すテーブルであり、湿潤、圧雪、凍結、乾燥
の4状態が予測判別される。FIG. 5 is a table showing a road surface state determination result based on a determination condition applying a threshold value set to a predicted road surface temperature TF, corresponding to information on a road surface state obtained by short-term prediction one hour before the predicted time. Yes, four states of wet, snow compaction, freezing, and drying are predicted and determined.
【0030】図6は、図1に示した情報処理部1の具体
的な構成例である。CSV形式のデータM1,M2が添
付された現地気象データ及びGPV気象データが電子メ
ールの形態でインターネット配信される。メール受信イ
ンターフェイス1aではこれらメールを5分間隔で確認
し、CSVデータをデータベース1cに格納し、周期的
に更新する。FIG. 6 shows a specific configuration example of the information processing section 1 shown in FIG. Local weather data and GPV weather data to which CSV format data M1 and M2 are attached are distributed via the Internet in the form of e-mail. The mail receiving interface 1a checks these mails at 5-minute intervals, stores the CSV data in the database 1c, and updates them periodically.
【0031】演算処理部1bではデータベース1cのデ
ータに基づいて短期、中期、長期の予測演算を実行し、
予測結果をメール送信インターフェイス1a´内のメー
ル添付用CSVファイルに書き出す。このデータが配信
データM3としてメール送信機能により電子メール添付
ファイルの形式でインターネットに配信される。The arithmetic processing unit 1b executes short-term, medium-term, and long-term prediction calculations based on the data in the database 1c.
The prediction result is written to a mail attachment CSV file in the mail transmission interface 1a '. This data is distributed to the Internet as distribution data M3 by the mail transmission function in the form of an e-mail attached file.
【0032】更に演算処理部1bは、マスターファイル
1dよりの帳票形式情報に基づいて予測演算結果につい
ての日報1eを出力する。マスターファイル1dは演算
パラメータ設定、メール用CSVテンプレートの設定機
能を持つ。演算パラメータ等の変更があった場合にはこ
のファイルを修正する。Further, the arithmetic processing unit 1b outputs a daily report 1e on the result of the prediction operation based on the form format information from the master file 1d. The master file 1d has calculation parameter setting and mail CSV template setting functions. This file is modified when there is a change in the operation parameters or the like.
【0033】本発明の実施に当たっては、短期、中長期
とも予測アルゴリズムの中で、対象とする地域に固有の
係数値を使用する。従って、この係数を決定するため
に、システムの実運用に先駆けて試験運用が必要であ
る。試験運用期間は長いほうが良いが、一冬または一ヶ
月程度でも実用的な係数値を得ることは可能である。In implementing the present invention, a coefficient value specific to a target area is used in the prediction algorithm in both the short term and the medium term. Therefore, in order to determine this coefficient, test operation is required prior to actual operation of the system. The longer the trial operation period, the better, but it is possible to obtain a practical coefficient value even in one winter or one month.
【0034】[0034]
【発明の効果】以上、説明したように、本発明によれ
ば、次の効果が期待できる。 (1)路面状態の短期予測(3時間)により、道路管理
者が凍結抑止剤の散布等の対策を当日夜間等に実行する
かどうかを判断する支援情報が得られる。 (2)中期予測(1日先)により、資材や人員配置等の
対策準備を実行するかどうかを判断する支援情報が得ら
れる。 (3)長期予測(3日先)により、資材や人員配置等の
準備計画を作成するための支援情報が得られる。As described above, according to the present invention, the following effects can be expected. (1) By the short-term prediction (3 hours) of the road surface condition, the road manager can obtain support information for determining whether or not to execute measures such as spraying of a freeze inhibitor at night or the like on the day. (2) With the medium-term forecast (one day ahead), support information for judging whether or not to prepare for measures such as materials and staffing can be obtained. (3) With the long-term forecast (three days ahead), support information for preparing a preparation plan for materials and staffing can be obtained.
【0035】(4)試験運用期間において、システムを
運用しながら実績データを収集し、この結果を係数値の
再決定にフィードバックすることで、更に路面状態予測
の精度の向上が期待できる。 (5)係数値は地域固有のものであるが、アルゴリズム
は広い地域で共通と考えられるので、システムの中で地
域固有な係数値の部分を置き換えるだけで、対象とする
地域に適合したシステム構築が可能となる。(4) During the test operation period, by collecting actual data while operating the system and feeding the result back to the redetermination of the coefficient value, it is expected that the accuracy of the road surface state prediction is further improved. (5) Although the coefficient values are specific to each region, the algorithm is considered to be common in a wide area. Therefore, by simply replacing the region-specific coefficient values in the system, a system suitable for the target region can be constructed. Becomes possible.
【図1】 本発明の一実施例におけシステム構成を示す
概念図である。FIG. 1 is a conceptual diagram illustrating a system configuration according to an embodiment of the present invention.
【図2】 本発明の他の実施例における現地気象データ
収集装置の構成図である。FIG. 2 is a configuration diagram of a local weather data collection device according to another embodiment of the present invention.
【図3】 図3におけるデータ処理部の構成例を示すブ
ロック線図である。FIG. 3 is a block diagram illustrating a configuration example of a data processing unit in FIG. 3;
【図4】 本発明による短期予測の判別結果を示すテー
ブルである。FIG. 4 is a table showing determination results of short-term prediction according to the present invention.
【図5】 本発明中期、長期予測の判別結果を示すテー
ブルである。FIG. 5 is a table showing a determination result of the medium-term and long-term predictions of the present invention.
【図6】 本発明における情報処理部の具体的な構成例
を示すブロック線図である。FIG. 6 is a block diagram illustrating a specific configuration example of an information processing unit according to the present invention.
1 情報処理部 2 現地データ収集部 3 GPVデータ配信部 4 インターネット 5 判別・予測結果受信部 Reference Signs List 1 Information processing unit 2 Local data collection unit 3 GPV data distribution unit 4 Internet 5 Discrimination / prediction result receiving unit
Claims (8)
ンサー群よりなる、現地気象データ収集装置からの現地
データと、気象庁GPV天気予報データとを周期的に入
力し、前記現地データに基づいて被監視路面状態の短期
予測を行い、前記気象庁GPV天気予報データに基づい
て被監視路面状態の中期及び長期予測を行うことを特徴
とする路面状態予測システム。1. Periodically inputting local data from a local weather data collection device comprising a road surface shape sensor of a monitored road surface and a weather sensor group, and the Meteorological Agency GPV weather forecast data, and receiving data based on the local data. A road surface condition prediction system that performs short-term prediction of a monitored road surface condition and performs medium-term and long-term prediction of the monitored road surface condition based on the Meteorological Agency GPV weather forecast data.
面凍結、路面湿潤、路面圧雪、路面乾燥の4状態とする
ことを特徴とする請求項1記載の路面状態判別システ
ム。2. The road surface condition discrimination system according to claim 1, wherein the short-term prediction, the medium-term prediction, and the long-term prediction include four states: road surface freezing, road surface wetness, road surface snow compaction, and road surface drying.
ー手段によるレベル変化を測定する路面形状センサー
と、気温センサーと、露点センサーと、路面温度センサ
ーとを具備し、前記被監視路面の定常レベルからの変化
が所定値以上のときに路面に凸状態有りと判別し、前記
路面温度センサーの測定値と前記露点温度センサーの測
定値との差が所定値以上のときに路面に水分有りと判別
することを特徴とする請求項1または2記載の路面状態
判別システム。3. The on-site weather data collection device includes a road surface shape sensor for measuring a level change by a laser means, an air temperature sensor, a dew point sensor, and a road surface temperature sensor. It is determined that the road surface has a protruding state when the change of the road surface is equal to or greater than a predetermined value, and it is determined that the road surface has moisture when the difference between the measured value of the road surface temperature sensor and the measured value of the dew point temperature sensor is equal to or greater than a predetermined value. The road surface condition determination system according to claim 1 or 2, wherein:
路面凸状態無し、かつ路面水分有り、かつ路面温度マイ
ナスの条件で路面凍結と判別し、路面凸状態無し、かつ
路面水分有り、かつ路面温度プラスの条件で路面湿潤と
判別し、路面凸状態有り、かつかつ路面温度プラスの条
件で路面湿潤・シャーベット状雪と判別し、路面凸状態
有り、かつかつ路面温度マイナスの条件で路面圧雪判別
し、路面凸状態無し、かつ路面水分無しの条件で路面乾
燥と判別することを特徴とする請求項1乃至3いずれか
に記載の路面状態予測システム。4. The local weather data collection device,
It is determined that the road surface is frozen when there is no road surface convex state and there is road surface moisture and the road surface temperature is minus, and it is determined that the road surface is wet when there is no road surface convex state and there is road surface moisture and the road surface temperature is positive and there is a road surface convex state. And, when the road surface temperature is positive, the road surface is determined to be wet and sherbet-like snow, and when the road surface is convex, and when the road surface temperature is negative, the road snow is determined. The road surface condition prediction system according to any one of claims 1 to 3, wherein the determination is performed.
して所定時間前の温度変化に基づく外挿法で路面温度を
予測し、この予測路面温度と予測時刻での路面状態の基
づいて路面状態を判別することを特徴とする請求項1乃
至4いずれかに記載の路面状態予測システム。5. The short-term prediction predicts a road surface temperature by an extrapolation method based on a temperature change before a predetermined time with respect to current local data, and based on the predicted road surface temperature and a road surface state at a predicted time. The road surface state prediction system according to any one of claims 1 to 4, wherein the state is determined.
PV天気予報データの気温データを統計的手法で求めら
れる補正により現地気温及び路面温度に変換推定し、こ
の路面温度、気温、降水量、降水種類の組み合わせによ
り路面状態を予測することを特徴とする請求項1乃至5
いずれかに記載の路面状態予測システム。6. The medium-term and long-term forecast is based on the JMA G
The method is characterized in that the temperature data of the PV weather forecast data is converted and estimated into the local temperature and the road surface temperature by correction obtained by a statistical method, and the road surface condition is predicted by a combination of the road surface temperature, the temperature, the amount of precipitation, and the type of precipitation. Claims 1 to 5
The road surface condition prediction system according to any one of the above.
を初期値として用いることを特徴とする請求項6記載の
路面状態予測システム。7. The road surface state prediction system according to claim 6, wherein the medium-term and long-term predictions use a short-term short-term prediction as an initial value.
て遠隔地に送信する通信部を具備した請求項1乃至7い
ずれかに記載の路面状態予測システム。8. The road surface state prediction system according to claim 1, further comprising a communication unit that transmits the prediction result to a remote place via a wired or wireless communication line.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000393840A JP2002196085A (en) | 2000-12-25 | 2000-12-25 | System for predicting road surface condition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000393840A JP2002196085A (en) | 2000-12-25 | 2000-12-25 | System for predicting road surface condition |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002196085A true JP2002196085A (en) | 2002-07-10 |
Family
ID=18859565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000393840A Pending JP2002196085A (en) | 2000-12-25 | 2000-12-25 | System for predicting road surface condition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002196085A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003066159A (en) * | 2001-08-30 | 2003-03-05 | Daikin Ind Ltd | Local weather data estimation method and device |
JP2004117228A (en) * | 2002-09-27 | 2004-04-15 | Hitachi Ltd | Method for estimating meteorological physical quantities |
JP2006162593A (en) * | 2004-09-17 | 2006-06-22 | Fondazione Torino Wireless | Multi-frequency capacitive measurement system, and operation method therefor |
CN103383471A (en) * | 2012-05-02 | 2013-11-06 | 钱维宏 | Transient disturbance weather map and low-frequency disturbance weather map manufacturing method and application of method in weather report |
JP2014173971A (en) * | 2013-03-08 | 2014-09-22 | Meisei Electric Co Ltd | Weather report device for housing and control system of apparatus for housing |
JP2018170971A (en) * | 2017-03-31 | 2018-11-08 | 沖電気工業株式会社 | Temperature prediction device, temperature prediction method, temperature prediction program and temperature prediction system |
CN109738091A (en) * | 2019-01-28 | 2019-05-10 | 象谱信息产业有限公司 | System and method based on highway geographical environment prediction pavement temperature |
JP2020016462A (en) * | 2018-07-23 | 2020-01-30 | 株式会社クボタ | Monitoring device, monitoring method and monitoring program |
KR102440211B1 (en) * | 2022-02-04 | 2022-09-08 | 주식회사 세이브라이프 | Road surface black ice occurrence prediction and warning system |
-
2000
- 2000-12-25 JP JP2000393840A patent/JP2002196085A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003066159A (en) * | 2001-08-30 | 2003-03-05 | Daikin Ind Ltd | Local weather data estimation method and device |
JP2004117228A (en) * | 2002-09-27 | 2004-04-15 | Hitachi Ltd | Method for estimating meteorological physical quantities |
JP2006162593A (en) * | 2004-09-17 | 2006-06-22 | Fondazione Torino Wireless | Multi-frequency capacitive measurement system, and operation method therefor |
CN103383471A (en) * | 2012-05-02 | 2013-11-06 | 钱维宏 | Transient disturbance weather map and low-frequency disturbance weather map manufacturing method and application of method in weather report |
CN103383471B (en) * | 2012-05-02 | 2015-04-29 | 钱维宏 | Transient disturbance weather map and low-frequency disturbance weather map manufacturing method and application of method in weather report |
JP2014173971A (en) * | 2013-03-08 | 2014-09-22 | Meisei Electric Co Ltd | Weather report device for housing and control system of apparatus for housing |
JP2018170971A (en) * | 2017-03-31 | 2018-11-08 | 沖電気工業株式会社 | Temperature prediction device, temperature prediction method, temperature prediction program and temperature prediction system |
JP2020016462A (en) * | 2018-07-23 | 2020-01-30 | 株式会社クボタ | Monitoring device, monitoring method and monitoring program |
JP7126397B2 (en) | 2018-07-23 | 2022-08-26 | 株式会社クボタ | MONITORING DEVICE, MONITORING METHOD, AND MONITORING PROGRAM |
CN109738091A (en) * | 2019-01-28 | 2019-05-10 | 象谱信息产业有限公司 | System and method based on highway geographical environment prediction pavement temperature |
CN109738091B (en) * | 2019-01-28 | 2021-04-27 | 象谱信息产业有限公司 | System and method for predicting road surface temperature based on road geographic environment |
KR102440211B1 (en) * | 2022-02-04 | 2022-09-08 | 주식회사 세이브라이프 | Road surface black ice occurrence prediction and warning system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kangas et al. | RoadSurf: a modelling system for predicting road weather and road surface conditions | |
Lehning et al. | SNOWPACK model calculations for avalanche warning based upon a new network of weather and snow stations | |
Crevier et al. | METRo: A new model for road-condition forecasting in Canada | |
Sass | A numerical forecasting system for the prediction of slippery roads | |
EP2460067B1 (en) | System and method for determining road conditions | |
US10429547B2 (en) | Systems and methods of remote weather detection for construction management | |
Hirai et al. | Development and validation of a new land surface model for JMA's operational global model using the CEOP observation dataset | |
JPH0829545A (en) | Weather forecast display system | |
Strasser | Snow loads in a changing climate: new risks? | |
Martinec et al. | Interpretation and utilization of areal snow-cover data from satellites | |
CN116189446A (en) | All-weather traffic comprehensive treatment method and system for mountain highway ice and snow weather | |
Toms et al. | Usage of existing meteorological data networks for parameterized road ice formation modeling | |
JP2002196085A (en) | System for predicting road surface condition | |
Wu et al. | Coupling the WRF model with a temperature index model based on remote sensing for snowmelt simulations in a river basin in the Altay Mountains, north‐west China | |
JP2972173B2 (en) | Road surface freezing prevention method, road surface information movement collection system, and road surface freezing prevention device | |
Yang et al. | Validation of a road surface temperature prediction model using real-time weather forecasts | |
Ryerson et al. | Quantitative ice accretion information from the automated surface observing system | |
Meng | A numerical forecast model for road meteorology | |
Kangas et al. | The FMI road weather model | |
Turpin et al. | Use of remote sensing to test and update simulated snow cover in hydrological models | |
Dudak et al. | Road structural elements temperature trends diagnostics using sensory system of own design | |
JPH10282250A (en) | Method and device for prediction of freezing on road surface | |
Buisán et al. | Adjustment of solid precipitation during the Filomena extreme snowfall event in Spain: from observations to “true precipitation” | |
Bogacki et al. | Seasonal forecast of Kharif flows from Upper Jhelum catchment | |
DeGaetano et al. | A climatological measure of extreme snowdrift loading on building roofs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040420 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040618 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040720 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20041116 |