[go: up one dir, main page]

JP2002191942A - Method for waste water treatment - Google Patents

Method for waste water treatment

Info

Publication number
JP2002191942A
JP2002191942A JP2000391532A JP2000391532A JP2002191942A JP 2002191942 A JP2002191942 A JP 2002191942A JP 2000391532 A JP2000391532 A JP 2000391532A JP 2000391532 A JP2000391532 A JP 2000391532A JP 2002191942 A JP2002191942 A JP 2002191942A
Authority
JP
Japan
Prior art keywords
treatment
membrane
liquid
activated sludge
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000391532A
Other languages
Japanese (ja)
Other versions
JP4426088B2 (en
Inventor
Isamu Inoue
勇 井上
Masato Noguchi
真人 野口
Yoshiyasu Okaniwa
良安 岡庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2000391532A priority Critical patent/JP4426088B2/en
Publication of JP2002191942A publication Critical patent/JP2002191942A/en
Application granted granted Critical
Publication of JP4426088B2 publication Critical patent/JP4426088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for waste water treatment by which waste water treatment can be stably performed for a long time. SOLUTION: The present invention is characterized by using a flocculating agent containing at most 0.1 wt.% manganese as an iron type flocculating agent in the method for waste water treatment comprising a flocculating treatment process for performing flocculating treatment by adding the iron type flocculating agent into a liquid to be treated containing an activated sludge and a membrane separating treatment process for performing membrane separating treatment of the liquid to be treated in which the activated sludge obtained by flocculating treatment in the flocculating treatment process and a flocculated sludge are mixed. By this invention, even when the flocculating treatment is performed by adding the iron type flocculating agent into the liquid to be treated containing the activated sludge and the liquid to be treated in which the activated sludge obtained by flocculating treatment and the flocculated sludge are mixed is treated by means of membrane separation, formation of manganese oxide is enough suppressed on the surface of the membrane and it is possible to prevent fouling of the membrane from occurring for a long time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排水処理方法に係
り、より詳細には、活性汚泥を含む被処理液に鉄系凝集
剤を添加して膜分離処理を行う排水処理方法に関する。
The present invention relates to a wastewater treatment method, and more particularly, to a wastewater treatment method in which an iron-based flocculant is added to a liquid to be treated containing activated sludge to perform a membrane separation treatment.

【0002】[0002]

【従来技術】活性汚泥を含む被処理液を膜で固液分離す
る膜分離プロセスは、沈殿池が不要、曝気槽の汚泥濃度
が高められるなどのメリットを有することから、近年盛
んに利用されてきている。なかでも、COD成分を効率
良く除去し且つ膜のファウリング抑制を図るために、膜
分離に先立って、鉄系凝集剤を添加する排水処理方法が
よく用いられるようになっている(例えば特開平9−1
9700号公報、特開平10−128393号公報)。
2. Description of the Related Art A membrane separation process for solid-liquid separation of a liquid to be treated containing activated sludge by means of a membrane has advantages such as no need for a sedimentation basin and an increased sludge concentration in an aeration tank. ing. Among them, a wastewater treatment method in which an iron-based coagulant is added prior to membrane separation has been frequently used in order to efficiently remove COD components and to suppress fouling of the membrane (for example, see Japanese Patent Application Laid-Open No. HEI 9-163572). 9-1
9700, JP-A-10-128393).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述し
た従来の諸公報に記載の排水処理方法では、膜ファウリ
ングが十分に抑制されるとは言えず、長期間にわたって
安定した運転を行うことが不可能となり、膜の薬品洗浄
を頻繁に行う必要があった。
However, in the wastewater treatment methods described in the above-mentioned conventional gazettes, it cannot be said that membrane fouling is sufficiently suppressed, and it is difficult to perform stable operation for a long period of time. This has made it possible to frequently perform chemical cleaning of the membrane.

【0004】本発明は、上記事情に鑑みてなされたもの
であり、長期間にわたって安定して排水処理を行うこと
ができる排水処理方法を提供することを目的とする。
[0004] The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a wastewater treatment method capable of performing wastewater treatment stably for a long period of time.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記目的
を達成すべく、上記従来技術が有する問題の原因につい
て検討を行った。まず本発明者等は、膜ファウリング後
の膜の表面が黒くなっていることに気付き、この黒色物
質について分析を試み、この黒色物質が酸化マンガンで
あることを見出した。そして、本発明者等は、更にこの
酸化マンガンの生成源について検討した結果、その生成
源が、排水処理に通常用いられる鉄系凝集剤に不純物と
して含まれるマンガン(一般に1.2〜1.7重量%含
まれている)であることを見出し、本発明を完成するに
至ったものである。
Means for Solving the Problems In order to achieve the above object, the present inventors have studied the causes of the above-mentioned problems in the prior art. First, the present inventors noticed that the surface of the film after film fouling was black, tried analysis of this black substance, and found that this black substance was manganese oxide. As a result of further study on the source of manganese oxide, the present inventors have found that the source is manganese (generally 1.2 to 1.7) contained as an impurity in an iron-based coagulant usually used for wastewater treatment. % By weight), thereby completing the present invention.

【0006】即ち、本発明は、活性汚泥を含有する被処
理液に鉄系凝集剤を添加して凝集処理する凝集処理工程
と、凝集処理工程において凝集処理して得られた活性汚
泥と凝集汚泥とが混在する処理液を膜分離処理する膜分
離処理工程とを含む排水処理方法において、鉄系凝集剤
として、マンガンを0.1重量%以下含有するものを用
いることを特徴とする。
That is, the present invention provides a coagulation treatment step in which an iron-based coagulant is added to a liquid to be treated containing activated sludge, coagulation treatment, and activated sludge and coagulation sludge obtained by coagulation treatment in the coagulation treatment step. And a membrane separation treatment step of subjecting the treatment liquid to a membrane separation treatment step, wherein a manganese-containing coagulant containing 0.1% by weight or less of manganese is used.

【0007】この発明によれば、活性汚泥を含む被処理
液に鉄系凝集剤を添加して凝集処理し、凝集処理して得
られた活性汚泥と凝集汚泥とが混在する処理液を膜分離
処理しても、膜表面において酸化マンガンの生成が十分
に抑制され、長期間にわたって膜ファウリングを防止す
ることが可能となる。
According to the present invention, an iron-based coagulant is added to a liquid to be treated containing activated sludge to perform coagulation treatment, and a treatment liquid in which activated sludge obtained by coagulation treatment and coagulated sludge are mixed is subjected to membrane separation. Even if the treatment is performed, generation of manganese oxide on the film surface is sufficiently suppressed, and film fouling can be prevented for a long period of time.

【0008】本発明は、処理液のpHを5.2〜5.8
に調整する工程を更に含むことが好ましい。
According to the present invention, the pH of the processing solution is adjusted to 5.2 to 5.8.
It is preferable that the method further includes a step of adjusting the temperature.

【0009】処理液のpHを上記範囲に調整すること
で、上記pH範囲を外れた場合に比べて、より長期間に
わたって安定に膜分離処理を行うことができる。
By adjusting the pH of the treatment solution to the above range, the membrane separation treatment can be performed more stably for a longer period of time as compared with the case where the pH is out of the above range.

【0010】上記凝集処理工程において、活性汚泥に対
する水酸化鉄(Fe(OH)3)の比が0.1〜0.5
となるように鉄系凝集剤を添加することが好ましい。
In the coagulation treatment step, the ratio of iron hydroxide (Fe (OH) 3 ) to activated sludge is 0.1 to 0.5.
It is preferable to add an iron-based flocculant so that

【0011】この場合、活性汚泥に対する水酸化鉄の比
が上記範囲を外れた場合に比べて、より長期間にわたっ
て安定に膜分離処理を行うことができる。
In this case, the membrane separation treatment can be performed more stably for a longer period of time than when the ratio of iron hydroxide to activated sludge is out of the above range.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施形態について
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail.

【0013】図1は、本発明の排水処理方法を適用する
排水処理装置の一例を示すフロー図である。図1に示す
ように、この排水処理装置は、活性汚泥を収容する曝気
槽1を備えており、曝気槽1には、原水導入ラインL1
を経て原水が導入されるようになっている。曝気槽1内
には、散気管2が配設され、散気管2は空気供給ライン
L2を経て空気供給ブロワ3に接続されている。従っ
て、空気供給ブロワ3から空気供給ラインL2を経て散
気管2より活性汚泥に空気を供給することが可能となっ
ている。なお、曝気槽1では、散気管2より空気を間欠
的に導入することで硝化脱窒処理を1つの槽で行うこと
ができる。
FIG. 1 is a flowchart showing one example of a wastewater treatment apparatus to which the wastewater treatment method of the present invention is applied. As shown in FIG. 1, the wastewater treatment apparatus includes an aeration tank 1 for storing activated sludge, and the aeration tank 1 includes a raw water introduction line L1.
Raw water is introduced through the process. An air diffuser 2 is provided in the aeration tank 1, and the air diffuser 2 is connected to an air supply blower 3 via an air supply line L2. Therefore, air can be supplied from the air supply blower 3 to the activated sludge from the air diffuser 2 via the air supply line L2. In the aeration tank 1, the nitrification and denitrification treatment can be performed in one tank by intermittently introducing air from the air diffuser 2.

【0014】曝気槽1から排出される曝気処理液は、ラ
インL3を経て凝集槽4に導入される。凝集槽4の槽内
液は、攪拌機5により攪拌可能となっている。また、凝
集槽4には、pH計6が設置され、槽内液のpH値をモ
ニタ可能となっている。
The aeration treatment liquid discharged from the aeration tank 1 is introduced into the coagulation tank 4 via the line L3. The liquid in the coagulation tank 4 can be stirred by the stirrer 5. Further, a pH meter 6 is installed in the coagulation tank 4 so that the pH value of the liquid in the tank can be monitored.

【0015】凝集槽4から排出される凝集処理液は、ラ
インL4を経て膜分離槽7に導入される。膜分離槽7に
は、槽内液を固液分離する膜ユニット8が配設されてい
る。膜ユニット8においては、回転平膜、中空糸膜、浸
漬平膜等を使用することができ、膜の種類としては、例
えば限外ろ過膜、精密ろ過膜等のいずれも使用すること
ができる。膜ユニット8の下方には散気管9が配設され
ている。散気管9は、空気供給ラインL9を経て空気供
給ブロワ3に接続されている。膜ユニット8には、膜分
離処理液排出ラインL5が接続され、膜分離処理液排出
ラインL5には吸引ポンプ10が接続されている。そし
て、吸引ポンプ10を作動すると、膜ユニット8を経て
槽内液が吸引され、槽内液の固液分離が行われる。
The coagulation treatment liquid discharged from the coagulation tank 4 is introduced into the membrane separation tank 7 via the line L4. In the membrane separation tank 7, a membrane unit 8 for solid-liquid separation of the liquid in the tank is provided. In the membrane unit 8, a rotary flat membrane, a hollow fiber membrane, an immersion flat membrane, or the like can be used. As the type of the membrane, for example, any of an ultrafiltration membrane and a microfiltration membrane can be used. A diffuser 9 is provided below the membrane unit 8. The air diffuser 9 is connected to the air supply blower 3 via an air supply line L9. The membrane unit 8 is connected to a membrane separation treatment liquid discharge line L5, and the membrane separation treatment liquid discharge line L5 is connected to a suction pump 10. Then, when the suction pump 10 is operated, the liquid in the tank is sucked through the membrane unit 8 and solid-liquid separation of the liquid in the tank is performed.

【0016】また、膜分離槽7と曝気槽1とは返送ライ
ンL6によって接続され、返送ラインL6には返送ポン
プ11が設置されている。従って、膜分離槽7の槽内液
は、返送ラインL6を経て曝気槽1内に返送されるよう
になっている。
The membrane separation tank 7 and the aeration tank 1 are connected by a return line L6, and a return pump 11 is installed in the return line L6. Therefore, the liquid in the membrane separation tank 7 is returned to the aeration tank 1 via the return line L6.

【0017】次に、前述した構成の排水処理装置を用い
た排水処理方法について説明する。
Next, a wastewater treatment method using the wastewater treatment apparatus having the above-described configuration will be described.

【0018】曝気槽1には、原水導入ラインL1を経て
原水を導入する。一方、空気供給ブロワ3を作動し、空
気供給ラインL2及び散気管2を経て空気供給ブロワ3
より曝気槽1の槽内液に空気を供給し槽内液の連続曝気
を行う。
Raw water is introduced into the aeration tank 1 through a raw water introduction line L1. On the other hand, the air supply blower 3 is operated, and the air supply blower 3 is
More air is supplied to the liquid in the aeration tank 1 to continuously aerate the liquid in the tank.

【0019】凝集槽4には、ラインL3を経て活性汚泥
を含有する曝気処理液を導入する。凝集槽4の槽内液に
は、鉄系凝集剤を添加して凝集処理する(凝集処理工
程)。ここで、鉄系凝集剤としては、マンガンを0.1
重量%以下、好ましくは0・05重量%以下含有するも
のを用いる。マンガンの含有率を0.1重量%とするの
は、0.1重量%を超えると、後段の膜分離槽7におい
て膜表面に酸化マンガンが生成しやすくなり、短期間で
膜ファウリングが起こるからである。鉄系凝集剤として
は、上記含有率だけマンガンを含有するものであればよ
く、主として塩化第二鉄又はポリ硫酸鉄等を含有するも
のが用いられる。また、鉄系凝集剤の添加量は、活性汚
泥に対する水酸化鉄(Fe(OH)3)の重量比が0.
1〜0.5となるようにすることが好ましい。この場
合、上記範囲を外れた場合に比べて、膜ファウリングを
十分に抑制することができ、より長期間にわたって安定
して排水処理装置を運転することができる。更に、凝集
槽4においては、上記鉄系凝集剤の添加により、凝集槽
4内に凝集汚泥が生成され、被処理液中のCOD成分が
除去される。このとき、攪拌機5で槽内液を攪拌する
と、凝集汚泥が生成されやすくなる。
An aeration treatment liquid containing activated sludge is introduced into the flocculation tank 4 via a line L3. An iron-based coagulant is added to the liquid in the coagulation tank 4 to perform coagulation treatment (coagulation treatment step). Here, as the iron-based coagulant, manganese is added at 0.1%.
% Or less, preferably 0.05% by weight or less. When the content of manganese is set to 0.1% by weight, if it exceeds 0.1% by weight, manganese oxide is easily generated on the surface of the membrane in the subsequent membrane separation tank 7, and membrane fouling occurs in a short period of time. Because. The iron-based flocculant may be any one containing manganese at the above content, and one containing mainly ferric chloride or polysulfate is used. The amount of the iron-based coagulant added is such that the weight ratio of iron hydroxide (Fe (OH) 3 ) to activated sludge is 0.
It is preferable to set it to 1 to 0.5. In this case, the membrane fouling can be sufficiently suppressed as compared with the case where the value is out of the above range, and the wastewater treatment device can be stably operated for a longer period of time. Further, in the coagulation tank 4, the addition of the iron-based coagulant generates coagulated sludge in the coagulation tank 4, thereby removing the COD component in the liquid to be treated. At this time, when the liquid in the tank is stirred by the stirrer 5, coagulated sludge is easily generated.

【0020】また、凝集槽4においては、鉄系凝集剤添
加後の槽内液(処理液)のpHを5.2〜5.8に調整
することが好ましい。pHが5.2未満になると、酸性
が強すぎて活性汚泥による生物処理が不安定となり、C
OD成分等の除去効率が低下する傾向があり、pHが
5.8を超えると、鉄系凝集剤での溶解性有機物の除去
効果が低下し、後段の膜分離槽7で比較的短期間に膜フ
ァウリングが起こる傾向がある。なお、pHの調整は、
凝集槽4内に酸又はアルカリを添加することにより行う
ことができる。
In the coagulation tank 4, it is preferable to adjust the pH of the solution (treatment liquid) in the tank after the addition of the iron-based coagulant to 5.2 to 5.8. When the pH is less than 5.2, biological treatment with activated sludge becomes unstable due to too strong acidity,
The removal efficiency of OD components and the like tends to decrease. When the pH exceeds 5.8, the effect of removing soluble organic substances by the iron-based flocculant decreases, and the removal efficiency in the subsequent membrane separation tank 7 is relatively short. Membrane fouling tends to occur. In addition, pH adjustment,
It can be performed by adding an acid or an alkali to the coagulation tank 4.

【0021】膜分離槽7には、ラインL4を経て、活性
汚泥と凝集汚泥とが混在する凝集処理液を導入する。そ
して、吸引ポンプ10を作動し、膜分離槽7の槽内液を
膜ユニット8を経て吸引し、槽内液の固液分離を行う
(膜分離工程)。一方、空気供給ブロワ3を作動し、空
気供給ラインL9、散気管9を経て槽内液に空気を供給
する。これにより膜面が洗浄されるとともに活性汚泥が
好気性条件下に置かれる。こうして槽内液の固液分離を
行っても、凝集槽4で添加した鉄系凝集剤は、マンガン
を0.1重量%以下含有するものであり、マンガンを極
微量含んでいるにすぎないため、長期間にわたって、膜
面における酸化マンガンの生成が十分に抑制され、膜フ
ァウリングを十分に抑制することができる。よって、排
水処理装置を長期間にわたって安定して運転することが
できる。
The coagulation treatment liquid in which activated sludge and coagulated sludge are mixed is introduced into the membrane separation tank 7 via the line L4. Then, the suction pump 10 is operated to suck the liquid in the tank of the membrane separation tank 7 through the membrane unit 8 to perform solid-liquid separation of the liquid in the tank (membrane separation step). On the other hand, the air supply blower 3 is operated to supply air to the liquid in the tank via the air supply line L9 and the air diffuser 9. This cleans the membrane surface and places the activated sludge under aerobic conditions. Even if the liquid in the tank is subjected to solid-liquid separation, the iron-based flocculant added in the flocculation tank 4 contains manganese at 0.1% by weight or less and contains only a trace amount of manganese. For a long period of time, generation of manganese oxide on the film surface is sufficiently suppressed, and film fouling can be sufficiently suppressed. Therefore, the wastewater treatment device can be stably operated for a long period of time.

【0022】膜ユニット8を経て分離された清澄な膜分
離処理液は、膜分離処理液排出ラインL5を経て排出
し、槽内液の一部は、返送ポンプ11を作動し、返送ラ
インL6を経て曝気槽1に返送する。これにより活性汚
泥が曝気槽1に返送されるので、活性汚泥の有効利用が
図れる。
The clear membrane separation processing liquid separated through the membrane unit 8 is discharged through a membrane separation processing liquid discharge line L5, and a part of the liquid in the tank is operated by the return pump 11 to return the return line L6. After that, it is returned to the aeration tank 1. Thereby, the activated sludge is returned to the aeration tank 1, so that the activated sludge can be effectively used.

【0023】なお、本発明は、上記実施形態に限定され
るものではない。例えば上記実施形態では、曝気槽1に
おいて連続曝気を行っているが、原水が窒素化合物を多
く含んでいるような場合には、空気供給ブロワ3を間欠
的に作動することで曝気槽1にて硝化脱窒処理を行い、
窒素化合物を十分に除去するようにしてもよい。
The present invention is not limited to the above embodiment. For example, in the above-described embodiment, continuous aeration is performed in the aeration tank 1. However, when the raw water contains a large amount of nitrogen compounds, the air supply blower 3 is operated intermittently to allow the aeration tank 1 to operate. Perform nitrification denitrification treatment,
Nitrogen compounds may be sufficiently removed.

【0024】次に、本発明の内容を、実施例を用いて具
体的に説明する。
Next, the contents of the present invention will be specifically described using examples.

【0025】[0025]

【実施例】(実施例1)表1に示す組成を持つ合成下水
を水道水で300倍に希釈し、これを流入原水とした。
この流入原水を曝気槽に導入して、表2に示す条件で曝
気槽を運転した。そして、曝気槽から排出される活性汚
泥を含む液をNo.5Cろ紙でろ過し、そのろ液に、F
eCl3濃度が2重量%となるように、マンガンを0.
02重量%含有する鉄系凝集剤(新日本製鉄(株)製塩
化第二鉄溶液(低マンガン品))を添加して凝集処理を
行った。鉄系凝集剤添加後、0.1規定NaOH又は
0.1規定HClを用いてpH調整を行った。そして、
活性汚泥と凝集汚泥とが混在する液をマイクロモジュー
ル(三菱レーヨン(株)製)を用いてろ過し、pH値に
対する差圧上昇を測定し、各pHごとに差圧上昇の比較
を行った。結果を表3に示す。なお、マイクロモジュー
ルとしては、キャピラリーモジュールを使用した。ま
た、表3において、差圧値は、液10Lを1Lになるま
で、即ち液を9L吸引したときの差圧を25℃換算値で
示した。また、表3には、マイクロモジュールで吸引す
る前の液の水質も併記した。更に膜分離中はエアスクラ
ビングを行った。膜の種類、材質、孔径、透過流束、エ
アスクラビング条件は表2に示す通りとした。
EXAMPLES (Example 1) Synthetic sewage having the composition shown in Table 1 was diluted 300 times with tap water and used as inflow raw water.
This inflow raw water was introduced into the aeration tank, and the aeration tank was operated under the conditions shown in Table 2. The liquid containing the activated sludge discharged from the aeration tank was designated as No. Filter with 5C filter paper, and add F
Manganese is added in an amount of 0.1% so that the eCl 3 concentration becomes 2% by weight.
An iron-based coagulant (ferric chloride solution (low manganese) manufactured by Nippon Steel Corporation) containing 02% by weight was added to perform coagulation treatment. After the addition of the iron-based flocculant, the pH was adjusted using 0.1 N NaOH or 0.1 N HCl. And
The liquid in which the activated sludge and the coagulated sludge were mixed was filtered using a micro module (manufactured by Mitsubishi Rayon Co., Ltd.), and the increase in the differential pressure with respect to the pH value was measured, and the increase in the differential pressure was compared for each pH. Table 3 shows the results. Note that a capillary module was used as the micro module. Further, in Table 3, the differential pressure value was a value obtained by converting the pressure difference from 10 L of the liquid to 1 L, that is, the pressure difference when 9 L of the liquid was sucked, at 25 ° C. Table 3 also shows the water quality of the liquid before suction by the micromodule. Further, air scrubbing was performed during the membrane separation. The type, material, pore size, permeation flux and air scrubbing conditions of the membrane were as shown in Table 2.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】表3に示すように、pH4.5〜7.0の
範囲で凝集処理すると、マイクロモジュールで吸引する
前のTOC、COD(cr)濃度が十分に低減され、且つ9
Lろ過時の差圧も十分に小さくなることが分かった。特
にpH5.2〜5.8で凝集処理する場合には、9Lろ
過時の差圧が顕著に小さくなることが分かった。
As shown in Table 3, when the coagulation treatment is performed in the range of pH 4.5 to 7.0, the TOC and COD (cr) concentrations before suction by the micro module are sufficiently reduced, and
It was found that the differential pressure during L filtration was sufficiently small. In particular, when the coagulation treatment was performed at pH 5.2 to 5.8, it was found that the differential pressure during 9 L filtration was significantly reduced.

【0030】(比較例1)曝気槽に鉄系凝集剤を添加し
なかった以外は実施例1と同様にして合成下水の処理を
行い、9Lろ過時の差圧を測定した。その結果を、マイ
クロモジュールで吸引する前の水質とともに表3に示
す。表3に示すように、鉄系凝集剤を添加しない場合に
は、TOC、COD(cr)濃度が十分に低減されず、9L
ろ過時の差圧も相当大きくなることが分かった。
Comparative Example 1 Synthetic sewage treatment was carried out in the same manner as in Example 1 except that no iron-based coagulant was added to the aeration tank, and the differential pressure during 9 L filtration was measured. Table 3 shows the results together with the water quality before suction by the micromodule. As shown in Table 3, when the iron-based flocculant was not added, the TOC and COD (cr) concentrations were not sufficiently reduced, and 9 L
It was found that the pressure difference during filtration also became considerably large.

【0031】(実施例2)曝気槽内のpH及び活性汚泥
濃度を一定とし、鉄系凝集剤の添加量を、活性汚泥に対
する水酸化鉄(Fe(OH)3)の重量比が表4に示す
値となるように変更すると共に、曝気槽におけるBOD
負荷を0.8kg/m3・日、マイクロモジュールにお
ける膜の透過流束を1.0m/日とした以外は実施例1
と同様にして、合成下水の処理を行った。そして、10
00時間運転した時点で差圧を測定した。差圧の測定
は、表4に示す活性汚泥に対する水酸化鉄(Fe(O
H)3)の重量比のそれぞれの場合について行った。結
果を表4に示す。
Example 2 The pH and activated sludge concentration in the aeration tank were kept constant, and the amount of the iron-based coagulant added was determined according to the weight ratio of iron hydroxide (Fe (OH) 3 ) to the activated sludge. And the BOD in the aeration tank.
Example 1 except that the load was 0.8 kg / m 3 · day and the permeation flux of the membrane in the micromodule was 1.0 m / day.
In the same manner as in the above, the treatment of synthetic sewage was performed. And 10
The differential pressure was measured at the time of operation for 00 hours. The measurement of the differential pressure was carried out using the iron hydroxide (Fe (O
H) was performed for each case of the weight ratio of 3 ). Table 4 shows the results.

【0032】[0032]

【表4】 [Table 4]

【0033】表4に示す結果より、活性汚泥に対するF
e(OH)3の重量比を0.1〜0.5の範囲にする
と、より長時間にわたって差圧の上昇を抑制できること
が分かった。
From the results shown in Table 4, it is found that F
It was found that when the weight ratio of e (OH) 3 was in the range of 0.1 to 0.5, it was possible to suppress the increase in the differential pressure for a longer time.

【0034】(比較例2)鉄系凝集剤を添加しなかった
以外は実施例2と同様にして合成下水の処理を行った。
そして、1000時間運転した時点で差圧を測定した。
結果を表4に示す。
Comparative Example 2 Synthetic sewage treatment was carried out in the same manner as in Example 2 except that no iron-based coagulant was added.
Then, the differential pressure was measured at the time of operation for 1000 hours.
Table 4 shows the results.

【0035】表4に示す結果より、鉄系凝集剤を添加し
ないと、活性汚泥に対するFe(OH)3の重量比を
0.1〜0.5の範囲にする場合に比べて、比較的短時
間で差圧が上昇することが分かった。
From the results shown in Table 4, it can be seen that when the iron-based coagulant was not added, the weight ratio of Fe (OH) 3 to the activated sludge was relatively shorter than when the weight ratio was in the range of 0.1 to 0.5. It was found that the differential pressure increased with time.

【0036】(実施例3)合成下水で培養した活性汚泥
に鉄系凝集剤を添加し、これにより得られた活性汚泥と
凝集汚泥との混合汚泥を含む液の膜分離試験を図2に示
す膜セル試験装置を用いて実施した。
(Example 3) FIG. 2 shows a membrane separation test of a liquid containing mixed sludge of activated sludge and flocculated sludge obtained by adding an iron-based flocculant to activated sludge cultured in synthetic sewage. The test was performed using a membrane cell test apparatus.

【0037】ここで、膜セル試験装置について説明す
る。図2に示すように、膜セル試験装置は、容積8Lの
曝気槽12を有し、曝気槽12の内部には、ブロワ13
から空気導入ラインL7、散気管14を経て空気が導入
されるようになっている。曝気槽12には、pH計18
が設置され、曝気槽12の槽内液のpHをモニタ可能と
なっている。また、膜セル試験装置は、箱型の膜セル1
5を有しており、曝気槽12の槽内液は、膜セル15の
下方位置から導入され、膜セル15の内壁面に固定され
たポリオレフィンからなる平膜(公称孔径0.4μm、
大きさ2cm×25cm)16の表面を通過して膜セル
15の上方位置から排出されて曝気槽12に返送される
ようになっている。また、膜セル15には、ブロワ13
から空気導入ラインL8を経て空気が導入され、この空
気により平膜16のエアスクラビング(膜下断面積
(0.8cm×2cm)当り1.5Nm3/m2・分)が
行われるようになっている。なお、空気導入ラインL8
には流量計19が設置されている。更に、膜で分離され
た膜分離液はポンプ17により吸引されて曝気槽12に
返送されるようになっている。
Here, the membrane cell test apparatus will be described. As shown in FIG. 2, the membrane cell test apparatus has an aeration tank 12 having a volume of 8 L, and a blower 13 is provided inside the aeration tank 12.
From the air through the air introduction line L7 and the air diffuser 14. The aeration tank 12 has a pH meter 18
Is installed, and the pH of the liquid in the aeration tank 12 can be monitored. Further, the membrane cell test apparatus is a box-shaped membrane cell 1
5, and the liquid in the tank of the aeration tank 12 is introduced from a position below the membrane cell 15, and is a flat membrane made of polyolefin fixed to the inner wall surface of the membrane cell 15 (nominal pore diameter 0.4 μm,
After passing through the surface of a size 2 cm × 25 cm) 16, it is discharged from a position above the membrane cell 15 and returned to the aeration tank 12. Further, the membrane cell 15 includes a blower 13
Then, air is introduced through an air introduction line L8, and the air is used to perform air scrubbing of the flat membrane 16 (1.5 Nm 3 / m 2 · min per sectional area under the membrane (0.8 cm × 2 cm)). ing. The air introduction line L8
Is provided with a flow meter 19. Further, the membrane separation liquid separated by the membrane is sucked by the pump 17 and returned to the aeration tank 12.

【0038】このような膜セル試験装置において、曝気
槽12で生成される活性汚泥と凝集汚泥との混合汚泥を
含む液の膜分離試験を次のようにして行った。まず、曝
気槽12には、表1に示す組成の合成下水で培養した活
性汚泥を導入し、活性汚泥濃度は12,000mg/L
とした。活性汚泥には、0.02重量%のマンガンを含
有する鉄系凝集剤(新日本製鉄(株)製塩化第二鉄溶液
(低マンガン品))を、活性汚泥に対するFe(OH)
3の重量比が0.1になるように添加し、凝集剤添加後
の曝気槽12の槽内液のpHは0.1規定NaOH又は
1規定HClを用いて調整した。膜16の透過流束は
1.5m/日に調整した。膜分離試験中は、有機物負荷
は与えず、膜分離試験は、空曝気の条件で行った。そし
て、吸引差圧が10kPa、20kPaに到達した時間
を測定した。結果を表5に示す。
In such a membrane cell test apparatus, a membrane separation test of a liquid containing mixed sludge of activated sludge and coagulated sludge generated in the aeration tank 12 was performed as follows. First, activated sludge cultured with synthetic sewage having the composition shown in Table 1 was introduced into the aeration tank 12, and the activated sludge concentration was 12,000 mg / L.
And For the activated sludge, an iron-based flocculant containing 0.02% by weight of manganese (a ferric chloride solution (a low manganese product) manufactured by Nippon Steel Corporation) was added to Fe (OH) for the activated sludge.
3 was added so that the weight ratio became 0.1, and the pH of the solution in the aeration tank 12 after the addition of the flocculant was adjusted using 0.1 N NaOH or 1 N HCl. The permeation flux of the membrane 16 was adjusted to 1.5 m / day. During the membrane separation test, no organic substance load was applied, and the membrane separation test was performed under the condition of empty aeration. Then, the time when the suction differential pressure reached 10 kPa and 20 kPa was measured. Table 5 shows the results.

【0039】[0039]

【表5】 [Table 5]

【0040】(実施例4)図1に示す排水処理装置を用
いて、pH5.0〜6.0、SS400〜800mg/
L、BOD900〜1300mg/Lのビール工場排水
の処理を行った。このビール工場排水を原水として曝気
槽1に導入し、これを曝気槽1にてBOD容積負荷1.
0kg・BOD/m3・日で生物処理した。このときの
エアスクラビング条件は、膜下断面積当り1.5Nm3
/m2/分とした。この生物処理液を活性汚泥を残留さ
せたまま凝集槽4に導入し、凝集槽4に鉄系凝集剤を、
その濃度が流入原水(1L)を基準として250mg/
Lとなるように添加し、凝集槽4の槽内液を攪拌機5で
攪拌した。ここで、鉄系凝集剤としては、新日本製鉄
(株)製塩化第二鉄溶液(低マンガン品)を使用した。
また、凝集槽4の槽内液のpHは、pH計6をモニタし
ながら0.1規定NaOH又は0.1規定HClを添加
して所定の値になるように調整した。なお、凝集槽4に
おいては、1週間に一度MLSSを測定して、MLSS
が15,000mg/Lとなるように余剰汚泥を抜き出
した。膜分離槽7内の膜としては、表2に示す中空糸膜
を用い、膜の透過流束は、運転開始1ヶ月間は0.5m
3/m2/日とし、1ヶ月以降は1.0m3/m2/日とし
た。
Example 4 Using the wastewater treatment apparatus shown in FIG. 1, the pH was 5.0 to 6.0 and the SS was 400 to 800 mg /
L, BOD 900 to 1300 mg / L brewery effluent was treated. This beer factory effluent is introduced into the aeration tank 1 as raw water, and the BOD volume load 1.
Biological treatment was performed at 0 kg · BOD / m 3 · day. The air scrubbing condition at this time is 1.5 Nm 3 per under-film sectional area.
/ M 2 / min. This biological treatment liquid is introduced into the coagulation tank 4 with the activated sludge remaining, and the iron-based coagulant is
The concentration is 250 mg / l based on the inflowing raw water (1 L).
L, and the solution in the coagulation tank 4 was stirred by the stirrer 5. Here, as the iron-based coagulant, a ferric chloride solution (low manganese product) manufactured by Nippon Steel Corporation was used.
The pH of the solution in the coagulation tank 4 was adjusted to a predetermined value by adding 0.1 N NaOH or 0.1 N HCl while monitoring the pH meter 6. In the flocculation tank 4, the MLSS is measured once a week and the MLSS is measured.
The excess sludge was extracted so as to be 15,000 mg / L. The hollow fiber membrane shown in Table 2 was used as the membrane in the membrane separation tank 7, and the permeation flux of the membrane was 0.5 m for one month from the start of operation.
3 / m 2 / day, and 1.0 m 3 / m 2 / day after one month.

【0041】こうしてビール工場排水の処理を行い、凝
集槽4の槽内液のpHを4.8、5.5、6.0、7.
0にした場合の膜差圧の経時変化を調べた。結果を図3
に示す。図3に示す結果より、いずれのpHの場合も比
較的長時間にわたって差圧が一定となるが、pH5.5
の場合には差圧が一定である時間が特に長く、膜ファウ
リングをより十分に抑制できることが分かった。
In this way, the wastewater from the beer factory is treated, and the pH of the liquid in the coagulation tank 4 is adjusted to 4.8, 5.5, 6.0, and 7.0.
The change with time of the transmembrane pressure when it was set to 0 was examined. Fig. 3 shows the results.
Shown in From the results shown in FIG. 3, the differential pressure is constant for a relatively long time at any pH, but the pH is 5.5.
In the case of (1), it was found that the time during which the differential pressure was constant was particularly long, and that membrane fouling could be more sufficiently suppressed.

【0042】(実施例5)図2に示す膜セル試験装置を
用いて、表6に示す水質を持つ工場の生活排水を処理し
た。
Example 5 Using a membrane cell test apparatus shown in FIG. 2, domestic wastewater from a factory having the water quality shown in Table 6 was treated.

【0043】[0043]

【表6】 [Table 6]

【0044】上記工場の生活排水は次のようにして処理
した。まず、曝気槽12には、表1に示す合成下水で培
養した活性汚泥と工場の生活排水を導入し、活性汚泥濃
度を12,000mg/Lとした。曝気槽12の負荷条
件は0.8kg−BOD/m 3・日とした。活性汚泥に
は、マンガンを含有する鉄系凝集剤を、活性汚泥に対す
るFe(OH)3の重量比が0.2になるように添加
し、凝集剤添加後の曝気槽12の槽内液のpHは0.1
規定NaOH又は1規定HClを用いて5.5になるよ
うに調整した。また、膜の透過流束は1.0m/日に調
整した。
The domestic wastewater of the above factory is treated as follows.
did. First, the aeration tank 12 was cultivated with synthetic sewage shown in Table 1.
Nourish activated sludge and factory wastewater to introduce activated sludge
The degree was 12,000 mg / L. Load of aeration tank 12
The case is 0.8kg-BOD / m Three・ It was a day. Activated sludge
Uses iron-based flocculant containing manganese for activated sludge
Fe (OH)ThreeAdded so that the weight ratio becomes 0.2
The pH of the liquid in the aeration tank 12 after the addition of the flocculant is 0.1
5.5 with NaOH or 1N HCl
I adjusted it. The permeation flux of the membrane was adjusted to 1.0 m / day.
It was adjusted.

【0045】こうして工場の生活排水を処理し、週一
回、汚泥中の鉄分について分析し、活性汚泥に対するF
e(OH)3の比が0.2を維持するように鉄系凝集剤
を添加した。鉄系凝集剤としては、マンガンが差圧に与
える影響を調べるために、マンガン含有率の異なる2種
類の鉄系凝集剤(マンガン含有率がそれぞれ0.05重
量%、0.1重量%のもの)を用い、それぞれの鉄系凝
集剤ごとに3ヶ月運転時の吸引差圧(25℃換算値)を
測定した。なお、マンガン含有率が0.05重量%、
0.1重量%の鉄系凝集剤は、マンガン0.02重量%
含有品と1.6重量%含有品とを混合してマンガン含有
率を調整することにより得た。結果を図4の「○」で示
す。
The wastewater from the factory is treated in this manner, and once a week, the iron content in the sludge is analyzed.
An iron-based flocculant was added so that the ratio of e (OH) 3 was maintained at 0.2. In order to investigate the effect of manganese on the differential pressure, two types of iron-based coagulants with different manganese contents (those having a manganese content of 0.05% by weight and 0.1% by weight, respectively) were used. ), The suction differential pressure (converted value at 25 ° C.) during the operation for 3 months was measured for each iron-based flocculant. The manganese content is 0.05% by weight,
0.1% by weight of iron-based flocculant is 0.02% by weight of manganese
It was obtained by adjusting the manganese content by mixing the content and the 1.6 wt% content. The results are indicated by “○” in FIG.

【0046】(比較例3)鉄系凝集剤として、マンガン
含有率が0.3重量%、0.75重量%、1.0重量
%、1.6重量%のもの(マンガン0.02重量%含有
品と1.6重量%含有品とを混合してマンガン含有率を
調整することにより得た。)を用いた以外は実施例5と
同様にして工場の生活排水を処理した。そして、それぞ
れの鉄系凝集剤ごとに3ヶ月運転時の吸引差圧(25℃
換算値)を測定した。結果を図4の「●」で示す。
Comparative Example 3 As an iron-based coagulant, one having a manganese content of 0.3% by weight, 0.75% by weight, 1.0% by weight and 1.6% by weight (manganese 0.02% by weight) The wastewater from the factory was treated in the same manner as in Example 5 except that the manganese content was adjusted by mixing the content and the 1.6 wt% content.) Then, for each iron-based flocculant, the suction differential pressure during operation for 3 months (25 ° C.)
(Converted value) was measured. The results are indicated by “●” in FIG.

【0047】図4に示す結果より、実施例5の場合は、
3ヶ月運転時においても吸引差圧が十分に低くなってお
り、長期間にわたって安定して生活排水の処理が可能で
あるのに対し、比較例3の場合は、吸引差圧が実施例5
の場合の2〜3倍程度の大きさとなっており、短期間で
膜ファウリングを起こし、生活排水の処理を安定して行
えないことが分かった。
From the results shown in FIG. 4, in the case of the fifth embodiment,
The suction differential pressure is sufficiently low even during the three-month operation, and the treatment of domestic wastewater can be stably performed over a long period of time.
It was found that the size was about 2 to 3 times larger than that of the case, and membrane fouling occurred in a short period of time, so that it was not possible to stably treat domestic wastewater.

【0048】[0048]

【発明の効果】以上説明したように本発明の排水処理方
法によれば、活性汚泥を含む被処理液に鉄系凝集剤を添
加して凝集処理し、凝集処理して得られた処理液を膜分
離処理しても、膜表面において酸化マンガンの生成が十
分に抑制され、長期間にわたって膜ファウリングを防止
することが可能となる。従って、本発明によれば、排水
処理を長期間にわたって安定して行うことができる。
As described above, according to the wastewater treatment method of the present invention, an iron-based coagulant is added to a liquid to be treated containing activated sludge to perform a coagulation treatment, and the treatment liquid obtained by the coagulation treatment is treated. Even with the membrane separation treatment, the production of manganese oxide on the membrane surface is sufficiently suppressed, and membrane fouling can be prevented for a long period of time. Therefore, according to the present invention, the wastewater treatment can be stably performed over a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の排水処理方法を実施する排水処理装置
の一例を示すフロー図である。
FIG. 1 is a flowchart illustrating an example of a wastewater treatment apparatus that performs a wastewater treatment method of the present invention.

【図2】実施例3〜5、比較例3において使用する膜セ
ル試験装置を示すフロー図である。
FIG. 2 is a flowchart showing a membrane cell test apparatus used in Examples 3 to 5 and Comparative Example 3.

【図3】凝集pHと膜差圧との関係を示すグラフであ
る。
FIG. 3 is a graph showing the relationship between the aggregation pH and the membrane pressure difference.

【図4】凝集剤中のマンガン濃度と吸引差圧の大きさと
の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the manganese concentration in the flocculant and the magnitude of the suction differential pressure.

【符号の説明】[Explanation of symbols]

1,12…曝気槽、2,9,14…散気管、3,13…
ブロワ、4…凝集槽、7…膜分離槽、15…膜セル、1
6…平膜。
1,12 ... aeration tank, 2,9,14 ... aeration tube, 3,13 ...
Blower, 4 ... flocculation tank, 7 ... membrane separation tank, 15 ... membrane cell, 1
6 ... flat membrane.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/44 C02F 1/44 K 1/52 1/52 K 3/12 3/12 D S (72)発明者 岡庭 良安 東京都品川区北品川五丁目9番11号 住友 重機械工業株式会社内 Fターム(参考) 4D006 GA06 GA07 HA01 HA41 HA93 HA95 JA53A JA55A JA71 KA02 KA03 KA41 KA72 KB13 KB30 KD12 KD17 KE15P KE15Q MA01 MA03 PA01 PB08 PB24 PC64 4D015 BA04 BA11 BB06 BB13 CA02 DA13 DC04 EA04 EA06 EA13 EA17 EA37 FA25 4D028 AC01 AC09 BC01 BC17 BD08 BD11 BD17 BE02 CA09 CD01 4D062 BA04 BA11 BB06 BB13 CA02 DA13 DC04 EA04 EA06 EA13 EA17 EA37 FA25 Continuation of the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C02F 1/44 C02F 1/44 K 1/52 1/52 K 3/12 3/12 DS (72) Inventor Okanaba Ryoyasu 5-9-1, Kita-Shinagawa, Shinagawa-ku, Tokyo Sumitomo Heavy Industries, Ltd. F term (reference) 4D006 GA06 GA07 HA01 HA41 HA93 HA95 JA53A JA55A JA71 KA02 KA03 KA41 KA72 KB13 KB30 KD12 KD17 KE15P KE15Q MA01 MA03 PA01 PB08 PB24 PC64 4D015 BA04 BA11 BB06 BB13 CA02 DA13 DC04 EA04 EA06 EA13 EA17 EA37 FA25 4D028 AC01 AC09 BC01 BC17 BD08 BD11 BD17 BE02 CA09 CD01 4D062 BA04 BA11 BB06 BB13 CA02 DA13 DC04 EA04 EA13 EA13 EA17 EA13 EA17

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 活性汚泥を含有する被処理液に鉄系凝集
剤を添加して凝集処理する凝集処理工程と、 前記凝集処理工程において凝集処理して得られた活性汚
泥と凝集汚泥とが混在する処理液を膜分離処理する膜分
離工程とを含む排水処理方法において、 前記鉄系凝集剤として、マンガンを0.1重量%以下含
有するものを用いることを特徴とする排水処理方法。
1. An agglomeration treatment step in which an iron-based coagulant is added to a liquid to be treated containing activated sludge, and an aggregation treatment is performed, and the activated sludge obtained by the aggregation treatment in the aggregation treatment step and the aggregation sludge are mixed. A wastewater treatment method comprising a membrane separation step of subjecting a treatment liquid to be subjected to membrane separation, wherein the iron-based coagulant contains manganese at 0.1% by weight or less.
【請求項2】 前記処理液のpHを5.2〜5.8に調
整する工程を更に含むことを特徴とする請求項1に記載
の排水処理方法。
2. The wastewater treatment method according to claim 1, further comprising a step of adjusting the pH of the treatment liquid to 5.2 to 5.8.
【請求項3】 前記凝集処理工程において、前記活性汚
泥に対する水酸化鉄の重量比が0.1〜0.5となるよ
うに鉄系凝集剤を添加することを特徴とする請求項1又
は2に記載の排水処理方法。
3. An iron-based coagulant is added in the coagulation treatment step so that a weight ratio of iron hydroxide to the activated sludge is 0.1 to 0.5. A wastewater treatment method according to item 1.
JP2000391532A 2000-12-22 2000-12-22 Wastewater treatment method Expired - Fee Related JP4426088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000391532A JP4426088B2 (en) 2000-12-22 2000-12-22 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000391532A JP4426088B2 (en) 2000-12-22 2000-12-22 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2002191942A true JP2002191942A (en) 2002-07-10
JP4426088B2 JP4426088B2 (en) 2010-03-03

Family

ID=18857653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000391532A Expired - Fee Related JP4426088B2 (en) 2000-12-22 2000-12-22 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4426088B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2860169A1 (en) * 2003-09-30 2005-04-01 Degremont METHOD FOR PREVENTING CLOSURE OF FILTRATION MEMBRANES
WO2006009125A1 (en) * 2004-07-16 2006-01-26 Kuraray Co., Ltd. Method of wastewater treatment with excess sludge withdrawal reduced
JP2007000727A (en) * 2005-06-22 2007-01-11 Mitsubishi Rayon Eng Co Ltd Operation method of membrane separation activated sludge treatment equipment
JP2008168199A (en) * 2007-01-11 2008-07-24 Hitachi Ltd Membrane separation activated sludge apparatus and operation method thereof
JP2008200639A (en) * 2007-02-22 2008-09-04 Kurita Water Ind Ltd Biological treatment method of water containing organic matter
JP2009006209A (en) * 2007-06-26 2009-01-15 Toray Ind Inc Cleaning method of hollow fiber membrane module
JP2009160567A (en) * 2007-12-10 2009-07-23 Kobelco Eco-Solutions Co Ltd Biological treatment method and biological treatment apparatus
JP2009214082A (en) * 2008-03-13 2009-09-24 Kurita Water Ind Ltd Method and apparatus of biological treatment for organic material-containing water
JP2010029767A (en) * 2008-07-28 2010-02-12 Kurita Water Ind Ltd Method and apparatus for treating organic wastewater
EP1990318A4 (en) * 2006-01-25 2010-03-10 Kuraray Co METHOD FOR TREATING DRAINAGE WATER USING FASTENING MEDIUM
WO2013105421A1 (en) * 2012-01-11 2013-07-18 栗田工業株式会社 Reverse osmosis treatment process
KR101463987B1 (en) * 2005-08-02 2014-11-20 쿠리타 고교 가부시키가이샤 Treatment of Organic Wastewater

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2860169A1 (en) * 2003-09-30 2005-04-01 Degremont METHOD FOR PREVENTING CLOSURE OF FILTRATION MEMBRANES
WO2005032698A1 (en) * 2003-09-30 2005-04-14 Degremont Method for avoiding clogging of filtration membranes
AU2004277358B9 (en) * 2003-09-30 2010-10-07 Degremont Method for avoiding clogging of filtration membranes
AU2004277358B2 (en) * 2003-09-30 2010-08-19 Degremont Method for avoiding clogging of filtration membranes
CN100438956C (en) * 2003-09-30 2008-12-03 底格里蒙公司 Method for avoiding clogging of filtration membranes
JP4958551B2 (en) * 2004-07-16 2012-06-20 株式会社クラレ Wastewater treatment method with little excess sludge extraction
JPWO2006009125A1 (en) * 2004-07-16 2008-05-01 株式会社クラレ Wastewater treatment method with little excess sludge extraction
WO2006009125A1 (en) * 2004-07-16 2006-01-26 Kuraray Co., Ltd. Method of wastewater treatment with excess sludge withdrawal reduced
US7754081B2 (en) 2004-07-16 2010-07-13 Kuraray Co., Ltd. Method of wastewater treatment with excess sludge withdrawal reduced
JP2007000727A (en) * 2005-06-22 2007-01-11 Mitsubishi Rayon Eng Co Ltd Operation method of membrane separation activated sludge treatment equipment
KR101463987B1 (en) * 2005-08-02 2014-11-20 쿠리타 고교 가부시키가이샤 Treatment of Organic Wastewater
US7879239B2 (en) 2006-01-25 2011-02-01 Kuraray Co., Ltd. Wastewater treatment method using immobilized carrier
EP1990318A4 (en) * 2006-01-25 2010-03-10 Kuraray Co METHOD FOR TREATING DRAINAGE WATER USING FASTENING MEDIUM
JP2008168199A (en) * 2007-01-11 2008-07-24 Hitachi Ltd Membrane separation activated sludge apparatus and operation method thereof
JP2008200639A (en) * 2007-02-22 2008-09-04 Kurita Water Ind Ltd Biological treatment method of water containing organic matter
JP2009006209A (en) * 2007-06-26 2009-01-15 Toray Ind Inc Cleaning method of hollow fiber membrane module
JP2009160567A (en) * 2007-12-10 2009-07-23 Kobelco Eco-Solutions Co Ltd Biological treatment method and biological treatment apparatus
JP2009214082A (en) * 2008-03-13 2009-09-24 Kurita Water Ind Ltd Method and apparatus of biological treatment for organic material-containing water
JP2010029767A (en) * 2008-07-28 2010-02-12 Kurita Water Ind Ltd Method and apparatus for treating organic wastewater
WO2013105421A1 (en) * 2012-01-11 2013-07-18 栗田工業株式会社 Reverse osmosis treatment process
CN104039713A (en) * 2012-01-11 2014-09-10 栗田工业株式会社 Reverse osmosis treatment process
KR20140109867A (en) * 2012-01-11 2014-09-16 쿠리타 고교 가부시키가이샤 Reverse osmosis treatment process
JPWO2013105421A1 (en) * 2012-01-11 2015-05-11 栗田工業株式会社 Reverse osmosis processing method
KR102021627B1 (en) * 2012-01-11 2019-11-04 쿠리타 고교 가부시키가이샤 Reverse osmosis treatment process

Also Published As

Publication number Publication date
JP4426088B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
TWI459997B (en) Membrane separation method and membrane separation apparatus
TWI494281B (en) Organic drainage treatment device
KR101467476B1 (en) Method for biological processing of water containing organic material
KR101335186B1 (en) Wastewater treatment device and wastewater treatment method
JP4874231B2 (en) Water treatment system
JPH09314177A (en) Method and apparatus for treating organic waste water
JP4426088B2 (en) Wastewater treatment method
CN1907883B (en) Method for treating organic wastewater
WO2011039831A1 (en) Biotreatment method for water containing organic substance
JP5309760B2 (en) Organic wastewater treatment method and treatment apparatus
CN102510840B (en) Organic wastewater treatment method and treatment device
JP4632356B2 (en) Biological nitrogen removal method and system
JP2013240794A (en) Membrane separation activated sludge treatment apparatus, and membrane separation activated sludge treatment method
WO2019208532A1 (en) Water treatment method and water treatment apparatus
JP2010029768A (en) Method and apparatus for treating organic wastewater
JPH11239789A (en) Advanced method for water treatment
JPH0667520B2 (en) Human waste system treatment equipment
JPH03151100A (en) Treatment of organic sewage
JP2005230785A (en) Biological waste water treatment apparatus and biological waste water treatment method
JPH10211490A (en) Advanced water treatment method and apparatus
JP3229802B2 (en) Sewage treatment method and apparatus therefor
JP2002035554A (en) Water treatment method and water treatment device
JP2002292399A (en) Organic wastewater disposal equipment
JPH10137779A (en) Landfill leachate treatment equipment
JPH10216776A (en) Biological treatment of organic wastewater

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070628

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071011

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20071018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4426088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees