[go: up one dir, main page]

JP2002172395A - Method for iron hydroxide flocculation and sedimentation treatment of thick inorganic component- containing wastewater - Google Patents

Method for iron hydroxide flocculation and sedimentation treatment of thick inorganic component- containing wastewater

Info

Publication number
JP2002172395A
JP2002172395A JP2000369869A JP2000369869A JP2002172395A JP 2002172395 A JP2002172395 A JP 2002172395A JP 2000369869 A JP2000369869 A JP 2000369869A JP 2000369869 A JP2000369869 A JP 2000369869A JP 2002172395 A JP2002172395 A JP 2002172395A
Authority
JP
Japan
Prior art keywords
wastewater
ferric salt
precipitate
iron hydroxide
inorganic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000369869A
Other languages
Japanese (ja)
Other versions
JP4591641B2 (en
Inventor
Kenji Yokoyama
憲二 横山
Hiroshi Nakamura
浩 仲村
Yoshihiro Oguchi
善弘 大口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Ameniplantex Ltd
Original Assignee
NEC Ameniplantex Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Ameniplantex Ltd filed Critical NEC Ameniplantex Ltd
Priority to JP2000369869A priority Critical patent/JP4591641B2/en
Publication of JP2002172395A publication Critical patent/JP2002172395A/en
Application granted granted Critical
Publication of JP4591641B2 publication Critical patent/JP4591641B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To highly treat wastewater containing an inorganic component in high concentration. SOLUTION: A first process - a third process are successively performed. The first process is process for adding a water soluble ferric salt aqueous solution to wastewater containing a thick inorganic component and, if ferric ions are mixed with wastewater in the first process, the pH of wastewater is lowered by a water soluble ferric salt showing weak acidity. The second process is a process for neutralizing the ferric salt added to wastewater by alkali and ferric ions are reacted with hydroxyl ions in the second process to form an iron hydroxide precipitate. Further, heavy metal components in wastewater are also precipitate as hydroxide. The third process is a process for succeedingly repeating the first and second processes once or more. By successively performing these processes, an iron hydroxide flocculated precipitate excellent in sedimentation properties, filterability and dehydration properties is obtained in wastewater.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排水中に含まれる
重金属分やヒ素などの無機系有害物質を濃厚に含有する
排水を処理する方法に関する。
[0001] The present invention relates to a method for treating wastewater which contains a high concentration of inorganic harmful substances such as heavy metals and arsenic contained in the wastewater.

【0002】[0002]

【従来の技術】排水中に含まれる重金属分やヒ素などの
無機系有害物質を除去する技術として、従来より、水酸
化鉄凝集沈澱法が良く知られている。この方法は、排水
中に予めFeとして10〜数百ppm、場合によっては
数千ppmの第二鉄塩水溶液を加えた後、アルカリでp
H7.0以上に中和して水酸化鉄の沈澱を生成させると
ともに、排水中に含まれる重金属やヒ素などの無機系有
害物質を水酸化鉄沈澱とともに凝集沈澱させ、さらに高
分子凝集剤などの沈降促進剤を加えて重力沈降分離を行
い、フィルタープレスによるろ過などの方法を用いて沈
澱成分を分離脱水し、排水中の重金属やヒ素などの無機
系有害物質を固形スラッジ中に移行させる方法である。
2. Description of the Related Art As a technique for removing inorganic harmful substances such as heavy metals and arsenic contained in wastewater, an iron hydroxide coagulation precipitation method has been well known. In this method, an aqueous solution of 10 to several hundred ppm, and in some cases, several thousand ppm, of a ferric salt is added to the wastewater in advance, and then p
Neutralize to H7.0 or more to form a precipitate of iron hydroxide, coagulate and precipitate inorganic harmful substances such as heavy metals and arsenic contained in the wastewater together with the precipitate of iron hydroxide, A sedimentation accelerator is added, gravity sedimentation is separated, and sediment components are separated and dehydrated using a method such as filtration with a filter press, and inorganic harmful substances such as heavy metals and arsenic in wastewater are transferred to solid sludge. is there.

【0003】この水酸化鉄沈澱法によれば、処理費用が
安く、また比較的効率良く排水中の重金属やヒ素などの
無機系有害物質を除去することができるため、各地の排
水処理設備に広く実用化されている。
According to the iron hydroxide precipitation method, the treatment cost is low and the inorganic harmful substances such as heavy metals and arsenic in the wastewater can be relatively efficiently removed. Has been put to practical use.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、実際の
排水処理設備の運転においては、しばしば生成した水酸
化鉄沈澱の重力沈降分離性や、沈降物のろ過・脱水性が
著しく悪化し、これが設備の円滑運転の大きな支障とな
っている。
However, in the actual operation of wastewater treatment equipment, the gravitational sedimentation and sedimentation and sediment filtration / dewatering properties of the formed iron hydroxide precipitate often deteriorate significantly. This is a major obstacle to smooth driving.

【0005】もっとも、このような水酸化鉄沈澱の重力
沈降性やろ過性が悪化した場合に、対症療法的には、鉄
添加量を増やしたり、高分子凝集促進剤の添加量を増加
させるなどの措置を施すことで問題を回避できることも
あるが、このような措置を施してもなお問題が解決しな
い例も多い。
[0005] However, when the gravity sedimentation property and the filterability of such iron hydroxide precipitate are deteriorated, as a symptomatic treatment, the amount of iron to be added or the amount of polymer aggregation promoter to be added are increased. In some cases, the problem can be avoided by taking the above measures. However, there are many cases where such a measure still does not solve the problem.

【0006】すなわち、このような設備円滑運転の支障
の原因が、もし排水中に含有する高濃度水溶性無機成分
だと考えると、液中の高濃度イオンによって水酸化鉄沈
澱の成長が阻害され、沈澱サイズが極めて小さいままの
ため重力沈降性が悪くなるであろう。この場合、高分子
凝集促進剤の添加量を増やすことにより、重力沈降性を
改善することは可能であるが、沈降性を改善するために
は、多量の高分子凝集促進剤を添加しなければならず、
コストや排水粘度増加などの要因から、その添加量には
自ずから限度がある。
That is, if it is considered that the cause of such trouble in the smooth operation of the equipment is a high concentration of water-soluble inorganic components contained in the waste water, the growth of the iron hydroxide precipitate is inhibited by the high concentration of ions in the liquid. However, gravity sedimentation will be poor because the precipitate size remains very small. In this case, it is possible to improve the sedimentation by gravity by increasing the amount of the polymer coagulation promoter added, but in order to improve the sedimentation, a large amount of the polymer coagulation promoter must be added. Not
Due to factors such as cost and increased viscosity of waste water, the amount of addition is naturally limited.

【0007】また、例え重力沈降が充分に行えたとして
も、その後のフィルタープレスなどによるろ過・脱水時
の性能に支障が出る。すなわちフィルタープレスによる
ろ過・脱水操作は工学的にケーキろ過に分類されるが、
ケーキを形成する沈澱粒子サイズが小さいことによるろ
過抵抗が大きくなるので、このろ過速度は極めて小さく
なることが知られている。
[0007] Even if gravity sedimentation can be sufficiently performed, the performance at the time of filtration and dehydration by a filter press or the like is hindered. In other words, filtration and dewatering operations using a filter press are technically classified as cake filtration,
It is known that this filtration rate is extremely low because the filtration resistance increases due to the small size of the precipitated particles forming the cake.

【0008】さらに、たとえ、凝集促進剤による凝集粒
子サイズが大きかったとしても、ケーキろ過では、ろ布
の目開きが沈澱粒子サイズより大きいと、ろ布を沈澱が
素通りしやすいなどの致命的な欠点がある。この沈澱の
ろ布素通りを防ぐために、目開きのより小さなろ布を使
用すると、ろ過抵抗が更に増して、ろ過処理速度が小さ
くなるという欠陥が顕著に現れる。
Further, even if the size of the agglomerated particles by the agglomeration accelerator is large, in cake filtration, if the opening of the filter cloth is larger than the size of the precipitated particles, a fatal effect such that the sediment easily passes through the filter cloth can be obtained. There are drawbacks. If a filter cloth having a smaller mesh size is used to prevent the precipitate from passing through the filter cloth, a defect that the filtration resistance is further increased and the filtration speed is reduced becomes remarkable.

【0009】発明者らは、水酸化鉄凝集沈澱法を実施し
ている排水処理設備において、こうした不具合の発生原
因を種々検討した。その結果、多くの場合、硫酸イオン
やリン酸イオン、アルミニウムイオン、シリカイオンな
ど、処理すべき有害物質以外の水溶性無機成分の濃度が
増大していることが確認された。そして、これら高濃度
の水溶性無機成分の存在が、水酸化鉄沈澱粒子の成長を
阻害しているらしいことも突き止めた。
[0009] The inventors have studied various causes of the occurrence of such problems in a wastewater treatment facility that employs an iron hydroxide coagulation sedimentation method. As a result, in many cases, it was confirmed that the concentration of water-soluble inorganic components other than the harmful substances to be treated, such as sulfate ions, phosphate ions, aluminum ions, and silica ions, had increased. They also found that the presence of these high concentrations of water-soluble inorganic components seemed to inhibit the growth of iron hydroxide precipitated particles.

【0010】発明者らは近年特に、こうした現象を多く
経験するようになった。それは、水環境保全についての
社会的な要請と、国民の意識が強まることにより、排水
排出事業者の環境自主規制が強化された結果、排水量を
できるだけ減らす努力の結果として排水中の成分濃度が
高くなったり、あるいは従来は分別せずに排水処理設備
に導入していた各系統排水を濃度別に分別するようにな
ったことが影響しているものと推定される。こうした事
情から、濃厚な排水をそのまま処理できる水酸化鉄凝集
沈澱法の出現が待ち望まれていた。
[0010] In recent years, the inventors have particularly experienced such phenomena. This is because, as a result of social demands for water environmental conservation and the increasing public awareness, the voluntary environmental regulations of wastewater discharge companies have been strengthened, and as a result of efforts to reduce the amount of wastewater as much as possible, the concentration of components in wastewater has increased. It is presumed that the effect is that wastewater from each system, which had been introduced into wastewater treatment facilities without separation in the past, is now separated by concentration. Under these circumstances, the emergence of an iron hydroxide coagulation sedimentation method capable of treating thick wastewater as it has been awaited.

【0011】一方、水酸化鉄凝集沈澱法以外の方法によ
って、重金属やヒ素などの有害物質を含む排水を処理す
る方法として、カルシウム沈澱法が広く適用されてい
る。しかしながら、カルシウムを沈澱剤として用いる方
法は、濃厚無機成分含有排水には適用できない場合が多
い。その理由は、濃厚無機成分含有排水には、しばしば
高濃度の有害成分ではない硫酸イオンが含まれており、
硫酸カルシウムの沈澱物の生成によって、沈澱剤の消費
量が増加し、かつスラッジ量も増加する致命的な欠陥が
あるからである。
On the other hand, the calcium precipitation method is widely applied as a method for treating wastewater containing harmful substances such as heavy metals and arsenic by a method other than the iron hydroxide coagulation precipitation method. However, the method using calcium as a precipitant often cannot be applied to wastewater containing concentrated inorganic components. The reason is that wastewater containing concentrated inorganic components often contains high concentrations of sulfate ions that are not harmful components.
This is because the formation of the calcium sulfate precipitate causes a fatal defect that the consumption of the precipitant increases and the amount of sludge increases.

【0012】こうした濃厚無機成分含有排水に対して、
蒸発乾固法や吸着剤処理法などを適用する場合も考えら
れる。しかし、運転コストの上昇を招くので、排水排出
事業者としては、こうした濃厚な無機成分を含有した重
金属やヒ素などの有害物質を含有する排水を、自前で処
理せず、特別管理産業廃棄物処理業者に処理委託するな
どの方法が取られることが多い。
[0012] For such wastewater containing a concentrated inorganic component,
It is also conceivable to apply an evaporation to dryness method or an adsorbent treatment method. However, because of the increase in operating costs, wastewater discharge companies do not treat wastewater containing toxic substances such as heavy metals and arsenic containing rich inorganic components on their own. In many cases, such methods as outsourcing to a contractor are taken.

【0013】発明者らは、水酸化鉄凝集沈澱設備の運転
支障の事態に何度も遭遇した経験から、その原因が硫酸
イオンやリン酸イオン、アルミニウムイオン、シリカイ
オンなどの水溶性無機成分濃度が極めて高い場合である
ことに着目し、鋭意研究を進めた結果、水酸化鉄凝集沈
澱法が適用できる新しい処理法を見出した。この処理法
によれば、硫酸イオンやリン酸イオン、アルミニウムイ
オン、シリカイオンなどの水溶性無機成分濃度が極めて
高い排水処理に適用して重力沈降性やろ過・脱水性に優
れた沈澱を生成させることができる。
[0013] The inventors of the present invention have frequently encountered problems in the operation of the iron hydroxide coagulation and sedimentation facility, and found that the cause was the concentration of water-soluble inorganic components such as sulfate ion, phosphate ion, aluminum ion and silica ion. As a result of intensive research, we have found a new treatment method to which the coagulation and precipitation method of iron hydroxide can be applied. According to this treatment method, it is applied to wastewater treatment in which the concentration of water-soluble inorganic components such as sulfate ion, phosphate ion, aluminum ion, and silica ion is extremely high, and generates a precipitate having excellent gravity sedimentation properties and filtration / dehydration properties. be able to.

【0014】本発明の目的は、高濃度の無機成分の含有
排水を高度に処理する方法、特に高濃度の無機成分が含
有されていても、沈澱生成条件を適切に管理することに
よって充分に成長した沈澱を形成する方法を提供するこ
とにある。
It is an object of the present invention to provide a method for treating wastewater containing a high concentration of inorganic components to a high degree, in particular, even if a high concentration of inorganic components is contained, by adequately controlling the conditions for precipitation to sufficiently grow. It is an object of the present invention to provide a method for forming a precipitate.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するた
め、本発明による濃厚無機成分含有排水の水酸化鉄凝集
沈澱処理方法の第1の方法においては、濃厚無機成分含
有排水に水溶性第二鉄塩水溶液を加える第1の工程と、
添加した第二鉄塩をアルカリで中和する第2の工程と、
前記第1および第2の工程を引続き更に1回以上繰り返
す第3の工程とを含むものである。
In order to achieve the above object, in the first method of the present invention, there is provided a method for coagulating and precipitating an aqueous solution containing a concentrated inorganic component, the method comprising the steps of: A first step of adding an aqueous solution of iron salt;
A second step of neutralizing the added ferric salt with an alkali;
And a third step of continuously repeating the first and second steps one or more times.

【0016】また、第2方法においては、濃厚無機成分
含有排水を予め中和する第1の工程と、中和した該排水
に水溶性第二鉄塩水溶液を加える第2の工程と、添加し
た第二鉄塩をアルカリで中和する第3の工程と、前記第
2および第3の工程を引続き更に1回以上繰り返す第4
の工程とを含むものである。
In the second method, a first step of preliminarily neutralizing the concentrated inorganic component-containing wastewater and a second step of adding a water-soluble ferric salt aqueous solution to the neutralized wastewater are added. A third step of neutralizing the ferric salt with an alkali; and a fourth step of continuously repeating the second and third steps one or more times.
And the step of

【0017】また、第3の方法においては、濃厚無機成
分含有排水を予め中和する第1の工程と、該排水に水溶
性第二鉄塩水溶液を加える第2の工程と、第二鉄塩を添
加した排水混合物に、前記第1の工程で得られた中和排
水を添加する第3の工程と、前記第2および第3の工程
を引続き更に1回以上繰り返す第4の工程とを含むもの
である。
A third step of adding the neutralized wastewater obtained in the first step to the wastewater mixture to which the first step has been added, and a fourth step of continuously repeating the second and third steps one or more times. It is a thing.

【0018】また、本発明の第2または第3の方法にお
いて、第1の工程は、酸性またはアルカリ性の排水を導
入し攪拌しながらpH6.0から8.0の範囲で中和す
る工程であり、第2の工程は、鉄総量の0.2〜0.5
の量の第二鉄塩水溶液を排水中に添加する工程であり、
第3の工程は、排水を再中和し、pHを6.0から8.
0に調節する工程である。
In the second or third method of the present invention, the first step is a step of introducing acidic or alkaline waste water and neutralizing the mixture in a pH range of 6.0 to 8.0 while stirring. , The second step is 0.2 to 0.5 of the total amount of iron.
Is a step of adding an amount of an aqueous ferric salt solution to the wastewater,
The third step is to re-neutralize the wastewater and raise the pH to between 6.0 and 8.
This is the step of adjusting to zero.

【0019】また、中和剤は、アルカリ金属水和物、ま
たはリン酸を除く鉱酸である。
The neutralizing agent is an alkali metal hydrate or a mineral acid other than phosphoric acid.

【0020】また、第1、第2または第3の方法におい
て、第二鉄塩として、塩化物または硝酸塩・硫酸塩を排
水に対し、総添加量20〜5000ppmFeを添加
し、第二鉄塩を添加した後に5分から10分間攪拌して
反応時間を保持するものである。
In the first, second or third method, chloride or nitrate / sulfate is added as a ferric salt to the wastewater in a total amount of 20 to 5000 ppm Fe, and the ferric salt is added. After the addition, the mixture is stirred for 5 to 10 minutes to maintain the reaction time.

【0021】[0021]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。本発明は、濃厚無機成分含有排水の水酸化鉄凝集
沈澱処理法に関するものであり、沈澱の沈降性・ろ過性
・脱水性の阻害となる高濃度の硫酸イオン、リン酸イオ
ン、アルミニウムイオン、シリカイオンが排水中に存在
していても適正な沈澱を生成させることができる。
Embodiments of the present invention will be described below. The present invention relates to a method for coagulating and precipitating iron hydroxide from wastewater containing a concentrated inorganic component, and comprises a high concentration of sulfate ion, phosphate ion, aluminum ion, silica, which inhibits sedimentation, filtration, and dehydration of the precipitate. Even if ions are present in the wastewater, a proper precipitate can be formed.

【0022】すなわち、本発明においては、以下の工程
を順次に行って、沈澱の沈降性・ろ過性・脱水性の阻害
となる高濃度の硫酸イオン、リン酸イオン、アルミニウ
ムイオン、シリカイオンが排水中に存在していても適正
な沈澱を生成させるものであり、その方法には、以下に
述べるような3つの方法がある。第1の方法は、排水を
中和せずに水酸化鉄を分割添加し、中和の処理を繰り返
す方法であって、第1工程〜第3工程を順次行うことに
よって実現される。
That is, in the present invention, the following steps are sequentially performed to remove high concentrations of sulfate, phosphate, aluminum, and silica ions that inhibit the sedimentation, filtration, and dehydration of the precipitate. A proper precipitate is formed even if it is present therein, and there are three methods as described below. The first method is a method in which iron hydroxide is dividedly added without neutralizing the wastewater and the neutralization treatment is repeated, and is realized by sequentially performing the first to third steps.

【0023】第1の工程は、濃厚無機成分を含有する排
水に水溶性第二鉄塩水溶液を加える(混合する)工程で
ある。第1の工程によって、排水中に第二鉄イオンが混
合すると弱酸性を示す水溶性第二鉄塩により液pHは低
下する。第2の工程は、排水中に添加した第二鉄塩をア
ルカリで中和する工程である。第2の工程によって、第
二鉄イオンと水酸イオンが反応して水酸化鉄沈澱が生成
する。また排水中の重金属成分も水酸化物として沈澱す
る。
The first step is a step of adding (mixing) an aqueous solution of a water-soluble ferric salt to wastewater containing a concentrated inorganic component. In the first step, when the ferric ions are mixed in the wastewater, the pH of the liquid is lowered by the weakly acidic water-soluble ferric salt. The second step is a step of neutralizing the ferric salt added to the wastewater with an alkali. In the second step, ferric ions and hydroxide ions react to form iron hydroxide precipitate. Heavy metal components in the wastewater also precipitate as hydroxides.

【0024】 Fe+++ + 3OH- → Fe(OH)3↓・・・(1) Mn+ + nOH-→ M(OH)n↓ ・・・ (2) また、中和pHが弱酸性から中性であるときに排水にリ
ン酸が多く含有しているとリン酸鉄も沈澱する。 Fe+++ + PO4 --- → FePO4↓ ・・・(3) 水酸化鉄の色は一般的に赤褐色から茶褐色を呈し、リン
酸鉄の色は一般的に黄白色を呈しているが、第二鉄塩を
添加した排水の生成沈澱の色は排水中沈澱成分の比率等
によって一概に記述できない。
Fe +++ + 3OH → Fe (OH) 3 ↓ (1) M n + + nOH → M (OH) n ↓ (2) In addition, neutralization pH is weak acidity. If the wastewater contains a large amount of phosphoric acid when neutral, iron phosphate also precipitates. Fe +++ + PO 4 --- → FePO 4 ↓ (3) The color of iron hydroxide generally shows reddish brown to brown, and the color of iron phosphate generally shows yellowish white. However, the color of the precipitate formed in the wastewater to which the ferric salt has been added cannot be clearly described by the ratio of the precipitate component in the wastewater.

【0025】この第1の方法によって、排水中に生成す
る沈澱の色は一般的に水酸化鉄の茶褐色が支配的であ
る。第3の工程は、前記第1及び第2の工程を引続き更
に1回以上繰り返す工程である。図1に第1の方法のフ
ローを示す。
According to the first method, the color of the precipitate formed in the wastewater is generally dominated by the brown color of iron hydroxide. The third step is a step of continuously repeating the first and second steps one or more times. FIG. 1 shows a flow of the first method.

【0026】第2の方法は、排水を予め中和し、その後
水酸化鉄を分割添加して中和の処理を繰り返す方法であ
って、第1〜第4の工程を順次に行うことによって実現
される。第1の工程は、濃厚無機成分含有排水を予め中
和する工程であり、酸性またはアルカリ性の排水を導入
し、攪拌しながらpH6.0から8.0の範囲で排水を
中和する。第1の工程によって、排水のpHは中性にな
る。
The second method is a method in which the wastewater is neutralized in advance, and then the treatment of neutralization is repeated by adding iron hydroxide in portions, which is realized by sequentially performing the first to fourth steps. Is done. The first step is a step of preliminarily neutralizing the concentrated inorganic component-containing wastewater, in which acidic or alkaline wastewater is introduced, and the wastewater is neutralized within a pH range of 6.0 to 8.0 while stirring. The first step makes the pH of the wastewater neutral.

【0027】排水が酸性の場合 H+ + OH- → H2O ・・・(4) 排水がアルカリ性の場合 OH- + H+ → H2O ・・・(5) 排水中に含まれる成分が中和によって沈澱する場合もあ
るし、沈澱しない場合もある。また、排水中に含まれる
SS分は通常変化しない場合が多い。排水中和によって
沈澱する成分は例えばアルミニウムイオンである。
When the wastewater is acidic, H + + OH → H 2 O (4) When the waste water is alkaline OH + H + → H 2 O (5) The components contained in the wastewater are Precipitation may occur due to neutralization, or may not occur. Also, the SS content in the wastewater usually does not usually change. The component precipitated by the neutralization of the wastewater is, for example, aluminum ion.

【0028】排水が酸性の場合 Al+++ + 3OH- → Al(OH)3↓ ・・・(6) 排水がアルカリ性の場合 AlO2 - + H+ +H2O → Al(OH)3↓・・・(7) この第1の工程によって沈澱が生成するか否かは本発明
にとって重要ではない。
When the wastewater is acidic, Al +++ + 3OH → Al (OH) 3 ↓ (6) When the wastewater is alkaline: AlO 2 + H + + H 2 O → Al (OH) 3 ↓ (7) Whether or not a precipitate is formed by the first step is not important for the present invention.

【0029】第2の工程は、中和した該排水に水溶性第
二鉄塩水溶液を加える(混合する)工程である。第2の
工程においては、充分な処理性を与えるため、鉄総量の
0.2〜0.5の量の第二鉄塩水溶液を添加する。第2
の工程によって、添加した鉄イオンと排水中成分が一部
反応して沈澱を生成する。この場合、例えばリン酸鉄沈
澱の生成が優先的に起こる。
The second step is a step of adding (mixing) an aqueous solution of a water-soluble ferric salt to the neutralized waste water. In the second step, an aqueous ferric salt solution in an amount of 0.2 to 0.5 based on the total amount of iron is added in order to provide sufficient processability. Second
In the step (2), the added iron ions partially react with the components in the wastewater to form a precipitate. In this case, for example, the formation of an iron phosphate precipitate occurs preferentially.

【0030】リン酸鉄の沈澱生成で余った鉄イオンと排
水中の水酸イオンが反応して水酸化鉄沈澱が生成する
が、その沈澱は通常コロイドゲル状を呈する。反応式は
上記(1)〜(3)に示したとおりである。第3の工程
は、添加した第二鉄塩をアルカリで中和する工程であ
り、pHを6.0から8.0に調節する。第3の工程に
よって、コロイドゲル状を呈する水酸化鉄沈澱を充分な
大きさとすることができる。次いで第4の工程として、
前記第2及び第3の工程を引続き更に1回以上繰り返
す。図2に第2の方法のフロー図を示す。
The excess iron ions formed by the precipitation of iron phosphate react with the hydroxide ions in the waste water to form iron hydroxide precipitates, which usually have a colloidal gel form. The reaction formula is as shown in the above (1) to (3). The third step is a step of neutralizing the added ferric salt with an alkali, and adjusting the pH from 6.0 to 8.0. By the third step, the size of the iron hydroxide precipitate in the form of a colloidal gel can be increased. Then, as a fourth step,
The second and third steps are repeated one or more times. FIG. 2 shows a flowchart of the second method.

【0031】第3の方法は、中和した排水と水酸化鉄と
を各々分割中和し、最後に中和処理を行う方法であっ
て、第1工程〜第4工程を順次に行うことによって実現
される。すなわち、第1の工程は、濃厚無機成分含有排
水を予め中和する工程であり、第2の工程は、該排水に
水溶性第二鉄塩水溶液を加える(混合する)工程であ
る。第1の工程及び第2の工程については、基本的に第
2の方法と同じである。ついで、第3の工程として、第
二鉄塩を添加した排水混合物に、再度第1の工程の中和
排水を添加し、pHを6.0から8.0、好ましくは、
pHを7以上に調整する。
The third method is a method in which the neutralized wastewater and iron hydroxide are separately neutralized, respectively, and finally subjected to a neutralization treatment, and the first to fourth steps are sequentially performed. Is achieved. That is, the first step is a step of neutralizing the concentrated inorganic component-containing wastewater in advance, and the second step is a step of adding (mixing) a water-soluble ferric salt aqueous solution to the wastewater. The first step and the second step are basically the same as the second method. Next, as a third step, the neutralized wastewater of the first step is added again to the wastewater mixture to which the ferric salt has been added, and the pH is 6.0 to 8.0, preferably,
Adjust the pH to 7 or higher.

【0032】第3の工程によって、混合液のpHは僅か
に中性側に移動し、生成した沈澱の表面状態に変化が起
きると推定される。また、既に沈澱を生成している排水
中成分が沈澱上に吸着するなどの現象が起きるものと推
定される。なお、こうした排水中沈澱のpHの変動によ
る微視的な状態変化を完全に記述するのは不可能である
(例えば「用水・廃水便覧 改定二版」1984年丸善
399ページ参照)。
It is presumed that the pH of the mixture slightly shifts to the neutral side by the third step, and the surface condition of the formed precipitate changes. It is also presumed that phenomena such as adsorption of components in the wastewater that have already formed a precipitate on the precipitate occur. It is impossible to completely describe such a microscopic state change due to the fluctuation of the pH of the sediment in the wastewater (see, for example, "Handbook for Wastewater and Wastewater Revised 2nd Edition", 1984, Maruzen, p. 399).

【0033】その後、第4の工程として、前記第2及び
第3の工程を引続き更に1回以上繰り返す。上記、第1
〜第3の方法において、排水中に添加する水溶性の第二
鉄塩としては、塩化物または硝酸塩・硫酸塩を用いるこ
とができ、排水に対する鉄塩総添加量は、20〜500
0ppmFeが適量である。なお、排水中に第二鉄塩を
添加した後に5分から10分攪拌を継続して反応時間を
保持する。
Thereafter, as a fourth step, the above-mentioned second and third steps are continuously repeated one or more times. Above, the first
In the third to third methods, chloride or nitrate / sulfate can be used as the water-soluble ferric salt to be added to the wastewater, and the total amount of iron salt added to the wastewater is 20 to 500.
0 ppm Fe is an appropriate amount. After the addition of the ferric salt to the waste water, stirring is continued for 5 to 10 minutes to maintain the reaction time.

【0034】また、排水中に添加する中和剤には、アル
カリ金属水酸化物または塩酸・硫酸・硝酸などの鉱酸
(ただしリン酸を除く)を用いることができる。図3に
第3の方法のフロー図を示す。
The neutralizing agent added to the wastewater may be an alkali metal hydroxide or a mineral acid (excluding phosphoric acid) such as hydrochloric acid, sulfuric acid and nitric acid. FIG. 3 shows a flowchart of the third method.

【0035】本発明の方法は、従来から良く知られてい
る「種沈澱循環法」とは原理上、全く異なる方法であ
る。すなわち、種沈澱循環法は、既に充分に大きなサイ
ズに成長した沈澱を、水酸化鉄凝集沈澱槽以外の設備か
ら移送し、排水に予め混合してから新しい沈澱を生成す
る方法である。これに対し、本発明によれば、こうした
沈澱の移送を必要としない点、および極めて小さなサイ
ズの水酸化鉄沈澱の存在のもとで鉄および沈澱を交互に
加える点で、原理的に従来法とは全く異なる新しい発明
であることが明かである。
The method of the present invention is completely different in principle from the well-known “seed precipitation circulation method” in principle. That is, the seed precipitation circulation method is a method in which a precipitate that has already grown to a sufficiently large size is transferred from equipment other than the iron hydroxide coagulation sedimentation tank, and is mixed with the wastewater beforehand to form a new precipitate. In contrast, according to the present invention, the transfer of such precipitates is not required, and iron and precipitates are alternately added in the presence of iron hydroxide precipitates of very small size, which are in principle conventional methods. It is clear that this is a completely new invention.

【0036】本発明について更に説明を加えれば、第2
の方法においては、酸性やアルカリ性の排水を予め中和
する操作が重要である。高濃度無機成分を含有する排水
の種類によっては、予め中和操作を行わずに鉄塩と中和
剤とを交互に添加するだけで充分な処理性を与える場合
がある反面かならずしも、充分な処理性が与えられない
場合もある。
If the present invention is further described,
In the above method, it is important to neutralize the acidic or alkaline wastewater in advance. Depending on the type of wastewater containing high-concentration inorganic components, sufficient treatment may be provided by simply alternately adding iron salts and neutralizing agents without performing a neutralization operation in advance, but sufficient treatment may not always be possible. In some cases, sex is not given.

【0037】しかしながら、排水を予め中和した後に、
鉄塩と中和剤を交互に添加することによって、すべての
排水に対し、従来法に比べてその処理性が改善される。
However, after neutralizing the wastewater in advance,
By alternately adding the iron salt and the neutralizing agent, the treatability of all wastewaters is improved as compared to the conventional method.

【0038】また、予め中和された排水(中性の排水で
あればそのまま、酸性排水であればカルシウムを除くア
ルカリ金属またはアルカリ土類金属の水酸化物で中和し
たもの、アルカリ性排水であれば、リン酸を除く鉱酸で
中和した排水)と鉄塩とを交互に添加する方法によれ
ば、更に処理性の優れた沈澱を得ることができる。
In addition, wastewater which has been neutralized in advance (whether neutral wastewater as it is, or neutral wastewater neutralized with an alkali metal or alkaline earth metal hydroxide excluding calcium, or alkaline wastewater) For example, according to the method of alternately adding the wastewater neutralized with a mineral acid except phosphoric acid) and the iron salt, a precipitate having more excellent processability can be obtained.

【0039】排水の酸性やアルカリ性が強い場合、鉄塩
と中和剤とのミクロな沈澱生成反応場が、著しいアルカ
リ条件に曝されるために、高濃度の無機成分の影響を受
けやすい条件となるものと推定されるが、予め排水を中
和しておくことによって、温和な沈澱生成条件が整えら
れるものと考えられる。
When the wastewater is strongly acidic or alkaline, the microprecipitation reaction field between the iron salt and the neutralizing agent is exposed to a remarkable alkali condition, so that the condition is easily affected by a high concentration of inorganic components. It is presumed that mild precipitation conditions are adjusted by neutralizing the wastewater in advance.

【0040】本発明では、中和剤としてカルシウムを除
いているが、その理由は、前述したとおり、処理対象外
の硫酸カルシウム沈澱が生成するためである。また、中
和剤としてリン酸を除いている理由は、リン酸鉄の沈澱
生成pH領域が、水酸化鉄沈澱の生成pH領域と異な
り、しばしば、リン酸鉄のコロイド沈澱を生成して、処
理性を悪化させるためである。
In the present invention, calcium is excluded as a neutralizing agent, because, as described above, calcium sulfate precipitates not to be treated are formed. In addition, the reason why phosphoric acid is excluded as a neutralizing agent is that the pH range in which iron phosphate precipitates is different from the pH range in which iron hydroxide precipitates. This is to make the sex worse.

【0041】本発明で中和処理による排水中のpHは、
6.0〜8.0好ましくは6.5から7.0でなければ
ならない。中和のpHが高すぎると、放流の際に別途p
H調整を必要とする。
In the present invention, the pH in the waste water by the neutralization treatment is:
It should be between 6.0 and 8.0, preferably between 6.5 and 7.0. If the pH of the neutralization is too high, p
H adjustment is required.

【0042】第二鉄塩の種類は塩化物・硫酸塩・硝酸塩
のいずれでも構わない。また、その添加量は、重金属や
ヒ素などの有害物質を充分に処理し得る最適な量が選定
される。通常、排水に対する鉄塩添加量は、好ましくは
20〜5000ppmFeである。
The type of ferric salt may be any of chloride, sulfate and nitrate. Further, the amount of addition is selected to be an optimum amount that can sufficiently treat harmful substances such as heavy metals and arsenic. Usually, the amount of iron salt added to the wastewater is preferably 20 to 5000 ppm Fe.

【0043】本発明の方法によれば、沈降性・ろ過性・
脱水性の優れた水酸化鉄凝集沈澱が得られる。この沈澱
は高分子凝集促進剤の添加を必要とせずに、充分な重力
沈降性を示す場合もあり、総じて高分子凝集促進剤の添
加量は少なくて済む。また、沈澱分離の手段としてフィ
ルタープレス式ろ過・脱水機を用いた場合、そのろ過性
は通常の方式と比べて著しく改善することが認められ
る。
According to the method of the present invention, sedimentation, filtration,
An iron hydroxide coagulated sediment having excellent dehydration properties is obtained. In some cases, this precipitation does not require the addition of a polymer coagulation promoter, and may exhibit sufficient gravity sedimentation. In general, the amount of the polymer coagulation promoter added is small. Further, when a filter press type filtration / dehydrator is used as a means for separating the precipitate, it is recognized that the filterability is remarkably improved as compared with the ordinary method.

【0044】本発明の方法は、バッチ処理であってもあ
るいは連続処理であっても実施が可能であるが、第1の
方法と、第2の方法はバッチ処理が有利である。すなわ
ち、第1〜第3のいずれの方法においても、繰り返し添
加する水溶性第二鉄塩と、中和剤の総量はそれ程変化し
ないが、第1の方法と、第2の方法においては、ともに
再中和を繰り返すたびにpHの調整の操作を必要とする
ため、連続処理よりもバッチ処理に向く方法であるとい
える。
The method of the present invention can be carried out in either batch processing or continuous processing, but the first method and the second method are advantageously batch processing. That is, in any of the first to third methods, the total amount of the repeatedly added water-soluble ferric salt and the neutralizing agent does not change so much. However, in the first method and the second method, Since the operation of adjusting the pH is required each time the re-neutralization is repeated, it can be said that the method is more suitable for batch processing than continuous processing.

【0045】もちろん、連続処理が不可能であるという
ものではない。第2の方法を連続処理にて行う場合に
は、複数基の攪拌槽、たとえば、6基の攪拌槽を用い、
第1槽は、中和された排水を第2槽、第3槽、第5槽に
送る貯留槽、第2槽、第4槽は第二鉄塩水溶液を混合す
る反応槽、第3槽と第5槽は鉄塩を添加した排水に新た
に中性の排水を添加する反応槽、第6槽は最終のpHを
調整する槽とし、排水は、順次第1槽から第2槽、第3
槽、・・・の順に送り込み、第2〜第5槽内で所定の反
応を行わせ、第6槽内でpHを調整することによって実
施できる。
Of course, this does not mean that continuous processing is impossible. When performing the second method by continuous processing, a plurality of stirring tanks, for example, using six stirring tanks,
The first tank is a storage tank that sends the neutralized wastewater to the second tank, the third tank, and the fifth tank, the second tank, and the fourth tank are reaction tanks that mix an aqueous ferric salt solution, and the third tank is The fifth tank is a reaction tank for adding neutral wastewater to the wastewater to which iron salt has been added, the sixth tank is a tank for adjusting the final pH, and the wastewater is sequentially discharged from the first tank to the second tank and the third tank.
Are fed in the order of tanks,..., A predetermined reaction is performed in the second to fifth tanks, and the pH is adjusted in the sixth tank.

【0046】同様に第1の方法においても上記の例に倣
って連続処理が可能である。第3の方法は、もちろんバ
ッチ処理は可能であるが、むしろ連続処理が適してい
る。図4に、第3の方法よる連続処理の工程フローを示
す。この例では、合計7つの槽を用いている。第1槽3
と第7槽10は中和槽、第2槽5、第4槽6、第6槽9
は第二鉄塩混合槽、第3槽6、第5槽8は中和排水混合
槽である。
Similarly, in the first method, continuous processing can be performed according to the above example. In the third method, batch processing is of course possible, but rather continuous processing is suitable. FIG. 4 shows a process flow of a continuous process according to the third method. In this example, a total of seven tanks are used. First tank 3
And the seventh tank 10 are a neutralization tank, the second tank 5, the fourth tank 6, and the sixth tank 9
Is a ferric salt mixing tank, and the third tank 6 and the fifth tank 8 are neutralization wastewater mixing tanks.

【0047】濃厚無機成分含有排水2は、第1槽3に給
水され、第1槽3から第2槽5、第3槽6・・・第7槽
10の順に送り込まれる。中和剤1は、第1槽3、第7
槽10に添加され、第二鉄塩水溶液4は、第2槽5、第
4槽7、第6槽9に添加され、また、第1槽3から排出
される中和排水を第3槽6、第5槽8に供給することに
よって、第7槽10から排出される処理水11中の沈澱
物を分離可能レベルに十分成長させることができる。
The concentrated inorganic component-containing wastewater 2 is supplied to the first tank 3, and is sent from the first tank 3 to the second tank 5, the third tank 6,... The neutralizing agent 1 is supplied to the first tank 3, the seventh tank
The ferric salt aqueous solution 4 added to the tank 10 is added to the second tank 5, the fourth tank 7, and the sixth tank 9, and the neutralized waste water discharged from the first tank 3 is added to the third tank 6. , The precipitate in the treated water 11 discharged from the seventh tank 10 can be sufficiently grown to a separable level.

【0048】[0048]

【実施例】以下に本発明の実施例を示す。 (実施例1) 表1 排水性状 pH 0.9 As 10ppm P 370ppm SO4 530ppm SS 33ppmExamples of the present invention will be described below. (Example 1) Table 1 Drainage Characteristics pH 0.9 As 10ppm P 370ppm SO 4 530ppm SS 33ppm

【0049】実施例1は、第2の方法の適用例である。
表1に示す性状の排水15リットルを20リットル容器
に入れ、攪拌機で攪拌しながら、第1の工程として25
%水酸化ナトリウム水溶液でpH6.7に中和した。
Embodiment 1 is an application example of the second method.
15 liters of waste water having the properties shown in Table 1 were placed in a 20 liter container, and stirred with a stirrer, and 25
The solution was neutralized to pH 6.7 with an aqueous sodium hydroxide solution.

【0050】中和により格別の沈澱は生成しなかった。
この中和排水を攪拌しながら、第2の工程として塩化第
二鉄水溶液(38%)の87ccを添加した。鉄塩の添
加により液のpHは4.2に下がり、かつ白褐色のコロ
イド沈澱を生成した。第3の工程としてこの液をアルカ
リで再中和しpHを6.7に調整した。白色沈澱の状態
に大きな変化は見られないが、アルカリ添加時に水酸化
鉄の茶褐色沈澱が容器の一部に短時間生成し、すぐ消滅
した。次に第4の工程として2回目の塩化第二鉄水溶液
を87cc加えたところ、液のpHは4.1に下がり、
沈澱の色は白色がわずかに鮮明となった。
No special precipitate was formed by the neutralization.
While stirring the neutralized waste water, 87 cc of an aqueous ferric chloride solution (38%) was added as a second step. Addition of the iron salt lowered the pH of the liquor to 4.2 and produced a white-brown colloidal precipitate. As a third step, the solution was re-neutralized with alkali to adjust the pH to 6.7. Although there was no significant change in the state of the white precipitate, a brown precipitate of iron hydroxide was formed in a part of the container for a short time when the alkali was added, and disappeared immediately. Next, as a fourth step, when 87 cc of the second aqueous ferric chloride solution was added, the pH of the solution dropped to 4.1,
The color of the precipitate became slightly clear white.

【0051】次いで再々中和し、pHを6.7に調整し
たところ、沈澱の色は極めてわずかに茶色を帯びたこと
が観察された。この液に3回目の塩化第二鉄水溶液を8
7cc添加したところ、pHは4.1となり沈澱は茶色
が支配的となった。さらにpHを6.7に調整したとこ
ろ沈澱の大きさは肉眼で確認できるほど大きくなった。
Then, after neutralization again and the pH was adjusted to 6.7, it was observed that the color of the precipitate was very slightly brownish. To this solution was added a third aqueous ferric chloride solution
When 7 cc was added, the pH became 4.1 and the precipitate was dominated by brown. Further, when the pH was adjusted to 6.7, the size of the precipitate became large enough to be confirmed with the naked eye.

【0052】この段階で攪拌を止め、液を静置したとこ
ろ、10分後には沈澱容積が液量全体の45%にまで沈
降濃縮することが観察された。この沈澱を含むスラリー
をNo5Cのろ紙で真空ろ過したところ、そのろ過速度
は図4に示すように極めて早かった。沈澱物を除去した
後の処理水の性状を表2に示す。
When the slurry containing the precipitate was subjected to vacuum filtration with a No. 5C filter paper, the filtration speed was extremely high as shown in FIG. Table 2 shows the properties of the treated water after removing the precipitate.

【0053】表2 処理水性状 pH 6.7 AS <0.05ppm SS 0.1ppmTable 2 Aqueous treatment pH 6.7 AS <0.05 ppm SS 0.1 ppm

【0054】(実施例2)実施例2は、第3の方法の適
用例である。実施例1と同じ排水15リットルを20リ
ットル容器に入れ、攪拌機で攪拌しながら、第1の工程
として25%水酸化ナトリウム水溶液でpH6.7に中
和した。中和により格別の沈澱は生成しなかった。この
中和排水の5リットルを別の20リットル容器に移し、
攪拌しながら、第2の工程として塩化第二鉄水溶液(3
8%)の55ccを添加した。
(Embodiment 2) Embodiment 2 is an application example of the third method. 15 liters of the same waste water as in Example 1 was placed in a 20 liter container, and neutralized to pH 6.7 with a 25% aqueous sodium hydroxide solution as a first step while stirring with a stirrer. No special precipitate was formed by the neutralization. Transfer 5 liters of this neutralized wastewater to another 20 liter container,
While stirring, an aqueous ferric chloride solution (3
8%) was added.

【0055】鉄塩の添加により液のpHは3.6に下が
り、かつ白褐色のコロイド沈澱を生成した。この液に、
第3の工程として新たに中和した排水5リットルを添加
したところ液のpHは5.5になったが、白色コロイド
沈澱の状態は変らなかった。
The addition of the iron salt lowered the pH of the liquor to 3.6 and produced a white-brown colloidal precipitate. In this liquid,
As a third step, when 5 liters of newly neutralized waste water was added, the pH of the solution became 5.5, but the state of the white colloid precipitate did not change.

【0056】次に再度塩化第二鉄水溶液の55ccを加
えた所、pHは3.4に下がり、コロイド沈澱の色は僅
かに黄色を帯びた。この状態で5分間攪拌を続けた後、
第4の工程として新たな中和排水5リットルと塩化第二
鉄水溶液55ccを加えたところ、pHは5.4および
3.3に変化した。生成した沈澱の色は薄黄色を呈し、
その大きさも肉眼で認識できるほど大きなものとなっ
た。
Next, when 55 cc of the aqueous ferric chloride solution was added again, the pH dropped to 3.4, and the color of the colloidal precipitate became slightly yellow. After stirring for 5 minutes in this state,
As a fourth step, when 5 liters of new neutralized wastewater and 55 cc of an aqueous ferric chloride solution were added, the pH changed to 5.4 and 3.3. The color of the precipitate formed is light yellow,
Its size was large enough to be recognized by the naked eye.

【0057】最後に液のpHを6.7に調整した後、攪
拌を止め液を静置したところ、10分後には沈澱容積が
液量全体の15%にまで沈降濃縮することが観察され
た。この沈澱を含むスラリーを実施例1と同様の方法で
真空ろ過したところ、そのろ過速度は図4に示す値を示
した。沈澱物を除去した後の処理水の性状を表3に示
す。
Finally, after adjusting the pH of the solution to 6.7, the stirring was stopped and the solution was allowed to stand. After 10 minutes, it was observed that the sediment volume was settled and concentrated to 15% of the whole solution volume. . When the slurry containing the precipitate was subjected to vacuum filtration in the same manner as in Example 1, the filtration speed showed the value shown in FIG. Table 3 shows the properties of the treated water after removing the precipitate.

【0058】表3 処理水性状 pH 6.7 As <0.05ppm SS 0.1ppmTable 3 Treatment aqueous state pH 6.7 As <0.05 ppm SS 0.1 ppm

【0059】(実施例3)実施例3は第1の方法の適用
例である。実施例1と同じ排水15リットルを20リッ
トル容器に入れ、攪拌機で攪拌しながら、第1の工程と
して塩化第二鉄水溶液の87ccを添加した。pHは
0.8に僅かに変化した。第2の工程として、25%水
酸化ナトリウム水溶液でpH6.7に中和した。
(Embodiment 3) Embodiment 3 is an application example of the first method. 15 liters of the same waste water as in Example 1 was placed in a 20 liter container, and 87 cc of an aqueous ferric chloride solution was added as a first step while stirring with a stirrer. The pH changed slightly to 0.8. As a second step, the solution was neutralized to pH 6.7 with a 25% aqueous sodium hydroxide solution.

【0060】この操作によって、液のpHが3前後から
茶色の沈澱が生成するようになった。pHが6.8にな
ったところで中和を止め、5分間攪拌を続けた。この時
沈澱は極めて細かいもので、その色はやや淡い茶褐色を
呈した。第3の工程として、塩化第二鉄87ccを添加
したところ液のpHは4.2に下がったが、沈澱の色に
各段の変化は見られなかった。
By this operation, a brown precipitate began to form when the pH of the solution was around 3. When the pH reached 6.8, neutralization was stopped and stirring was continued for 5 minutes. At this time, the precipitate was very fine and its color was slightly light brown. In the third step, when 87 cc of ferric chloride was added, the pH of the solution dropped to 4.2, but no change was observed in the color of the precipitate in each step.

【0061】これを再中和したところ、沈澱の茶褐色は
やや濃くなった。この第3の工程(鉄添加再中和)を合
計3回繰り返したところ、沈澱の茶褐色は濃いものとな
り、沈澱の大きさも肉眼で見えるようまで大きくなっ
た。この沈降性は、10分後に13%にまで達した。沈
澱物のろ過性については、図4に示すように実施例1と
以下に示す比較例2との中間のろ過速度が得られ、実施
例1のろ過速度を僅かに下まわった。
When this was re-neutralized, the brown color of the precipitate became slightly darker. When this third step (iron re-neutralization) was repeated a total of three times, the brown color of the precipitate became dark, and the size of the precipitate became large enough to be seen with the naked eye. The sedimentation reached 13% after 10 minutes. Regarding the filterability of the precipitate, an intermediate filtration rate between Example 1 and Comparative Example 2 shown below was obtained as shown in FIG. 4, and was slightly lower than that of Example 1.

【0062】[0062]

【比較例1】実施例1で最初の鉄塩添加で生成した初期
のコロイド液の一部を取りだし、pHを6.7に調整し
てその沈降性を観察したが、3日後も固液分離は認めら
れなかった。またこのコロイド沈澱を含む液のろ過速度
を実施例1と同様の方法で測定したところ、その速度は
図4に示すように極めて小さかった。
[Comparative Example 1] A part of the initial colloid solution produced by the first addition of the iron salt in Example 1 was taken out, the pH was adjusted to 6.7, and its sedimentation property was observed. Was not found. When the filtration rate of the liquid containing the colloidal precipitate was measured by the same method as in Example 1, the filtration rate was extremely small as shown in FIG.

【0063】[0063]

【比較例2】実施例1で用いたと同じ排水の15リット
ルを取り、攪拌しながら塩化第二鉄水溶液(38%)の
165ccを添加し、次いで25%水酸化ナトリウム水
溶液にてpHを6.7に調整した。pHの上昇とともに
槽内には茶色〜茶褐色の沈澱が生成することが認められ
た。約30分間攪拌を続けた後、攪拌を止め、約半量の
液をそのまま60分間静置させたところ、固液界面は液
容積の5%にも満たない極めて遅い沈降速度であった。
Comparative Example 2 15 liters of the same waste water used in Example 1 was taken, 165 cc of an aqueous ferric chloride solution (38%) was added with stirring, and then the pH was adjusted to 6.5 with a 25% aqueous sodium hydroxide solution. Adjusted to 7. It was recognized that a brown-brown precipitate was formed in the tank as the pH increased. After stirring was continued for about 30 minutes, the stirring was stopped, and about half of the liquid was allowed to stand for 60 minutes. As a result, the solid-liquid interface had an extremely slow sedimentation speed of less than 5% of the liquid volume.

【0064】一方残りの半量については高分子凝集剤を
添加し約5分攪拌した後静置したところ約5分で沈澱沈
降界面は全液容積の70%に達した。凝集剤の無添加・
添加の両者について実施例1と同じ方法でろ過速度を測
定したが図4に示すように極めて遅いろ過速度を示し
た。
On the other hand, about the remaining half, a polymer flocculant was added, and the mixture was stirred for about 5 minutes and allowed to stand. After about 5 minutes, the sedimentation interface reached 70% of the total liquid volume. No coagulant added
The filtration rate was measured for both of the additions in the same manner as in Example 1, but the filtration rate was extremely low as shown in FIG.

【0065】[0065]

【発明の効果】以上のように本発明によるときには、硫
酸イオンやリン酸イオン、アルミニウムイオン、シリカ
イオンなどの水溶性無機成分濃度が極めて高い排水であ
っても、その浄化処理に水酸化鉄沈澱法を適用して適正
な沈澱を生成せしめ、沈澱物は、重力沈降性やろ過によ
って、排水中から分離でき、また分離された沈澱物は・
脱水性に優れ、真空ろ過法などを用いて沈澱を含むスラ
リーの脱水を容易に行うことができる効果を有する。
As described above, according to the present invention, even if the wastewater has a very high concentration of water-soluble inorganic components such as sulfate ions, phosphate ions, aluminum ions, and silica ions, the treatment for purifying iron hydroxide precipitates the wastewater. Applying the method to produce an appropriate precipitate, the precipitate can be separated from the wastewater by gravity sedimentation or filtration, and the separated precipitate is
It has an excellent dewatering property, and has an effect that a slurry containing a precipitate can be easily dewatered using a vacuum filtration method or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による第1の方法を示すフロー図であ
る。
FIG. 1 is a flowchart showing a first method according to the present invention.

【図2】本発明による第2の方法を示すフロー図であ
る。
FIG. 2 is a flowchart showing a second method according to the present invention.

【図3】本発明による第3の方法を示すフロー図であ
る。
FIG. 3 is a flow chart showing a third method according to the present invention.

【図4】本発明方法によって処理した沈澱を含むスラリ
ーについて、実施例1、2、3と比較例1、2とのろ過
速度の比較を示すグラフである。
FIG. 4 is a graph showing a comparison of filtration speed between Examples 1, 2, and 3 and Comparative Examples 1 and 2 for a slurry containing a precipitate treated by the method of the present invention.

【図5】本発明の第3の方法による連続処理の工程のフ
ローを示す図である。
FIG. 5 is a view showing a flow of a continuous processing step according to a third method of the present invention.

【符号の説明】[Explanation of symbols]

1 中和剤 2 濃厚無機成分含有排水 3 第1槽(中和槽) 4 第二鉄塩水溶液 5 第2槽(第二鉄塩混合槽) 6 第3槽(中和排水混合槽) 7 第4槽(第二鉄塩混合槽) 8 第5槽(中和排水混合槽) 9 第6槽(第二鉄塩混合槽) 10 第7槽(中和槽) 11 処理水 DESCRIPTION OF SYMBOLS 1 Neutralizing agent 2 Drainage containing a concentrated inorganic component 3 First tank (neutralization tank) 4 Ferric salt aqueous solution 5 Second tank (ferric salt mixing tank) 6 Third tank (neutralization drainage mixing tank) 7th 4 tanks (ferric salt mixing tank) 8 5th tank (neutralization wastewater mixing tank) 9 6th tank (ferric salt mixing tank) 10 7th tank (neutralization tank) 11 treated water

───────────────────────────────────────────────────── フロントページの続き (72)発明者 仲村 浩 神奈川県川崎市中原区下沼部1933−10 日 本電気環境エンジニアリング株式会社内 (72)発明者 大口 善弘 神奈川県海老名市さつき町1−1−107 Fターム(参考) 4D015 BA19 BB01 CA17 CA20 FA03 FA12 4D038 AA08 AB63 AB70 AB85 BA04 BB18 4D062 BA19 BB01 CA17 CA20 FA03 FA12  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroshi Nakamura 1933-10 Shimonumabe, Nakahara-ku, Kawasaki City, Kanagawa Prefecture Within Nippon Electric Environmental Engineering Co., Ltd. (72) Yoshihiro Oguchi 1-1-107 Satsukicho, Ebina-shi, Kanagawa Prefecture F term (reference) 4D015 BA19 BB01 CA17 CA20 FA03 FA12 4D038 AA08 AB63 AB70 AB85 BA04 BB18 4D062 BA19 BB01 CA17 CA20 FA03 FA12

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 濃厚無機成分含有排水に水溶性第二鉄塩
水溶液を加える第1の工程と、添加した第二鉄塩をアル
カリで中和する第2の工程と、前記第1および第2の工
程を引続き更に1回以上繰り返す第3の工程とを含むこ
とを特徴とする濃厚無機成分含有排水の水酸化鉄凝集沈
澱処理方法。
1. A first step of adding an aqueous solution of a water-soluble ferric salt to a wastewater containing a concentrated inorganic component, a second step of neutralizing the added ferric salt with an alkali, and the first and second steps. And a third step of continuously repeating the step of repeating the step one or more times.
【請求項2】 濃厚無機成分含有排水を予め中和する第
1の工程と、中和した該排水に水溶性第二鉄塩水溶液を
加える第2の工程と、添加した第二鉄塩をアルカリで中
和する第3の工程と、前記第2および第3の工程を引続
き更に1回以上繰り返す第4の工程とを含むことを特徴
とする濃厚無機成分含有排水の水酸化鉄凝集沈澱処理方
法。
2. A first step of preliminarily neutralizing a wastewater containing a concentrated inorganic component, a second step of adding a water-soluble ferric salt aqueous solution to the neutralized wastewater, and adding the added ferric salt to an alkali. A process for coagulating and precipitating waste water containing concentrated inorganic components, the method comprising a third step of neutralizing with water and a fourth step of continuously repeating the second and third steps one or more times. .
【請求項3】 濃厚無機成分含有排水を予め中和する第
1の工程と、該排水に水溶性第二鉄塩水溶液を加える第
2の工程と、第二鉄塩を添加した排水混合物に、前記第
1の工程で得られた中和排水を添加する第3の工程と、
前記第2および第3の工程を引続き更に1回以上繰り返
す第4の工程とを含むことを特徴とする濃厚無機成分含
有排水の水酸化鉄凝集沈澱処理方法。
3. A first step of preliminarily neutralizing a concentrated inorganic component-containing wastewater, a second step of adding a water-soluble ferric salt aqueous solution to the wastewater, and a wastewater mixture to which a ferric salt is added. A third step of adding the neutralized wastewater obtained in the first step,
And a fourth step of continuously repeating the second and third steps one or more times.
【請求項4】 請求項2または3に記載の濃厚無機成分
含有排水の水酸化鉄凝集沈澱処理方法において、第1の
工程は、酸性またはアルカリ性の排水を導入し攪拌しな
がらpH6.0から8.0の範囲で中和する工程であ
り、第2の工程は、鉄総量の0.2〜0.5の量の第二
鉄塩水溶液を排水中に添加する工程であり、第3の工程
は、排水を再中和し、pHを6.0から8.0に調節す
る工程であることを特徴とする濃厚無機成分含有排水の
水酸化鉄凝集沈澱処理方法。
4. The method for coagulating and precipitating iron hydroxide containing concentrated inorganic components as set forth in claim 2 or 3, wherein the first step comprises introducing acidic or alkaline waste water and stirring the solution to a pH of 6.0 to 8 while stirring. The second step is a step of adding an aqueous ferric salt solution in an amount of 0.2 to 0.5 of the total amount of iron to the wastewater, and the third step is a third step. Is a step of re-neutralizing the waste water and adjusting the pH from 6.0 to 8.0, wherein the concentrated inorganic component-containing waste water is subjected to coagulation and precipitation of iron hydroxide.
【請求項5】 請求項1、2または3に記載の濃厚無機
成分含有排水の水酸化鉄凝集沈澱処理方法において、中
和剤は、アルカリ金属水和物、またはリン酸を除く鉱酸
であることを特徴とする濃厚無機成分含有排水の水酸化
鉄凝集沈澱処理方法。
5. The method for coagulating and precipitating iron hydroxide of concentrated inorganic component wastewater according to claim 1, 2 or 3, wherein the neutralizing agent is an alkali metal hydrate or a mineral acid excluding phosphoric acid. A method for coagulating and precipitating iron hydroxide from wastewater containing a concentrated inorganic component, comprising:
【請求項6】 請求項1、2または3に記載の濃厚無機
成分含有排水の水酸化鉄凝集沈澱処理方法において、第
二鉄塩として、塩化物または硝酸塩・硫酸塩を排水に対
し、総添加量20〜5000ppmFeを添加し、第二
鉄塩を添加した後に5分から10分間攪拌して反応時間
を保持することを特徴とする濃厚無機成分含有排水の水
酸化鉄凝集沈澱処理方法。
6. The method for coagulating and precipitating iron hydroxide in a wastewater containing a concentrated inorganic component according to claim 1, 2, or 3, wherein chloride or nitrate / sulfate is added as a ferric salt to the wastewater. A method for coagulating and precipitating iron hydroxide from a wastewater containing a concentrated inorganic component, comprising adding 20 to 5000 ppm Fe, stirring the mixture for 5 to 10 minutes after adding the ferric salt, and maintaining the reaction time.
JP2000369869A 2000-12-05 2000-12-05 Method for coagulating and precipitating iron hydroxide in wastewater containing concentrated inorganic components Expired - Fee Related JP4591641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000369869A JP4591641B2 (en) 2000-12-05 2000-12-05 Method for coagulating and precipitating iron hydroxide in wastewater containing concentrated inorganic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000369869A JP4591641B2 (en) 2000-12-05 2000-12-05 Method for coagulating and precipitating iron hydroxide in wastewater containing concentrated inorganic components

Publications (2)

Publication Number Publication Date
JP2002172395A true JP2002172395A (en) 2002-06-18
JP4591641B2 JP4591641B2 (en) 2010-12-01

Family

ID=18839845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000369869A Expired - Fee Related JP4591641B2 (en) 2000-12-05 2000-12-05 Method for coagulating and precipitating iron hydroxide in wastewater containing concentrated inorganic components

Country Status (1)

Country Link
JP (1) JP4591641B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021350A (en) * 2005-07-15 2007-02-01 Seiichi Manabe Removal method of toxic substance in exuded water from least controlled landfill site
JP2013103203A (en) * 2011-11-16 2013-05-30 Dowa Technology Kk Method for treating arsenic-containing water
WO2016059691A1 (en) * 2014-10-16 2016-04-21 株式会社タカギ Production method for purified daily life water and production apparatus for purified daily life water

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155680A (en) * 1980-05-02 1981-12-01 Toshiaki Sugawara Prevention of oozing of arsenic from arsenic-containing wastes
JPS60125292A (en) * 1983-12-12 1985-07-04 Mitsubishi Monsanto Chem Co Treatment method for arsenic-containing wastewater
JPH01249187A (en) * 1988-03-30 1989-10-04 Hitachi Plant Eng & Constr Co Ltd Method for purifying wastewater containing gallium and arsenic
JPH0487685A (en) * 1990-07-31 1992-03-19 Kawasaki Steel Corp Treatment of used galvanizing solution
JPH07214073A (en) * 1994-01-28 1995-08-15 Kankyo Eng Kk Treatment of metal-containing waste water
JPH07289805A (en) * 1994-04-25 1995-11-07 Sumitomo Metal Mining Co Ltd Treatment of waste water containing arsenic
JPH08323368A (en) * 1995-06-01 1996-12-10 Fuji Kasui Kogyo Kk Treatment of lead-containing waste water
JPH10235375A (en) * 1997-02-28 1998-09-08 Sumitomo Metal Mining Co Ltd Treatment of manganese-containing wastewater
JPH10296275A (en) * 1997-04-30 1998-11-10 Toray Ind Inc Method for treating heavy metal-containing water
JPH1194993A (en) * 1997-09-24 1999-04-09 Nuclear Fuel Ind Ltd Treatment method for radioactive waste liquid
JPH11221575A (en) * 1998-02-04 1999-08-17 Japan Organo Co Ltd Treatment of heavy metal ion-containing discharge water
JP2000117265A (en) * 1998-10-16 2000-04-25 Fujikasui Engineering Co Ltd Treatment for molybdenum-containing waste water
JP2000246262A (en) * 1999-03-03 2000-09-12 Nuclear Fuel Ind Ltd Method of reducing sludge generated when removing heavy metals from waste liquid

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155680A (en) * 1980-05-02 1981-12-01 Toshiaki Sugawara Prevention of oozing of arsenic from arsenic-containing wastes
JPS60125292A (en) * 1983-12-12 1985-07-04 Mitsubishi Monsanto Chem Co Treatment method for arsenic-containing wastewater
JPH01249187A (en) * 1988-03-30 1989-10-04 Hitachi Plant Eng & Constr Co Ltd Method for purifying wastewater containing gallium and arsenic
JPH0487685A (en) * 1990-07-31 1992-03-19 Kawasaki Steel Corp Treatment of used galvanizing solution
JPH07214073A (en) * 1994-01-28 1995-08-15 Kankyo Eng Kk Treatment of metal-containing waste water
JPH07289805A (en) * 1994-04-25 1995-11-07 Sumitomo Metal Mining Co Ltd Treatment of waste water containing arsenic
JPH08323368A (en) * 1995-06-01 1996-12-10 Fuji Kasui Kogyo Kk Treatment of lead-containing waste water
JPH10235375A (en) * 1997-02-28 1998-09-08 Sumitomo Metal Mining Co Ltd Treatment of manganese-containing wastewater
JPH10296275A (en) * 1997-04-30 1998-11-10 Toray Ind Inc Method for treating heavy metal-containing water
JPH1194993A (en) * 1997-09-24 1999-04-09 Nuclear Fuel Ind Ltd Treatment method for radioactive waste liquid
JPH11221575A (en) * 1998-02-04 1999-08-17 Japan Organo Co Ltd Treatment of heavy metal ion-containing discharge water
JP2000117265A (en) * 1998-10-16 2000-04-25 Fujikasui Engineering Co Ltd Treatment for molybdenum-containing waste water
JP2000246262A (en) * 1999-03-03 2000-09-12 Nuclear Fuel Ind Ltd Method of reducing sludge generated when removing heavy metals from waste liquid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021350A (en) * 2005-07-15 2007-02-01 Seiichi Manabe Removal method of toxic substance in exuded water from least controlled landfill site
JP2013103203A (en) * 2011-11-16 2013-05-30 Dowa Technology Kk Method for treating arsenic-containing water
WO2016059691A1 (en) * 2014-10-16 2016-04-21 株式会社タカギ Production method for purified daily life water and production apparatus for purified daily life water

Also Published As

Publication number Publication date
JP4591641B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
KR100221556B1 (en) Treatment method of flue gas desulfurization drainage
CN107140763A (en) A kind of processing method of the good mercury-containing waste water of applicability
CN1155519A (en) Process for treating arsenic-containing waste water
CN111573806A (en) Deep fluorine removal agent and preparation method and application thereof
JPH09308895A (en) Method for treating selenium-containing waste water and apparatus therefor
CN117209036A (en) Thallium removal composition and thallium-containing wastewater treatment method
JP2002316173A (en) Method for treating wastewater containing arsenic and hydrogen peroxide
JP2002526256A (en) Treatment method for metal contaminated water
JP4272122B2 (en) Coagulated water treatment method and apparatus
JP2002172395A (en) Method for iron hydroxide flocculation and sedimentation treatment of thick inorganic component- containing wastewater
JP3334786B2 (en) Treatment method for wastewater containing insoluble and soluble lead, chromium and zinc
JPH0578105A (en) Treatment of selenium-containing waste water
JP5693992B2 (en) Method for recovering dissolved iron from wastewater containing various metal ions
JPH08103774A (en) Treatment of waste water
JPH09192674A (en) Flocculating method and flocculant
CN110746000A (en) Method and device for treating desulfurization wastewater by using composite method
JPH1110169A (en) Treatment process for waste water
JPH05293474A (en) Method for treating wastewater containing fluoride ions
KR19990077951A (en) Process for removing fluorine from desulfurization waste water of flue gas
WO1994018126A1 (en) Process for removing heavy metal ions from water
JP2000015007A (en) Flocculating method and flocculant
JPH0148077B2 (en)
JPH0929266A (en) Copper containing water treatment method
JP2025002439A (en) Water treatment method and water treatment device
JP2007038196A (en) Metal etching wastewater treatment method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100813

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees