JP2002175794A - Lead-acid battery - Google Patents
Lead-acid batteryInfo
- Publication number
- JP2002175794A JP2002175794A JP2000374726A JP2000374726A JP2002175794A JP 2002175794 A JP2002175794 A JP 2002175794A JP 2000374726 A JP2000374726 A JP 2000374726A JP 2000374726 A JP2000374726 A JP 2000374726A JP 2002175794 A JP2002175794 A JP 2002175794A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- lead
- strap
- alloy
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002253 acid Substances 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 25
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 12
- 229910001370 Se alloy Inorganic materials 0.000 claims abstract description 7
- 229910052711 selenium Inorganic materials 0.000 claims abstract description 6
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 4
- 239000011669 selenium Substances 0.000 claims abstract 8
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims abstract 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims abstract 2
- 229910045601 alloy Inorganic materials 0.000 claims description 48
- 239000000956 alloy Substances 0.000 claims description 48
- 229910052791 calcium Inorganic materials 0.000 claims description 11
- 229910014474 Ca-Sn Inorganic materials 0.000 claims description 10
- 229910052718 tin Inorganic materials 0.000 claims description 6
- 238000003860 storage Methods 0.000 claims description 5
- 210000005069 ears Anatomy 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims 1
- 230000007797 corrosion Effects 0.000 abstract description 41
- 238000005260 corrosion Methods 0.000 abstract description 41
- 239000013078 crystal Substances 0.000 description 16
- 229910000967 As alloy Inorganic materials 0.000 description 13
- 230000000694 effects Effects 0.000 description 10
- 238000009783 overcharge test Methods 0.000 description 10
- 238000003466 welding Methods 0.000 description 10
- 238000005266 casting Methods 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 229910000978 Pb alloy Inorganic materials 0.000 description 8
- 238000007796 conventional method Methods 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 7
- 239000002003 electrode paste Substances 0.000 description 6
- 239000008151 electrolyte solution Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 230000005484 gravity Effects 0.000 description 6
- 229910000882 Ca alloy Inorganic materials 0.000 description 5
- 238000009749 continuous casting Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229910001245 Sb alloy Inorganic materials 0.000 description 3
- 229910001128 Sn alloy Inorganic materials 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000002250 progressing effect Effects 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910001339 C alloy Inorganic materials 0.000 description 1
- 229910020836 Sn-Ag Inorganic materials 0.000 description 1
- 229910020988 Sn—Ag Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000001999 grid alloy Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、鉛蓄電池に関す
る。[0001] The present invention relates to a lead storage battery.
【0002】[0002]
【従来の技術】従来、極板群の周囲に流動液が存在す
る、いわゆる開放型鉛蓄電池における集電体(格子)に
はPb−Sb系合金が用いられてきた。しかし、この合
金を用いた電池は自己放電や電解液の減少が大きく、メ
ンテナンス・フリータイプの電池に使用することは困難
であった。そこで、自己放電や電解液の減少を抑制し、
メンテナンス・フリー化を図るために、格子にはPb−
Ca系合金が用いられるようになった。2. Description of the Related Art Conventionally, a Pb-Sb-based alloy has been used as a current collector (grid) in a so-called open-type lead-acid battery in which a fluid exists around an electrode group. However, a battery using this alloy has a large self-discharge and a large decrease in electrolyte, and it has been difficult to use it in a maintenance-free type battery. Therefore, we suppress self-discharge and decrease of electrolyte solution,
Pb-
Ca-based alloys have come to be used.
【0003】しかし、正極格子にPb−Ca系合金を用
いると、深い放電にさらされたり、高温で使用されたり
すると、早期に寿命になることがあった。そのため、で
きるだけ自己放電や電解液の減少を抑制しながら、深い
放電や高温での使用にも耐えられるように、正極にPb
−Sb系合金格子を、負極にPb−Ca系合金格子を用
いた、いわゆるハイブリッド電池が製造されるようにな
った。[0003] However, when a Pb-Ca alloy is used for the positive electrode grid, the life may be shortened at an early stage when exposed to deep discharge or used at a high temperature. Therefore, the positive electrode should be made of Pb so that it can withstand deep discharge and use at high temperatures while minimizing self-discharge and decrease in electrolyte.
A so-called hybrid battery using an -Sb-based alloy lattice and a Pb-Ca-based alloy lattice as a negative electrode has been manufactured.
【0004】上述のように、正負極格子ともPb−Ca
系合金を用いた電池とハイブリッド電池とが、その用途
に合わせ、それぞれの性能を引き出すように使用されて
いる。[0004] As described above, both the positive and negative grids are composed of Pb-Ca.
A battery using a system alloy and a hybrid battery are used so as to bring out their respective performances according to the application.
【0005】これらの鉛蓄電池の格子体の耳部を接続す
るストラップを形成するための足し鉛には通常Pb−S
b系合金が用いられている。[0005] The lead for forming a strap connecting the ears of the grid of these lead-acid batteries is usually Pb-S
A b-based alloy is used.
【0006】また、格子体の耳部とストラップ形成用足
し鉛とを溶接する方法としては、おもに次の2つの方法
がある。[0006] There are mainly two methods for welding the lugs of the lattice and the lead for forming the strap.
【0007】一つは、キャスト・オン・ストラップ(C
ast on Strap、COS)と呼ばれる方法
で、これは、ストラップの形状を彫り込んだ鋳型に溶融
した足し鉛合金を注ぎ込み、そこへ耳を入れ、その後、
足し鉛合金を冷却・凝固させることによって耳部と足し
鉛とを溶接すると同時にストラップを形成するものであ
る。One is a cast-on-strap (C)
In a method called as on strap (COS), this involves pouring molten lead alloy into a mold engraving the shape of the strap, placing an ear there,
By cooling and solidifying the additional lead alloy, the ear portion and the additional lead are welded to each other and a strap is formed at the same time.
【0008】もう一つは、櫛型のストラップ形成用治具
に耳部をはめ込み、ついでこの治具で形成された凹部に
Pb―Sb系合金の足し鉛をガスバーナ等で溶融しなが
ら流し込み、耳を溶融しながら耳部と足し鉛とを溶接す
ると同時にストラップを形成するものである。The other is to fit the lugs into a comb-shaped jig for forming a strap, and then pour the lead of a Pb-Sb-based alloy into a recess formed by the jig while melting it with a gas burner or the like. And welding the ears and the lead while melting, while simultaneously forming a strap.
【0009】[0009]
【発明が解決しようとする課題】Pb−Sb系合金から
なる格子の耳部とPb−Sb系合金からなる足し鉛とを
溶接する際には、耳部と足し鉛との合金組成が類似して
おり、特に問題はなかった。しかし、Pb−Ca系合金
からなる格子耳部とPb−Sb系合金からなる足し鉛と
を溶接しようとすると、Caが非常に酸化されやすいこ
とや、耳部と足し鉛との溶接界面付近に腐食されやす
い、CaとSbとの化合物が生成する等によって、スト
ラップが早期に腐食され、電池が寿命に到ることがあっ
た。When welding the lugs of the lattice made of the Pb-Sb alloy and the lead made of the Pb-Sb alloy, the alloy compositions of the lugs and the lead are similar. Had no particular problems. However, when attempting to weld a lattice lug made of a Pb-Ca alloy and a lead made of a Pb-Sb-based alloy, Ca is very easily oxidized, and the vicinity of a welding interface between the lug and the lead is increased. In some cases, the strap is corroded at an early stage due to the fact that the compound is easily corroded, a compound of Ca and Sb is generated, and the battery reaches its end of life.
【0010】CaとSbとの化合物が生成する等によっ
て、正極ストラップが早期に腐食される問題について
は、本願発明者らは、特公平3−73985号公報、特
公平3−73986号公報では、SbとCaとの化合物
の生成を抑制するためにストラップにおけるCa量をS
b量に対して一定量以下に抑制することを提案した。ま
た、特開平6−52845号公報では、Pb−Ca系合
金格子体のCa量をより一層低減することが提案されて
いる。Regarding the problem that the positive electrode strap is corroded at an early stage due to the formation of a compound of Ca and Sb, the inventors of the present application disclose in Japanese Patent Publication Nos. 3-73985 and 3-73986. In order to suppress the formation of a compound of Sb and Ca, the amount of Ca
It has been proposed to suppress the amount of b to a certain amount or less. Japanese Patent Application Laid-Open No. 6-52845 proposes to further reduce the amount of Ca in a Pb-Ca based alloy lattice.
【0011】これらの方法によってCa量が少なくな
り、腐食されやすいCaとSbとの化合物の生成量を少
なくすることができた。しかし、耳の一部が溶融し、耳
に含まれるSnが多少混入するものの、ストラップ中の
主な合金組成はPb−Sb−As合金であった。この合
金は、結晶粒が大きいため、ストラップが腐食され始め
ると、結晶粒界に沿って深く腐食が進行し、早期に電池
寿命に到るという問題があった。By these methods, the amount of Ca was reduced, and the amount of the compound of Ca and Sb which was easily corroded was reduced. However, the main alloy composition in the strap was a Pb-Sb-As alloy, although a part of the ear was melted and Sn contained in the ear was mixed in to some extent. Since this alloy has large crystal grains, there is a problem that when the strap starts to corrode, the corrosion progresses deeply along the crystal grain boundaries, thereby shortening the battery life.
【0012】本発明の課題は、このような腐食を解決す
るもので、Pb−Ca系合金を用いた格子体の耳部とP
b−Sb系合金を用いた足し鉛とを溶接してストラップ
を形成する場合に、CaとSbとの化合物によるストラ
ップの腐食を抑制するだけでなく、Pb−Sb―As系
合金の大きな結晶粒による、粒界に沿った深い腐食の進
行をも抑制し、耐食性の優れたストラップを提供するこ
とにある。An object of the present invention is to solve such a corrosion.
When a strap is formed by welding an additional lead using a b-Sb alloy, not only the corrosion of the strap due to the compound of Ca and Sb is suppressed, but also a large crystal grain of the Pb-Sb-As alloy. Accordingly, it is an object of the present invention to provide a strap excellent in corrosion resistance by suppressing the progress of deep corrosion along grain boundaries.
【0013】さらに、近年、たとえば自動車用電池で
は、エンジンや鉛蓄電池を充電するオールタネータの高
出力化、電装品の多様化、空力抵抗低減のためのスラン
ト・ノーズの採用等によって、エンジンルーム内の温度
が高くなってきている。このような高温での厳しい使用
環境下では、ストラップが腐食されやすくなるだけでな
く、正極格子も腐食されやすくなる。このことは、特
に、正極にPb−Ca系合金を使用する際に問題となる
ことがあるが、高温での耐食性にすぐれたPb−Ca系
合金を正極格子に採用し、耐食性に優れたストラップと
併用することによって、より一層、信頼性の高い、長寿
命の鉛蓄電池を提供することができる。In recent years, for example, in the case of automobile batteries, the output of the alternator for charging the engine and the lead storage battery has been increased, the variety of electrical components has been increased, and the use of slant nose for reducing aerodynamic drag has led to an increase in the engine room. The temperature is getting higher. Under a severe use environment at such a high temperature, not only the strap is easily corroded, but also the positive electrode grid is easily corroded. This may be a problem particularly when a Pb-Ca alloy is used for the positive electrode. However, a Pb-Ca alloy having excellent corrosion resistance at high temperatures is used for the positive electrode grid, and a strap having excellent corrosion resistance is used. When used together, a more reliable and long-life lead-acid battery can be provided.
【0014】なお、ストラップ腐食は正極ストラップだ
けでなく、負極ストラップでも発生する。一般的に、鉛
蓄電池では負極は充電されれば金属鉛になり、腐食され
ないはずであるが、何らかの理由で電解液面が低下し、
負極ストラップが電解液から露出した場合、あるいは電
解液中であっても小さな隙間等、電解液が十分補給され
ない場合には、充電しても金属鉛に還元されず、腐食が
進行するものと思われる。Incidentally, strap corrosion occurs not only in the positive electrode strap but also in the negative electrode strap. Generally, in a lead-acid battery, the negative electrode becomes metallic lead when charged, and should not be corroded, but for some reason, the electrolyte level drops,
If the negative electrode strap is exposed from the electrolytic solution, or if the electrolytic solution is not sufficiently replenished, such as in a small gap even in the electrolytic solution, it will not be reduced to metallic lead even when charged, and corrosion will proceed. It is.
【0015】[0015]
【課題を解決するための手段】上記課題を解決するた
め、請求項1に記載の発明の鉛蓄電池では、キャスト・
オン・ストラップ法によって極板耳部を接続するストラ
ップを形成するための足し鉛として、Sbを1.7〜
3.5質量%、Asを0.1〜0.3質量%、Seを
0.007〜0.03質量%含むPb−Sb−As−S
e系合金を用いたことを特徴とする。In order to solve the above-mentioned problems, a lead-acid storage battery according to the first aspect of the present invention uses a cast battery.
As an additional lead for forming a strap for connecting the electrode plate ears by the on-strap method, Sb is 1.7 to 1.7.
Pb-Sb-As-S containing 3.5% by mass, 0.1 to 0.3% by mass of As, and 0.007 to 0.03% by mass of Se
It is characterized by using an e-based alloy.
【0016】請求項2に記載の発明では、請求項1に記
載の鉛蓄電池において、前記Pb−Sb−As−Se系
合金が、Snを0.02〜0.1質量%含むものであ
る。According to a second aspect of the present invention, in the lead-acid battery according to the first aspect, the Pb-Sb-As-Se alloy contains 0.02 to 0.1% by mass of Sn.
【0017】請求項3に記載の発明では、請求項1また
は2に記載の鉛蓄電池において、正極格子がCaを0.
025〜0.065質量%、Snを0.75〜2.0質
量%含み、残部がPbからなり、負極格子がCaを0.
025〜0.065質量%、Snを0.25〜2.0質
量%含み、残部がPbからなるものである。According to a third aspect of the present invention, in the lead-acid battery according to the first or second aspect, the positive electrode grid contains Ca in an amount of 0.
025 to 0.065% by mass, 0.75 to 2.0% by mass of Sn, the balance being Pb, and the negative electrode lattice containing Ca in an amount of 0.25% by mass.
It contains 0.25 to 0.065% by mass of Sn and 0.25 to 2.0% by mass of Sn, with the balance being Pb.
【0018】請求項4に記載の発明では、請求項3に記
載の鉛蓄電池において、正極格子および負極格子の少な
くとも一方が、Alを0.003〜0.03質量%含む
ものである。According to a fourth aspect of the present invention, in the lead-acid battery according to the third aspect, at least one of the positive electrode grid and the negative electrode grid contains 0.003 to 0.03% by mass of Al.
【0019】請求項5に記載の発明では、請求項3また
は4に記載の鉛蓄電池において、前記正極格子がAgを
0.02〜0.09質量%含むものである。According to a fifth aspect of the present invention, in the lead-acid battery according to the third or fourth aspect, the positive electrode grid contains 0.02 to 0.09% by mass of Ag.
【0020】請求項6に記載の発明では、請求項1また
は2に記載の鉛蓄電池において、正極板に少なくともS
bを0.5〜3.0質量%、Asを0.1〜0.3質量
%、Seを0.007〜0.03質量%含むPb−Sb
−As−Se系合金からなる格子を用い、負極板に少な
くともCaを0.025〜0.065質量%、Snを
0.25〜2.0質量%含むPb―Ca−Sn系合金格
子を用いるものである。According to the invention described in claim 6, in the lead-acid battery according to claim 1 or 2, at least S
Pb-Sb containing 0.5 to 3.0% by mass of b, 0.1 to 0.3% by mass of As, and 0.007 to 0.03% by mass of Se
A Pb-Ca-Sn-based alloy lattice containing at least 0.025 to 0.065% by mass of Ca and 0.25 to 2.0% by mass of Sn is used for the negative electrode plate using a lattice made of an -As-Se-based alloy. Things.
【0021】請求項7に記載の発明では、請求項6に記
載の鉛蓄電池において、前記正極格子用Pb−Sb−A
s−Se系合金が、Snを0.02〜0.1質量%含む
ものである。In the invention according to claim 7, in the lead-acid battery according to claim 6, Pb-Sb-A for the positive electrode grid is provided.
The s-Se-based alloy contains 0.02 to 0.1% by mass of Sn.
【0022】請求項8に記載の発明では、請求項6また
は7に記載の鉛蓄電池において、前記負極格子用Pb−
Ca−Sn系合金がAlを0.003〜0.03質量%
含むものである。According to the invention described in claim 8, in the lead-acid battery according to claim 6 or 7, the Pb-
Ca—Sn based alloy 0.003 to 0.03 mass% Al
Including.
【0023】[0023]
【発明の実施の形態】本発明は、COS法によってスト
ラップを形成する足し鉛用Pb−Sb―As系合金にS
eを添加しているので、ストラップの結晶粒を微細に
し、正極ストラップだけでなく負極ストラップにおいて
も結晶粒界に沿った腐食(粒界腐食)が深く進行するの
を抑えることができると同時に、Pb−Ca系合金格子
体に用いられているCa量を従来より少なくしているの
で、ストラップ中の、腐食されやすい、CaとSbとの
化合物の生成量を抑制でき、ストラップをより一層耐食
性に優れたものとすることができ、その結果、長寿命の
鉛蓄電池を提供するものである。BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a Pb-Sb-As based alloy for a lead which forms a strap by the COS method.
Since e is added, the crystal grains of the strap can be made finer, and the corrosion (grain boundary corrosion) along the crystal grain boundaries can be suppressed from deeply progressing not only in the positive electrode strap but also in the negative electrode strap. Since the amount of Ca used in the Pb-Ca-based alloy lattice is made smaller than before, the amount of the compound of Ca and Sb which is easily corroded in the strap can be suppressed, and the strap can be made more corrosion resistant. The present invention provides a lead-acid battery having a long life.
【0024】さらに、正極にPb−Ca系合金格子を用
いる場合、高温での厳しい使用環境下においても、耐食
性にすぐれた正極格子を併せて採用することによって、
信頼性の高い、長寿命の鉛蓄電池を提供するものであ
る。Further, when a Pb-Ca alloy lattice is used for the positive electrode, the positive electrode lattice having excellent corrosion resistance is used together even under a severe use environment at a high temperature.
An object of the present invention is to provide a reliable and long-life lead-acid battery.
【0025】足し鉛用Pb−Sb―As系合金中のSb
量は、1.7質量%より少ないと溶接作業性やストラッ
プの強度が劣り、3.5質量%より多いと、正極の場
合、電池使用中にストラップからSbが溶出し、負極板
に析出して水素過電圧を下げ、水の分解が促進されるの
で、1.7〜3.5質量%が好ましい。Sb in Pb-Sb-As alloy for lead
When the amount is less than 1.7% by mass, welding workability and strength of the strap are inferior. When the amount is more than 3.5% by mass, in the case of the positive electrode, Sb is eluted from the strap during use of the battery and precipitates on the negative electrode plate. Therefore, the hydrogen overvoltage is reduced, and the decomposition of water is promoted.
【0026】足し鉛用Pb−Sb―As系合金中のAs
量は、0.1質量%より少ないと耐食性が劣り、0.3
質量%より多くしても、その効果はあまり変わらず、ま
た不経済でもあるので、0.1〜0.3質量%が好まし
い。As in Pb-Sb-As alloy for lead
If the amount is less than 0.1% by mass, the corrosion resistance is poor,
If the amount is more than the mass%, the effect is not so changed and it is uneconomical, so that 0.1 to 0.3 mass% is preferable.
【0027】足し鉛用Pb−Sb―As系合金に添加す
るSe量は、0.007質量%より少ないと結晶粒を微
細にする効果が劣り、0.03質量%より多くしても結
晶粒微細化の効果はあまり変わらず、不経済であるだけ
でなく、SeのPb合金への溶解度の温度依存性から通
常の溶接作業温度(500℃程度以下)では、溶解も困
難なため、0.007〜0.03質量%が好ましい。If the amount of Se added to the Pb-Sb-As alloy for lead is less than 0.007% by mass, the effect of refining the crystal grains is inferior. The effect of miniaturization does not change much and is not only uneconomical, but also because of the temperature dependence of the solubility of Se in Pb alloys, it is difficult to dissolve at the normal welding operation temperature (about 500 ° C. or less). 007 to 0.03% by mass is preferred.
【0028】溶接時の溶融足し鉛合金の流動性を改善す
るために、足し鉛用Pb−Sb―As系合金に、Snを
0.02〜0.1質量%添加することも可能である。In order to improve the fluidity of the molten lead alloy during welding, Sn may be added to the Pb-Sb-As alloy for lead in an amount of 0.02 to 0.1% by mass.
【0029】正極格子合金中のCa量は、CaとSbと
の化合物の生成量を抑えるため、0.065質量%以下
が望ましいが、格子の強度の点からは0.025質量%
以上が望ましい。The amount of Ca in the positive electrode lattice alloy is desirably 0.065% by mass or less in order to suppress the amount of the compound of Ca and Sb, but from the viewpoint of lattice strength, 0.025% by mass is preferred.
The above is desirable.
【0030】正極格子合金中のSn量は、電池使用中の
正極格子の耐食性および強度の観点からは0.75質量
%以上が望ましいが、2.0質量%より多くしてもかえ
って耐食性が劣るだけでなく、費用の面からも不経済
で、0.75〜2.0質量%が適当である。The amount of Sn in the positive electrode lattice alloy is desirably 0.75% by mass or more from the viewpoint of the corrosion resistance and strength of the positive electrode lattice during use of the battery. However, even if it exceeds 2.0% by mass, the corrosion resistance is rather poor. In addition, it is uneconomical in terms of cost, and 0.75 to 2.0% by mass is appropriate.
【0031】負極格子合金中のCa量は、正極格子の場
合と同様に0.025〜0.065質量%が望ましい。The amount of Ca in the negative electrode grid alloy is desirably 0.025 to 0.065% by mass, as in the case of the positive electrode grid.
【0032】一方、負極格子は、電池使用中には正極格
子ほど耐食性は必要でないため正極格子の場合ほど多く
のSn量は必要ではないが、あまり少なくなると強度が
低下し、電池製造工程中の取扱性が悪くなるので、負極
格子中のSn量は0.25質量%以上が望ましい。上限
は、経済的な観点からは取扱性に問題がない範囲で少な
いほうが望ましいが、生産数量や生産設備等の関連で正
極格子と同程度の2.0質量%まで添加することが可能
である。On the other hand, the negative electrode grid does not require as much corrosion resistance as the positive electrode grid during use of the battery, and therefore does not require as much Sn content as the positive electrode grid does. Since the handleability deteriorates, the amount of Sn in the negative electrode lattice is desirably 0.25% by mass or more. The upper limit is desirably as small as possible from the economical point of view as long as there is no problem in handling. However, it is possible to add up to 2.0% by mass, which is almost the same as that of the positive electrode grid in relation to the production quantity and production equipment. .
【0033】Pb−Ca―Sn系合金格子には、従来か
ら用いられている重力鋳造法によって製造された格子だ
けではなく、近年、その製造量が増大しているPb−C
a―Sn系合金圧延シートあるいは鋳造シートをエキス
パンド加工あるいは打ち抜きによって製造した格子を使
用することも可能である。これらの方法では、従来の重
力鋳造法に比べ、その生産速度が速く、経済的に格子を
製造することができる。The Pb-Ca-Sn based alloy lattice is not limited to the lattice produced by the gravity casting method which has been conventionally used, but the Pb-C alloy whose production amount is increasing in recent years.
It is also possible to use a grid manufactured by expanding or punching a rolled a-Sn alloy sheet or a cast sheet. In these methods, the production speed is higher than in the conventional gravity casting method, and the grid can be manufactured economically.
【0034】また,回転ロールに格子の形状を彫りこ
み,回転ロールに外部からシューを押し当て,彫り込ん
だ格子形状の溝と押し当てたシューとの間に溶融鉛合金
を圧入して回転させながら凝固させる方法(連続鋳造
法)によっても格子を得ることができる。さらに,この
際,やや厚めの格子を連続鋳造し,その後,圧延するこ
とによって格子を製造することもできる。Further, the grid shape is engraved on the rotating roll, a shoe is pressed against the rotating roll from the outside, and the molten lead alloy is press-fitted between the engraved grid-shaped groove and the pressed shoe to solidify while rotating. The lattice can also be obtained by a method of performing continuous casting. Further, at this time, it is also possible to manufacture a grid by continuously casting a slightly thicker grid and then rolling.
【0035】Pb−Ca−Sn系合金格子を重力鋳造法
や連続鋳造法で製造する際、あるいはエキスパンド法ま
たは打ち抜き法によって格子を製造する場合の圧延シー
ト用スラブ(平板)を鋳造する、あるいは鋳造シートを
製造する際には、Alを0.003〜0.03質量%添
加し、Caの酸化を防止するとともに、Ca量の安定化
を図ることができる。この方法を用いれば、Caの酸化
防止のためにアルゴンガス等の不活性ガスを使用する必
要はなく、作業性も良好で、かつ経済的である。When a Pb-Ca-Sn alloy grid is manufactured by gravity casting or continuous casting, or when a grid is manufactured by an expanding method or a punching method, a slab (flat plate) for a rolled sheet is cast or cast. When manufacturing a sheet, 0.003 to 0.03 mass% of Al is added to prevent oxidation of Ca and stabilize the Ca amount. If this method is used, it is not necessary to use an inert gas such as an argon gas to prevent the oxidation of Ca, and the workability is good and economical.
【0036】ここで、鋳造シートとは、DMシートとも
呼ばれるもので、溶融鉛合金に回転ロールをわずかに浸
せきさせ、ロール表面に直接シートを形成したものであ
る。Here, the cast sheet is also called a DM sheet, and is obtained by slightly immersing a rotating roll in a molten lead alloy to form a sheet directly on the roll surface.
【0037】また、近年、鉛蓄電池が使用される環境の
温度が高くなってきており、そのような高温下での正極
用Pb−Ca系合金格子の耐久性を向上させるためには
正極格子にAgを0.02〜0.09質量%添加するこ
とが有効であり、上述のストラップと併用することによ
ってより一層信頼性の高い、長寿命の鉛蓄電池を得るこ
とができる。In recent years, the temperature of the environment in which lead-acid batteries are used has been increasing, and in order to improve the durability of the Pb—Ca-based alloy grid for the positive electrode under such high temperatures, it is necessary to use a positive grid. It is effective to add 0.02 to 0.09% by mass of Ag, and a more reliable and long-life lead-acid battery can be obtained by using Ag together with the above-described strap.
【0038】正極格子用Pb−Sb―As系合金中のS
b量は、深放電性能・高温特性とメンテナンス・フリー
特性との兼ね合いで決められるものであるが、0.5質
量%より少ないとメンテナンス・フリー特性は優れるも
のの深放電性能・高温特性が劣り、3.0質量%より多
いと、深放電性能・高温特性は優れるものの、電池使用
中に正極格子からSbが溶出し、負極板に析出して水素
過電圧を下げ、メンテナンス・フリー特性が低下するの
で、0.5〜3.0質量%が好ましい。S in the Pb-Sb-As alloy for the positive electrode lattice
The amount b is determined based on a balance between deep discharge performance / high temperature characteristics and maintenance-free characteristics. If less than 0.5% by mass, maintenance-free characteristics are excellent but deep discharge performance / high-temperature characteristics are inferior. If the content is more than 3.0% by mass, although the deep discharge performance and the high-temperature characteristics are excellent, Sb elutes from the positive electrode grid during use of the battery, deposits on the negative electrode plate, reduces the hydrogen overvoltage, and the maintenance-free characteristics deteriorate. , 0.5 to 3.0% by mass.
【0039】正極格子用Pb−Sb―As系合金中のA
s量は、0.1質量%より少ないと耐食性が劣り、0.
30質量%より多くしても、その効果はあまり変わら
ず、また不経済でもあるので、0.1〜0.3質量%が
望ましい。A in the Pb-Sb-As alloy for the positive electrode lattice
If the amount of s is less than 0.1% by mass, the corrosion resistance is inferior.
If the amount is more than 30% by mass, the effect is not so different and it is uneconomical, so that 0.1 to 0.3% by mass is desirable.
【0040】正極格子用Pb−Sb―As系合金に添加
するSe量は、0.007質量%より少ないと結晶粒を
微細にする効果が劣り、0.03質量%より多くしても
結晶粒微細化の効果はあまり変わらず、不経済であるだ
けでなく、SeのPb合金への溶解度の温度依存性から
通常の鋳造作業温度(520℃程度以下)では、溶解も
困難なため、0.007〜0.03質量%が望ましい。When the amount of Se added to the Pb-Sb-As alloy for the positive electrode lattice is less than 0.007% by mass, the effect of refining the crystal grains is inferior. The effect of miniaturization does not change much and is not only uneconomical, but also because of the temperature dependence of the solubility of Se in the Pb alloy, it is difficult to dissolve at a normal casting working temperature (about 520 ° C. or less). 007 to 0.03% by mass is desirable.
【0041】鋳造時の溶融鉛合金の流動性を向上させる
ために、正極格子用Pb−Sb―As−Se系合金にS
nを0.02〜0.1質量%添加することができる。P
b−Sb―As系合金の場合にも,Pb−Ca―Sn系
合金の場合と同様,連続鋳造法によっても格子を得るこ
とができる。In order to improve the fluidity of the molten lead alloy at the time of casting, the Pb-Sb-As-Se-based alloy for the positive grid was
n can be added in an amount of 0.02 to 0.1% by mass. P
In the case of the b-Sb-As alloy, the lattice can be obtained by the continuous casting method as in the case of the Pb-Ca-Sn alloy.
【0042】[0042]
【実施例】以下、本発明の実施例について説明する。 (実施例1)CaとSnとの量を表1のように変化させ
たPb−Ca―Sn系合金を用いた圧延シートを作製
し、それをエキスパンド加工して、自動車電池用正極格
子を得た。なお、圧延用スラブ鋳造時の酸化を防止する
ため、いずれの場合にもAlを0.01質量%添加し
た。Embodiments of the present invention will be described below. (Example 1) A rolled sheet using a Pb-Ca-Sn-based alloy in which the amounts of Ca and Sn were changed as shown in Table 1 was prepared and expanded to obtain a positive electrode grid for an automobile battery. Was. In each case, 0.01% by mass of Al was added in order to prevent oxidation during casting of the slab for rolling.
【0043】[0043]
【表1】 [Table 1]
【0044】次に、これらの格子に常法にしたがって正
極ペーストを充填し、熟成・乾燥させた後、正極板5
枚、負極板6枚およびセパレータを組み合わせ、COS
法によってストラップを形成し、12V、30Ahの自
動車用電池を得た。ストラップ合金にはPb−Sb−A
s−Se合金を使用し、Sb量、Se量は表1に記載の
量とし、Asはいずれの場合にも、0.25質量%とし
た。Next, these grids are filled with a positive electrode paste according to a conventional method, aged and dried.
Sheets, 6 negative plates and a separator, COS
A strap was formed by a method to obtain a 12 V, 30 Ah automotive battery. Pb-Sb-A for strap alloy
An s-Se alloy was used, the amounts of Sb and Se were as shown in Table 1, and the As was 0.25% by mass in each case.
【0045】なお、これらの電池の負極板には、表1に
記載のNo.10の格子を使用し、常法にしたがって負
極ペーストを充填し、熟成・乾燥させたものを使用し
た。The negative electrodes of these batteries were provided with No. Using a grid of 10, a negative electrode paste was filled according to a conventional method, and aged and dried.
【0046】これらの電池の正極ストラップ断面を金属
顕微鏡で観察したところ、表2、B欄に記載のように、
Seを0.007質量%以上含む場合には、Seを含ま
ない場合に比べ、格子合金組成に関係なく、結晶粒径が
約1/5〜1/6と大変微細になっていた。When the cross sections of the positive electrode straps of these batteries were observed with a metallographic microscope, as shown in Table 2, column B,
When Se was contained in an amount of 0.007% by mass or more, the crystal grain size was extremely fine, about 1/5 to 1/6, irrespective of the lattice alloy composition, as compared with the case where Se was not contained.
【0047】次に、同一ロットのこれらの電池を60℃
気槽中で、14.4Vの定電圧で連続過充電試験を5週
間実施し、試験後の正極ストラップの腐食状態および正
極格子の状態を観察した。Next, these batteries of the same lot were placed at 60 ° C.
In a gas tank, a continuous overcharge test was performed at a constant voltage of 14.4 V for 5 weeks, and the corrosion state of the positive electrode strap and the state of the positive electrode grid after the test were observed.
【0048】過充電試験後の正極ストラップおよび正極
格子の腐食状態をそれぞれ表2、C欄およびD欄に示
す。The corrosion states of the positive electrode strap and the positive electrode grid after the overcharge test are shown in Table 2, columns C and D, respectively.
【0049】[0049]
【表2】 [Table 2]
【0050】鉛蓄電池においては、正極用部材の腐食は
避けがたいものであるが、表2から明らかなように、C
a量を0.020〜0.065質量%としたものでは、
過充電試験後においても正極ストラップ部の腐食は軽微
であった。In a lead-acid battery, corrosion of the positive electrode member is unavoidable.
When the amount of a is 0.020 to 0.065% by mass,
Even after the overcharge test, corrosion of the positive electrode strap portion was slight.
【0051】足し鉛用Pb−Sb−As合金にSeを
0.007質量%以上添加したストラップでは、上述の
ように,その結晶粒径がSeを添加しない場合に比べ約
1/5〜1/6と非常に小さくなっており、その結果、
過充電試験後の正極ストラップ内の粒界腐食の進行はほ
とんど認められなかった。As described above, in the strap obtained by adding 0.007% by mass or more of Se to the Pb-Sb-As alloy for lead, the crystal grain size is about 1/5 to 1/1 compared to the case where Se is not added. 6, which is very small,
Progress of intergranular corrosion in the positive electrode strap after the overcharge test was hardly observed.
【0052】しかし、正極格子中のSn量が0.4質量
%の場合には、過充電試験後の正極格子の腐食が激しか
った。However, when the amount of Sn in the positive electrode grid was 0.4% by mass, corrosion of the positive electrode grid after the overcharge test was severe.
【0053】なお、正極格子中のCa量を0.02質量
%とした場合には、格子強度が低く電池製造上の取扱性
が悪かった。 (実施例2)CaとSnとの量を表3のように変化させ
たPb−Ca―Sn系合金を用いた圧延シートを作製
し、それをエキスパンド加工して、自動車電池用負極格
子を得た。When the amount of Ca in the positive electrode grid was 0.02% by mass, the grid strength was low and the handling property in battery production was poor. (Example 2) A rolled sheet using a Pb-Ca-Sn-based alloy in which the amounts of Ca and Sn were changed as shown in Table 3 was prepared and expanded to obtain a negative electrode grid for an automobile battery. Was.
【0054】[0054]
【表3】 [Table 3]
【0055】次に、これらの格子に常法にしたがって負
極ペーストを充填し、熟成・乾燥させた後、正極板5
枚、負極板6枚およびセパレータを組み合わせ、COS
法によってストラップを形成し、12V、30Ahの自
動車用電池を得た。ストラップ合金にはPb−Sb−A
s−Se合金を使用し、Sb量、Se量は表3に記載の
量とし、Asはいずれの場合にも、0.20質量%とし
た。Next, these grids are filled with a negative electrode paste according to a conventional method, aged and dried.
Sheets, 6 negative plates and a separator, COS
A strap was formed by a method to obtain a 12 V, 30 Ah automotive battery. Pb-Sb-A for strap alloy
An s-Se alloy was used, the amounts of Sb and Se were as shown in Table 3, and As was 0.20% by mass in each case.
【0056】なお、これらの電池の正極板には、実施例
1、表1に記載のNo.14の格子を使用し、常法にし
たがって正極ペーストを充填し、熟成・乾燥させたもの
を使用した。The positive electrode plates of these batteries were provided with No. 1 described in Example 1 and Table 1. Using 14 grids, a positive electrode paste was filled according to a conventional method, and aged and dried.
【0057】これらの電池の負極ストラップ断面を金属
顕微鏡で観察したところ、表4、B欄に記載のように、
Seを0.007質量%以上含む場合には、Seを含ま
ない場合に比べ、格子合金組成に関係なく、結晶粒径が
約1/5〜1/6と大変微細になっていた。When the cross sections of the negative electrode straps of these batteries were observed with a metallurgical microscope, as shown in Table 4, column B,
When Se was contained in an amount of 0.007% by mass or more, the crystal grain size was extremely fine, about 1/5 to 1/6, irrespective of the lattice alloy composition, as compared with the case where Se was not contained.
【0058】次に、同一ロットのこれらの電池を60℃
気槽中で、14.4Vの定電圧で連続過充電試験を5週
間実施し、試験後の負極ストラップの腐食状態を観察し
た。Next, these batteries of the same lot were placed at 60 ° C.
A continuous overcharge test was performed at a constant voltage of 14.4 V in an air tank for 5 weeks, and the corrosion state of the negative electrode strap after the test was observed.
【0059】なお、過充電試験に先立って、各電池の電
解液面を故意に低下させ、負極ストラップが電解液面か
ら露出した状態で試験を実施した。これは、正極ストラ
ップ腐食は電解液中で発生するが、負極ストラップ腐食
はストラップが電解液面から露出している方が腐食され
やすいため、短期間でストラップの腐食状態を評価する
ためである。Prior to the overcharge test, the test was performed with the negative electrode strap exposed from the electrolyte surface by intentionally lowering the electrolyte surface of each battery. This is to evaluate the corrosion state of the strap in a short period of time because the corrosion of the positive electrode strap occurs in the electrolytic solution, but the corrosion of the negative electrode strap is more likely to be corroded when the strap is exposed from the electrolytic solution surface.
【0060】過充電試験後の負極ストラップの腐食状態
を表4、C欄に示す。The corrosion state of the negative electrode strap after the overcharge test is shown in Table 4, column C.
【0061】[0061]
【表4】 [Table 4]
【0062】表4から明らかなように、Ca量を0.0
2〜0.065質量%としたものでは、過充電試験後に
おいても負極ストラップ部の腐食は軽微であった。ま
た、足し鉛用Pb−Sb−As合金にSeを0.007
質量%以上添加したストラップでは、上述のようにその
結晶粒径がSeを添加しない場合に比べ約1/5〜1/
6と非常に小さくなっており、その結果、過充電試験後
の負極ストラップ内の粒界腐食の進行はほとんど認めら
れなかった。As is apparent from Table 4, the amount of Ca was set to 0.0
In the case of 2 to 0.065% by mass, the corrosion of the negative electrode strap portion was slight even after the overcharge test. In addition, 0.007 Se was added to the Pb-Sb-As alloy for additional lead.
As described above, the crystal grain size of the strap added with not less than 5% by mass is about 1/5 to 1 /
As a result, the progress of intergranular corrosion in the negative electrode strap after the overcharge test was hardly recognized.
【0063】しかし、負極格子中のSn量が0.2質量
%の場合には、格子強度が低く電池製造上の取扱性が悪
かった。However, when the amount of Sn in the negative electrode lattice was 0.2% by mass, the lattice strength was low, and the handleability in battery production was poor.
【0064】なお、負極格子中のCa量が0.02質量
%の場合にも、格子強度が低く電池製造上の取扱性が悪
かった。 (実施例3)Ag量を、表5、A欄のように変化させた
Pb−Ca―Sn―Ag系合金を用い、重力鋳造法によ
って、自動車電池用正極格子を得た。なお、Ca量およ
びSn量はそれぞれ0.03質量%および1.0質量%
とし、格子鋳造時の酸化を防止するためいずれの場合に
もAlを0.01質量%添加した。When the amount of Ca in the negative electrode lattice was 0.02% by mass, the lattice strength was low and the handling property in battery production was poor. (Example 3) A positive electrode grid for an automobile battery was obtained by a gravity casting method using a Pb-Ca-Sn-Ag-based alloy in which the amount of Ag was changed as shown in column A of Table 5. The Ca content and the Sn content were 0.03% by mass and 1.0% by mass, respectively.
In each case, Al was added in an amount of 0.01% by mass to prevent oxidation during lattice casting.
【0065】次に、これらの格子に常法にしたがって正
極ペーストを充填し、熟成・乾燥させた後、正極板5
枚、負極板6枚およびセパレータを組み合わせ、COS
法によってストラップを形成し、12V、30Ahの自
動車用電池を得た。ストラップ合金にはPb−Sb−A
s−Se―Sn合金を使用し、Sb量、As量、Se量
およびSn量はそれぞれ2.8質量%、0.25質量
%、0.02質量%および0.02質量%とした。Next, these grids are filled with a positive electrode paste according to a conventional method, aged and dried.
Sheets, 6 negative plates and a separator, COS
A strap was formed by a method to obtain a 12 V, 30 Ah automotive battery. Pb-Sb-A for strap alloy
An s-Se-Sn alloy was used, and the amounts of Sb, As, Se, and Sn were 2.8% by mass, 0.25% by mass, 0.02% by mass, and 0.02% by mass, respectively.
【0066】なお、これらの電池の負極板には、Pb−
0.060質量%Ca―0.75質量%Sn−0.01
質量%Al合金からなる重力鋳造格子を使用し、常法に
したがって負極ペーストを充填し、熟成・乾燥させたも
のを使用した。Incidentally, the negative electrode plates of these batteries were provided with Pb-
0.060 mass% Ca-0.75 mass% Sn-0.01
A gravity cast grid made of a mass% Al alloy was used, and a negative electrode paste was filled according to a conventional method, and aged and dried.
【0067】これらの電池を60℃気槽中で、14.4
Vの定電圧で連続過充電寿命試験を実施し、1週間ごと
に150A放電を30秒間行い、30秒目の電池電圧が
7.2V以下になった時点を寿命とした。試験後、正極
板の劣化状況および正・負極ストラップの腐食状態を観
察した。なお、今回の試験では、電解液面は通常のアッ
パーレベルに合わせ、正・負極ストラップとも電解液中
に位置する状態で試験した。These batteries were placed in an air bath at 60 ° C. for 14.4 hours.
A continuous overcharge life test was performed at a constant voltage of V, and a discharge at 150 A was performed for 30 seconds every week, and the time when the battery voltage at the 30th second became 7.2 V or less was defined as the life. After the test, the deterioration state of the positive electrode plate and the corrosion state of the positive and negative electrode straps were observed. In this test, the electrolyte surface was adjusted to a normal upper level, and both the positive and negative electrode straps were located in the electrolyte.
【0068】試験結果を表5、B〜D欄に示す。The test results are shown in Table 5, columns B to D.
【0069】[0069]
【表5】 [Table 5]
【0070】表5から明らかなように、Agを0.02
質量%以上含む場合には、Agを含まないか、あるいは
含んでも0.01質量%の場合の1.5〜2倍の高温寿
命性能を有していた。これは、Agを添加することによ
って正極格子の耐食性が向上したものと考えられる。な
お、Agを0.09質量%よりも多く添加しても正極格
子の耐食性は0.09質量%添加した場合とあまり変わ
らず、銀が高価なため不経済である。また、正・負極ス
トラップは、いずれの電池においてもほとんど腐食して
いないか、あるいは腐食していてもごくわずかで、電池
性能に影響を及ぼすものではなかった。 (実施例4)正極にPb−0.7質量%Sb−0.25
質量%As−0.02質量%Se―0.02質量%Sn
合金からなる連続鋳造格子を使用し,負極にPb−0.
065質量%Ca―0.50質量%Sn−0.01質量
%Al合金からなる連続鋳造格子を使用した。これらの
正・負極格子に常法にしたがってそれぞれ正・負極ペー
ストを充填し,熟成・乾燥させた後,正極板5枚,負極
板6枚およびセパレータを組み合わせ,COS法によっ
てストラップを形成し,12V,30Ahの自動車用電
池を得た。ストラップ合金にはPb−Sb−As−Se
―Sn合金を使用し,Sb量は,1.0,1.7,2.
5,3.5および4.0質量%とし,As量,Se量お
よびSn量はそれぞれ0.25質量%,0.02質量%
および0.06質量%とした。As is clear from Table 5, Ag was 0.02
In the case of containing not less than mass%, Ag was not contained, or even if containing Ag, it had a high temperature life performance 1.5 to 2 times that of the case of containing 0.01 mass%. This is considered to be due to the fact that the corrosion resistance of the positive electrode grid was improved by adding Ag. Even if Ag is added in an amount of more than 0.09% by mass, the corrosion resistance of the positive electrode grid is not so different from the case where 0.09% by mass is added, and it is uneconomical because silver is expensive. In addition, the positive and negative electrode straps were hardly corroded in any of the batteries, or were very little corroded, and did not affect the battery performance. (Example 4) Pb-0.7 mass% Sb-0.25 for the positive electrode
Mass% As-0.02 mass% Se-0.02 mass% Sn
Using a continuous casting grid made of an alloy, the negative electrode was made of Pb-0.
A continuous casting grid made of 065 mass% Ca-0.50 mass% Sn-0.01 mass% Al alloy was used. These positive / negative electrode grids are filled with positive / negative electrode pastes according to a conventional method, aged and dried, and then combined with five positive electrode plates, six negative electrode plates and a separator to form a strap by the COS method and forming a 12V strap. , 30 Ah for an automobile. Pb-Sb-As-Se for strap alloy
-Sn alloy is used, and the amount of Sb is 1.0, 1.7, 2.
The amounts of As, Se and Sn were 0.25% by mass and 0.02% by mass, respectively.
And 0.06% by mass.
【0071】これらの電池について,実施例1と同様な
試験を行った。The same test as in Example 1 was performed on these batteries.
【0072】ストラップ形成用足し鉛合金中のSb量
が,1.0〜3.5質量%の場合にはストラップ腐食は
ほとんど見られなかったが,4.0質量%の場合には,
ストラップ腐食が少し観察された。また,Sb量が1.
0質量%の場合にはストラップの強度が弱かった。これ
らの結果から,ストラップ用Pb−Sb−As−Se―
Sn系合金のSb量は,1.7〜3.5質量%が望まし
い。When the amount of Sb in the lead-forming alloy for forming the strap was 1.0 to 3.5% by mass, almost no corrosion of the strap was observed, but when the amount of Sb was 4.0% by mass,
A little strap corrosion was observed. Further, when the amount of Sb is 1.
In the case of 0% by mass, the strength of the strap was weak. From these results, Pb-Sb-As-Se- for strap
The Sb content of the Sn-based alloy is desirably 1.7 to 3.5% by mass.
【0073】なお、実施例1〜4において、COS法の
代わりに、ガスバーナーでの溶接も試みたが、溶接後の
正・負極ストラップ断面を金属顕微鏡で観察すると、S
eによる結晶粒微細化の効果がみられない部分が観察さ
れ、さらに、ストラップ表面付近には小さな塊状の粒子
が散見された。In Examples 1-4, welding with a gas burner was also attempted in place of the COS method.
The portion where the effect of crystal grain refinement by e was not observed was observed, and small lumpy particles were scattered around the strap surface.
【0074】これは,次のように考えられる。This can be considered as follows.
【0075】COS法であれば、溶接直前には、約45
0℃のPb−Sb−As−Se系合金溶湯中では各元素
が均一に溶解しており、それがストラップの形状をした
鋳型内で,それ以上にさらに加熱されることなく凝固す
るため、Seの効果が十分得られたものと思われる。In the case of the COS method, immediately before welding, approximately 45
In a Pb-Sb-As-Se alloy melt at 0 ° C., each element is uniformly dissolved and solidifies in a strap-shaped mold without further heating, so that Se It seems that the effect of was sufficiently obtained.
【0076】一方,ガスバーナー法で結晶粒の微細化が
部分的であり,Seの効果が十分みられなかった理由は
明確ではないが,ガスバーナーで足し鉛を溶解させた後
も,なお溶融したPb−Sb−As−Se系合金溶湯を
ガスバーナーで加熱するため,溶湯中のSeが酸化され
るなどして粒子状になり、これらが比重差によってまだ
溶融しているストラップ内を上方に向かって移動し,そ
の結果、ストラップ内部には結晶粒の微細化に有効なS
eが大幅に減少する部分が発生することによるものと考
えられる。なお、ストラップ内を上方に移動する、酸化
されるなどしたと思われるSe等の粒子は、ストラップ
表面が凝固するとその中に閉じ込められてしまうことに
なり、その結果、小さな塊状の粒子がストラップ表面付
近に散見されたものと考えられる。On the other hand, it is not clear why the effect of Se was not sufficiently observed due to partial refinement of crystal grains by the gas burner method. The molten Pb-Sb-As-Se alloy is heated by a gas burner, so that Se in the molten metal is oxidized and becomes particulate, and these particles rise upward in a strap still molten due to a difference in specific gravity. , And as a result, S inside the strap, which is effective for refining crystal grains,
This is considered to be due to the occurrence of a portion where e is greatly reduced. In addition, particles of Se or the like, which are considered to be oxidized or moved upward in the strap, are trapped in the strap surface when the strap surface solidifies, and as a result, small massive particles are trapped in the strap surface. It is probable that they were found nearby.
【0077】上述のことから,Se添加による結晶粒微
細化の効果を確実にするためには,COS法によってス
トラップを形成するのが望ましい。From the above description, it is desirable to form the strap by the COS method in order to ensure the effect of the refinement of the crystal grain by adding Se.
【0078】[0078]
【発明の効果】上述のように、本発明は、COS法によ
ってストラップを形成する足し鉛用Pb−Sb―As系
合金にSeを添加しているので、ストラップの結晶粒を
微細にし、正極ストラップだけでなく負極ストラップに
おいても結晶粒界に沿った腐食(粒界腐食)が深く進行
するのを抑えることができると同時に、Pb−Ca系合
金格子体に用いられているCa量を従来より少なくして
いるので、ストラップ中の、腐食されやすい、CaとS
bとの化合物の生成量を抑制でき、ストラップをより一
層耐食性に優れたものとすることができ、その結果、長
寿命の鉛蓄電池を提供するものである。As described above, according to the present invention, Se is added to the Pb-Sb-As alloy for lead which forms a strap by the COS method. Not only in the negative electrode strap but also in the negative electrode strap, corrosion along the crystal grain boundary (grain boundary corrosion) can be suppressed from progressing deeply, and at the same time, the amount of Ca used in the Pb-Ca-based alloy lattice is reduced. Ca and S in the strap are easily corroded.
The amount of the compound with b can be suppressed, and the strap can be made even more excellent in corrosion resistance. As a result, a long-life lead-acid battery can be provided.
【0079】さらに、正極にPb−Ca系合金格子を用
いる場合、高温での厳しい使用環境下においても、耐食
性にすぐれた正極格子を併せて採用することによって、
信頼性の高い、長寿命の鉛蓄電池を提供するものであ
る。Further, when a Pb-Ca based alloy lattice is used for the positive electrode, the positive electrode lattice having excellent corrosion resistance can be employed even under a severe use environment at a high temperature.
An object of the present invention is to provide a reliable and long-life lead-acid battery.
Claims (8)
極板耳部を接続するストラップを形成するための足し鉛
として、アンチモン(Sb)を1.7〜3.5質量%、
ヒ素(As)を0.1〜0.3質量%、セレン(Se)
を0.007〜0.03質量%含む鉛(Pb)−Sb−
As−Se系合金を用いたことを特徴とする鉛蓄電池。1. An antimony (Sb) content of 1.7 to 3.5% by mass as an additional lead for forming a strap for connecting electrode plate ears by a cast-on-strap method.
0.1 to 0.3% by mass of arsenic (As), selenium (Se)
(Pb) -Sb- containing 0.007 to 0.03% by mass of
A lead-acid battery using an As-Se alloy.
錫(Sn)を0.02〜0.1質量%含むことを特徴と
する請求項1に記載の鉛蓄電池。2. The Pb—Sb—As—Se-based alloy,
The lead-acid battery according to claim 1, wherein the lead-acid battery contains 0.02 to 0.1% by mass of tin (Sn).
25〜0.065質量%、Snを0.75〜2.0質量
%含むPb−Ca−Sn系合金からなり、負極格子がC
aを0.025〜0.065質量%、Snを0.25〜
2.0質量%含むPb−Ca−Sn系合金からなること
を特徴とする請求項1または2に記載の鉛蓄電池。3. The positive electrode grid contains calcium (Ca) of 0.0
It is made of a Pb-Ca-Sn-based alloy containing 25 to 0.065% by mass and 0.75 to 2.0% by mass of Sn.
a is 0.025 to 0.065% by mass, Sn is 0.25 to
The lead-acid battery according to claim 1, comprising a Pb—Ca—Sn-based alloy containing 2.0% by mass.
方が、アルミニウム(Al)を0.003〜0.03質
量%含むことを特徴とする請求項3に記載の鉛蓄電池。4. The lead-acid battery according to claim 3, wherein at least one of the positive electrode grid and the negative electrode grid contains 0.003 to 0.03% by mass of aluminum (Al).
09質量%含むことを特徴とする請求項3または4に記
載の鉛蓄電池。5. The positive electrode grid contains silver (Ag) in an amount of 0.02-0.
The lead-acid battery according to claim 3, wherein the lead-acid storage battery contains 09% by mass.
%、Asを0.1〜0.3質量%、Seを0.007〜
0.03質量%含むPb−Sb−As−Se系合金から
なり、負極格子がCaを0.025〜0.065質量
%、Snを0.25〜2.0質量%含むPb―Ca−S
n系合金からなることを特徴とする請求項1または2に
記載の鉛蓄電池。6. The positive electrode grid contains 0.5% to 3.0% by mass of Sb, 0.1% to 0.3% by mass of As, and 0.007% by mass of Se.
Pb-Ca-S made of a Pb-Sb-As-Se-based alloy containing 0.03% by mass, wherein the negative electrode lattice contains 0.025 to 0.065% by mass of Ca and 0.25 to 2.0% by mass of Sn.
The lead-acid battery according to claim 1, comprising an n-based alloy.
系合金が、Snを0.02〜0.1質量%含むことを特
徴とする請求項6に記載の鉛蓄電池。7. The positive electrode lattice Pb-Sb-As-Se.
The lead storage battery according to claim 6, wherein the system alloy contains 0.02 to 0.1% by mass of Sn.
がAlを0.003〜0.03質量%含むことを特徴と
する請求項6または7に記載の鉛蓄電池。8. The lead-acid battery according to claim 6, wherein the Pb—Ca—Sn-based alloy for a negative electrode grid contains 0.003 to 0.03% by mass of Al.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000374726A JP4793518B2 (en) | 2000-12-08 | 2000-12-08 | Lead acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000374726A JP4793518B2 (en) | 2000-12-08 | 2000-12-08 | Lead acid battery |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2002175794A true JP2002175794A (en) | 2002-06-21 |
JP2002175794A5 JP2002175794A5 (en) | 2008-01-24 |
JP4793518B2 JP4793518B2 (en) | 2011-10-12 |
Family
ID=18843860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000374726A Expired - Lifetime JP4793518B2 (en) | 2000-12-08 | 2000-12-08 | Lead acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4793518B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2018037564A1 (en) * | 2016-08-26 | 2018-08-23 | 日立化成株式会社 | Lead-acid battery, cast grid, and manufacturing method thereof |
JPWO2018037563A1 (en) * | 2016-08-26 | 2018-08-23 | 日立化成株式会社 | Lead-acid battery, cast grid, and manufacturing method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0817438A (en) * | 1994-06-29 | 1996-01-19 | Matsushita Electric Ind Co Ltd | Lead acid battery |
JPH10321236A (en) * | 1997-05-22 | 1998-12-04 | Japan Storage Battery Co Ltd | Lead-acid battery |
JP2000315519A (en) * | 1999-04-30 | 2000-11-14 | Furukawa Battery Co Ltd:The | Lead acid storage battery |
-
2000
- 2000-12-08 JP JP2000374726A patent/JP4793518B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0817438A (en) * | 1994-06-29 | 1996-01-19 | Matsushita Electric Ind Co Ltd | Lead acid battery |
JPH10321236A (en) * | 1997-05-22 | 1998-12-04 | Japan Storage Battery Co Ltd | Lead-acid battery |
JP2000315519A (en) * | 1999-04-30 | 2000-11-14 | Furukawa Battery Co Ltd:The | Lead acid storage battery |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2018037564A1 (en) * | 2016-08-26 | 2018-08-23 | 日立化成株式会社 | Lead-acid battery, cast grid, and manufacturing method thereof |
JPWO2018037563A1 (en) * | 2016-08-26 | 2018-08-23 | 日立化成株式会社 | Lead-acid battery, cast grid, and manufacturing method thereof |
CN109643804A (en) * | 2016-08-26 | 2019-04-16 | 日立化成株式会社 | Lead storage battery and casting grid and its manufacturing method |
CN109643804B (en) * | 2016-08-26 | 2023-02-28 | 日立化成株式会社 | Lead storage battery, cast grid and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4793518B2 (en) | 2011-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101675175B (en) | Lead-tin-silver-bismuth containing alloy for positive grid of lead acid batteries | |
JP4160856B2 (en) | Lead-based alloy for lead-acid battery and lead-acid battery using the same | |
Prengaman | New low-antimony alloy for straps and cycling service in lead–acid batteries | |
JP2002175798A (en) | Sealed lead-acid battery | |
JP2006066283A (en) | Cathode plate for sealed lead-acid battery, and the sealed lead-acid battery using the cathode plate | |
JP4793518B2 (en) | Lead acid battery | |
JP3113895B2 (en) | Lead alloy for storage battery | |
JP2000315519A (en) | Lead acid storage battery | |
Prengaman | Current-collectors for lead–acid batteries | |
JP3052629B2 (en) | Sealed lead-acid battery | |
JPH0629021A (en) | Lead-based alloy containing calcium, tin and silver, electrode grid made of avobe alloy and lead-acid battery | |
JP3413930B2 (en) | Manufacturing method of lead storage battery electrode group | |
JP4423837B2 (en) | Rolled lead alloy for storage battery and lead storage battery using the same | |
JP2595809B2 (en) | Method of manufacturing base for lead-acid battery electrode plate | |
JP2005044760A (en) | Manufacturing method of lead-acid storage battery positive electrode plate lattice | |
JPH09167611A (en) | Lead-acid battery | |
JP3509294B2 (en) | Lead storage battery | |
JPH07211306A (en) | Sealed lead acid battery | |
JP5135692B2 (en) | Lead acid battery | |
JP3052588B2 (en) | Manufacturing method of lead storage battery | |
JP3658871B2 (en) | Lead acid battery | |
JP3052566B2 (en) | Lead storage battery and method of manufacturing the same | |
JP2003323881A (en) | Control valve lead-acid battery | |
JP2794745B2 (en) | Manufacturing method of grid for lead storage battery | |
JP2007157610A (en) | Lead-acid battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20051213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071204 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071204 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100507 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100804 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110510 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110614 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110629 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110712 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4793518 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140805 Year of fee payment: 3 |
|
EXPY | Cancellation because of completion of term |