[go: up one dir, main page]

JP2002190301A - Electrode carbon material of nonaqueous-solvent secondary battery, and method for manufacturing the same - Google Patents

Electrode carbon material of nonaqueous-solvent secondary battery, and method for manufacturing the same

Info

Publication number
JP2002190301A
JP2002190301A JP2000389236A JP2000389236A JP2002190301A JP 2002190301 A JP2002190301 A JP 2002190301A JP 2000389236 A JP2000389236 A JP 2000389236A JP 2000389236 A JP2000389236 A JP 2000389236A JP 2002190301 A JP2002190301 A JP 2002190301A
Authority
JP
Japan
Prior art keywords
carbon material
electrode
carbon
secondary battery
organic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000389236A
Other languages
Japanese (ja)
Inventor
Ryuzo Kamimura
隆三 上村
Yasuhiko Osawa
康彦 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000389236A priority Critical patent/JP2002190301A/en
Publication of JP2002190301A publication Critical patent/JP2002190301A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode carbon material of a nonaqueous-solvent secondary battery having a high charge capacity, and to provide a method for manufacturing the same. SOLUTION: An electrode carbon material of a nonaqueous-solvent secondary battery has no diffraction peaks by X ray diffraction in (002) plane and (004) plane, and has a six-membered ring carbon structure in the carbon material, and is obtained by carbonizing an organic polymer material, in which at least a benzen ring structure is contained in the molecule, at a sintering temperature of 800 to 2,000 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水溶媒二次電池
の電極炭素材料およびその製造方法に関するものであ
る。詳しく述べると、高い充電容量を有する非水溶媒二
次電池の改良された負極用炭素材料およびその製造方法
に関するものである。
The present invention relates to an electrode carbon material for a non-aqueous solvent secondary battery and a method for producing the same. More specifically, the present invention relates to an improved carbon material for a negative electrode of a nonaqueous solvent secondary battery having a high charge capacity and a method for producing the same.

【0002】[0002]

【従来の技術】非水溶媒二次電池の負極として用いられ
る炭素材料には、(a)充放電容量が大きい、(b)放
電電位が低くかつ平坦性がよい、(c)サイクル特性が
よい、(d)充放電速度が速い、(e)充放電反応に伴
なう体積変化が小さい、(f)電極成形性に優れる、
(g)低価格である等の条件が望まれている。
2. Description of the Related Art Carbon materials used as negative electrodes of non-aqueous solvent secondary batteries include (a) large charge / discharge capacity, (b) low discharge potential and good flatness, and (c) good cycle characteristics. (D) a high charge / discharge rate, (e) a small change in volume accompanying a charge / discharge reaction, (f) excellent electrode formability,
(G) Conditions such as low cost are desired.

【0003】このような負電極用炭素材として、数多く
のものが知られている。例えば、(A)X線広角回折法
による(002)面の面間隔が(d002)がd002≦0.
336nmでかつ(B)X線小角乱法により求められる
相関長(IC)がIC>12nmの条件を満たすもの(特
開平9−265936号)、平均粒径が4〜40μmで
かつ波長5145Åのアルゴンイオンレーザー光を用い
たラマンスペクトル分析において、1570〜1620
cm-1の範囲に存在するピークの強度を、IA、135
0〜1370cm-1の範囲に存在するピークの強度をI
Bとしたとき、その比であるR値(=IB/IA)が
0.001〜0.07であり、かつ1570〜1620
cm-1に存在するピークの半値幅であるΔv値の大きさ
が14〜22であるリチウムイオン二次電池用としての
黒鉛材料(特開平11−25979号)等が知られてい
る。しかしながら、これらの負極の充電容量は、LiC
6という組成から求められる372Ah/kg(炭素基
準)という理論容量付近の容量しか得られず、未だ満足
すべきものではない。
Many such carbon materials for negative electrodes are known. For example, (A) the plane spacing of the (002) plane by the X-ray wide-angle diffraction method is (d 002 ) where d 002 ≦ 0
336nm and and (B) the correlation length obtained by small-angle X-ray scattering method (I C) is I C> 12 nm satisfy the condition of (JP-A-9-265936), an average particle size of 4~40μm and wavelength 5145Å Raman spectrum analysis using argon ion laser light of 1570-1620
The intensity of the peak present in the range of cm -1 was determined as IA, 135
The intensity of the peak existing in the range of 0 to 1370 cm -1 is represented by I
When B, the R value (= IB / IA), which is the ratio, is 0.001 to 0.07, and 1570 to 1620
A graphite material (Japanese Patent Laid-Open No. 11-25979) for a lithium ion secondary battery having a Δv value of 14 to 22 which is a half width of a peak existing at cm −1 is known. However, the charge capacity of these negative electrodes is LiC
A capacity near the theoretical capacity of 372 Ah / kg (based on carbon) determined from the composition of 6 was obtained, which is not yet satisfactory.

【0004】また、ハードカーボンを用いる技術につい
ては、例えば天然材をカーボン化して利用する方法が提
案されている(特開平10−284089号)。しかし
ながら、この方法では高充電容量は得られるものの、イ
ネ科タケ類を原料として使用するため、産業用として利
用する場合には自然破壊になりかねず、また資源的にも
不充分である。
[0004] As for the technology using hard carbon, for example, a method has been proposed in which natural materials are carbonized and used (Japanese Patent Laid-Open No. 10-284089). However, although a high charging capacity can be obtained by this method, the use of Poaceae bamboo as a raw material may cause natural destruction when used for industrial purposes, and is insufficient in terms of resources.

【0005】さらに、フェノール性水酸基を有する芳香
族化合物の炭素化物を利用した二次電池電極用炭素質材
料が提案されている(特開平10−223226号)。
しかしながら、その充電容量は660Ah/kg程度で
あり、満足すべき充電容量が得られるものではない。
Further, a carbonaceous material for a secondary battery electrode using a carbonized aromatic compound having a phenolic hydroxyl group has been proposed (JP-A-10-223226).
However, the charge capacity is about 660 Ah / kg, and a satisfactory charge capacity cannot be obtained.

【0006】[0006]

【発明が解決しようとする課題】したがって、本発明の
目的は、新規な非水溶媒二次電池の電極炭素材料および
その製造方法を提供することにある。
Accordingly, an object of the present invention is to provide a novel electrode carbon material for a non-aqueous solvent secondary battery and a method for producing the same.

【0007】本発明の他の目的は、700Ah/kg以
上という高い充電容量を有する非水溶媒二次電池の電極
炭素材料およびその製造方法を提供することにある。
Another object of the present invention is to provide an electrode carbon material for a non-aqueous solvent secondary battery having a high charge capacity of 700 Ah / kg or more and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】上記諸目的は、下記
(1)〜(14)により達成される。
The above objects are achieved by the following (1) to (14).

【0009】(1)X線回折による(002)面および
(004)面において回折ピークを有せず、かつ六員環
炭素構造を炭素材料中に有することを特徴とする水溶媒
二次電池の電極炭素材料。
(1) An aqueous solvent secondary battery characterized in that it has no diffraction peak on the (002) and (004) planes by X-ray diffraction and has a six-membered ring carbon structure in the carbon material. Electrode carbon material.

【0010】(2)波長514.5nmのアルゴンレー
ザーを用いたラマン分光分析において、1510〜16
80cm-1の範囲に存在するピークの面積をG、120
0〜1450cm-1の範囲に存在するピークの面積をD
としたとき、その比であるR値(R=D/G面積比)が
0.9以下である前記(1)に記載の電極炭素材料。 (3)ラマン分光分析によるGバンド半値幅が50〜1
50cm-1である前記(1)または(2)に記載の電極
炭素材料。 (4)該炭素材料中のグラファイト含有率が1重量%以
下である前記(1)〜(3)のいずれか一つに記載の電
極炭素材料。 (5)該炭素材料中の炭素含有率が99重量%以上であ
る前記(1)〜(4)のいずれか一つに記載の電極炭素
材料。 (6)分子中に少なくともベンゼン環構造を有する有機
高分子材料を炭素化したものである前記(1)〜(5)
のいずれか一つに記載の電極炭素材料。 (7)分子中に少なくともベンゼン環構造を有する有機
高分子材料を800〜2000℃の焼成温度で炭素化す
ることを特徴とする前記(1)〜(6)のいずれか一つ
に記載の非水溶媒二次電池の電極炭素材料の製造方法。 (8)該有機高分子材料中のベンゼン環含有率が80重
量%である前記(7)に記載の方法。 (9)該有機高分子材料は、炭素化する前に真空中また
は不活性ガス中で400〜600℃の温度で5〜10時
間仮焼成されてなる前記(7)または(8)に記載の方
法。 (10)該炭素化は102Pa以下の真空下に行なわれ
る前記(7)〜(9)のいずれか一つに記載の方法。 (11)前記1〜6のいずれか一つに記載の電極炭素材
料を用いたカーボン負極。 (12)前記11に記載のカーボン負極に、一般式Li
MO2で表わされる層状型結晶構造を有する複合酸化物
であって、Mが2種類の金属元素からなり、3d遷移金
属を少なくとも1種含み、かつ該2種類の金属元素の電
子数の差が奇数である複合酸化物からなる正極を組み合
わせたことを特徴とする二次電池。 (13)前記11に記載のカーボン負極に、一般式Li
x-1MO2で表わされる層状型結晶構造を有する複合酸化
物であって、Mが少なくともマンガンで、かつLiの欠
損量Xが0<X<1の有理数である複合酸化物からなる
正極を組み合わせたことを特徴とする二次電池。 (14)前記11に記載のカーボン負極に、一般式Li
α-1AαMnO2で表わされる層状型結晶構造を有する
複合酸化物であって、Aが少なくともアルカリ金属およ
びAgからなり、かつAの置換量αが0.03<α<
0.2である複合酸化物からなる正極を組み合わせたこ
とを特徴とする二次電池。
(2) In Raman spectroscopy using an argon laser having a wavelength of 514.5 nm, 1510 to 16
The area of the peak existing in the range of 80 cm -1 is G, 120
The area of the peak existing in the range of 0 to 1450 cm -1 is represented by D
The electrode carbon material according to (1), wherein the R value (R = D / G area ratio) is 0.9 or less. (3) G-band half width by Raman spectroscopy is 50 to 1.
The electrode carbon material according to the above (1) or (2), which is 50 cm -1 . (4) The electrode carbon material according to any one of the above (1) to (3), wherein the graphite content in the carbon material is 1% by weight or less. (5) The electrode carbon material according to any one of (1) to (4), wherein the carbon content in the carbon material is 99% by weight or more. (6) The above (1) to (5), wherein the organic polymer material having at least a benzene ring structure in the molecule is carbonized.
An electrode carbon material according to any one of the above. (7) The non-polymer according to any one of (1) to (6), wherein the organic polymer material having at least a benzene ring structure in the molecule is carbonized at a firing temperature of 800 to 2000 ° C. A method for producing an electrode carbon material for an aqueous solvent secondary battery. (8) The method according to (7), wherein the benzene ring content in the organic polymer material is 80% by weight. (9) The organic polymer material according to (7) or (8), wherein the organic polymer material is calcined in a vacuum or an inert gas at a temperature of 400 to 600 ° C. for 5 to 10 hours before carbonization. Method. (10) The method according to any one of (7) to (9), wherein the carbonization is performed under a vacuum of 10 2 Pa or less. (11) A carbon negative electrode using the electrode carbon material described in any one of (1) to (6) above. (12) The carbon negative electrode as described in 11 above, wherein a general formula Li
A composite oxide having a layered crystal structure represented by MO 2 , wherein M is composed of two types of metal elements, contains at least one type of 3d transition metal, and has a difference in the number of electrons between the two types of metal elements. A secondary battery characterized by combining an odd number of positive electrodes made of a composite oxide. (13) The carbon negative electrode as described in 11 above, wherein a general formula Li
A composite oxide having a layered crystal structure represented by x-1 MO 2 , wherein M is at least manganese and the amount of Li deficiency X is a rational number of 0 <X <1. A rechargeable battery characterized by being combined. (14) The carbon negative electrode as described in 11 above, wherein a general formula Li
A composite oxide having a layered crystal structure represented by α -1 AαMnO 2 , wherein A comprises at least an alkali metal and Ag, and the substitution amount α of A is 0.03 <α <
A secondary battery comprising a combination of a positive electrode made of a composite oxide of 0.2.

【0011】[0011]

【発明の実施形態】本発明による非水溶媒二次電池の電
極炭素材料は、X線回折による(002)面および(0
04)面における回折ピークを実質的に有していないこ
とが必須である。すなわち、実質的にグラファイト化し
ていないことが必須である。また、該電極炭素材料中に
六員環炭素構造を有していることが必要である。
BEST MODE FOR CARRYING OUT THE INVENTION The electrode carbon material of the non-aqueous solvent secondary battery according to the present invention has a (002) plane and (0
It is essential that the material does not substantially have a diffraction peak on the (04) plane. That is, it is essential that it is not substantially graphitized. Further, it is necessary that the electrode carbon material has a six-membered ring carbon structure.

【0012】また、波長514.5nmのアルゴンレー
ザーを用いてラマン分光分析を行なった場合に1510
〜1680cm-1の範囲に存在するピークの面積をG、
1200〜1450cm-1の範囲に存在するピークの面
積をRとしたとき、その比であるR値(R=D/G面積
比)が0.9以下、好ましくは0.4〜0.9であるも
のを用いる。すなわち、R値が0.4以上であればグラ
ファイト化が進みすぎることなくグラファイト含有率が
1重量%以下となり、充電容量が高容量となる。また、
R値が0.9を超えない方が、六員環炭素構造が炭素材
料中に多く存在し、同様に充電容量が高容量となる。
When Raman spectroscopy is performed using an argon laser having a wavelength of 514.5 nm, 1510
G is the area of the peak existing in the range of 161680 cm −1
When the area of the peak existing in the range of 1200 to 1450 cm -1 is R, the R value (R = D / G area ratio) is 0.9 or less, preferably 0.4 to 0.9. Use something. That is, if the R value is 0.4 or more, the graphite content becomes 1% by weight or less without excessive progress of the graphitization, and the charge capacity becomes high. Also,
When the R value does not exceed 0.9, the six-membered ring carbon structure is more present in the carbon material, and the charge capacity is similarly increased.

【0013】さらに、この時のラマン分光分析によるG
バンド半値幅は50〜150cm-1が望ましい。すわな
ち、該Gバンド半値幅は50cm-1以上であれば炭素材
料のグラファイト化が進みすぎることなく、グラファイ
ト含有率が1重量%を超えない、このため充電容量の高
いものを得られる。一方、該Gバンド半値幅が150c
-1であると、不純物の影響が小さく、やはり充電容量
の高いものが得られる。
Further, G by Raman spectroscopy at this time
The band half width is desirably 50 to 150 cm -1 . In other words, if the G band half-width is 50 cm -1 or more, the carbonization of the carbon material does not proceed excessively, and the graphite content does not exceed 1% by weight, so that a material having a high charge capacity can be obtained. On the other hand, the G band half width is 150c.
When m −1 , the effect of impurities is small and a product having a high charge capacity can be obtained.

【0014】また、該炭素材料中のグラファイト含有量
は1重量%以下である。すなわち、グラファイト含有率
が1重量%を以下であれば、充電容量の高いものが得ら
れる。さらに、該炭素材料中の炭素含有率は99%以上
である。すなわち、炭素含有率が99重量%以上では、
グラファイト含有率が高くならず充電容量の高いものが
得られるからである。
Further, the graphite content in the carbon material is 1% by weight or less. That is, when the graphite content is 1% by weight or less, a material having a high charge capacity can be obtained. Further, the carbon content in the carbon material is 99% or more. That is, when the carbon content is 99% by weight or more,
This is because a graphite having a high charge capacity can be obtained without increasing the graphite content.

【0015】本発明による非水溶媒二次電池の電極炭素
材料は、分子中に少なくともベンゼン環構造を有する有
機高分子材料を800〜2000℃の焼成温度で炭素化
することにより製造される。すなわち、非晶質6員環炭
素構造を炭素中に作製するものである。この非晶質6員
環炭素構造は、従のハードカーボンあるいはグラファイ
トそれぞれの特徴の中間を狙い、高充電容量の負極特性
が発現できることを見出したものである。
The electrode carbon material of the non-aqueous solvent secondary battery according to the present invention is produced by carbonizing an organic polymer material having at least a benzene ring structure in a molecule at a firing temperature of 800 to 2000 ° C. That is, an amorphous 6-membered ring carbon structure is formed in carbon. This amorphous six-membered ring carbon structure aims at a middle point between the characteristics of each of the conventional hard carbon and graphite, and has found that a negative electrode characteristic of high charge capacity can be exhibited.

【0016】原料として用いられる分子中に少なくとも
ベンゼン環を有する有機高分子材料としては、ビフェニ
ル、テルフェニル等のフェニル化合物よりなるポリフェ
ニレン樹脂、ナフタレン、アントラセン等の多環式芳香
族化合物なる芳香族炭化水素樹脂、ベンゼンとナフタレ
ンの共重合体、ポリフェニレンサルファイドやポリフェ
ニレンオキサイド等のフェニル基含有熱可塑性樹脂、フ
ェノール−ホルムアルデヒド樹脂、ポリフェニレンビニ
レン、ポリナフタレンビニレン等があり、これらの中か
ら1種または2種以上のものが使用される。
Examples of the organic polymer material having at least a benzene ring in the molecule used as a raw material include polyphenylene resins composed of phenyl compounds such as biphenyl and terphenyl, and aromatic hydrocarbons composed of polycyclic aromatic compounds such as naphthalene and anthracene. There are hydrogen resin, benzene and naphthalene copolymer, phenyl group-containing thermoplastic resin such as polyphenylene sulfide and polyphenylene oxide, phenol-formaldehyde resin, polyphenylene vinylene, polynaphthalene vinylene and the like. Is used.

【0017】これらの原料を、真空中または不活性ガス
中で400〜600℃の温度で蒸し焼きにし、5〜10
時間仮焼成を行なう。不活性ガスとしては、アルゴンガ
ス、ネオンガス、窒素ガス等から選択できるが、安価な
窒素ガスが望ましい。真空で仮焼成を行なう場合には、
その真空度は102Pa以下が望ましい。
These raw materials are steamed in a vacuum or an inert gas at a temperature of 400 to 600 ° C.
Temporary firing is performed for a time. The inert gas can be selected from argon gas, neon gas, nitrogen gas and the like, but inexpensive nitrogen gas is desirable. When pre-baking in vacuum,
The degree of vacuum is desirably 10 2 Pa or less.

【0018】このようにして得られた仮焼成品は、冷却
後、粗粉砕するのが望ましい。この仮焼成品を黒鉛製の
るつぼに供給したのち、真空電気炉にセットし、本焼成
を行なう。焼成温度は、800〜2000℃から選択で
きる。すなわち、800℃未満では炭素化するための焼
成時間が長くなりすぎ、一方、2000℃を超えると、
得られる炭素材料中のグラファイト含有率が増加する。
この場合の真空度は102Pa以下が望ましく、特に1
1Pa以下が好ましい。また、焼成時間については特
に限定しないが、3時間以上が望ましい。炭素材料中の
得られた炭素材料中の炭素含有率は99重量%以上が望
ましい。すなわち、99重量%を超えないと充放電時の
不可逆容量が大きくなり、電池としての負極材料として
は不適となる。このため、出発原料となるベンゼン環含
有有機高分子材料中には不純物が少ないことが必要であ
り、さらに焼成時にはカーボンに分解し易い材料が望ま
しい。
It is desirable that the calcined product obtained in this manner is coarsely pulverized after cooling. After supplying this calcined product to a crucible made of graphite, it is set in a vacuum electric furnace and subjected to main baking. The firing temperature can be selected from 800 to 2000 ° C. That is, when the temperature is lower than 800 ° C., the firing time for carbonization becomes too long.
The graphite content in the resulting carbon material increases.
In this case, the degree of vacuum is desirably 10 2 Pa or less,
It is preferably at most 0 1 Pa. The firing time is not particularly limited, but is preferably 3 hours or more. The carbon content in the obtained carbon material in the carbon material is desirably 99% by weight or more. That is, if the content does not exceed 99% by weight, the irreversible capacity at the time of charging and discharging increases, and the battery becomes unsuitable as a negative electrode material. For this reason, it is necessary that the organic polymer material containing a benzene ring, which is a starting material, has a small amount of impurities, and a material that is easily decomposed into carbon during firing is desirable.

【0019】焼成終了品の炭素含有率が低い場合、炭素
材料中の酸素等の不純物を取り除くため、水素還元処理
を行う。還元処理温度は800〜2000℃から選択で
きる。すなわち、800℃未満では、還元するための処
理時間が長くなり、一方、2000℃を超えると材料中
のグラファイト含有率が増加する。処理時間については
特に限定しないが5時間以上が望ましい。
When the carbon content of the calcined product is low, a hydrogen reduction treatment is performed to remove impurities such as oxygen in the carbon material. The reduction treatment temperature can be selected from 800 to 2000 ° C. In other words, when the temperature is lower than 800 ° C., the processing time for reduction becomes longer, while when it exceeds 2000 ° C., the graphite content in the material increases. The processing time is not particularly limited, but is preferably 5 hours or more.

【0020】得られた電極用炭素材料は、非水溶媒に対
して安定なバインダーが、該炭素材料に対して1〜20
質量%配合される。このような非水溶媒に対して安定な
バインダーとしては、ポリフッ化ビニリデン、ポリテト
ラフルオロエチレン、ポリエチレン、ポリプロピレン等
がある。また、必要に応じて、N−メチル−2−ピロリ
ドンの有機溶媒で粘度を調整する。これをホモジナイザ
ー等の分散機を用いてペースト状に攪拌し、真空脱泡等
の脱泡処理を行い、電極作製用塗布液を作製する。この
塗布液を、銅箔上にドクターブレード等を用いて塗布
し、120〜150℃の温度で乾燥することにより、非
水溶媒二次電池の炭素電極が得られる。
The obtained carbon material for an electrode has a binder which is stable to a non-aqueous solvent,
% By mass. Examples of such a non-aqueous solvent-stable binder include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, and polypropylene. If necessary, the viscosity is adjusted with an organic solvent of N-methyl-2-pyrrolidone. This is stirred into a paste using a disperser such as a homogenizer, and defoaming treatment such as vacuum defoaming is performed to prepare a coating liquid for electrode production. This coating solution is applied on a copper foil using a doctor blade or the like, and dried at a temperature of 120 to 150 ° C., whereby a carbon electrode of a nonaqueous solvent secondary battery is obtained.

【0021】この炭素電極を用いて、対極に表1および
表2に示す正極を配し、電解質として、LiPF6、L
iClO4、LiBF4、LiCH3SO4、LiAs
6、LiCl、LiBr、ニッケル酸リチウム等を用
い、電解液として、プロピレンカーボネート、エチレン
カーボネート、ジメチルカーボネート、ジエチルカーボ
ネート、ジエトキシエタン、γ−ブチロラクトン、テト
ラヒドロフラン、2−メチルテトラヒドロフラン、スル
ホラン、1,3−ジオキソラン等の有機溶媒から1種以
上選択し、必要に応じて混合溶媒を作製し、非水溶媒二
次電池を得るものである。
Using this carbon electrode, the positive electrodes shown in Tables 1 and 2 were arranged at the counter electrode, and LiPF 6 , L
iClO 4 , LiBF 4 , LiCH 3 SO 4 , LiAs
Using F 6 , LiCl, LiBr, lithium nickelate or the like, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, sulfolane, 1,3 -One or more organic solvents such as dioxolane are selected, and a mixed solvent is prepared as necessary to obtain a non-aqueous solvent secondary battery.

【0022】[0022]

【実施例】つぎに、実施例および比較例を挙げて、本発
明をさらに詳細に説明する。
Next, the present invention will be described in more detail with reference to Examples and Comparative Examples.

【0023】負極材1 硬化剤としてヘキサメチレンテトラミンを5重量%含有
する市販のフェノール−ホルムアルデヒド樹脂を150
℃で3時間硬化処理を行った後、窒素ガス雰囲気中で5
00℃の温度で5時間仮焼成を行った。冷却後粗粉砕
し、高温ホットプレス真空炉(株式会社島津製作所製)
にセットし、真空度101Paで5時間1200℃で本
焼成を行った。冷却後、アルミナ製ボールミルで1時間
粉砕し、平均粒径が約30μmの炭素粉末を作製した。
Negative electrode material 1 A commercially available phenol-formaldehyde resin containing 5% by weight of hexamethylenetetramine as a curing agent was used in 150 parts.
After curing for 3 hours at 5 ° C.,
Preliminary firing was performed at a temperature of 00 ° C. for 5 hours. After cooling, coarsely crushed, high temperature hot press vacuum furnace (manufactured by Shimadzu Corporation)
The main firing was performed at 1200 ° C. for 5 hours at a degree of vacuum of 10 1 Pa. After cooling, the mixture was pulverized with an alumina ball mill for 1 hour to prepare a carbon powder having an average particle size of about 30 μm.

【0024】負極材2 硬化剤としてヘキサメチレンテトラミンを5重量%含有
する市販のフェノール−ホルムアルデヒド樹脂を150
℃で3時間硬化処理を行った後、窒素ガス雰囲気中で5
00℃の温度で5時間仮焼成を行った。冷却後粗粉砕
し、高温ホットプレス真空炉(株式会社島津製作所製)
にセットし、真空度101Paで5時間800℃で本焼
成を行った。冷却後、アルミナ製ボールミルで1時間粉
砕し、平均粒径が約30μmの炭素粉末を作製した。こ
の粉末を石英管にセットし、水素ガスを流しながら80
0℃で8時間水素還元処理を行い炭素粉末を作製した。
Negative electrode material 2 A commercially available phenol-formaldehyde resin containing 5% by weight of hexamethylenetetramine as a curing agent was used in 150 parts.
After curing for 3 hours at 5 ° C.,
Preliminary firing was performed at a temperature of 00 ° C. for 5 hours. After cooling, coarsely crushed, high temperature hot press vacuum furnace (manufactured by Shimadzu Corporation)
The main firing was performed at 800 ° C. for 5 hours at a degree of vacuum of 10 1 Pa. After cooling, the mixture was pulverized with an alumina ball mill for 1 hour to prepare a carbon powder having an average particle size of about 30 μm. This powder is set in a quartz tube, and 80
Hydrogen reduction treatment was performed at 0 ° C. for 8 hours to produce a carbon powder.

【0025】負極材3 硬化剤としてヘキサメチレンテトラミンを5重量%含有
する市販のフェノール−ホルムアルデヒド樹脂を150
℃で3時間硬化処理を行った後、窒素ガス雰囲気中で5
00℃の温度で5時間仮焼成を行った。冷却後粗粉砕
し、高温ホットプレス真空炉(株式会社島津製作所製)
にセットし、真空度101Paで5時間2000℃で本
焼成を行った。冷却後、アルミナ製ボールミルで1時間
粉砕し、平均粒径が約30μmの炭素粉末を作製した。
Negative electrode material 3 A commercially available phenol-formaldehyde resin containing 5% by weight of hexamethylenetetramine as a curing agent was used in 150 parts.
After curing for 3 hours at 5 ° C.,
Preliminary firing was performed at a temperature of 00 ° C. for 5 hours. After cooling, coarsely crushed, high temperature hot press vacuum furnace (manufactured by Shimadzu Corporation)
, And baked at 2000 ° C. for 5 hours at a degree of vacuum of 10 1 Pa. After cooling, the mixture was pulverized with an alumina ball mill for 1 hour to prepare a carbon powder having an average particle size of about 30 μm.

【0026】負極材4 市販の自己縮合型フェノール−ホルムアルデヒド樹脂
(メタノール35重量%)を150℃で3時間硬化処理
を行った後、窒素ガス雰囲気中で500℃の温度で5時
間仮焼成を行った。冷却後粗粉砕し、高温ホットプレス
真空炉(株式会社島津製作所製)にセットし、真空度1
1Paで5時間1200℃で本焼成を行った。冷却
後、アルミナ製ボールミルで1時間粉砕し、平均粒径が
約30μmの炭素粉末を作製した。
Negative Electrode Material 4 A commercially available self-condensation type phenol-formaldehyde resin (35% by weight of methanol) is cured at 150 ° C. for 3 hours, and then calcined at 500 ° C. for 5 hours in a nitrogen gas atmosphere. Was. After cooling, coarsely pulverized, set in a high-temperature hot press vacuum furnace (manufactured by Shimadzu Corporation), and set the degree of vacuum to 1
Main firing was performed at 1200 ° C. for 5 hours at 0 1 Pa. After cooling, the mixture was pulverized with an alumina ball mill for 1 hour to prepare a carbon powder having an average particle size of about 30 μm.

【0027】負極材5 市販の自己縮合型フェノール−ホルムアルデヒド樹脂
(メタノール35重量%)を150℃で3時間硬化処理
を行った後、窒素ガス雰囲気中で500℃の温度で5時
間仮焼成を行った。冷却後粗粉砕し、高温ホットプレス
真空炉(株式会社島津製作所製)にセットし、真空度1
1Paで5時間800℃で本焼成を行った。冷却後、
アルミナ製ボールミルで1時間粉砕し、平均粒径が約3
0μmの炭素粉末を作製した。この粉末を石英管にセッ
トし、水素ガスを流しながら800℃で8時間水素還元
処理を行い炭素粉末を作製した。
Negative Electrode Material 5 A commercially available self-condensed phenol-formaldehyde resin (35% by weight of methanol) is cured at 150 ° C. for 3 hours, and then temporarily calcined at 500 ° C. for 5 hours in a nitrogen gas atmosphere. Was. After cooling, coarsely pulverized, set in a high-temperature hot press vacuum furnace (manufactured by Shimadzu Corporation), and set the degree of vacuum to 1
The main baking was performed at 800 ° C. for 5 hours at 0 1 Pa. After cooling,
Pulverized for 1 hour with an alumina ball mill, the average particle size is about 3
A 0 μm carbon powder was produced. This powder was set in a quartz tube, and subjected to a hydrogen reduction treatment at 800 ° C. for 8 hours while flowing hydrogen gas to produce a carbon powder.

【0028】負極材6 市販の自己縮合型フェノール−ホルムアルデヒド樹脂
(メタノール35重量%)を150℃で3時間硬化処理
を行った後、窒素ガス雰囲気中で500℃の温度で5時
間仮焼成を行った。冷却後粗粉砕し、高温ホットプレス
真空炉にセットし、真空度101Paで5時間2000
℃で本焼成を行った。冷却後、アルミナ製ボールミルで
1時間粉砕し、平均粒径が約30μmの炭素粉末を作製
した。
Negative electrode material 6 A commercially available self-condensation type phenol-formaldehyde resin (35% by weight of methanol) is cured at 150 ° C. for 3 hours, and then calcined at 500 ° C. for 5 hours in a nitrogen gas atmosphere. Was. After cooling, the mixture was roughly pulverized, set in a high-temperature hot press vacuum furnace, and 2,000 hours at a vacuum degree of 10 1 Pa for 5 hours.
The main sintering was performed at ℃. After cooling, the mixture was pulverized with an alumina ball mill for 1 hour to prepare a carbon powder having an average particle size of about 30 μm.

【0029】比較例1 市販のグラファイトをそのまま用いた。Comparative Example 1 Commercially available graphite was used as it was.

【0030】実施例1〜50 (電池の作成)表1および表2に示す遷移金属化合物を
原料に作成した正極活物質をそれぞれ、導電材としての
アセチレンブラックおよび結着剤としてのPTFE粉末
とを重量比で80:16:4の割合で混合した。この混
合物を2t/cm2の加圧力で直径12mmの円板状に
成形し、得られた成形物を150℃で16時間加熱処理
して正極体とした。
Examples 1 to 50 (Preparation of Battery) Positive electrode active materials prepared using the transition metal compounds shown in Tables 1 and 2 were mixed with acetylene black as a conductive material and PTFE powder as a binder. The mixture was mixed at a weight ratio of 80: 16: 4. This mixture was formed into a disk having a diameter of 12 mm with a pressure of 2 t / cm 2 , and the obtained formed product was heated at 150 ° C. for 16 hours to obtain a positive electrode body.

【0031】つぎに、上記負極材1〜6で得られた炭素
粉末に、呉羽化学工業株式会社製のKFポリマーを10
wt%になるよう添加し、Nメチル−2−ピロリドンで
粘度調整し、ホモジナイザーで回転数3000rpm×
30分間分散を行った。これを真空脱気後ドクターブレ
ードで膜厚が100ミクロンになるように銅箔上にコー
ティングし、150℃で10分間乾燥を行い、負極体と
した。
Next, KF polymer manufactured by Kureha Chemical Industry Co., Ltd. was added to the carbon powder obtained from the above negative electrode materials 1 to 6 for 10 times.
wt%, the viscosity is adjusted with N-methyl-2-pyrrolidone, and the number of revolutions is 3000 rpm with a homogenizer.
Dispersion was performed for 30 minutes. After vacuum degassing, this was coated on a copper foil with a doctor blade so that the film thickness became 100 μm, and dried at 150 ° C. for 10 minutes to obtain a negative electrode body.

【0032】電解液としては、エチレンカーボネートと
ジエチルカーボネートを体積比で1:1とした混合溶媒
に、LiPF6を1モル/リットルの濃度で溶解した溶
液を用いた。そして、セパレーターとしてはポリプロピ
レンフィルムを用いた。
As the electrolytic solution, a solution in which LiPF6 was dissolved at a concentration of 1 mol / liter in a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 was used. And a polypropylene film was used as a separator.

【0033】正極の集電体としてはSUS薄板を用い、
正極体および負極体はそれぞれリードを取り出したうえ
で間にセパレーターを介して対向させて素子となし、こ
の素子をばねで押さえながら2枚のPTFE板で挟ん
だ。さらに、素子の側面もPTFE板で覆って密閉さ
せ、密閉型非水溶媒電池セルとした。また、セルの作成
はアルゴン雰囲気下で行った。
An SUS thin plate was used as a current collector for the positive electrode.
The positive electrode body and the negative electrode body were each taken out of the lead, and were opposed to each other with a separator therebetween to form an element. The element was sandwiched between two PTFE plates while being held by a spring. Furthermore, the side surfaces of the element were also covered with a PTFE plate and sealed to obtain a sealed nonaqueous solvent battery cell. Further, the cell was prepared in an argon atmosphere.

【0034】(評価)上記の密閉型非水溶媒電池セルを
用い、室温雰囲気温度において、電圧4.3Vから2.
0Vまで0.5mA/cm2の定電流で充放電を繰り返
し行い、放電容量が初期放電容量の80%を下回るまで
のサイクル数を求め、その結果を下記表1および表2に
合せて示した。
(Evaluation) Using the above sealed non-aqueous solvent battery cell, a voltage of 4.3 V to 2.
The charge / discharge was repeated at a constant current of 0.5 mA / cm 2 until 0 V, and the number of cycles until the discharge capacity became less than 80% of the initial discharge capacity was obtained. The results are shown in Tables 1 and 2 below. .

【0035】また、電極炭素材料については、X線回折
測定、ラマン分光測定を行なった結果を表1および表2
に合せて示す。
With respect to the electrode carbon material, the results of X-ray diffraction measurement and Raman spectroscopy measurement are shown in Tables 1 and 2.
It is shown along with.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【発明の効果】以上説明してきたように、本発明による
非水溶媒二次電池の電極炭素材料は、有機高分子材料中
にベンゼン環を有する原料を800〜2000℃の低温
度で炭素化することにより、非晶質6員環炭素構造を炭
素中に作製するものである。この非晶質6員環炭素構造
は、従来のハードカーボンあるいはグラファイトそれぞ
れの特徴の中間を狙い、高充電容量の負極特性が発現で
きることができるものである。
As described above, the electrode carbon material of the non-aqueous solvent secondary battery according to the present invention is obtained by carbonizing a raw material having a benzene ring in an organic polymer material at a low temperature of 800 to 2000 ° C. Thereby, an amorphous 6-membered ring carbon structure is formed in carbon. This amorphous six-membered ring carbon structure aims at a middle point between the characteristics of the conventional hard carbon and graphite, and can exhibit negative electrode characteristics of high charge capacity.

【0039】また、Li含有マンガン層状複合酸化物よ
りなる正極との組み合わせにより、従来のリチウム二次
電池に比べて、サイクル耐久性に優れた高性能でコンパ
クトな電気自動車用電池が得られる。
In addition, by combining with a positive electrode composed of a Li-containing manganese layered composite oxide, a high-performance and compact electric vehicle battery excellent in cycle durability as compared with a conventional lithium secondary battery can be obtained.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ03 AK03 AL06 AM03 AM05 AM07 CJ02 DJ17 HJ01 HJ02 HJ04 HJ13 HJ14 HJ15 5H050 AA08 BA17 CA07 CA08 CA09 CB07 DA02 DA03 EA24 FA19 GA02 GA27 HA01 HA02 HA04 HA13 HA14 HA15 HA20  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H029 AJ03 AK03 AL06 AM03 AM05 AM07 CJ02 DJ17 HJ01 HJ02 HJ04 HJ13 HJ14 HJ15 5H050 AA08 BA17 CA07 CA08 CA09 CB07 DA02 DA03 EA24 FA19 GA02 GA27 HA01 HA02 HA04 HA13 HA14 HA15 HA20

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 X線回折による(002)面および(0
04)面において回折ピークを有せず、かつ六員環炭素
構造を炭素材料中に有することを特徴とする非水溶媒二
次電池の電極炭素材料。
1. The (002) plane and the (0) plane by X-ray diffraction
An electrode carbon material for a non-aqueous solvent secondary battery, wherein the carbon material does not have a diffraction peak on the 04) plane and has a six-membered ring carbon structure in the carbon material.
【請求項2】 波長514.5nmのアルゴンレーザー
を用いたラマン分光分析において、1510〜1680
cm-1の範囲に存在するピークの面積をG、1200〜
1450cm-1の範囲に存在するピークの面積をDとし
たとき、その比であるR値(R=D/G面積比)が0.
9以下である請求項1に記載の電極炭素材料。
2. Raman spectroscopy using an argon laser having a wavelength of 514.5 nm has a value of 1510 to 1680.
The area of the peak existing in the range of cm -1 is G,
When the area of a peak existing in the range of 1450 cm -1 is represented by D, the R value (R = D / G area ratio), which is the ratio, is 0.1.
The electrode carbon material according to claim 1, which is 9 or less.
【請求項3】 ラマン分光分析によるGバンド半値幅が
50〜150cm-1である請求項1または2に記載の電
極炭素材料
3. The electrode carbon material according to claim 1 , wherein the G band half-width by Raman spectroscopy is 50 to 150 cm −1.
【請求項4】 該炭素材料中のグラファイト含有率が1
重量%以下である請求項1〜3のいずれか一つに記載の
電極炭素材料。
4. The graphite content in the carbon material is 1
The electrode carbon material according to any one of claims 1 to 3, which is not more than weight%.
【請求項5】 該炭素材料中の炭素含有率が99重量%
以上である請求項1〜4のいずれか一つに記載の電極炭
素材料。
5. The carbon material has a carbon content of 99% by weight.
The electrode carbon material according to any one of claims 1 to 4, which is as described above.
【請求項6】 分子中に少なくともベンゼン環構造を有
する有機高分子材料を炭素化したものである請求項1〜
5のいずれか一つに記載の電極炭素材料。
6. An organic polymer material having at least a benzene ring structure in the molecule, which is obtained by carbonizing an organic polymer material.
6. The electrode carbon material according to any one of 5.
【請求項7】 分子中に少なくともベンゼン環構造を有
する有機高分子材料を800〜2000℃の焼成温度で
炭素化することを特徴とする請求項1〜6のいずれか一
つに記載の非水溶媒二次電池の電極炭素材料の製造方
法。
7. The non-aqueous solution according to claim 1, wherein the organic polymer material having at least a benzene ring structure in the molecule is carbonized at a firing temperature of 800 to 2000 ° C. A method for producing an electrode carbon material for a solvent secondary battery.
【請求項8】 該有機高分子材料中のベンゼン環含有率
が80重量%である請求項7に記載の方法。
8. The method according to claim 7, wherein the benzene ring content in the organic polymer material is 80% by weight.
【請求項9】 該有機高分子材料は、炭素化する前に真
空中または不活性ガス中で400〜600℃の温度で5
〜10時間仮焼成されてなる請求項7または8に記載の
方法。
9. The organic polymer material is heated at a temperature of 400 to 600 ° C. in a vacuum or an inert gas before carbonization.
The method according to claim 7 or 8, which is calcined for 10 to 10 hours.
【請求項10】 該炭素化は102Pa以下の真空下に
行なわれる請求項7〜9のいずれか一つに記載の方法。
10. The method according to claim 7, wherein the carbonization is performed under a vacuum of 10 2 Pa or less.
【請求項11】 請求項1〜6のいずれか一つに記載の
電極炭素材料を用いたカーボン負極。
11. A carbon negative electrode using the electrode carbon material according to claim 1.
【請求項12】 請求項11に記載のカーボン負極に、
一般式LiMO2で表わされる層状型結晶構造を有する
複合酸化物であって、Mが2種類の金属元素からなり、
3d遷移金属を少なくとも1種含み、かつ該2種類の金
属元素の電子数の差が奇数である複合酸化物からなる正
極を組み合わせたことを特徴とする二次電池。
12. The carbon negative electrode according to claim 11,
A composite oxide having a layered crystal structure represented by a general formula LiMO 2 , wherein M is composed of two kinds of metal elements,
A secondary battery comprising a combination of a positive electrode comprising a composite oxide containing at least one 3d transition metal and having an odd number of electrons between the two metal elements.
【請求項13】 請求項11に記載のカーボン負極に、
一般式Lix-1MO2で表わされる層状型結晶構造を有す
る複合酸化物であって、Mが少なくともマンガンで、か
つLiの欠損量Xが0<X<1の有理数である複合酸化
物からなる正極を組み合わせたことを特徴とする二次電
池。
13. The carbon negative electrode according to claim 11,
A composite oxide having a layered crystal structure represented by the general formula Li x-1 MO 2 , wherein M is at least manganese, and the amount X of Li is a rational number of 0 <X <1. A secondary battery comprising a combination of positive electrodes.
【請求項14】 請求項11に記載のカーボン負極に、
一般式Liα-1AαMnO2で表わされる層状型結晶構
造を有する複合酸化物であって、Aが少なくともアルカ
リ金属およびAgからなり、かつAの置換量αが0.0
3<α<0.2である複合酸化物からなる正極を組み合
わせたことを特徴とする二次電池。
14. The carbon negative electrode according to claim 11,
A composite oxide having a layered crystal structure represented by the general formula Liα -1 AαMnO 2 , wherein A comprises at least an alkali metal and Ag, and the substitution amount α of A is 0.0
A secondary battery in which a positive electrode made of a composite oxide satisfying 3 <α <0.2 is combined.
JP2000389236A 2000-12-21 2000-12-21 Electrode carbon material of nonaqueous-solvent secondary battery, and method for manufacturing the same Withdrawn JP2002190301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000389236A JP2002190301A (en) 2000-12-21 2000-12-21 Electrode carbon material of nonaqueous-solvent secondary battery, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000389236A JP2002190301A (en) 2000-12-21 2000-12-21 Electrode carbon material of nonaqueous-solvent secondary battery, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2002190301A true JP2002190301A (en) 2002-07-05

Family

ID=18855828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000389236A Withdrawn JP2002190301A (en) 2000-12-21 2000-12-21 Electrode carbon material of nonaqueous-solvent secondary battery, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2002190301A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086011A (en) * 2004-09-16 2006-03-30 Nec Corp Carbon material precursor, carbon material, negative electrode material for secondary battery using this, and nonaqueous electrolyte secondary battery
EP1837937A1 (en) * 2006-03-20 2007-09-26 National Institute of Advanced Industrial Science and Technology Lithium manganese-based composite oxide and method and method forpreparing the same
WO2016204278A1 (en) * 2015-06-19 2016-12-22 株式会社日本触媒 Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same
JP2017212102A (en) * 2016-05-25 2017-11-30 株式会社日本触媒 Nonaqueous electrolyte secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086011A (en) * 2004-09-16 2006-03-30 Nec Corp Carbon material precursor, carbon material, negative electrode material for secondary battery using this, and nonaqueous electrolyte secondary battery
EP1837937A1 (en) * 2006-03-20 2007-09-26 National Institute of Advanced Industrial Science and Technology Lithium manganese-based composite oxide and method and method forpreparing the same
US8021783B2 (en) 2006-03-20 2011-09-20 National Institute Of Advanced Industrial Science And Technology Lithium manganese-based composite oxide and method for preparing the same
WO2016204278A1 (en) * 2015-06-19 2016-12-22 株式会社日本触媒 Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same
JP2017212102A (en) * 2016-05-25 2017-11-30 株式会社日本触媒 Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP4215633B2 (en) Method for producing composite graphite particles
CN100422077C (en) Composite graphite particle, method for producing same, negative electrode material of lithium ion secondary battery using same, and lithium ion secondary battery
KR20060091486A (en) Cathode active material, manufacturing method thereof, and cathode and lithium battery employing the same
JP2004063321A (en) Composite graphite particles, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6858691B2 (en) Method for manufacturing carbonaceous-coated graphite particles for negative electrode materials of lithium-ion secondary batteries
CN107534148A (en) Ion secondary battery cathode material lithium carbonaceous coated graphite particle, lithium ion secondary battery negative pole and lithium rechargeable battery
JP2009295465A (en) Positive electrode active material for lithium secondary battery and manufacturing method
KR100975875B1 (en) Cathode active material, manufacturing method thereof, cathode and lithium battery employing the same
JP4014637B2 (en) Lithium ion secondary battery negative electrode material, manufacturing method thereof, and lithium ion secondary battery using the negative electrode material
JP6285350B2 (en) Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery
WO2010131473A1 (en) Anode active material for lithium secondary batteries, anode electrode for lithium secondary batteries, in-vehicle lithium secondary battery using said anode active material and anode electrode, and method for manufacturing an anode active material for lithium secondary batteries
JP4171259B2 (en) Method for producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP4354723B2 (en) Method for producing graphite particles
JP2004063411A (en) Composite graphite material, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7189109B2 (en) Method for producing carbonaceous-coated graphite particles
JPH0992284A (en) Graphite material for secondary battery electrode, method for producing the same, and secondary battery
JP2004059386A (en) Production method for carbon-coated graphite particle, carbon-coated graphite particle, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
JP5066132B2 (en) Polycrystalline mesocarbon microsphere graphitized product, negative electrode active material, and lithium ion secondary battery
JP2002190301A (en) Electrode carbon material of nonaqueous-solvent secondary battery, and method for manufacturing the same
WO2014057690A1 (en) Composite carbon particle and lithium-ion secondary cell using same
JPH10284081A (en) Lithium ion secondary battery
JP2017075091A (en) Free carbon graphitized particles and process for producing the same, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP5865273B2 (en) Method for producing graphite material
JP2020184476A (en) Method for manufacturing negative electrode active material for non-aqueous secondary batteries
JP4643165B2 (en) Carbon material, negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304