JP2002168853A - Method for evaluating life of metal material - Google Patents
Method for evaluating life of metal materialInfo
- Publication number
- JP2002168853A JP2002168853A JP2000367017A JP2000367017A JP2002168853A JP 2002168853 A JP2002168853 A JP 2002168853A JP 2000367017 A JP2000367017 A JP 2000367017A JP 2000367017 A JP2000367017 A JP 2000367017A JP 2002168853 A JP2002168853 A JP 2002168853A
- Authority
- JP
- Japan
- Prior art keywords
- metal material
- damage
- life
- progress
- stress
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007769 metal material Substances 0.000 title claims abstract description 138
- 238000000034 method Methods 0.000 title claims abstract description 67
- 238000011161 development Methods 0.000 claims abstract description 11
- 238000007689 inspection Methods 0.000 claims abstract description 9
- 238000009826 distribution Methods 0.000 claims description 43
- 239000000523 sample Substances 0.000 claims description 41
- 230000035882 stress Effects 0.000 claims description 40
- 238000004364 calculation method Methods 0.000 claims description 26
- 239000012535 impurity Substances 0.000 claims description 20
- 238000004458 analytical method Methods 0.000 claims description 14
- 238000001514 detection method Methods 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 11
- 239000000126 substance Substances 0.000 claims description 9
- 230000006355 external stress Effects 0.000 claims description 2
- 238000004088 simulation Methods 0.000 abstract description 14
- 238000011156 evaluation Methods 0.000 description 14
- 239000002184 metal Substances 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000011800 void material Substances 0.000 description 12
- 230000007547 defect Effects 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 230000018109 developmental process Effects 0.000 description 8
- 229910000851 Alloy steel Inorganic materials 0.000 description 6
- 238000004581 coalescence Methods 0.000 description 5
- 229910052787 antimony Inorganic materials 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002985 plastic film Substances 0.000 description 3
- 229920006255 plastic film Polymers 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 208000032544 Cicatrix Diseases 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000037387 scars Effects 0.000 description 1
Landscapes
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、金属材料の寿命評
価方法に係り、特に、火力発電プラントや原子力発電プ
ラント等の高温耐圧金属部材を用いた各種配管として使
用される低合金鋼の溶接部に発生する脆性的なクリープ
損傷等の微視損傷の進展度合い(粒界割れの発生と合
体)を評価し、該金属材料の寿命を診断する際に用いて
好適な金属材料の寿命評価方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the life of a metal material, and more particularly, to a welded portion of low alloy steel used as various pipes using a high temperature pressure resistant metal member such as a thermal power plant or a nuclear power plant. The present invention relates to a method for evaluating the life of a metal material, which is suitable for use in diagnosing the life of the metal material by evaluating the degree of progress of microscopic damage such as brittle creep damage occurring in the steel (coalescing and coalescence of grain boundary cracks). Things.
【0002】[0002]
【従来の技術】近年、火力発電プラントにおいては、運
転時間が長時間に及ぶのに従い長時間使用による設備の
劣化、頻繁な起動停止や急速な負荷変動等による熱疲労
等を十分に考慮した保守管理が益々重要になってきてい
る。例えば、高温耐圧金属部材が用いられる大口径厚肉
配管では、亀裂等の傷は、多くの場合溶接部の内部で発
生しているが、この傷は外表面の検査だけでは検出する
ことができないために、この傷の早期検出及び、その寸
法及び傷の密集度合の正確な測定手法の開発が求められ
ている。そこで、亀裂高さを求める方法として、超音波
探傷法を用いた端部エコー法が利用されてきた。2. Description of the Related Art In recent years, in a thermal power plant, as the operation time becomes longer, maintenance taking into account deterioration of equipment due to long-term use, thermal fatigue due to frequent start / stop, rapid load change, and the like is sufficiently considered. Management is becoming increasingly important. For example, in a large-diameter thick-walled pipe using a high-temperature pressure-resistant metal member, a crack such as a crack often occurs inside the welded portion, but the scratch cannot be detected only by inspection of the outer surface. Therefore, early detection of the flaw and development of an accurate measurement method of its size and density of the flaw are required. Therefore, as a method for obtaining a crack height, an edge echo method using an ultrasonic flaw detection method has been used.
【0003】しかしながら、この端部エコー法では、探
触子の走査に伴う波形の微妙な変化から端部エコーを読
み取る必要があるために、検査員の技量に負うところが
多く、得られた検査結果に個人差が表れ易いという問題
点があり、Silkによって開発されたTOFD法(Ti
me of Flight Diffraction Technique)が、亀裂等の内
部欠陥の検出及び定量化手法として用いられている。However, in this end echo method, it is necessary to read the end echo from a subtle change in the waveform accompanying the scanning of the probe, so that it depends on the skill of the inspector in many cases. Has a problem that individual differences tend to appear, and the TOFD method (Ti
me of Flight Diffraction Technique) has been used as a technique for detecting and quantifying internal defects such as cracks.
【0004】図9はTOFD法の測定原理を説明するた
めの説明図であり、超音波を発信する送信探触子1と、
超音波を受信する受信探触子2とを、金属材料3の表面
に、該金属材料3の内部に生じた亀裂(欠陥)4を挟ん
で等距離に載置し、送信探触子1により金属材料3内に
超音波5を発信させ、受信探触子2により亀裂4の上端
及び下端からの回折波6を検出してその伝搬時間を測定
し、亀裂4の高さを式(1)により求めるものである。
なお、図中、7は表面波、8は底面反射波である。FIG. 9 is an explanatory diagram for explaining the measurement principle of the TOFD method, in which a transmission probe 1 for transmitting ultrasonic waves,
The receiving probe 2 for receiving the ultrasonic wave is placed on the surface of the metal material 3 at an equal distance with a crack (defect) 4 generated inside the metal material 3 interposed therebetween. An ultrasonic wave 5 is transmitted into the metal material 3, the diffracted waves 6 from the upper end and the lower end of the crack 4 are detected by the receiving probe 2, the propagation time is measured, and the height of the crack 4 is calculated by the equation (1). Is determined by:
In the drawing, 7 is a surface wave, and 8 is a bottom surface reflected wave.
【0005】 L=Zb−Zt =√(tb2・V2/4−S2)−√(tt2・V2/4−S2) ……(1) ただし、L :亀裂高さ Zb :亀裂先端の深さ Zt :亀裂底の深さ D :送信探触子1と受信探触子2との間の距離 S :D/2 V :回折波の速度 tt :亀裂先端からの回折波伝播時間 tb :亀裂底からの回折波伝播時間L = Zb−Zt = √ (tb 2 · V 2 / 4−S 2 ) −√ (tt 2 · V 2 / 4−S 2 ) (1) where L: crack height Zb: Depth of crack tip Zt: Depth of crack bottom D: Distance between transmitting probe 1 and receiving probe 2 S: D / 2 V: Velocity of diffracted wave tt: Propagation of diffracted wave from crack tip Time tb: Diffraction wave propagation time from crack bottom
【0006】このTOFD法は、欠陥からの回折波を利
用して探傷するために、従来の超音波探傷法と比べて欠
陥の傾きの影響を受け難く、方向性のある欠陥を見落と
す可能性が減少し、欠陥の検出性能が向上するという優
れた点があるものの、低合金鋼管の残寿命を予測するこ
とが難しい。その理由は、例えば、10〜20年もの間
使用した低合金鋼管を評価した場合、検出された欠陥
が、金属材料の経年変化により生じたクリープ損傷によ
るものであるのか、製造時に既に金属材料内に生じてい
たものであるのかを判定することができないからであ
る。[0006] In the TOFD method, since a flaw is detected by using a diffracted wave from a defect, the TOFD method is less susceptible to the inclination of the defect than the conventional ultrasonic flaw detection method, and there is a possibility of overlooking a directional defect. Although it has the advantage of decreasing the number of defects and improving the defect detection performance, it is difficult to predict the remaining life of the low alloy steel pipe. The reason is, for example, when evaluating a low alloy steel pipe used for 10 to 20 years, whether the detected defect is due to creep damage caused by aging of the metal material, or whether the detected defect is already in the metal material at the time of manufacture. This is because it cannot be determined whether or not the error has occurred.
【0007】そこで、金属材料の残寿命を予測すること
ができる金属材料の損傷評価方法が提案されている(特
願平11−338672号)。この方法は、金属材料の
内部の傷がクリープ損傷によるものであるのか否かを判
定することにより、その傷が製造後の経年変化により生
じたクリープ損傷によるものであるか、製造時に生じた
ものであるかを判定する方法であり、より具体的には、
金属材料内部の傷からの回折波の分布状態及び表面の損
傷状態により、前記傷がクリープ損傷による傷か否かを
判定し、金属材料の残寿命を高精度に予測している。Accordingly, a method for evaluating the damage of a metal material capable of predicting the remaining life of the metal material has been proposed (Japanese Patent Application No. 11-338672). This method determines whether the scratch inside the metallic material is due to creep damage or not, and determines whether the scratch is due to creep damage caused by aging after manufacturing or caused during manufacturing. Is a method of determining whether
Based on the distribution state of the diffracted waves from the scratch inside the metal material and the damage state of the surface, it is determined whether the scratch is a damage due to creep damage, and the remaining life of the metal material is predicted with high accuracy.
【0008】[0008]
【発明が解決しようとする課題】ところで、上述した金
属材料の損傷評価方法においては、金属材料の余寿命を
診断する方法として、金属材料の表面から採取したレプ
リカによる寿命消費率に基づく方法と、TOFD法で検
出された内部の傷を基に破壊力学によるクリープ亀裂進
展解析による方法を併用しており、両者の方法で推定し
た寿命のうち、短い方の寿命を、クリープ損傷を生じた
部位の余寿命としている。In the above-described method for evaluating damage to a metal material, the method for diagnosing the remaining life of a metal material includes a method based on a life consumption rate by a replica collected from the surface of the metal material, A method based on creep crack propagation analysis based on fracture mechanics based on internal flaws detected by the TOFD method is also used, and the shorter of the lives estimated by both methods is replaced by The remaining life is assumed.
【0009】しかしながら、上記の方法、特に後者の方
法では、単一の亀裂が成長、進展することを前提として
いるために、例えば、複数の微視的な亀裂が発生と合体
を繰り返しながら成長する損傷のような場合において
は、上記の方法による余寿命の診断が実際の損傷の状態
と対応しなくなってしまうおそれがあり、その結果、余
寿命の診断が正確さを欠いてしまうおそれがあるという
問題点があった。実際、上述した配管の溶接部の損傷状
況をみると、複数の微視的な亀裂が発生と合体を繰り返
しながら成長していることが分かり、上記の評価方法が
この配管の損傷状態と対応しない可能性がある。However, the above method, especially the latter method, is based on the premise that a single crack grows and propagates. For example, a plurality of microscopic cracks grow while repeating generation and coalescence. In cases such as damage, the remaining life diagnosis by the above method may not correspond to the actual damage state, and as a result, the remaining life diagnosis may be inaccurate. There was a problem. In fact, looking at the damage condition of the welded portion of the pipe described above, it can be seen that a plurality of microscopic cracks are growing while repeating occurrence and coalescence, and the above evaluation method does not correspond to this damaged state of the pipe there is a possibility.
【0010】本発明は、上記の事情に鑑みてなされたも
のであって、内部に複数の微視的な亀裂が発生と合体を
繰り返しながら成長するような損傷が生じる金属材料に
おいても、余寿命を予測することができる金属材料の寿
命評価方法を提供することを目的とする。[0010] The present invention has been made in view of the above-mentioned circumstances, and the present invention has been developed in consideration of the above-mentioned problems. It is an object of the present invention to provide a method for evaluating the life of a metal material, which can predict the life of a metal material.
【0011】[0011]
【課題を解決するための手段】上記課題を解決するため
に、本発明は次の様な金属材料の寿命評価方法を採用し
た。すなわち、請求項1記載の金属材料の寿命評価方法
は、金属材料の表面の組織検査を行い、この組織検査の
結果に基づき前記金属材料の表面における寿命消費量を
求め、次いで、この寿命消費量に基づき前記金属材料内
部の微視損傷の進展度合いを算出し、この算出結果に基
づき前記金属材料全体の寿命を推定することを特徴とす
る。In order to solve the above-mentioned problems, the present invention employs the following metal material life evaluation method. That is, in the method for evaluating the life of a metal material according to claim 1, the structure of the surface of the metal material is inspected, and the life consumption on the surface of the metal material is determined based on the result of the structure inspection. And calculating the degree of development of microscopic damage inside the metal material based on the calculation result, and estimating the lifetime of the entire metal material based on the calculation result.
【0012】この方法では、レプリカ法等を用いて金属
材料の表面の組織検査を行い、この表面におけるクリー
プによる損傷の有無及び金属組織の劣化の有無により、
この金属材料の表面での寿命消費量を求める。次いで、
この寿命消費量を基に、肉厚内部の微視損傷進展シミュ
レーションを実施する。このシミュレーションは、金属
材料の微視損傷の進展度合い(すなわち、粒界割れの発
生と合体)を算出する方法であり、このシミュレーショ
ンの結果、金属材料の肉厚方向損傷分布が時々刻々と推
定されることとなる。これにより、金属材料内部の損傷
の状態を考慮した、金属材料全体の余寿命を予測するこ
とが可能になる。In this method, the structure of the surface of the metal material is inspected using a replica method or the like, and the presence or absence of damage due to creep and the deterioration of the metal structure on the surface are determined.
The life consumption on the surface of this metal material is determined. Then
Based on the life consumption, a simulation of microscopic damage propagation inside the thickness is performed. This simulation is a method of calculating the degree of progress of microscopic damage of a metal material (that is, the occurrence and coalescence of grain boundary cracks). As a result of this simulation, the damage distribution in the thickness direction of the metal material is estimated every moment. The Rukoto. This makes it possible to predict the remaining life of the entire metal material in consideration of the state of damage inside the metal material.
【0013】請求項2記載の金属材料の寿命評価方法
は、請求項1記載の金属材料の寿命評価方法において、
前記金属材料の表面から試料を採取して化学分析を行
い、当該試料中の不純物量を定量し、この不純物量に基
づき前記金属材料の微視損傷の進展速度を推定すること
を特徴とする。According to a second aspect of the present invention, there is provided the metal material life evaluation method according to the first aspect.
The method is characterized in that a sample is collected from the surface of the metal material and subjected to chemical analysis, the amount of impurities in the sample is quantified, and the rate of progress of microscopic damage of the metal material is estimated based on the amount of impurities.
【0014】この方法では、金属材料の表面から試料を
採取して化学分析を行い、この試料中の不純物の定量を
行う。金属材料中の損傷量を示すファクターの一つであ
るボイド個数密度は時間が経つにつれて増加し、この増
加量は不純物の含有量が高ければ高い程多くなるので、
金属材料中の不純物の定量を行えば、この不純物の含有
量から金属材料中のボイド個数密度の増加量が分かる。
このボイド個数密度の増加量は損傷の進展速度と密接な
関係があるので、ボイド個数密度の増加量から損傷の進
展速度を推定することが可能になる。In this method, a sample is collected from the surface of a metal material and subjected to chemical analysis to determine the amount of impurities in the sample. Since the void number density, which is one of the factors indicating the amount of damage in a metal material, increases with time, and the amount of this increase increases as the content of impurities increases,
When the impurities in the metal material are quantified, the increase in the void number density in the metal material can be determined from the content of the impurities.
Since the increase amount of the void number density is closely related to the damage propagation speed, it is possible to estimate the damage propagation speed from the increase amount of the void number density.
【0015】請求項3記載の金属材料の寿命評価方法
は、請求項1または2記載の金属材料の寿命評価方法に
おいて、前記進展度合いの算出が、前記金属材料の材料
特性、応力負荷特性及び現時点での損傷の各データに基
づき粒界モデルを作成し、前記表面の寿命消費量を基に
該粒界モデルに応力が加わった場合の各粒界の破壊進行
過程を算出することを特徴とする。According to a third aspect of the present invention, in the method for evaluating the life of a metal material according to the first or second aspect, the calculation of the degree of progress is performed based on a material characteristic, a stress load characteristic and a current load characteristic of the metal material. A grain boundary model is created based on each data of the damage in the above, and a fracture progress process of each grain boundary when stress is applied to the grain boundary model is calculated based on the life consumption of the surface. .
【0016】この方法では、まず、前記金属材料の材料
特性、応力負荷特性及び初期損傷の各データに基づき粒
界モデルを作成し、この粒界モデルに応力負荷が加わっ
た場合の各粒界の破壊進行特性を、別途得られた寿命消
費量を基に算出する。これにより、金属材料内部の損傷
進行状態を考慮した、金属材料全体の余寿命をより正確
に予測することが可能になる。In this method, first, a grain boundary model is created based on the data on the material characteristics, stress load characteristics, and initial damage of the metal material. The fracture progress characteristic is calculated based on the life consumption obtained separately. This makes it possible to more accurately predict the remaining life of the entire metal material in consideration of the damage progression state inside the metal material.
【0017】請求項4記載の金属材料の寿命評価方法
は、請求項1、2または3記載の金属材料の寿命評価方
法において、肉厚内部の損傷分布の前記進展度合いの算
出において、前記金属材料に外部から応力を負荷して前
記金属材料の応力負荷時の微視損傷の進展度合いを前記
金属材料内部の複数の箇所にて算出し、該金属材料内部
全体の損傷の進展状況を推定することを特徴とする。According to a fourth aspect of the present invention, in the method for evaluating the life of a metal material according to the first, second, or third aspect, the calculation of the degree of progression of the damage distribution inside the thickness is performed by using the metal material. Calculating the degree of development of microscopic damage at the time of stress loading of the metal material at a plurality of locations inside the metal material by applying external stress to the metal material, and estimating the progress of damage development throughout the metal material. It is characterized by.
【0018】この方法では、金属材料に外部から応力を
負荷することで、金属材料に応力が負荷された際の該金
属材料内部の微視損傷の進展度合いを算出する。この算
出を金属材料中の肉厚方向の複数の箇所にて行うことに
より、金属材料全体における損傷の進行状況を知ること
が可能になる。In this method, by applying a stress to the metal material from the outside, the degree of development of microscopic damage inside the metal material when the stress is applied to the metal material is calculated. By performing this calculation at a plurality of locations in the thickness direction in the metal material, it is possible to know the progress of damage in the entire metal material.
【0019】請求項5記載の金属材料の寿命評価方法
は、請求項4記載の金属材料の寿命評価方法において、
前記金属材料中の損傷分布および/または応力分布に基
づき前記金属材料内部の損傷の進展状況を推定すること
を特徴とする。According to a fifth aspect of the present invention, there is provided the metal material life evaluation method according to the fourth aspect.
It is characterized in that a progress of damage inside the metal material is estimated based on a damage distribution and / or a stress distribution in the metal material.
【0020】この方法では、金属材料中の損傷分布およ
び/または応力分布に基づき前記金属材料内部の損傷の
進展状況を推定することにより、損傷分布および/また
は応力分布に対応した個々の部位における損傷の進展状
況を推定することが可能であり、その結果、その部位毎
の破断寿命を推定することが可能になる。According to this method, the damage progression inside the metal material is estimated based on the damage distribution and / or the stress distribution in the metal material, so that the damage at each part corresponding to the damage distribution and / or the stress distribution is estimated. Can be estimated, and as a result, the rupture life of each part can be estimated.
【0021】請求項6記載の金属材料の寿命評価方法
は、請求項1ないし5のいずれか1項記載の金属材料の
寿命評価方法において、前記金属材料の表面に、超音波
を発信する送信探触子と超音波を受信する受信探触子
を、該金属材料内の損傷部分を挟んで載置し、前記送信
探触子により該金属材料内に超音波を発信させて前記損
傷部分からの回折波を前記受信探触子により検出し、前
記金属材料内の損傷分布を検出し、この検出結果に基づ
き前記金属材料の微視損傷の進展度合いを算出すること
を特徴とする。According to a sixth aspect of the present invention, in the method for evaluating the life of a metal material according to any one of the first to fifth aspects, a transmission probe for transmitting an ultrasonic wave to a surface of the metal material is provided. A probe and a receiving probe that receives ultrasonic waves are placed with the damaged portion in the metal material interposed therebetween, and ultrasonic waves are transmitted into the metal material by the transmission probe, and the probe from the damaged portion is transmitted. Diffraction waves are detected by the reception probe, damage distribution in the metal material is detected, and a degree of microscopic damage progression of the metal material is calculated based on the detection result.
【0022】この方法では、送信探触子により金属材料
内に超音波を発信させて該金属材料内部の損傷部分から
の回折波を前記受信探触子により検出することで、金属
材料の内部に発生している微小傷を検出し、その大きさ
と傷の密集度を定量化する。これにより、定量化された
金属材料内部の微小傷と、別途得られた肉厚内部の寿命
消費量分布とに基づき、金属材料の寿命が容易かつ高精
度で推定されることとなり、金属材料内部の損傷の状態
に係わり無く、金属材料の余寿命を容易かつ高精度で予
測することが可能になる。In this method, ultrasonic waves are transmitted into the metal material by the transmission probe, and diffraction waves from a damaged portion inside the metal material are detected by the reception probe, whereby the inside of the metal material is detected. The micro-scratches that occur are detected, and the size and density of the scars are quantified. As a result, the life of the metal material can be easily and accurately estimated based on the quantified minute flaws inside the metal material and the separately obtained life consumption distribution inside the thickness. It is possible to easily and accurately predict the remaining life of the metal material regardless of the damage state of the metal material.
【0023】[0023]
【発明の実施の形態】本発明の金属材料の寿命評価方法
の一実施形態について、図面に基づき説明する。図1は
本発明の一実施形態の寿命評価方法が適用される金属材
料の一例である高温配管の溶接部を示す断面図であり、
図において、符号11は低合金鋼管等からなる高温配管
であり、低合金鋼板12、16が円筒状に曲げ加工さ
れ、その長手方向に沿った端面12a、12b同士が溶
接金属13で接合されている。溶接金属13内には検出
の対象となる傷14が生じている。なお、15は金属材
料の表面のレプリカを示す。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the method for evaluating the life of a metal material according to the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a welded portion of a high-temperature pipe, which is an example of a metal material to which the life evaluation method of one embodiment of the present invention is applied,
In the drawing, reference numeral 11 denotes a high-temperature pipe made of a low-alloy steel pipe or the like. Low-alloy steel sheets 12 and 16 are bent into a cylindrical shape, and end faces 12 a and 12 b along the longitudinal direction thereof are joined to each other by a weld metal 13. I have. A flaw 14 to be detected is generated in the weld metal 13. Reference numeral 15 denotes a replica of the surface of the metal material.
【0024】この溶接金属13の組成は、例えば2.2
5%Cr−1%Mo−0.12%C−残部Feからな
り、この溶接金属13のクリープ損傷の進展速度と大き
く関連する不純物は、例えば、P(リン)、As(ヒ
素)、Sn(スズ)、Sb(アンチモン)である。この
溶接金属13のクリープ損傷度(寿命消費率)は、図1
(b)に示すように周囲の鋼板12、16よりも大き
く、これは各部の不純物分析(化学分析)により得られ
た不純物Sbの濃度の大小に略一致している。The composition of the weld metal 13 is, for example, 2.2.
Impurities composed of 5% Cr-1% Mo-0.12% C-balance Fe and which are greatly related to the rate of creep damage development of the weld metal 13 are, for example, P (phosphorus), As (arsenic), Sn ( Tin) and Sb (antimony). The degree of creep damage (lifetime consumption rate) of the weld metal 13 is shown in FIG.
As shown in (b), it is larger than the surrounding steel plates 12 and 16, which substantially matches the concentration of the impurity Sb obtained by the impurity analysis (chemical analysis) of each part.
【0025】次に、本実施形態の金属材料の寿命評価方
法について、図1に示す高温配管11を例に取り、図2
〜図8に基づき説明する。 1.レプリカ法による寿命消費量の推定 (1) レプリカの採取 高温配管11の表面をプラスチック膜に転写する方法に
より、この高温配管11の表面のレプリカ15を採取す
る。例えば、表面に粗研磨、細研磨を順次施し、該表面
を鏡面に仕上げ、この鏡面の検査対象部分をエッチング
により選択除去し、このエッチングした部分にレプリカ
用プラスチック膜を押貼し、このエッチングした面の凹
凸をプラスチック膜に転写する。Next, the life evaluation method of the metal material of the present embodiment will be described with reference to the high temperature pipe 11 shown in FIG.
Explanation will be made based on FIG. 1. Estimation of Life Consumption by Replica Method (1) Collection of Replica A replica 15 of the surface of the high-temperature pipe 11 is collected by a method of transferring the surface of the high-temperature pipe 11 to a plastic film. For example, rough polishing and fine polishing are sequentially performed on the surface, the surface is finished to a mirror surface, the inspection target portion of the mirror surface is selectively removed by etching, a replica plastic film is pressed on the etched portion, and the etching is performed. The surface irregularities are transferred to a plastic film.
【0026】(2) レプリカの観察及び寿命消費量の
推定 光学顕微鏡を用いてレプリカ15を観察し、クリープ損
傷による空孔(クリープボイド)の有無及びその分布状
態を調べる。ここでは、傷14がクリープ損傷によるも
のか否かを大まかに判定する。次いで、走査型電子顕微
鏡(SEM)を用いてクリープボイドの有無及びその分
布状態を精密に観察する。例えば、クリープボイドの生
成数を計測し、この計測値に基づきクリープボイド個数
密度を求め、図3に示す予め求められた寿命評価線図
(クリープボイド個数密度とクリープ損傷度(寿命消費
量)との関係を示すグラフ)から寿命消費量を推定す
る。(2) Observation of Replica and Estimation of Life Consumption The replica 15 is observed using an optical microscope, and the presence or absence of voids (creep voids) due to creep damage and the distribution state thereof are examined. Here, it is roughly determined whether or not the scratch 14 is due to creep damage. Next, the presence or absence of creep voids and the distribution thereof are precisely observed using a scanning electron microscope (SEM). For example, the number of generated creep voids is measured, the creep void number density is determined based on the measured value, and the life evaluation diagram (creep void number density and creep damage degree (life consumption)) determined in advance in FIG. Is estimated from the graph showing the relationship (1).
【0027】2.化学成分分析による微視損傷の進展の
速度の変化量の推定 (1) 不純物の含有量の定量 溶接金属13の試料採取領域の表面の酸化皮膜を、金属
光沢が得られるまで研削して除去し、この露出した金属
部分をさらに研削して切粉を採取する。次いで、この切
粉を用いて、P、As、Sn、Sbを分析し、不純物の
含有量を定量する。 各元素の分析方法は下記のとおりである。 P:原子吸光法(日本工業規格;JIS G 125
7) As、Sn、Sb:水素化物発生ICP発光分析法2. Estimation of the change in the rate of progress of microscopic damage by chemical component analysis (1) Quantification of impurity content The oxide film on the surface of the sampled area of the weld metal 13 is removed by grinding until a metallic luster is obtained. Then, the exposed metal portion is further ground to collect chips. Next, P, As, Sn, and Sb are analyzed using the chips, and the content of impurities is quantified. The analysis method of each element is as follows. P: Atomic absorption method (Japanese Industrial Standard; JIS G125)
7) As, Sn, Sb: hydride generation ICP emission spectrometry
【0028】(2) 微視損傷の進展の速度の変化量の
推定 図4に示すような不純物の含有量をパラメーターとして
ボイド個数密度と経過時間との関係を示すグラフを予め
作成しておき、上記により定量された不純物の含有量を
基に、上記グラフからボイド個数密度の変化量を求め
る。このボイド個数密度の変化量と微視損傷の進展の速
度の変化量との間には密接な関係があるので、ボイド個
数密度の変化量が求められれば、微視損傷の進展の速度
の変化量を容易に推定することができる。次いで、これ
らの不純物分析結果から、下記の式(2)に基づき、ク
リープ脆化係数(CEF)を求める。この値を、不純物
含有量を表すパラメータとする。 CEF=P(wt.%)+2.4As(wt.%)+3.6Sn(wt.%) +8.2Sb(wt.%)……(2)(2) Estimation of the change in the rate of development of microscopic damage A graph showing the relationship between the void number density and the elapsed time as shown in FIG. Based on the impurity content determined as described above, the amount of change in the void number density is determined from the graph. Since there is a close relationship between the amount of change in the void number density and the amount of change in the speed of the microscopic damage, if the amount of change in the void number density is determined, the change in the speed of the microscopic damage can be obtained. The quantity can be easily estimated. Next, the creep embrittlement coefficient (CEF) is determined from the impurity analysis results based on the following equation (2). This value is used as a parameter representing the impurity content. CEF = P (wt.%) + 2.4As (wt.%) + 3.6Sn (wt.%) + 8.2Sb (wt.%) (2)
【0029】3.TOFD法による損傷分布の検出 (1) TOFD法による超音波探傷 TOFD法が適用された金属材料の損傷評価装置を用い
て高温配管11の超音波探傷を行う。3. Detection of Damage Distribution by TOFD Method (1) Ultrasonic Flaw Detection by TOFD Method Ultrasonic flaw detection of the high-temperature pipe 11 is performed by using a metal material damage evaluation apparatus to which the TOFD method is applied.
【0030】図5は金属材料の損傷評価装置を示すブロ
ック図であり、図において、符号21は送信探触子1を
超音波発信させるための発信器、22は金属材料3の表
面から採取した試料の化学分析の結果に基づき金属材料
3のクリープ特性を推定するクリープ特性推定部、23
は受信探触子2により検出された金属材料3内の傷から
の回折波24を受信し、この回折波24の分布状態に基
づき金属材料の損傷分布を検出する検出部、25は送信
探触子1、受信探触子2、発信器21、クリープ特性推
定部22及び検出部23の作動を制御する制御部であ
る。FIG. 5 is a block diagram showing an apparatus for evaluating the damage of a metal material. In the figure, reference numeral 21 denotes a transmitter for transmitting the transmission probe 1 by ultrasonic waves, and reference numeral 22 denotes a sample taken from the surface of the metal material 3. A creep characteristic estimating unit for estimating the creep characteristic of the metal material 3 based on the result of the chemical analysis of the sample, 23
Is a detecting unit that receives a diffracted wave 24 from a flaw in the metal material 3 detected by the receiving probe 2 and detects a damage distribution of the metal material based on the distribution state of the diffracted wave 24; The control section controls the operation of the probe 1, the receiving probe 2, the transmitter 21, the creep characteristic estimation section 22, and the detection section 23.
【0031】この損傷評価装置を用いて高温配管11の
超音波探傷を行うには、送信探触子1と受信探触子2と
を、高温配管11表面の周方向に沿った溶接金属13を
挟む位置に、この高温配管11の内部に生じた傷14を
挟んで等距離に載置し、送信探触子1により高温配管1
1内に超音波5を発信させ、受信探触子2により傷14
からの回折波24を検出することにより高温配管11内
の傷14の有無を検出する。ここで、送信探触子1及び
受信探触子2の双方を溶接線に沿って走査すれば、傷1
4の分布を検出することができる。In order to perform ultrasonic flaw detection of the high-temperature pipe 11 using the damage evaluation apparatus, the transmission probe 1 and the reception probe 2 are connected to the welding metal 13 along the circumferential direction of the surface of the high-temperature pipe 11. At the sandwiching position, the high-temperature pipe 11 is placed at an equal distance with a scratch 14 generated inside the high-temperature pipe 11 interposed therebetween.
1 transmits an ultrasonic wave 5 and the receiving probe 2
The presence or absence of the flaw 14 in the high temperature pipe 11 is detected by detecting the diffracted wave 24 from. Here, if both the transmission probe 1 and the reception probe 2 are scanned along the welding line, a flaw 1
4 distributions can be detected.
【0032】4.微視損傷進展シミュレーションの実施 図6に示す流れ図に基づき微視損傷進展シミュレーショ
ンを実施する。 (1) データ入力 高温配管11の材料特性、負荷特性、初期損傷、その他
のデータを入力する。これらのデータについては、次の
様にして修正が加えられる。 a.材料特性及び負荷特性の修正 材料特性及び負荷特性に対する不純物の影響を考慮する
ために、化学成分分析による不純物の含有量の定量結果
に基づき高温配管11の材料特性及び負荷特性を修正す
る。4. Implementation of Microscopic Damage Propagation Simulation A microscopic damage propagation simulation is performed based on the flowchart shown in FIG. (1) Data input The material characteristics, load characteristics, initial damage, and other data of the high-temperature piping 11 are input. These data are modified as follows. a. Correction of Material Characteristics and Load Characteristics In order to consider the influence of impurities on the material characteristics and load characteristics, the material characteristics and load characteristics of the high-temperature pipe 11 are corrected based on the results of quantification of the content of impurities by chemical composition analysis.
【0033】また、高温配管11の表面損傷と応力分布
との関係を予めデータベースとしておき、このデータベ
ースと高温配管11の表面損傷、または応力解析から、
高温配管11内部の応力分布を推定する。また、TOF
D法による高温配管11の内部損傷検査結果から応力分
布を推定する。次いで、これらの応力分布を基に、肉厚
内部に材料特性や負荷特性が異なる複数のモデルを作成
し、これらのモデルに基づき高温配管11の材料特性お
よび/または負荷特性を修正する。これらのモデルを作
成する際には、複数のモデル連成による損傷分布・応力
分布の変化が考慮される。The relationship between the surface damage of the high-temperature pipe 11 and the stress distribution is previously stored in a database.
The stress distribution inside the high-temperature pipe 11 is estimated. Also, TOF
The stress distribution is estimated from the result of the internal damage inspection of the high temperature pipe 11 by the D method. Next, based on these stress distributions, a plurality of models having different material characteristics and load characteristics are created inside the wall thickness, and the material characteristics and / or load characteristics of the high-temperature pipe 11 are corrected based on these models. When creating these models, changes in damage distribution and stress distribution due to the coupling of a plurality of models are considered.
【0034】b.初期損傷の修正 高温配管11の表面損傷と肉厚方向損傷分布との関係を
予めデータベースとしておき、このデータベースと高温
配管11の表面損傷、または応力解析から、高温配管1
1内部の初期損傷分布を推定する。また、TOFD法に
よる高温配管11の内部損傷検査結果から初期損傷分布
を推定する。次いで、これらの初期損傷分布を基に、初
期損傷が異なる複数のモデルを作成し、これらのモデル
に基づき高温配管11の初期損傷を修正する。これらの
モデルを作成する際には、複数のモデル連成による損傷
分布・応力分布の変化が考慮される。B. Correction of Initial Damage The relation between the surface damage of the high-temperature pipe 11 and the distribution of damage in the thickness direction is previously stored in a database.
1. Estimate the initial damage distribution inside. Further, the initial damage distribution is estimated from the result of the internal damage inspection of the high temperature pipe 11 by the TOFD method. Next, a plurality of models having different initial damages are created based on these initial damage distributions, and the initial damages of the high-temperature pipe 11 are corrected based on these models. When creating these models, changes in damage distribution and stress distribution due to the coupling of a plurality of models are considered.
【0035】(2) 微視損傷進展シミュレーション 図6及び図7に基づき微視損傷進展シミュレーションを
実施する。 a.粒界モデルの作成 入力された各種データを基に、高温配管11の溶接部に
おける粒界モデルを作成する。この解析モデルでは、粒
界長さL及び粒界の破壊抵抗値Rに適切な確率分布及び
代表値を入力データを基に仮定し、これを基に粒界モデ
ルを作成する。例えば、L,Rに正規分布を仮定する場
合、Lの平均値Lm、標準偏差Ls、Rの平均R m、標準
偏差Rsを仮定する。(2) Microscopic damage propagation simulation Based on FIGS. 6 and 7, a microscopic damage propagation simulation is performed.
carry out. a. Creation of a grain boundary model Based on various data input,
Create a grain boundary model. In this analysis model,
Probability distribution suitable for the boundary length L and the fracture resistance value R of the grain boundary;
Representative values are assumed based on the input data, and the grain boundary
Create a file. For example, if a normal distribution is assumed for L and R,
The average value of Lm, Standard deviation Ls, R average R m,standard
Deviation RsIs assumed.
【0036】b.高温配管11への応力負荷及び負荷モ
デルの作成 高温配管11に応力を負荷し、この応力負荷に対応した
高温配管11の負荷モデルを作成する。この高温配管1
1では、応力により内部に亀裂が発生する。この亀裂に
隣接する粒界においては、粒界破壊駆動力をDとする
と、損傷の進行速度(dR/dT)は−Dに等しい(d
R/dT=−D)。粒界の破壊抵抗値Rが負(R<0)
になると、粒界が破壊し亀裂が発生する。この亀裂に隣
接する粒界では、粒界破壊駆動力Dは、亀裂発生駆動力
Fと、亀裂伝播駆動力Kと粒界に隣接する亀裂長さCと
の積との和に等しい(D=F+C・K)。また、亀裂に
隣接しない粒界においては、粒界の破壊駆動力Dは亀裂
発生駆動力Fに等しい(D=F)。B. Creating Stress Model and Load Model on High Temperature Pipe 11 A stress is applied to the high temperature pipe 11 and a load model of the high temperature pipe 11 corresponding to the stress load is created. This hot pipe 1
In the case of 1, a crack is generated inside due to stress. At the grain boundary adjacent to the crack, assuming that the driving force for breaking the grain boundary is D, the damage progress rate (dR / dT) is equal to -D (d
R / dT = -D). Negative (R <0)
Then, the grain boundaries break and cracks occur. At the grain boundary adjacent to the crack, the grain boundary fracture driving force D is equal to the sum of the crack generation driving force F and the product of the crack propagation driving force K and the crack length C adjacent to the grain boundary (D = F + CK). In addition, at a grain boundary that is not adjacent to a crack, the breaking driving force D at the grain boundary is equal to the crack generation driving force F (D = F).
【0037】c.亀裂長さ等の調査 高温配管11の負荷モデルを基に、応力により発生した
高温配管11内部の微視亀裂の長さ及びその分布等を調
査する。C. Investigation of Crack Length, etc. Based on the load model of the high-temperature pipe 11, the length and distribution of the micro-cracks inside the high-temperature pipe 11 generated by stress are investigated.
【0038】d.計算終了の判定 モデル中において、亀裂となった粒界が合体し、巨視亀
裂となったものがモデル全長に渡って連結した時点で計
算を終了する。または、入力値として与えた計算終了条
件(例えば、限界粒界亀裂密度、限界亀裂長さ等)に達
した時点で計算を終了しても良い。D. Judgment of Completion of Calculation In the model, the calculation ends when the cracked grain boundaries are united and the macroscopic crack is connected over the entire length of the model. Alternatively, the calculation may be terminated when a calculation end condition (for example, a critical grain boundary crack density, a critical crack length, or the like) given as an input value is reached.
【0039】ここで、計算が終了したと判定された場合
は、この計算を終了し、この計算結果に基づき高温配管
11内の余寿命を推定する。また、計算が終了していな
いと判定された場合は、再度、高温配管11への応力負
荷及び亀裂長さ等の調査を実施し、計算終了の判定を行
い、計算が終了したと判定された場合は、この計算を終
了し、この計算結果に基づき高温配管11の余寿命を推
定し、一方、計算が終了していないと判定された場合
は、再度、高温配管11への応力負荷〜計算終了の判定
を繰り返し実施する。このように、計算が終了したと判
定されるまで、高温配管11への応力負荷〜計算終了の
判定を繰り返し実施し、計算が終了したと判定された時
点で、この計算を終了し、この計算結果に基づき高温配
管11全体の余寿命を推定する。If it is determined that the calculation has been completed, the calculation is terminated, and the remaining life in the high-temperature pipe 11 is estimated based on the calculation result. In addition, when it is determined that the calculation has not been completed, the stress load on the high-temperature pipe 11 and the crack length and the like are again checked, the calculation is determined to be completed, and it is determined that the calculation is completed. In this case, the calculation is terminated, and the remaining life of the high-temperature pipe 11 is estimated based on the calculation result. On the other hand, when it is determined that the calculation is not completed, the stress load to the high-temperature pipe 11 is calculated again. Repeat the end determination. As described above, the determination of the stress load on the high-temperature pipe 11 to the end of the calculation is repeatedly performed until it is determined that the calculation is completed. When it is determined that the calculation is completed, the calculation is completed. The remaining life of the entire high-temperature pipe 11 is estimated based on the result.
【0040】ここで、微視損傷進展シミュレーションの
より具体的な例について、図8に基づき説明する。高温
配管11の溶接部界面(HAZ)に図8(a)に示すよ
うな応力分布を有する応力が負荷された場合を考える。
ここで、溶接部のうち肉厚方向の例えば3点についてそ
れぞれ応力の大きさを調べ、応力σ1〜σ3とする。次い
で、高温配管11の溶接部の材料特性を基に、これらの
応力σ1〜σ3それぞれについてシミュレーションを実施
し、図8(b)に示すような応力σ1〜σ3それぞれに対
応した負荷モデルを作製する。Here, a more specific example of the microscopic damage propagation simulation will be described with reference to FIG. Consider a case in which a stress having a stress distribution as shown in FIG. 8A is applied to the weld interface (HAZ) of the high temperature pipe 11.
Here, the magnitude of the stress is examined at, for example, three points in the thickness direction of the welded portion, and the stress is defined as stress σ 1 to σ 3 . Next, a simulation is performed for each of the stresses σ 1 to σ 3 based on the material characteristics of the welded portion of the high-temperature pipe 11, and a load corresponding to each of the stresses σ 1 to σ 3 as shown in FIG. Create a model.
【0041】次いで、これら3つの負荷モデルを基に、
応力σ1〜σ3それぞれに対応した損傷Dc1〜Dc3を計算
し、図8(c)に示すような肉厚方向の損傷分布を時々
刻々と算出する。これにより、図8(d)に示すような
溶接継手全体としての破断までの寿命を推定する。Next, based on these three load models,
Damage Dc 1 to DC 3 corresponding to the respective stress σ 1 ~σ 3 calculates, calculated every moment the thickness direction of the damage distribution as shown in Figure 8 (c). Thereby, the life until the fracture of the entire welded joint as shown in FIG. 8D is estimated.
【0042】以上説明したように、本実施形態の金属材
料の寿命評価方法によれば、高温配管11に対して、レ
プリカ法による寿命消費量の推定、化学成分分析による
微視損傷の進展の速度の変化量の推定、TOFD法によ
る損傷分布の検出をそれぞれ実施し、これらの結果を用
いて微視損傷進展シミュレーションを実施することとし
たので、高温配管11の傷14が、複数の微視的な亀裂
が発生と合体を繰り返しながら成長しているような場合
であっても、この高温配管11の余寿命を容易かつ正確
に予測することができる。As described above, according to the metal material life evaluation method of the present embodiment, the life consumption of the high-temperature pipe 11 is estimated by the replica method, and the rate of development of microscopic damage by chemical composition analysis. And the damage distribution is detected by the TOFD method, and the microscopic damage propagation simulation is performed using these results. Even in the case where a large crack grows while repeating generation and coalescence, the remaining life of the high-temperature pipe 11 can be easily and accurately predicted.
【0043】以上、本発明の金属材料の損傷評価方法及
び装置の各実施形態について図面に基づき説明してきた
が、具体的な構成は上記各実施形態に限定されるもので
はなく、本発明の要旨を逸脱しない範囲で設計の変更等
が可能である。The embodiments of the metal material damage evaluation method and apparatus of the present invention have been described above with reference to the drawings. However, the specific structure is not limited to the above embodiments, and the gist of the present invention is as follows. The design can be changed without departing from the range.
【0044】[0044]
【発明の効果】以上説明した様に、本発明の請求項1記
載の金属材料の寿命評価方法によれば、金属材料の表面
の組織検査の結果に基づき前記金属材料の表面における
寿命消費量を求め、次いで、この寿命消費量に基づき前
記金属材料の微視損傷の進展度合いを算出するので、金
属材料内部の損傷の状態に係わり無く、金属材料の余寿
命を容易かつ正確に予測することができる。As described above, according to the method for evaluating the life of a metal material according to the first aspect of the present invention, the life consumption on the surface of the metal material is determined based on the result of the microstructure inspection on the surface of the metal material. Then, the degree of progress of the microscopic damage of the metal material is calculated based on the life consumption, so that it is possible to easily and accurately predict the remaining life of the metal material regardless of the state of damage inside the metal material. it can.
【0045】請求項2記載の金属材料の寿命評価方法に
よれば、金属材料の表面から試料を採取して化学分析を
行い、当該試料中の不純物量を定量し、この不純物量の
定量結果に基づき前記金属材料の微視損傷の進展の速度
の変化量を推定するので、金属材料の余寿命をより正確
に予測することができる。According to the method for evaluating the life of a metal material according to the second aspect, a sample is collected from the surface of the metal material and subjected to chemical analysis to quantify the amount of impurities in the sample. Since the amount of change in the rate of progress of the microscopic damage of the metal material is estimated based on this, the remaining life of the metal material can be more accurately predicted.
【0046】請求項3記載の金属材料の寿命評価方法に
よれば、金属材料の材料特性、応力負荷特性及び初期損
傷の各データに基づき粒界モデルを作成し、前記寿命消
費量を基に該粒界モデルに応力負荷が加わった場合の各
粒界の破壊特性を算出するので、金属材料の微視損傷の
進展度合いを容易に算出することができ、金属材料の余
寿命をより正確に予測することができる。According to the method for evaluating the life of a metal material according to the third aspect, a grain boundary model is created on the basis of the data on the material characteristics, stress load characteristics, and initial damage of the metal material, and based on the life consumption. Calculates the fracture characteristics of each grain boundary when a stress load is applied to the grain boundary model, making it easy to calculate the degree of microscopic damage of the metal material and more accurately predicting the remaining life of the metal material can do.
【0047】請求項4記載の金属材料の寿命評価方法に
よれば、金属材料に外部から応力を負荷して前記金属材
料の応力負荷時の微視損傷の進展度合いを前記金属材料
表面及び肉厚内部の複数の箇所にて算出し、該金属材料
内部の損傷の進展状況を推定するので、金属材料内部に
おける損傷の進行状況を知ることができる。According to the method for evaluating the life of a metal material according to the fourth aspect of the present invention, a stress is applied to the metal material from the outside to determine the degree of microscopic damage progression when the metal material is subjected to a stress. Since the calculation is performed at a plurality of locations inside and the progress of the damage inside the metal material is estimated, the progress of the damage inside the metal material can be known.
【0048】請求項5記載の金属材料の寿命評価方法に
よれば、金属材料中の損傷分布および/または応力分布
に基づき前記金属材料内部の損傷の進展状況を推定する
ので、個々の部位における損傷の進展状況を推定するこ
とができ、最終的な金属材料の破断寿命を推定すること
ができる。According to the method for evaluating the life of a metal material according to the fifth aspect, the progress of damage inside the metal material is estimated based on the damage distribution and / or the stress distribution in the metal material. Can be estimated, and the ultimate rupture life of the metal material can be estimated.
【0049】請求項6記載の金属材料の寿命評価方法に
よれば、送信探触子により金属材料内に超音波を発信さ
せて損傷部分からの回折波を受信探触子により検出し、
該金属材料内の損傷分布を検出し、この検出結果に基づ
き前記金属材料の微視損傷の進展度合いを算出するの
で、金属材料の寿命を容易かつ高精度で推定することが
できる。According to the method for evaluating the life of a metal material according to the sixth aspect, an ultrasonic wave is transmitted into the metal material by the transmission probe and a diffraction wave from the damaged portion is detected by the reception probe.
Since the damage distribution in the metal material is detected and the degree of microscopic damage of the metal material is calculated based on the detection result, the life of the metal material can be easily and accurately estimated.
【図1】 本発明の一実施形態の寿命評価方法が適用さ
れる高温配管の溶接部を示す断面図である。FIG. 1 is a sectional view showing a welded portion of a high-temperature pipe to which a life evaluation method according to an embodiment of the present invention is applied.
【図2】 本発明の一実施形態の寿命評価方法を示す流
れ図である。FIG. 2 is a flowchart showing a life evaluation method according to an embodiment of the present invention.
【図3】 クリープボイド個数密度とクリープ損傷度
(寿命消費量)との関係を示す図である。FIG. 3 is a diagram showing the relationship between the creep void number density and the degree of creep damage (lifetime consumption).
【図4】 不純物の含有量をパラメーターとした場合の
ボイド個数密度と経過時間との関係を示す図である。FIG. 4 is a diagram showing a relationship between void number density and elapsed time when the content of impurities is used as a parameter.
【図5】 本発明の一実施形態の金属材料の損傷評価装
置を示すブロック図である。FIG. 5 is a block diagram showing a metal damage evaluation apparatus according to an embodiment of the present invention.
【図6】 本発明の一実施形態の微視損傷進展シミュレ
ーションを示す流れ図である。FIG. 6 is a flowchart showing a microscopic damage propagation simulation according to one embodiment of the present invention.
【図7】 本発明の一実施形態の微視損傷進展シミュレ
ーションの粒界破壊抵抗分布モデルを示す模式図であ
る。FIG. 7 is a schematic diagram showing a grain boundary fracture resistance distribution model for microscopic damage propagation simulation according to one embodiment of the present invention.
【図8】 本発明の一実施形態の微視損傷進展シミュレ
ーションの具体例を示す模式図である。FIG. 8 is a schematic diagram showing a specific example of a microscopic damage propagation simulation according to one embodiment of the present invention.
【図9】 TOFD法の測定原理を説明するための説明
図である。FIG. 9 is an explanatory diagram for explaining the measurement principle of the TOFD method.
1 送信探触子 2 受信探触子 3 金属材料 4 亀裂(欠陥) 5 超音波 6 回折波 7 表面波 8 底面反射波 11 高温配管 12 低合金鋼板 12a、12b 端面 13 溶接金属 14 傷 15 レプリカ 21 発信器 22 クリープ特性推定部 23 検出部 24 回折波 25 制御部 DESCRIPTION OF SYMBOLS 1 Transmission probe 2 Receiving probe 3 Metal material 4 Crack (defect) 5 Ultrasonic wave 6 Diffracted wave 7 Surface wave 8 Bottom reflected wave 11 High-temperature piping 12 Low alloy steel plate 12a, 12b End face 13 Weld metal 14 Scratches 15 Replica 21 Transmitter 22 Creep characteristic estimating unit 23 Detecting unit 24 Diffracted wave 25 Control unit
───────────────────────────────────────────────────── フロントページの続き (72)発明者 猪狩 敏秀 長崎県長崎市深堀町五丁目717番1号 三 菱重工業株式会社長崎研究所内 (72)発明者 西村 宣彦 長崎県長崎市深堀町五丁目717番1号 三 菱重工業株式会社長崎研究所内 (72)発明者 藤田 正昭 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 Fターム(参考) 2G055 AA01 BA11 FA01 FA02 FA08 FA09 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Toshihide Inokari 5-7-17-1 Fukahori-cho, Nagasaki-shi, Nagasaki Sanishi Heavy Industries Co., Ltd. Nagasaki Research Institute (72) Inventor Nobuhiko Nishimura 5-717, Fukahori-cho, Nagasaki-shi, Nagasaki No. 1 Inside the Nagasaki Research Laboratory of Mitsubishi Heavy Industries, Ltd. (72) Inventor Masaaki Fujita 1-1, Akunouramachi, Nagasaki City, Nagasaki Prefecture F-term in the Nagasaki Shipyard, Mitsubishi Heavy Industries, Ltd.
Claims (6)
組織検査の結果に基づき前記金属材料の表面における寿
命消費量を求め、次いで、この寿命消費量に基づき前記
金属材料内部の微視損傷の進展度合いを算出し、この算
出結果に基づき前記金属材料全体の寿命を推定すること
を特徴とする金属材料の寿命評価方法。1. A structure inspection of a surface of a metal material is performed, a life consumption amount on a surface of the metal material is obtained based on a result of the structure inspection, and a microscopic damage inside the metal material is determined based on the life consumption amount. Calculating the degree of progress of the metal material, and estimating the life of the entire metal material based on the calculation result.
化学分析を行い、当該試料中の不純物量を定量し、この
不純物量に基づき前記金属材料の微視損傷の進展速度を
推定することを特徴とする請求項1記載の金属材料の寿
命評価方法。2. A method according to claim 1, wherein a sample is collected from the surface of said metal material and subjected to chemical analysis to quantify the amount of impurities in said sample, and to estimate a rate of development of microscopic damage of said metal material based on said amount of impurities. The method for evaluating the life of a metal material according to claim 1, wherein:
の材料特性、応力負荷特性及び現時点での損傷の各デー
タに基づき粒界モデルを作成し、前記表面の寿命消費量
を基に該粒界モデルに応力が加わった場合の各粒界の破
壊進行過程を算出することを特徴とする請求項1または
2記載の金属材料の寿命評価方法。3. The calculation of the degree of progress is performed by creating a grain boundary model based on data of material properties, stress load properties, and damage at the present time of the metal material, and calculating the grain boundary based on the life consumption of the surface. 3. The method according to claim 1, wherein a fracture progress process of each grain boundary when a stress is applied to the boundary model is calculated.
算出において、前記金属材料に外部から応力を負荷して
前記金属材料の応力負荷時の微視損傷の進展度合いを前
記金属材料内部の複数の箇所にて算出し、該金属材料内
部全体の損傷の進展状況を推定することを特徴とする請
求項1、2または3記載の金属材料の寿命評価方法。4. The method according to claim 1, wherein the step of calculating the degree of progress of the damage distribution inside the thickness includes applying an external stress to the metal material to determine the degree of microscopic damage during stress loading of the metal material. The method for evaluating the life of a metal material according to claim 1, wherein the calculation is performed at a plurality of locations, and the progress of the damage inside the metal material is estimated.
は応力分布に基づき前記金属材料内部の損傷の進展状況
を推定することを特徴とする請求項4記載の金属材料の
寿命評価方法。5. The method for evaluating the life of a metal material according to claim 4, wherein the progress of the damage inside the metal material is estimated based on the damage distribution and / or the stress distribution in the metal material.
る送信探触子と超音波を受信する受信探触子を、該金属
材料内の損傷部分を挟んで載置し、前記送信探触子によ
り該金属材料内に超音波を発信させて前記損傷部分から
の回折波を前記受信探触子により検出し、前記金属材料
内の損傷分布を検出し、 この検出結果に基づき前記金属材料の微視損傷の進展度
合いを算出することを特徴とする請求項1ないし5のい
ずれか1項記載の金属材料の寿命評価方法。6. A transmitting probe for transmitting an ultrasonic wave and a receiving probe for receiving an ultrasonic wave are placed on a surface of the metal material with a damaged portion in the metal material interposed therebetween. An ultrasonic wave is transmitted into the metal material by a probe, a diffraction wave from the damaged portion is detected by the reception probe, and a damage distribution in the metal material is detected. Based on the detection result, the metal material is detected. The method for evaluating the life of a metal material according to any one of claims 1 to 5, wherein a degree of progress of the microscopic damage is calculated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000367017A JP2002168853A (en) | 2000-12-01 | 2000-12-01 | Method for evaluating life of metal material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000367017A JP2002168853A (en) | 2000-12-01 | 2000-12-01 | Method for evaluating life of metal material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002168853A true JP2002168853A (en) | 2002-06-14 |
Family
ID=18837529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000367017A Pending JP2002168853A (en) | 2000-12-01 | 2000-12-01 | Method for evaluating life of metal material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002168853A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003207489A (en) * | 2001-11-09 | 2003-07-25 | Mitsubishi Heavy Ind Ltd | Damage evaluation method and apparatus for metallic material |
JP2004325246A (en) * | 2003-04-24 | 2004-11-18 | Toshiba Corp | Defect inspection apparatus |
JP2007232401A (en) * | 2006-02-27 | 2007-09-13 | Mitsubishi Heavy Ind Ltd | Lifetime evaluation method of high-strength steel welding zone |
JP2008122345A (en) * | 2006-11-15 | 2008-05-29 | Mitsubishi Heavy Ind Ltd | Method of evaluating life by creep elongation in high-strength steel welded part, and method of evaluating life of high-strength steel welded part |
JP2010236941A (en) * | 2009-03-30 | 2010-10-21 | Mitsubishi Heavy Ind Ltd | Lifetime evaluation method of pipe weld zone |
-
2000
- 2000-12-01 JP JP2000367017A patent/JP2002168853A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003207489A (en) * | 2001-11-09 | 2003-07-25 | Mitsubishi Heavy Ind Ltd | Damage evaluation method and apparatus for metallic material |
JP2004325246A (en) * | 2003-04-24 | 2004-11-18 | Toshiba Corp | Defect inspection apparatus |
JP2007232401A (en) * | 2006-02-27 | 2007-09-13 | Mitsubishi Heavy Ind Ltd | Lifetime evaluation method of high-strength steel welding zone |
JP2008122345A (en) * | 2006-11-15 | 2008-05-29 | Mitsubishi Heavy Ind Ltd | Method of evaluating life by creep elongation in high-strength steel welded part, and method of evaluating life of high-strength steel welded part |
JP2010236941A (en) * | 2009-03-30 | 2010-10-21 | Mitsubishi Heavy Ind Ltd | Lifetime evaluation method of pipe weld zone |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3652943B2 (en) | Metal material damage evaluation method and apparatus | |
US7389693B2 (en) | Methods and apparatus for porosity measurement | |
KR101121283B1 (en) | Buried pipe examining method | |
JP5050873B2 (en) | Remaining life evaluation method for machine parts | |
CN111033211B (en) | Method for evaluating remaining life and method for maintenance management | |
JP5276497B2 (en) | Pipe weld life evaluation method | |
JP5086615B2 (en) | Life evaluation method by creep elongation of high strength steel weld and life evaluation method of high strength steel weld | |
JP3886865B2 (en) | Metal material damage evaluation method and apparatus | |
CN111033212B (en) | Crack evaluation criterion establishing method, crack evaluation method based on internal flaw detection, and maintenance management method | |
JP5783553B2 (en) | Piping life determination method | |
JP6197391B2 (en) | Fatigue life evaluation method for structures | |
CN109059813B (en) | Method for detecting corrosion strength of steel structure of hoisting machinery | |
JP2003130789A (en) | Method for evaluating life of metallic material | |
WO2019159940A1 (en) | Plant inspection method | |
JP2002168853A (en) | Method for evaluating life of metal material | |
JP2003014705A (en) | Damage evaluation method for metal material | |
Kalyanam et al. | Why conduct SEN (T) tests and considerations in conducting/analyzing SEN (T) testing | |
JPH075086A (en) | Method for estimating superposed damage of creep and fatigue of high-temperature structure material | |
JP5492057B2 (en) | Damage prediction method for heat-resistant steel welds | |
US11860082B1 (en) | Method of determining an index of quality of a weld in a formed object through mechanical contact testing | |
JPH0712709A (en) | Method and apparatus for diagnosing deterioration of gas turbine coating blade | |
Panetta et al. | Mechanical damage characterization in pipelines | |
Djaballah et al. | Optimal sizing of microcrack surface-breaking using PoD and ECNDT techniques | |
CN119804664A (en) | A welding defect detection method for ultra-thick plate large diameter welded pipeline | |
Mishael et al. | Propagation of Interacting Cracks in Offshore Wind Welded Structures Through Numerical Analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050617 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060801 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061212 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070213 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20070327 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20070921 |