[go: up one dir, main page]

JP2002193655A - Hydraulic composition - Google Patents

Hydraulic composition

Info

Publication number
JP2002193655A
JP2002193655A JP2000393700A JP2000393700A JP2002193655A JP 2002193655 A JP2002193655 A JP 2002193655A JP 2000393700 A JP2000393700 A JP 2000393700A JP 2000393700 A JP2000393700 A JP 2000393700A JP 2002193655 A JP2002193655 A JP 2002193655A
Authority
JP
Japan
Prior art keywords
hydraulic composition
weight
parts
fiber
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000393700A
Other languages
Japanese (ja)
Other versions
JP4039801B2 (en
Inventor
Masami Uzawa
正美 鵜澤
Kazuyoshi Shirai
一義 白井
Makoto Katagiri
誠 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2000393700A priority Critical patent/JP4039801B2/en
Publication of JP2002193655A publication Critical patent/JP2002193655A/en
Application granted granted Critical
Publication of JP4039801B2 publication Critical patent/JP4039801B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • C04B2201/52High compression strength concretes, i.e. with a compression strength higher than about 55 N/mm2, e.g. reactive powder concrete [RPC]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydraulic composition which, before hardening, excels in flowability and material separation resistance and has self-filling ability and, after hardening, has a compressive strength of 130 MPa or larger a flexural strength of 20 MPa or larger and large fracture energy. SOLUTION: The hydraulic composition includes a cement 100 pts.wt., a pozzolanic fine powder 5 to 50 pts.wt., a fine aggregate (grain size of 2 mm or less) 50 to 250 pts.wt., a dispersant 0.5 to 4.0 pts.wt. (in terms of solid contents), an organic fiber and/or an inorganic fiber 0.1 to 10% by volume ratio in the hydraulic composition, water 10 to 35 pts.wt. and an acicular grain and/or a thin piece grain (mean grain size of 1 mm or less) 4.5% or less by volume ratio per the total amount of the cement and the pozzolanic fine powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、硬化前には自己充
填性(優れた流動性及び材料分離抵抗性)を有し、施工
性に優れるとともに、硬化後には機械的特性(圧縮強
度、曲げ強度、破壊エネルギー等)に優れるセメント系
の水硬性組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a self-filling property (excellent fluidity and material separation resistance) before curing, has excellent workability, and has mechanical properties (compression strength, bending strength) after curing. The present invention relates to a cement-based hydraulic composition having excellent strength and breaking energy.

【0002】[0002]

【従来の技術】従来より、機械的特性(圧縮強度、曲げ
強度、破壊エネルギー等)に優れた水硬性組成物の開発
が行なわれている。例えば、特公昭60−59182号公報の
「請求の範囲」には、粒径50Å〜0.5μmの無機固体粒子
A(例えば、シリカダスト粒子)と、粒径0.5〜100μm
かつ粒子Aより少なくとも1オーダー大きい固体粒子B
(例えば、少なくとも20重量%がポルトランドセメント
からなるもの)と、表面活性分散剤(例えば、高縮合ナ
フタレンスルホン酸/ホルムアルデヒド縮合体等のコン
クリートスーパープラスチサイザー)と、追加の素材C
(砂、石、ポリプロピレン繊維等の繊維、ホイスカー等
からなる群より選択されるもの)とを含む水硬性複合材
料が記載されている。この公報に記載の水硬性複合材料
は、硬化後に100MPa以上の圧縮強度を有し、機械的特性
に優れる(第32頁の63欄の第1表)。
2. Description of the Related Art Hitherto, hydraulic compositions having excellent mechanical properties (compression strength, bending strength, breaking energy, etc.) have been developed. For example, the claims of Japanese Patent Publication No. 60-59182 disclose inorganic solid particles A (for example, silica dust particles) having a particle size of 50 to 0.5 μm and a particle size of 0.5 to 100 μm.
And solid particles B at least one order of magnitude larger than particles A
(For example, at least 20% by weight of Portland cement), a surface active dispersant (for example, a concrete superplasticizer such as a highly condensed naphthalene sulfonic acid / formaldehyde condensate) and an additional material C
(A material selected from the group consisting of sand, stone, fibers such as polypropylene fibers, whiskers, etc.). The hydraulic composite material described in this publication has a compressive strength of 100 MPa or more after curing and is excellent in mechanical properties (Table 32, page 32, column 1, Table 1).

【0003】[0003]

【発明が解決しようとする課題】一般に、機械的特性
(圧縮強度、曲げ強度、破壊エネルギー等)に優れるコ
ンクリートは、次のような利点を有する。第一に、現場
打ちで建築物等を構築する場合には、コンクリート層の
厚さを薄くすることができるので、コンクリートの打設
量が少なくなり、労力の軽減、コストの削減、利用空間
の増大等を図ることができる。第二に、プレキャスト部
材を製造する場合には、プレキャスト部材の厚みを小さ
くすることができるので、軽量化を図ることができ、そ
の結果、運搬や施工が容易になる。第三に、耐摩耗性
や、中性化、クリープ等に対する耐久性が向上する。こ
のため、上記公報に記載の水硬性複合材料と比べて、よ
り優れた機械的特性を有する水硬性組成物の開発が望ま
れている。
Generally, concrete having excellent mechanical properties (compression strength, bending strength, breaking energy, etc.) has the following advantages. First, when constructing a building or the like by cast-in-place, the thickness of the concrete layer can be reduced, which reduces the amount of concrete to be poured, reducing labor, reducing costs, and reducing the space used. Increase can be achieved. Second, in the case of manufacturing a precast member, the thickness of the precast member can be reduced, so that the weight can be reduced, and as a result, transportation and construction can be facilitated. Third, abrasion resistance, durability to neutralization, creep and the like are improved. For this reason, there is a demand for the development of a hydraulic composition having better mechanical properties than the hydraulic composite material described in the above-mentioned publication.

【0004】一方、現場打ちで建築物等を構築する場合
や、プレキャスト部材を製造する場合においては、水硬
性組成物(コンクリート等)の打設時間の短縮化や、打
設後のコンクリート等に加える振動の所要時間の短縮化
等の観点から、流動性及び材料分離抵抗性に優れた水硬
性組成物(換言すれば、自己充填性を有する水硬性組成
物)を用いるのが有利である。
On the other hand, when constructing a building or the like by cast-in-place or manufacturing a precast member, the time required for placing a hydraulic composition (concrete or the like) is shortened, or the concrete or the like after casting is used. It is advantageous to use a hydraulic composition having excellent fluidity and resistance to material separation (in other words, a hydraulic composition having self-filling properties) from the viewpoint of shortening the time required for vibration to be applied.

【0005】しかし、上記公報(特公昭60−59182号公
報)に記載の水硬性複合材料では、硬化前の流動性及び
材料分離抵抗性の向上と、硬化後の機械的特性(圧縮強
度、曲げ強度、破壊エネルギー等)の向上を両立させる
ことは、困難である。例えば、曲げ強度を向上させるた
めに、繊維を配合した場合には、流動性が小さくなって
しまい、施工性が劣る。一方、繊維を配合するととも
に、混練水や混和剤の配合割合を大きくした場合には、
良好な流動性を確保できる反面、材料分離抵抗性が小さ
くなってしまう。
However, in the hydraulic composite material described in the above-mentioned publication (Japanese Patent Publication No. 60-59182), the fluidity and the material separation resistance before curing and the mechanical properties (compression strength, bending strength) after curing are improved. It is difficult to achieve both improvement in strength and breaking energy. For example, when fibers are blended to improve the bending strength, the fluidity is reduced and the workability is poor. On the other hand, when the fibers are mixed and the mixing ratio of the kneading water and the admixture is increased,
While good fluidity can be ensured, the resistance to material separation decreases.

【0006】そこで、本発明は、硬化前には、流動性及
び材料分離抵抗性に優れ、自己充填性を有するととも
に、硬化後には、従来の水硬性組成物(例えば、上記公
報に記載の水硬性複合材料)よりも機械的特性(圧縮強
度、曲げ強度、破壊エネルギー等)に優れる水硬性組成
物を提供することを目的とする。
Therefore, the present invention provides a liquid composition which is excellent in fluidity and resistance to material separation before curing, has self-filling properties, and has a conventional hydraulic composition after curing (for example, a water-based composition described in the above publication). It is an object of the present invention to provide a hydraulic composition having more excellent mechanical properties (compression strength, bending strength, breaking energy, etc.) than a hard composite material.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記目的を
達成するために鋭意研究した結果、特定の材料を組み合
わせることで、上記目的を達成することができるとの知
見を得、本発明に到達した。すなわち、本願の請求項1
に記載の水硬性組成物は、セメント、ポゾラン質微粉
末、粒径2mm以下の細骨材、分散剤(例えば、高性能A
E減水剤等の各種減水剤)、有機繊維及び/又は無機繊
維、水、平均粒度1mm以下の針状粒子及び/又は薄片状
粒子を含む水硬性組成物であって、前記針状粒子及び/
又は薄片状粒子の配合量が、前記セメント及び前記ポゾ
ラン質微粉末の合計量に対して、容積比で4.5%以下で
あるように構成される。このように構成された水硬性組
成物は、硬化前には、流動性及び材料分離抵抗性に優
れ、自己充填性を有するとともに、硬化後には、従来の
水硬性組成物よりも優れた機械的特性(圧縮強度、曲げ
強度、破壊エネルギー等)を有する。当該水硬性組成物
は、硬化後の充填密度を高めるために、平均粒径3〜20
μmの無機粉末(例えば、石英粉末)を含むことができ
る(請求項2)。
Means for Solving the Problems The present inventor has made intensive studies to achieve the above object, and as a result, obtained the finding that the above object can be achieved by combining specific materials. Reached. That is, claim 1 of the present application
Is a cement, a pozzolanic fine powder, a fine aggregate having a particle size of 2 mm or less, a dispersant (for example, high performance A
E water reducing agent such as a water reducing agent), an organic fiber and / or an inorganic fiber, water, a hydraulic composition containing needle-like particles and / or flaky particles having an average particle size of 1 mm or less, wherein the needle-like particles and / or
Alternatively, the composition is such that the compounding amount of the flaky particles is 4.5% or less by volume ratio with respect to the total amount of the cement and the pozzolanic fine powder. The hydraulic composition thus configured is excellent in fluidity and material separation resistance before curing, has self-filling properties, and after curing, has excellent mechanical properties compared to conventional hydraulic compositions. Has characteristics (compression strength, bending strength, breaking energy, etc.). The hydraulic composition has an average particle size of 3 to 20 in order to increase the packing density after curing.
It may contain a μm inorganic powder (for example, quartz powder) (claim 2).

【0008】前記水硬性組成物は、好ましくは、次のよ
うな配合割合の材料からなる。すなわち、本願の請求項
3に記載の水硬性組成物は、セメント100重量部、ポゾ
ラン質微粉末5〜50重量部、粒径2mm以下の細骨材50〜25
0重量部、分散剤(減水剤)0.5〜4.0重量部(固形分換
算)、有機繊維及び/又は無機繊維、水10〜35重量部、
平均粒度1mm以下の針状粒子及び/又は薄片状粒子を含
む水硬性組成物であって、前記有機繊維及び/又は無機
繊維の配合量が、当該水硬性組成物中の容積比で0.1〜1
0%であり、かつ、前記針状粒子及び/又は薄片状粒子
の配合量が、前記セメント及び前記ポゾラン質微粉末の
合計量に対して、容積比で0.05〜4.5%であるように構
成される。当該水硬性組成物は、硬化後の充填密度を高
めるために、前記セメント100重量部当たり50重量部以
下の配合量で、平均粒径3〜20μmの無機粉末(例えば、
石英粉末)を含むことができる(請求項4)。
[0008] The hydraulic composition preferably comprises the following compounding ratio. That is, the hydraulic composition according to claim 3 of the present application comprises 100 parts by weight of cement, 5 to 50 parts by weight of fine pozzolanic powder, and 50 to 25 fine aggregate having a particle size of 2 mm or less.
0 parts by weight, a dispersant (water reducing agent) 0.5 to 4.0 parts by weight (in terms of solid content), organic fibers and / or inorganic fibers, water 10 to 35 parts by weight,
A hydraulic composition containing needle-like particles and / or flaky particles having an average particle size of 1 mm or less, wherein the compounding amount of the organic fiber and / or the inorganic fiber is 0.1 to 1 by volume ratio in the hydraulic composition.
0%, and the compounding amount of the acicular particles and / or flaky particles is 0.05 to 4.5% by volume relative to the total amount of the cement and the pozzolanic fine powder. You. The hydraulic composition is an inorganic powder having an average particle size of 3 to 20 μm in an amount of 50 parts by weight or less per 100 parts by weight of the cement in order to increase the packing density after curing.
(Quartz powder) (claim 4).

【0009】前記有機繊維及び/又は無機繊維は、例え
ば、直径0.005〜1.0mm、長さ2〜30mmの寸法を有する
(請求項5)。前記有機繊維及び/又は無機繊維は、例
えば、ビニロン繊維、ポリプロピレン繊維、ポリエチレ
ン繊維、アラミド繊維、炭素繊維からなる群より選ばれ
る1種以上からなるように構成することができる(請求
項6)。前記水硬性組成物は、通常、130MPa以上の圧縮
強度、及び20MPa以上の曲げ強度を有する(請求項
7)。
The organic fibers and / or inorganic fibers have, for example, a size of 0.005 to 1.0 mm in diameter and 2 to 30 mm in length (claim 5). The organic fiber and / or the inorganic fiber can be configured to be, for example, at least one selected from the group consisting of vinylon fiber, polypropylene fiber, polyethylene fiber, aramid fiber, and carbon fiber (Claim 6). The hydraulic composition usually has a compressive strength of 130 MPa or more and a bending strength of 20 MPa or more (Claim 7).

【0010】[0010]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明で使用するセメントの種類は、特に限定さ
れるものではなく、例えば、普通ポルトランドセメン
ト、早強ポルトランドセメント、中庸熱ポルトランドセ
メント、低熱ポルトランドセメント等の各種ポルトラン
ドセメントや、高炉セメント、フライアッシュセメント
等の混合セメントを使用することができる。本発明にお
いて、水硬性組成物の硬化後の早期強度を向上させよう
とする場合には、早強ポルトランドセメントを使用する
ことが好ましい。また、水硬性組成物の流動性を向上さ
せようとする場合には、中庸熱ポルトランドセメントや
低熱ポルトランドセメントを使用することが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The type of cement used in the present invention is not particularly limited, for example, various Portland cements such as ordinary Portland cement, early-strength Portland cement, moderate heat Portland cement, low heat Portland cement, blast furnace cement, fly ash cement Etc. can be used. In the present invention, in order to improve the early strength after hardening of the hydraulic composition, it is preferable to use early-strength Portland cement. In order to improve the fluidity of the hydraulic composition, it is preferable to use a medium heat Portland cement or a low heat Portland cement.

【0011】ポゾラン質微粉末としては、シリカフュー
ム、シリカダスト、フライアッシュ、スラグ、火山灰、
シリカゾル、沈降シリカ等が挙げられる。一般に、シリ
カフュームやシリカダストは、平均粒径が1.0μm以下で
あり、粉砕等の処理を行なう必要がないので、本発明で
使用するポゾラン質微粉末として好適である。ポゾラン
質微粉末の配合量は、セメント100重量部に対して5〜50
重量部が好ましく、10〜45重量部がより好ましい。ポゾ
ラン質微粉末の配合量が少なすぎると、水硬性組成物の
材料分離抵抗性が低くなり、また、硬化後の機械的特性
も低下するので好ましくない。ポゾラン質微粉末の配合
量が多すぎると、単位水量が増大し、硬化後の機械的特
性が低下するので好ましくない。
As the pozzolanic fine powder, silica fume, silica dust, fly ash, slag, volcanic ash,
Silica sol, precipitated silica and the like. In general, silica fume and silica dust have an average particle size of 1.0 μm or less and do not need to be subjected to a treatment such as pulverization. Therefore, they are suitable as the pozzolanic fine powder used in the present invention. The blending amount of the pozzolanic fine powder is 5 to 50 per 100 parts by weight of cement.
Part by weight is preferred, and 10 to 45 parts by weight is more preferred. If the blending amount of the pozzolanic fine powder is too small, the material separation resistance of the hydraulic composition is lowered, and the mechanical properties after curing are undesirably lowered. If the amount of the pozzolanic fine powder is too large, the amount of water increases, and the mechanical properties after curing are undesirably reduced.

【0012】本発明においては、粒径2mm以下の細骨材
が用いられる。ここで、細骨材の「粒径」とは、85%重
量累積粒径である。細骨材の粒径が2mmを超えると、水
硬性組成物の硬化後の強度が低下する。なお、本発明に
おいては、最大粒径が2mm以下の細骨材を用いることが
好ましく、最大粒径が1.5mm以下の細骨材を用いること
が、より好ましい。細骨材としては、川砂、陸砂、海
砂、砕砂、珪砂、又はこれらの混合物を使用することが
できる。細骨材の配合量は、セメント100重量部に対し
て、50〜250重量部が好ましく、80〜180重量部がより好
ましい。細骨材の配合量が少なすぎると、硬化初期(凝
結段階)の自己収縮が大きくなるうえ、水和熱も大きく
なるので好ましくない。細骨材の配合量が多すぎると、
硬化後の機械的特性(特に、曲げ強度)が低下するので
好ましくない。
In the present invention, fine aggregate having a particle size of 2 mm or less is used. Here, the “particle size” of the fine aggregate is an 85% weight cumulative particle size. If the particle size of the fine aggregate exceeds 2 mm, the strength of the hydraulic composition after curing is reduced. In the present invention, it is preferable to use fine aggregate having a maximum particle size of 2 mm or less, and it is more preferable to use fine aggregate having a maximum particle size of 1.5 mm or less. As fine aggregate, river sand, land sand, sea sand, crushed sand, quartz sand, or a mixture thereof can be used. The blending amount of the fine aggregate is preferably 50 to 250 parts by weight, more preferably 80 to 180 parts by weight, based on 100 parts by weight of cement. If the blending amount of the fine aggregate is too small, the self-shrinkage in the initial stage of hardening (coagulation stage) increases, and the heat of hydration also increases. If the amount of fine aggregate is too large,
It is not preferable because the mechanical properties (particularly, bending strength) after curing are reduced.

【0013】分散剤としては、リグニン系、ナフタレン
スルホン酸系、メラミン系、ポリカルボン酸系等の各種
減水剤(減水剤、AE減水剤、高性能減水剤、高性能A
E減水剤)を使用することができる。これらのうち、減
水効果の大きな高性能減水剤又は高性能AE減水剤を使
用することが好ましい。分散剤の配合量は、セメント10
0重量部に対して、固形分換算で0.5〜4.0重量部が好ま
しい。セメント100重量部に対して、分散剤の配合量
(固形分換算)が0.5重量部未満では、混練が困難にな
るとともに、水硬性組成物の流動性が低下するので好ま
しくない。セメント100重量部に対して、分散剤の配合
量(固形分換算)が4.0重量部を超えると、硬化後の機
械的特性が低下するので好ましくない。なお、分散剤
は、液状又は粉末状のいずれでも使用可能である。
Examples of the dispersing agent include various water reducing agents such as lignin, naphthalenesulfonic acid, melamine and polycarboxylic acid (water reducing agent, AE water reducing agent, high performance water reducing agent, high performance A
E water reducing agent) can be used. Among these, it is preferable to use a high performance water reducing agent or a high performance AE water reducing agent having a large water reducing effect. The amount of the dispersant is 10
The amount is preferably 0.5 to 4.0 parts by weight in terms of solid content based on 0 parts by weight. If the blending amount (solid content) of the dispersant is less than 0.5 part by weight with respect to 100 parts by weight of cement, kneading becomes difficult, and the fluidity of the hydraulic composition decreases, which is not preferable. If the amount of the dispersant (in terms of solid content) exceeds 4.0 parts by weight with respect to 100 parts by weight of cement, the mechanical properties after curing are undesirably reduced. The dispersant can be used in either liquid or powder form.

【0014】本発明の水硬性組成物において用いる水の
量は、セメント100重量部に対して10〜35重量部が好ま
しく、より好ましくは15〜30重量部である。水の量が10
重量部未満では、混練が困難になるとともに、水硬性組
成物の流動性が低下するので好ましくない。水の量が35
重量部を超えると、硬化後の機械的特性が低下するので
好ましくない。
The amount of water used in the hydraulic composition of the present invention is preferably from 10 to 35 parts by weight, more preferably from 15 to 30 parts by weight, based on 100 parts by weight of cement. 10 water
If the amount is less than part by weight, kneading becomes difficult, and the fluidity of the hydraulic composition is undesirably reduced. 35 water
Exceeding the weight part is not preferred because the mechanical properties after curing deteriorate.

【0015】本発明の水硬性組成物は、有機繊維及び/
又は無機繊維を含むものである。有機繊維及び/又は無
機繊維を含むことによって、曲げ強度や破壊エネルギー
を向上させ、かつ、マイクロクラック(数百μm〜数mm
のクラック)の伝播を抑制して構造的欠陥を未然に防止
することができる。有機繊維としては、例えば、ビニロ
ン繊維(ポリビニルアルコール系合成繊維)、ポリプロ
ピレン繊維、ポリエチレン繊維、アラミド繊維、ポリア
ミド繊維(ナイロン繊維)、ポリエステル繊維、アクリ
ル繊維等が挙げられる。無機繊維としては、例えば、炭
素繊維、ガラス繊維等が挙げられる。有機繊維及び/又
は無機繊維の中でも、ビニロン繊維、ポリプロピレン繊
維、ポリエチレン繊維、アラミド繊維、炭素繊維等は、
強度に優れている点やコストや入手のし易さの点から好
ましいものである。有機繊維及び/又は無機繊維は、有
機繊維と無機繊維のいずれかを単独で用いてもよいし、
併用してもよい。また、有機繊維は、1種を単独で用い
てもよいし、2種以上を併用してもよい。無機繊維につ
いても同様である。
The hydraulic composition of the present invention comprises an organic fiber and / or
Or it contains an inorganic fiber. By including organic fibers and / or inorganic fibers, the bending strength and the breaking energy are improved, and micro cracks (several hundred μm to several mm
Cracks) can be suppressed and structural defects can be prevented from occurring. Examples of the organic fiber include vinylon fiber (polyvinyl alcohol-based synthetic fiber), polypropylene fiber, polyethylene fiber, aramid fiber, polyamide fiber (nylon fiber), polyester fiber, and acrylic fiber. Examples of the inorganic fiber include a carbon fiber and a glass fiber. Among organic fibers and / or inorganic fibers, vinylon fiber, polypropylene fiber, polyethylene fiber, aramid fiber, carbon fiber, etc.
It is preferable in terms of excellent strength, cost, and availability. The organic fiber and / or the inorganic fiber may use either the organic fiber or the inorganic fiber alone,
You may use together. One type of organic fiber may be used alone, or two or more types may be used in combination. The same applies to inorganic fibers.

【0016】有機繊維及び/又は無機繊維は、直径0.00
5〜1.0mm、長さ2〜30mmのものが好ましく、直径0.01〜
0.9mm、長さ4〜25mmのものが更に好ましく、直径0.05〜
0.8mm、長さ6〜20mmのものが特に好ましい。直径が0.00
5mm未満では、繊維自身の強度が不足し、張力を受けた
際に切れ易くなる。直径が1.0mmを超えると、同一配合
量での本数が少なくなり、曲げ強度、破壊エネルギー及
び靭性を向上させる効果が低下する。長さが2mm未満で
は、曲げ強度、破壊エネルギー及び靭性を向上させる効
果が低下する。長さが30mmを超えると、混練の際、ファ
イバーボールが生じ易くなる。有機繊維及び/又は無機
繊維の配合量(ただし、併用する場合はこれらの合計
量)は、水硬性組成物中、容積比(体積割合)で10%以
下が好ましく、0.1〜10%がより好ましく、2.0〜6.0%
が特に好ましい。有機繊維及び/又は無機繊維の配合量
が10%を超えると、混練時の作業性等を確保するために
単位水量が増大するので、硬化後の機械的特性が低下
し、好ましくない。
The organic fibers and / or inorganic fibers have a diameter of 0.00
5 ~ 1.0mm, length 2 ~ 30mm is preferable, diameter 0.01 ~
0.9 mm, more preferably a length of 4 to 25 mm, a diameter of 0.05 to
0.8 mm and a length of 6 to 20 mm are particularly preferred. 0.00 in diameter
If it is less than 5 mm, the strength of the fiber itself is insufficient, and the fiber is liable to break when subjected to tension. When the diameter is more than 1.0 mm, the number of pieces with the same compounding amount decreases, and the effect of improving bending strength, fracture energy and toughness decreases. When the length is less than 2 mm, the effect of improving the bending strength, the breaking energy and the toughness decreases. If the length exceeds 30 mm, fiber balls tend to be formed during kneading. The compounding amount of the organic fiber and / or the inorganic fiber (however, when used together, the total amount thereof) is preferably 10% or less by volume ratio (volume ratio) in the hydraulic composition, and more preferably 0.1 to 10%. , 2.0-6.0%
Is particularly preferred. If the compounding amount of the organic fibers and / or the inorganic fibers exceeds 10%, the unit water amount increases in order to ensure workability during kneading, and the mechanical properties after curing deteriorate, which is not preferable.

【0017】本発明の水硬性組成物は、平均粒度が1mm
以下の針状粒子及び/又は薄片状粒子を含むものであ
る。ここで、針状粒子及び/又は薄片状粒子の「粒度」
とは、これらの粒子の最大寸法の大きさ(特に、針状粒
子ではその長さ)である。針状粒子(繊維状粒子;微細
な針状物)としては、ウォラストナイト、ボーキサイ
ト、ムライト等が挙げられる。薄片状粒子(微細な薄片
状物)としては、マイカフレーク、タルクフレーク、バ
ーミキュライトフレーク、アルミナフレーク等が挙げら
れる。針状粒子及び/又は薄片状粒子は、針状粒子と薄
片状粒子のいずれかを単独で用いてもよいし、併用して
もよい。また、針状粒子は、1種を単独で用いてもよい
し、2種以上を併用してもよい。薄片状粒子についても
同様である。針状粒子及び/又は薄片状粒子の配合量
(ただし、併用する場合はこれらの合計量)は、セメン
トとポゾラン質微粉末の合計量(100%)に対して、容
積比で4.5%以下、好ましくは0.05〜4.5%、より好まし
くは0.1〜4.0%、特に好ましくは0.5〜3.5%である。針
状粒子及び/又は薄片状粒子を配合しない場合は、有機
繊維及び/又は無機繊維が分離し易く、材料分離抵抗性
が低下するので好ましくない。針状粒子及び/又は薄片
状粒子の配合量が、セメントとポゾラン質微粉末の合計
量に対して容積比で4.5%を超えると、水硬性組成物の
粘性が高くなって、流動性が低下し、型枠への打設等に
要する時間が長くなるので、好ましくない。なお、針状
粒子においては、硬化後の靭性を高める観点から、長さ
/直径の比で表される針状度が2以上のものを用いるの
が好ましい。
The hydraulic composition of the present invention has an average particle size of 1 mm
It contains the following needle-like particles and / or flaky particles. Here, the “particle size” of the acicular particles and / or the flaky particles
Is the size of the largest dimension of these particles (especially the length of acicular particles). Examples of the acicular particles (fibrous particles; fine acicular materials) include wollastonite, bauxite, and mullite. Examples of the flaky particles (fine flakes) include mica flakes, talc flakes, vermiculite flakes, and alumina flakes. As the acicular particles and / or flaky particles, either the acicular particles and the flaky particles may be used alone or in combination. In addition, one kind of the acicular particles may be used alone, or two or more kinds may be used in combination. The same applies to flaky particles. The blending amount of the acicular particles and / or flaky particles (however, when used together, the total amount of cement and pozzolanic fine powder (100%) is not more than 4.5% by volume, Preferably it is 0.05-4.5%, more preferably 0.1-4.0%, particularly preferably 0.5-3.5%. If the needle-like particles and / or the flaky particles are not blended, the organic fibers and / or the inorganic fibers are easily separated, and the resistance to material separation is undesirably reduced. If the compounding amount of the acicular particles and / or flaky particles exceeds 4.5% by volume relative to the total amount of the cement and the pozzolanic fine powder, the viscosity of the hydraulic composition increases and the fluidity decreases. However, the time required for the casting into the mold or the like becomes long, which is not preferable. From the viewpoint of enhancing the toughness after curing, it is preferable to use needle-like particles having a needle-likeness expressed by a length / diameter ratio of 2 or more.

【0018】本発明においては、硬化後の充填密度を高
める観点から、水硬性組成物に平均粒径3〜20μm、より
好ましくは平均粒径4〜10μmの無機粉末を含ませること
が好ましい。無機粉末としては、石英粉末、石灰石粉
末、炭化物粉末、窒化物粉末等が挙げられる。中でも、
石英粉末は、コストや硬化後の品質安定性の点から、好
ましいものである。石英粉末としては、石英、非晶質石
英、オパール質やクリストバライト質のシリカ含有粉末
等が挙げられる。無機粉末の配合量は、硬化前の流動性
や、硬化後の強度、耐久性等の観点から、セメント100
重量部に対して50重量部以下が好ましく、20〜35重量部
がより好ましい。
In the present invention, from the viewpoint of increasing the packing density after curing, the hydraulic composition preferably contains an inorganic powder having an average particle size of 3 to 20 μm, more preferably 4 to 10 μm. Examples of the inorganic powder include quartz powder, limestone powder, carbide powder, nitride powder and the like. Among them,
Quartz powder is preferable in terms of cost and quality stability after curing. Examples of the quartz powder include quartz, amorphous quartz, opal and cristobalite silica-containing powder, and the like. The amount of the inorganic powder may be selected from the viewpoints of fluidity before curing, strength after curing, durability, etc.
It is preferably 50 parts by weight or less, more preferably 20 to 35 parts by weight based on parts by weight.

【0019】本発明において、水硬性組成物の混練方法
は、特に限定されるものではなく、例えば、次の(1)
〜(3)のいずれかの方法を採用することができる。 (1)水、分散剤(減水剤)以外の材料を予め混合し、
混合物(プレミックス材)を調製した後、プレミックス
材、水、分散剤をミキサに投入し、混練する。 (2)水以外の材料(ただし、分散剤は、粉末タイプの
ものを使用する。)を予め混合し、混合物(プレミック
ス材)を調製した後、プレミックス材、水をミキサに投
入し、混練する。 (3)各材料を個別にミキサに投入し、混練する。
In the present invention, the method of kneading the hydraulic composition is not particularly limited, and for example, the following (1)
To (3). (1) Water and materials other than the dispersant (water reducing agent) are mixed in advance,
After preparing a mixture (premix material), the premix material, water, and a dispersant are charged into a mixer and kneaded. (2) Materials other than water (however, a powder type dispersant is used) are preliminarily mixed to prepare a mixture (premix material), and then the premix material and water are charged into a mixer. Knead. (3) Each material is individually charged into a mixer and kneaded.

【0020】混練に用いるミキサは、通常のコンクリー
トの混練に用いられるどのタイプのものでもよく、例え
ば、揺動型ミキサ、パンタイプミキサ、ニ軸練りミキサ
等が用いられる。
The mixer used for kneading may be of any type used for kneading ordinary concrete, such as an oscillating mixer, a pan-type mixer, or a twin-shaft mixer.

【0021】本発明の水硬性組成物の成形方法は、特に
限定されるものではなく、流し込み成形等の任意の方法
を採用することができる。また、養生方法も、特に限定
されるものではなく、気中養生、蒸気養生、オートクレ
ーブ養生等を行なうことができる。
The method for molding the hydraulic composition of the present invention is not particularly limited, and any method such as casting may be employed. Also, the curing method is not particularly limited, and air curing, steam curing, autoclave curing, and the like can be performed.

【0022】本発明の水硬性組成物は、「JIS R 5201
(セメントの物理試験方法)11.フロー試験」に記載さ
れる方法において、15回の落下運動を行なわないで測定
したフロー値が、200mm以上の値を示し、流動性に優れ
るものである。また、本発明の水硬性組成物は、材料分
離抵抗性にも優れるものである。したがって、現場打ち
で建築物等を構築する場合や、プレキャスト部材を製造
する場合において、本発明の水硬性組成物を用いれば、
水硬性組成物(コンクリート)の打設時間の短縮化や、
打設された水硬性組成物に加える振動の所要時間の短縮
化等を図ることができる。
[0022] The hydraulic composition of the present invention may be prepared as described in "JIS R 5201".
(Physical test method of cement) 11. The flow value measured in the method described in “11. Flow test” without performing the falling motion 15 times is 200 mm or more, and is excellent in fluidity. Further, the hydraulic composition of the present invention is also excellent in material separation resistance. Therefore, when constructing a building or the like by cast-in-place, or when manufacturing a precast member, if the hydraulic composition of the present invention is used,
Shortening the time for setting hydraulic composition (concrete),
It is possible to shorten the time required for vibration applied to the cast hydraulic composition and the like.

【0023】更に、本発明の水硬性組成物は、130MPa以
上、好ましくは140MPa以上、更に好ましくは150MPa以
上、特に好ましくは170MPa以上の圧縮強度を発現し、20
MPa以上、好ましくは22MPa以上、更に好ましくは23MPa
以上、特に好ましくは25MPa以上の曲げ強度を発現し、1
8kJ/m2以上、好ましくは21kJ/m2以上、特に好ましくは2
4kJ/m2以上の破壊エネルギーを有し、機械的特性に優れ
る。したがって、現場打ちで建築物等を構築する場合
や、プレキャスト部材を製造する場合において、水硬性
組成物の使用量が少なくなり、コストの削減、施工や運
搬における労力の軽減、利用空間の増大、耐久性の向上
等を実現することができる。
Furthermore, the hydraulic composition of the present invention exhibits a compressive strength of 130 MPa or more, preferably 140 MPa or more, more preferably 150 MPa or more, and particularly preferably 170 MPa or more.
MPa or more, preferably 22 MPa or more, more preferably 23 MPa
Above, particularly preferably exhibit a bending strength of 25 MPa or more, 1
8 kJ / m 2 or more, preferably 21kJ / m 2 or more, particularly preferably 2
It has a breaking energy of 4 kJ / m 2 or more and has excellent mechanical properties. Therefore, when constructing a building or the like by cast-in-place, or in the case of manufacturing a precast member, the amount of the hydraulic composition used is reduced, reducing costs, reducing labor in construction and transportation, increasing the use space, Improvements in durability and the like can be realized.

【0024】[0024]

【実施例】以下、実施例に基づいて本発明を説明する。 1.使用材料 以下に示す材料を使用した。 (1)セメント ;低熱ポルトランドセメント(太平洋セメント社製) (2)ポゾラン質微粉末; シリカフューム(平均粒径:0.7μm) (3)細骨材 ;珪砂5号(最大粒径:0.6mm以下) (4)有機繊維 ;ビニロン繊維(直径:0.3mm、長さ:12mm) ;アラミド繊維(直径:0.4mm、長さ:12mm) ;ポリプロピレン繊維(直径:0.2mm、長さ:9mm) (5)分散剤 ;ポリカルボン酸系高性能AE減水剤 (6)水 ;水道水 (7)無機粉末 ;石英粉末(平均粒径:7μm) (8)針状粒子 ;ウォラストナイト(平均長さ:0.3mm、長さ/直径の比:4)DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. 1. Materials used The following materials were used. (1) Cement; Low heat Portland cement (manufactured by Taiheiyo Cement Corporation) (2) Pozzolanic fine powder; silica fume (average particle size: 0.7 μm) (3) Fine aggregate: silica sand No. 5 (maximum particle size: 0.6 mm or less) (4) Organic fiber; vinylon fiber (diameter: 0.3 mm, length: 12 mm); aramid fiber (diameter: 0.4 mm, length: 12 mm); polypropylene fiber (diameter: 0.2 mm, length: 9 mm) (5) Dispersant: Polycarboxylic acid-based high-performance AE water reducing agent (6) Water: Tap water (7) Inorganic powder; Quartz powder (average particle size: 7 μm) (8) Acicular particles; Wollastonite (average length: 0.3) mm, length / diameter ratio: 4)

【0025】2.配合及び混練 [実施例1〜3、比較例1〜2]低熱ポルトランドセメ
ント100重量部、シリカフューム32.5重量部、細骨材120
重量部、高性能AE減水剤1.0重量部(固形分換算)、
水22重量部、ビニロン繊維4%(水硬性組成物中の体積
割合)、石英粉35重量部、及び表1に示す量のウォラス
トナイトをニ軸練りミキサに投入し、混練した。なお、
ウォラストナイトは、石英粉末の一部を置換する形で用
い、石英粉末との合計量が一定(35重量部)になるよう
にした。 [実施例4〜6、比較例3〜4]低熱ポルトランドセメ
ント100重量部、シリカフューム32.5重量部、細骨材120
重量部、高性能AE減水剤1.0重量部(固形分換算)、
水22重量部、アラミド繊維4%(水硬性組成物中の体積
割合)、石英粉末35重量部、及び表1に示す量のウォラ
ストナイトをニ軸練りミキサに投入し、混練した。な
お、ウォラストナイトは、石英粉末の一部を置換する形
で用い、石英粉末との合計量が一定(35重量部)になる
ようにした。
2. Mixing and kneading [Examples 1-3, Comparative Examples 1-2] 100 parts by weight of low heat Portland cement, 32.5 parts by weight of silica fume, fine aggregate 120
Parts by weight, 1.0 part by weight of high-performance AE water reducing agent (in terms of solid content),
22 parts by weight of water, 4% of vinylon fiber (volume ratio in the hydraulic composition), 35 parts by weight of quartz powder, and wollastonite in the amounts shown in Table 1 were put into a twin-screw kneading mixer and kneaded. In addition,
Wollastonite was used in such a manner that part of the quartz powder was replaced, so that the total amount of the wollastonite and the quartz powder was constant (35 parts by weight). Examples 4-6, Comparative Examples 3-4 Low heat Portland cement 100 parts by weight, silica fume 32.5 parts by weight, fine aggregate 120
Parts by weight, 1.0 part by weight of high-performance AE water reducing agent (in terms of solid content),
22 parts by weight of water, 4% of aramid fiber (volume ratio in the hydraulic composition), 35 parts by weight of quartz powder, and wollastonite in the amounts shown in Table 1 were put into a twin-screw kneading mixer and kneaded. The wollastonite was used in such a manner that part of the quartz powder was replaced, and the total amount of the wollastonite and the quartz powder was kept constant (35 parts by weight).

【0026】[実施例7〜9、比較例5〜6]低熱ポル
トランドセメント100重量部、シリカフューム32.5重量
部、細骨材120重量部、高性能AE減水剤1.0重量部(固
形分換算)、水22重量部、ポリプロピレン繊維4%(水
硬性組成物中の体積割合)、石英粉末35重量部、及び表
1に示す量のウォラストナイトをニ軸練りミキサに投入
し、混練した。なお、ウォラストナイトは、石英粉末の
一部を置換する形で用い、石英粉末との合計量が一定
(35重量部)になるようにした。
Examples 7 to 9, Comparative Examples 5 to 6 100 parts by weight of low heat Portland cement, 32.5 parts by weight of silica fume, 120 parts by weight of fine aggregate, 1.0 part by weight of high-performance AE water reducing agent (in terms of solid content), water 22 parts by weight, 4% of polypropylene fiber (volume ratio in the hydraulic composition), 35 parts by weight of quartz powder, and wollastonite in the amounts shown in Table 1 were charged into a twin-screw kneading mixer and kneaded. The wollastonite was used in such a manner that part of the quartz powder was replaced, and the total amount of the wollastonite and the quartz powder was kept constant (35 parts by weight).

【0027】[比較例7]低熱ポルトランドセメント10
0重量部、シリカフューム32.5重量部、細骨材120重量
部、高性能AE減水剤1.0重量部(固形分換算)、水22
重量部、石英粉末35重量部をニ軸練りミキサに投入し、
混練した。
Comparative Example 7 Low Heat Portland Cement 10
0 parts by weight, silica fume 32.5 parts by weight, fine aggregate 120 parts by weight, high-performance AE water reducing agent 1.0 part by weight (solid content conversion), water 22
Parts by weight, 35 parts by weight of quartz powder are charged into a twin-screw kneading mixer,
Kneaded.

【0028】3.評価 (1)フロー値 各水硬性組成物のフロー値を、「JIS R 5201(セメント
の物理試験方法)11.フロー試験」に記載される方法に
おいて、15回の落下運動を行なわないで測定した。 (2)材料分離の有無 上記(1)のフロー値の測定の際に、拡がった各水硬性
組成物を目視観察し、材料分離の有無を観察した。 (3)モルタル用Vロート流下時間 モルタル用のVロートを用いて、各水硬性組成物の流下
時間を測定した。流下時間が10〜30秒であれば、流動性
が良好である。 (4)施工性 下記(5)〜(7)の試験において、各水硬性組成物を
型枠に流し込む際の作業時間と流し込み易さ(作業性)
から、施工性を「○:良好」、「×:不良」で評価し
た。 (5)圧縮強度 各水硬性組成物をφ50×100mmの型枠に流し込み、20℃
で48時間湿空養生後、90℃で48時間蒸気養生した。得ら
れた硬化体の圧縮強度を、「JIS A 1108(コンクリート
の圧縮強度試験方法)」に準じて測定した。 (6)曲げ強度 各水硬性組成物を10×10×40cmの型枠に流し込み、20℃
で48時間湿空養生後、90℃で48時間蒸気養生した。得ら
れた硬化体の曲げ強度を、「JIS R 5201(セメントの物
理試験方法)」に準じて測定した。 (7)破壊エネルギー 各水硬性組成物を10×10×40cmの型枠に流し込み、20℃
で48時間湿空養生後、90℃で48時間蒸気養生した。得ら
れた硬化体の破壊エネルギーを、「RILEM 切欠き梁の三
点曲げ試験によるモルタルならびにコンクリートの破壊
エネルギーの測定(案)」に準じて測定した。上記
「3.評価(1)〜(7)」の試験結果を表1に示す。
3. Evaluation (1) Flow value The flow value of each hydraulic composition was measured in accordance with the method described in “JIS R 5201 (Physical test method for cement) 11. Flow test” without performing 15 falling movements. . (2) Presence or absence of material separation During the measurement of the flow value in the above (1), each spread hydraulic composition was visually observed, and the presence or absence of material separation was observed. (3) Falling time of mortar V funnel The falling time of each hydraulic composition was measured using a mortar V funnel. If the falling time is 10 to 30 seconds, the fluidity is good. (4) Workability In the following tests (5) to (7), the work time and ease of pouring each workable hydraulic composition into the mold (workability)
Therefore, the workability was evaluated as “○: good” and “×: poor”. (5) Compressive strength Each hydraulic composition is poured into a φ50 × 100 mm mold, and the temperature is 20 ° C.
And then steam-cured at 90 ° C. for 48 hours. The compressive strength of the obtained cured product was measured according to “JIS A 1108 (Method of testing compressive strength of concrete)”. (6) Flexural strength Each hydraulic composition is poured into a 10 × 10 × 40 cm formwork, and the temperature is 20 ° C.
And then steam-cured at 90 ° C. for 48 hours. The bending strength of the obtained cured product was measured according to “JIS R 5201 (physical test method for cement)”. (7) Breaking energy Each hydraulic composition is poured into a mold of 10 × 10 × 40 cm, and the temperature is 20 ° C.
And then steam-cured at 90 ° C. for 48 hours. The fracture energy of the obtained cured product was measured according to "Measurement of fracture energy of mortar and concrete by three-point bending test of RILEM notched beam (draft)". Table 1 shows the test results of "3. Evaluations (1) to (7)".

【0029】[0029]

【表1】 [Table 1]

【0030】表1中、比較例1、3、5では、針状粒子
(ウォラストナイト)を含まないため、材料分離が生じ
ている。比較例2、4、6では、針状粒子(ウォラスト
ナイト)の配合割合が、本発明で規定する数値範囲を超
えるため、流動性が低下し、施工性が劣る。比較例7で
は、有機繊維及び針状粒子(ウォラストナイト)を含ま
ないため、破壊エネルギーの値が小さい。
In Table 1, Comparative Examples 1, 3, and 5 do not contain needle-like particles (wollastonite), so that material separation occurs. In Comparative Examples 2, 4, and 6, since the compounding ratio of the acicular particles (wollastonite) exceeds the numerical range specified in the present invention, the fluidity is reduced and the workability is poor. Comparative Example 7 does not include organic fibers and needle-like particles (wollastonite), and thus has a small value of breaking energy.

【0031】[0031]

【発明の効果】本発明の水硬性組成物は、硬化前には、
流動性及び材料分離抵抗性に優れ、自己充填性を有する
ため、施工が容易であり、硬化後には、優れた機械的特
性(130MPa以上の圧縮強度、20MPa以上の曲げ強度、大
きな破壊エネルギー)を有する。
EFFECT OF THE INVENTION The hydraulic composition of the present invention, before curing,
It has excellent fluidity and resistance to material separation, and has self-filling properties, making it easy to apply. After curing, it has excellent mechanical properties (compressive strength of 130MPa or more, bending strength of 20MPa or more, large breaking energy). Have.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 16:06 C04B 16:06 A 14:38 14:38 A C 14:06) 14:06) Z 103:32 103:32 103:40 103:40 111:20 111:20 (72)発明者 片桐 誠 千葉県佐倉市大作2−4−2 太平洋セメ ント株式会社中央研究所内 Fターム(参考) 4G012 PA04 PA15 PA20 PA24 PB03 PB31 PC03 PC12 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C04B 16:06 C04B 16:06 A 14:38 14:38 AC 14:06) 14:06) Z 103 : 32 103: 32 103: 40 103: 40 111: 20 111: 20 (72) Inventor Makoto Katagiri 2-4-2 Daisaku, Sakura City, Chiba Pref. Pacific Research Institute F-term (reference) 4G012 PA04 PA15 PA20 PA24 PB03 PB31 PC03 PC12

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 セメント、ポゾラン質微粉末、粒径2mm
以下の細骨材、分散剤、有機繊維及び/又は無機繊維、
水、平均粒度1mm以下の針状粒子及び/又は薄片状粒子
を含む水硬性組成物であって、 前記針状粒子及び/又は薄片状粒子の配合量が、前記セ
メント及び前記ポゾラン質微粉末の合計量に対して、容
積比で4.5%以下である水硬性組成物。
1. Cement, pozzolanic fine powder, particle size 2mm
The following fine aggregate, dispersant, organic fibers and / or inorganic fibers,
Water, a hydraulic composition containing needle-like particles and / or flaky particles having an average particle size of 1 mm or less, wherein the compounding amount of the needle-like particles and / or flaky particles is the same as that of the cement and the pozzolanic fine powder. A hydraulic composition having a volume ratio of 4.5% or less based on the total amount.
【請求項2】 平均粒径3〜20μmの無機粉末を含む請求
項1に記載の水硬性組成物。
2. The hydraulic composition according to claim 1, comprising an inorganic powder having an average particle size of 3 to 20 μm.
【請求項3】 セメント100重量部、ポゾラン質微粉末5
〜50重量部、粒径2mm以下の細骨材50〜250重量部、分散
剤0.5〜4.0重量部(固形分換算)、有機繊維及び/又は
無機繊維、水10〜35重量部、平均粒度1mm以下の針状粒
子及び/又は薄片状粒子を含む水硬性組成物であって、 前記有機繊維及び/又は無機繊維の配合量が、当該水硬
性組成物中の容積比で0.1〜10%であり、かつ、前記針
状粒子及び/又は薄片状粒子の配合量が、前記セメント
及び前記ポゾラン質微粉末の合計量に対して、容積比で
0.05〜4.5%である水硬性組成物。
3. 100 parts by weight of cement, fine pozzolanic powder 5
50 to 250 parts by weight, fine aggregate having a particle diameter of 2 mm or less 50 to 250 parts by weight, dispersant 0.5 to 4.0 parts by weight (in terms of solid content), organic fibers and / or inorganic fibers, water 10 to 35 parts by weight, average particle size 1 mm A hydraulic composition containing the following needle-like particles and / or flaky particles, wherein the blending amount of the organic fibers and / or inorganic fibers is 0.1 to 10% by volume in the hydraulic composition. And, the compounding amount of the acicular particles and / or flaky particles is a volume ratio with respect to the total amount of the cement and the pozzolanic fine powder.
A hydraulic composition that is between 0.05 and 4.5%.
【請求項4】 前記セメント100重量部当たり50重量部
以下の配合量で、平均粒径3〜20μmの無機粉末を含む請
求項3に記載の水硬性組成物。
4. The hydraulic composition according to claim 3, wherein the composition contains inorganic powder having an average particle size of 3 to 20 μm in an amount of 50 parts by weight or less per 100 parts by weight of the cement.
【請求項5】 前記有機繊維及び/又は無機繊維が、直
径0.005〜1.0mm、長さ2〜30mmの寸法を有する請求項1
〜4のいずれかに記載の水硬性組成物。
5. The organic fiber and / or the inorganic fiber have a diameter of 0.005 to 1.0 mm and a length of 2 to 30 mm.
5. The hydraulic composition according to any one of items 1 to 4.
【請求項6】 前記有機繊維及び/又は無機繊維が、ビ
ニロン繊維、ポリプロピレン繊維、ポリエチレン繊維、
アラミド繊維、炭素繊維からなる群より選ばれる1種以
上からなる請求項1〜5のいずれかに記載の水硬性組成
物。
6. The organic fiber and / or the inorganic fiber are vinylon fiber, polypropylene fiber, polyethylene fiber,
The hydraulic composition according to any one of claims 1 to 5, comprising at least one selected from the group consisting of aramid fibers and carbon fibers.
【請求項7】 130MPa以上の圧縮強度、及び20MPa以上
の曲げ強度を有する請求項1〜6のいずれかに記載の水
硬性組成物。
7. The hydraulic composition according to claim 1, which has a compressive strength of 130 MPa or more and a bending strength of 20 MPa or more.
JP2000393700A 2000-12-25 2000-12-25 Hydraulic composition Expired - Fee Related JP4039801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000393700A JP4039801B2 (en) 2000-12-25 2000-12-25 Hydraulic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000393700A JP4039801B2 (en) 2000-12-25 2000-12-25 Hydraulic composition

Publications (2)

Publication Number Publication Date
JP2002193655A true JP2002193655A (en) 2002-07-10
JP4039801B2 JP4039801B2 (en) 2008-01-30

Family

ID=18859447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000393700A Expired - Fee Related JP4039801B2 (en) 2000-12-25 2000-12-25 Hydraulic composition

Country Status (1)

Country Link
JP (1) JP4039801B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112695A (en) * 2003-10-10 2005-04-28 Dps Bridge Works Co Ltd Concrete bar member
EP2257425A2 (en) * 2008-03-03 2010-12-08 United States Gypsum Company Process of manufacturing cement based armor panels
JP2011507787A (en) * 2007-12-21 2011-03-10 ラファルジュ Concrete mixture
JP2011513185A (en) * 2008-03-03 2011-04-28 ユナイテッド・ステイツ・ジプサム・カンパニー Self-leveling cementitious composition with controlled strength growth and ultra-high compressive strength at the time of curing and articles made therefrom
JP2016210672A (en) * 2015-04-28 2016-12-15 三菱マテリアル株式会社 High tensile strength mortar excellent in fatigue durability
JPWO2016175261A1 (en) * 2015-04-28 2018-02-22 株式会社クラレ Fiber-containing carbonated roof tile and method for producing the same
JP2021151937A (en) * 2020-03-24 2021-09-30 住友大阪セメント株式会社 Premixed mortar package and construction method of mortar composition
KR102382468B1 (en) * 2021-06-02 2022-04-05 김성진 Design panel for manufacture concrete composition and design panel manufacturing method using the same
KR102500610B1 (en) 2022-03-22 2023-02-17 표미애 Design panel manufacturing method using waste glass aggregate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228253A (en) * 1998-02-03 1999-08-24 Sekisui Chem Co Ltd High-strength hardened cement body
JPH11246255A (en) * 1997-11-27 1999-09-14 Bouygues Sa Metallic fiber reinforced concrete, cement matrix and premix thereof
JP2002514567A (en) * 1998-05-14 2002-05-21 ボイゲ Concrete, concrete cement matrix and premix with organic fibers dispersed in cement matrix

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11246255A (en) * 1997-11-27 1999-09-14 Bouygues Sa Metallic fiber reinforced concrete, cement matrix and premix thereof
JPH11228253A (en) * 1998-02-03 1999-08-24 Sekisui Chem Co Ltd High-strength hardened cement body
JP2002514567A (en) * 1998-05-14 2002-05-21 ボイゲ Concrete, concrete cement matrix and premix with organic fibers dispersed in cement matrix

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112695A (en) * 2003-10-10 2005-04-28 Dps Bridge Works Co Ltd Concrete bar member
JP2011507787A (en) * 2007-12-21 2011-03-10 ラファルジュ Concrete mixture
JP2015027939A (en) * 2008-03-03 2015-02-12 ユナイテッド・ステイツ・ジプサム・カンパニー Improved cementitious composition with controlled strength increase
JP2011513185A (en) * 2008-03-03 2011-04-28 ユナイテッド・ステイツ・ジプサム・カンパニー Self-leveling cementitious composition with controlled strength growth and ultra-high compressive strength at the time of curing and articles made therefrom
JP2011513186A (en) * 2008-03-03 2011-04-28 ユナイテッド・ステイツ・ジプサム・カンパニー Manufacturing process for cement-based armor panels
EP2257425A4 (en) * 2008-03-03 2014-01-01 United States Gypsum Co Process of manufacturing cement based armor panels
EP2257425A2 (en) * 2008-03-03 2010-12-08 United States Gypsum Company Process of manufacturing cement based armor panels
JP2016210672A (en) * 2015-04-28 2016-12-15 三菱マテリアル株式会社 High tensile strength mortar excellent in fatigue durability
JPWO2016175261A1 (en) * 2015-04-28 2018-02-22 株式会社クラレ Fiber-containing carbonated roof tile and method for producing the same
JP2021151937A (en) * 2020-03-24 2021-09-30 住友大阪セメント株式会社 Premixed mortar package and construction method of mortar composition
JP7441419B2 (en) 2020-03-24 2024-03-01 住友大阪セメント株式会社 Premix mortar packaging and construction method for mortar composition
KR102382468B1 (en) * 2021-06-02 2022-04-05 김성진 Design panel for manufacture concrete composition and design panel manufacturing method using the same
KR102500610B1 (en) 2022-03-22 2023-02-17 표미애 Design panel manufacturing method using waste glass aggregate
WO2023182767A1 (en) * 2022-03-22 2023-09-28 표미애 Method for manufacturing design panel by using recycled glass aggregate

Also Published As

Publication number Publication date
JP4039801B2 (en) 2008-01-30

Similar Documents

Publication Publication Date Title
KR100877026B1 (en) Hydraulic composition
JP3397775B2 (en) Hydraulic composition
JP3397774B2 (en) Hydraulic composition
JP5101355B2 (en) Cement composition
JP4039801B2 (en) Hydraulic composition
JP2002338324A (en) Hydraulic composition
JP2002348167A (en) Hydraulic composition
JP4298247B2 (en) High fluidity concrete
JP2002037653A (en) Cement slurry
JP4165992B2 (en) Hydraulic composition
JP2001220201A (en) Fiber reinforced concrete
JP4376409B2 (en) Joint joint material for post tension prestressed concrete plate
JP2004155623A (en) Prestressed concrete
JP4167787B2 (en) Composite material
JPS61178462A (en) High strength cement composition
JP2002285667A (en) Board for buried form
JP2001226160A (en) Ultrahigh strength cement hardened body
JP2001226958A (en) Steel pipe concrete pile
JP4230158B2 (en) Method for preparing mortar
JP5178554B2 (en) Cement composition
JP2001205581A (en) Surface plate
JP4526627B2 (en) Steel pipe filling concrete
JP2001213654A (en) Quick-setting mortar or concrete with ultra high strength
JP2001207442A (en) Sheet pile
JP2004224639A (en) Slab member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4039801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees