JP2002161882A - Gas compressor - Google Patents
Gas compressorInfo
- Publication number
- JP2002161882A JP2002161882A JP2000360874A JP2000360874A JP2002161882A JP 2002161882 A JP2002161882 A JP 2002161882A JP 2000360874 A JP2000360874 A JP 2000360874A JP 2000360874 A JP2000360874 A JP 2000360874A JP 2002161882 A JP2002161882 A JP 2002161882A
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- discharge
- gas
- compression chamber
- cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000006835 compression Effects 0.000 claims abstract description 94
- 238000007906 compression Methods 0.000 claims abstract description 94
- 230000003247 decreasing effect Effects 0.000 claims abstract description 5
- 230000002093 peripheral effect Effects 0.000 claims description 8
- 230000007423 decrease Effects 0.000 claims description 4
- 238000007599 discharging Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/344—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
- F04C18/3446—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
Landscapes
- Rotary Pumps (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、GHP等に用い
られるロータリベーン型の気体圧縮機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary vane type gas compressor used for GHP and the like.
【0002】[0002]
【従来の技術】ロータリベーン型の気体圧縮機は、図4
に示すように、シリンダブロック1のシリンダ室1a内
に回動自在に設けられたロータ2と、このロータ2にほ
ぼ放射状に刻設されたベーン溝3に摺動自在に出没し
て、先端4aが上記シリンダブロック1の内周面1b
に、両側面がサイドブロックの内壁面21a、22a
(図2参照)に摺接するベーン4と、上記ベーン4によ
り上記シリンダ室1aを分割して形成された圧縮室6、
6、‥‥と、上記シリンダ室1a内の短径円弧部1cか
らロータ2が回転して進行する方向の手前側に開口し
て、シリンダ室1aと吐出室10(図2参照)とを連通
させる吐出穴8と、この吐出穴8と吐出室10との間に
介在して、上記圧縮室6から吐出室10へ圧縮された気
体(冷媒ガス)を通過させ、吐出室10からシリンダ室
1aへの気体の逆流を遮断するリーフ弁式の吐出弁9と
を有し、上記ロータ2の回転に伴い圧縮室6の容積を増
減させて、シリンダ室1aに開口する吸入穴7から吸入
室14の気体を吸入し、圧縮室6内でこの気体を圧縮
し、吐出穴8、吐出弁9経由で、圧縮した圧縮気体を吐
出室10へ吐出するものである。2. Description of the Related Art A rotary vane type gas compressor is shown in FIG.
As shown in FIG. 1, a rotor 2 rotatably provided in a cylinder chamber 1a of a cylinder block 1 and a vane groove 3 formed in the rotor 2 in a radially slidable manner so as to slide freely into and out of a tip 4a. Is the inner peripheral surface 1b of the cylinder block 1.
In addition, both side surfaces are inner wall surfaces 21a, 22a of side blocks.
(See FIG. 2); a compression chamber 6 formed by dividing the cylinder chamber 1a by the vane 4;
6, and open from the short circular arc portion 1c in the cylinder chamber 1a to the front side in the direction in which the rotor 2 rotates and travels to communicate the cylinder chamber 1a with the discharge chamber 10 (see FIG. 2). A gas (refrigerant gas) compressed from the compression chamber 6 to the discharge chamber 10 is passed through the discharge hole 8 to be interposed between the discharge hole 8 and the discharge chamber 10, and the cylinder chamber 1a is moved from the discharge chamber 10 to the cylinder chamber 1a. A discharge valve 9 of a leaf valve type that shuts off the backflow of gas to the suction chamber 14. Is compressed in the compression chamber 6, and the compressed gas is discharged to the discharge chamber 10 through the discharge hole 8 and the discharge valve 9.
【0003】シリンダ室1aの断面形状は、上記短径円
弧部1cの中心を通る短径と最も長い半径の長径とが直
交する、ほぼ楕円形をなし、長径に関して対称形となっ
ている。[0003] The cross-sectional shape of the cylinder chamber 1a is substantially elliptical, in which a short diameter passing through the center of the short diameter arc portion 1c is orthogonal to a long diameter of the longest radius, and is symmetric with respect to the long diameter.
【0004】圧縮室6の圧縮行程(圧縮室6と吸入穴7
との連通が断たれ、圧縮室6に閉じ込められた気体を圧
縮して吐出室10へ吐出する行程)では、ロータ2の回
転とともに、圧縮室6内の容積が減少して気体圧力が次
第に増大し、この圧力が吐出室10の圧力よりも大きく
なると、吐出弁9のリーフ状の弁体9aが弁座9bから
離れてバルブサポート9c側にたわんで、吐出弁9が解
放されたままになって、圧縮室6の圧縮された気体は吐
出穴8経由で吐出室10へ吐出される。なお、圧縮室6
の後側(ロータ回転方向の)のベーン4が吐出穴8に近
付き、このベーン4とシリンダ室1aの短径円弧部1c
との間の圧縮室6の圧縮空間が縮まるに従い、圧縮圧力
は最大になる。The compression stroke of the compression chamber 6 (the compression chamber 6 and the suction hole 7
In the process of compressing the gas trapped in the compression chamber 6 and discharging the compressed gas into the discharge chamber 10), the volume in the compression chamber 6 decreases and the gas pressure gradually increases with the rotation of the rotor 2. However, when this pressure becomes higher than the pressure in the discharge chamber 10, the leaf-shaped valve element 9a of the discharge valve 9 separates from the valve seat 9b and bends toward the valve support 9c, so that the discharge valve 9 is kept open. Thus, the compressed gas in the compression chamber 6 is discharged to the discharge chamber 10 via the discharge hole 8. The compression chamber 6
The vane 4 on the rear side (in the rotor rotation direction) approaches the discharge hole 8, and the vane 4 and the short-diameter arc portion 1c of the cylinder chamber 1a
The compression pressure becomes maximum as the compression space of the compression chamber 6 between the pressure and the pressure decreases.
【0005】圧縮室からの吐出が始まる前に、先側のベ
ーン4が吐出穴8を通過すると、次の圧縮室6が吐出穴
8に連通を開始する。この時点では、図3の「従来」に
示すように、次の圧縮室6は圧縮行程の初期にあって、
気体圧縮があまり行われていないので、圧力Piaが吐出
室10の圧力よりも低く、吐出弁9は閉じられ、逆流が
防止される。そして、圧縮室6の圧力が吐出室10の圧
力よりも高く、Ps 以上になると、吐出弁9が開いて吐
出が行われるのである。When the leading vane 4 passes through the discharge hole 8 before the discharge from the compression chamber starts, the next compression chamber 6 starts to communicate with the discharge hole 8. At this point, as shown in “Conventional” of FIG. 3, the next compression chamber 6 is in the early stage of the compression stroke,
Since the gas compression is not performed so much, the pressure Pia is lower than the pressure in the discharge chamber 10, the discharge valve 9 is closed, and the backflow is prevented. When the pressure in the compression chamber 6 is higher than the pressure in the discharge chamber 10 and becomes equal to or higher than Ps, the discharge valve 9 is opened to perform discharge.
【0006】従来から製造されている、シリンダ室断面
形状ほぼ楕円形、5枚ベーンのロータリベーン型気体圧
縮機の場合、圧縮室6が吐出穴8に連通する直前の圧縮
室の容積は、吸入穴7から離れて気体をと閉じ込め、容
積が最大となるときの圧縮室の最大容積の約75%で、
閉じ込めた気体の容積と圧力との関係から単純に計算す
ると、圧縮室6が吐出穴8に連通する直前の圧縮室の圧
力Piaは、吸入を終えたときの圧力の約1.5倍しか上
昇していないことになる。また、圧縮室6の圧縮が進ん
で吐出穴8へ吐出するときの圧縮室の圧力Pd は、吸入
を終えたときの圧力Ps の約5倍以上であって、圧縮室
6の吐出時の圧力Pd と圧縮室が吐出穴に連通する直前
の圧縮室の圧力Piaとの差はかなり大きい。In the case of a conventionally manufactured rotary vane type gas compressor having a cylinder chamber cross-sectional shape of approximately elliptical and five vanes, the volume of the compression chamber immediately before the compression chamber 6 communicates with the discharge hole 8 is equal to the suction capacity. Approximately 75% of the maximum volume of the compression chamber when the volume is maximized, away from the hole 7 and trapping the gas,
When simply calculated from the relationship between the volume of the trapped gas and the pressure, the pressure Pia of the compression chamber immediately before the compression chamber 6 communicates with the discharge hole 8 rises only about 1.5 times the pressure at the end of the suction. You will not. Further, the pressure Pd of the compression chamber when the compression of the compression chamber 6 is advanced to discharge to the discharge hole 8 is about 5 times or more the pressure Ps at the time of finishing the suction, and the pressure at the time of discharge of the compression chamber 6 The difference between Pd and the pressure Pia of the compression chamber immediately before the compression chamber communicates with the discharge hole is quite large.
【0007】従って、吐出弁9が閉じて逆流を防止する
とき、バルブサポート9c側にたわんでいた弁体9aが
弁座9bに激しく衝突して吸着される。この衝突音が騒
音となり、気体圧縮機外へ伝播する。また、この衝突に
よりリーフ状の弁体9aが破れる等、破損することがあ
る。Therefore, when the discharge valve 9 is closed to prevent backflow, the valve element 9a bent toward the valve support 9c collides violently with the valve seat 9b and is adsorbed. This collision sound becomes noise and propagates outside the gas compressor. In addition, the leaf-shaped valve 9a may be broken or broken by the collision.
【0008】[0008]
【発明が解決しようとする課題】この発明は、吐出穴に
連通する圧縮室が交替する時の急激な圧力変化を抑制し
て、リーフ状の弁体の発する騒音レベルを減少し、弁体
の損傷を防止でき、あるいは、更に、吐出穴に連通する
圧縮室が交替する時に圧力が下がることがなく、吐出弁
が不要な気体圧縮機を提供するものである。SUMMARY OF THE INVENTION The present invention suppresses a sudden change in pressure when a compression chamber communicating with a discharge hole is changed, reduces the noise level generated by a leaf-shaped valve element, and reduces the noise level of the valve element. An object of the present invention is to provide a gas compressor which can prevent damage, and further does not reduce pressure when a compression chamber communicating with a discharge hole is replaced, and does not require a discharge valve.
【0009】[0009]
【課題を解決するための手段】上述の課題を解決するた
めに、この発明の気体圧縮機においては、前後をサイド
ブロックで塞がれてシリンダブロック内に形成された断
面長円形状のシリンダ室と、このシリンダ室内にあっ
て、上記サイドブロックの内壁面に両側面を摺接しなが
ら回転するロータと、このロータにほぼ放射状に刻設さ
れたベーン溝と、このベーン溝に摺動自在に出没して、
先端が上記シリンダブロックの内周面に、両側面がサイ
ドブロックの内壁面にそれぞれ摺接するベーンと、この
ベーンにより上記シリンダ室を分割して形成された圧縮
室と、上記シリンダ室内の短径円弧部よりもロータ進行
方向やや先方側に開口してシリンダ室と吸入室とを連通
させる吸入穴と、上記短径円弧部よりもロータ進行方向
やや手前側に開口してシリンダ室と吐出室とを連通させ
る吐出穴と、この吐出穴と吐出室との間に介在して、上
記圧縮室から吐出室へ圧縮された気体を通過させ、吐出
室からシリンダ室への気体の逆流を遮断するリーフ弁式
の吐出弁とを有し、上記ロータの回転に伴い圧縮室の容
積を増減させて、上記吸入穴から吸入室内の気体を圧縮
室内に吸入し、圧縮室内で上記気体を圧縮し、吐出穴か
ら吐出室へ圧縮した圧縮気体を吐出する気体圧縮機にお
いて、シリンダ室の断面形状が、長径が吸入穴側に傾い
た長円形状をなしているようにする。In order to solve the above-mentioned problems, in a gas compressor according to the present invention, a cylinder chamber having an oblong cross section formed in a cylinder block with front and rear portions closed by side blocks. A rotor in the cylinder chamber, which rotates while sliding on both sides on the inner wall surface of the side block, a vane groove formed substantially radially in the rotor, and a slidably protruding and retractable slide in and out of the vane groove. do it,
A vane having a tip slidably in contact with the inner peripheral surface of the cylinder block and both side surfaces sliding on the inner wall surface of the side block, a compression chamber formed by dividing the cylinder chamber by the vane, and a short-diameter arc in the cylinder chamber The suction hole is opened slightly to the forward direction of the rotor than the portion and communicates with the cylinder chamber and the suction chamber, and the cylinder chamber and the discharge chamber are opened slightly in the forward direction of the rotor beyond the short-diameter circular arc portion. A discharge hole to be communicated with, and a leaf valve interposed between the discharge hole and the discharge chamber to allow the gas compressed from the compression chamber to the discharge chamber to pass therethrough and to block a backflow of the gas from the discharge chamber to the cylinder chamber. A discharge valve of the type, increasing or decreasing the volume of the compression chamber with the rotation of the rotor, sucking gas in the suction chamber from the suction hole into the compression chamber, compressing the gas in the compression chamber, To the discharge chamber In the gas compressor for discharging the compressed gas, the cross-sectional shape of the cylinder chamber, the major axis is so forms an inclined elliptical shape to the suction hole side.
【0010】また、この発明は、前後をサイドブロック
で塞がれてシリンダブロック内に形成された断面長円形
状のシリンダ室と、このシリンダ室内にあって、上記サ
イドブロックの内壁面に両側面を摺接しながら回転する
ロータと、このロータにほぼ放射状に刻設されたベーン
溝と、このベーン溝に摺動自在に出没して、先端が上記
シリンダブロックの内周面に、両側面がサイドブロック
の内壁面にそれぞれ摺接するベーンと、このベーンによ
り上記シリンダ室を分割して形成された圧縮室と、上記
シリンダ室内の短径円弧部よりもロータ進行方向やや先
方側に開口してシリンダ室と吸入室とを連通させる吸入
穴と、上記短径円弧部よりもロータ進行方向やや手前側
に開口してシリンダ室と吐出室とを連通させる吐出穴と
を有し、上記ロータの回転に伴い圧縮室の容積を増減さ
せて、上記吸入穴から吸入室内の気体を圧縮室内に吸入
し、圧縮室内で上記気体を圧縮し、吐出穴から吐出室へ
圧縮した圧縮気体を吐出する気体圧縮機において、シリ
ンダ室の断面形状が、長径が吸入穴側に傾いた長円形状
をなしていて、その長円形状が以下の[数2]の条件を
満たす形状であるようにする。ただし、θは基準線から
ロータの回転方向に進んだ角度、Rは角度θにおけるロ
ータ中心からの半径、Aは長径と短径との差、2uは短
径円弧部のなす角度、RO は短径円弧部半径、wは基準
線と長径とのなす90°未満の角度、n1、n2は任意
の次数である。なお、基準線と長径とのなす角度wを7
0°位まで小さくした、傾きの大きい長円形のシリンダ
室にすると、圧縮室交替時の圧力変化が著しく少なくな
る。The present invention also provides a cylinder chamber having an oblong cross section formed in a cylinder block which is closed in the front and rear by a side block; , A vane groove formed substantially radially in the rotor, and slidably protruding and retracting in the vane groove, with the tip on the inner peripheral surface of the cylinder block and the side surfaces on both sides. A vane that slides on the inner wall surface of the block, a compression chamber formed by dividing the cylinder chamber by the vane, and a cylinder chamber that opens slightly forward in the rotor traveling direction from the short-diameter arc portion in the cylinder chamber. A suction hole that communicates with the suction chamber and a suction hole that opens slightly forward in the rotor traveling direction than the short-arc portion and communicates the cylinder chamber and the discharge chamber. By increasing or decreasing the volume of the compression chamber with the rotation of the gas, the gas in the suction chamber is sucked into the compression chamber from the suction hole, the gas is compressed in the compression chamber, and the compressed gas is discharged from the discharge hole to the discharge chamber. In the gas compressor, the cross-sectional shape of the cylinder chamber is an elliptical shape whose major axis is inclined toward the suction hole, and the elliptical shape satisfies the following [Equation 2]. Where θ is the angle from the reference line in the direction of rotation of the rotor, R is the radius from the center of the rotor at the angle θ, A is the difference between the major axis and minor axis, 2u is the angle formed by the minor arc, and RO is the minor angle. The radius of the circular arc portion, w is an angle of less than 90 ° between the reference line and the major axis, and n1 and n2 are arbitrary orders. The angle w between the reference line and the major axis is 7
When an oblong cylinder chamber having a large inclination and reduced to about 0 ° is used, the pressure change when the compression chamber is replaced is significantly reduced.
【0011】[0011]
【数2】 (Equation 2)
【0012】吸入行程を終えた圧縮室では、圧縮室に先
行するベーンが吐出穴に達する前のロータ回転の早いタ
イミングで圧縮室容積が最大となり、圧縮室に先行する
ベーンが吐出穴に接近するに従って急速に圧縮が進ん
で、先行するベーンが吐出穴に達したときは、圧縮室
は、従来の楕円形状の気体圧縮機よりも圧縮が進んでい
て、先行する圧縮室の圧力との圧力差が低減する。In the compression chamber which has completed the suction stroke, the volume of the compression chamber becomes maximum at an early timing of rotor rotation before the vane preceding the compression chamber reaches the discharge hole, and the vane preceding the compression chamber approaches the discharge hole. When the preceding vane reaches the discharge hole, the compression of the compression chamber is more advanced than that of the conventional elliptical gas compressor, and the pressure difference from the pressure of the preceding compression chamber. Is reduced.
【0013】更に、この発明では、吸入を終了した直後
の圧縮室の容積Vmax 、吸入圧力Ps 、吐出穴と連通す
る直前の圧縮室の容積Vi 、吐出圧力Pd がFurther, according to the present invention, the volume Vmax of the compression chamber immediately after the end of the suction, the suction pressure Ps, the volume Vi of the compression chamber immediately before the communication with the discharge hole, and the discharge pressure Pd are obtained.
【0014】(Vmax /Vi )k > Pd / Ps(Vmax / Vi) k > Pd / Ps
【0015】の条件を満たすように、短径円弧部半径R
O 、短径円弧部のなす角度2u、長径と短径との差Aに
対して、基準線と長径とのなす角度wおよび次数n1、
n2、吸入穴角度位置、吐出穴角度位置を定めるように
する。ただし、kは圧縮する気体の比熱比である。In order to satisfy the condition (1), the radius R
O, the angle w formed by the reference line and the major axis and the degree n1, with respect to the angle 2u formed by the minor arc portion and the difference A between the major and minor axes,
n2, the suction hole angle position, and the discharge hole angle position are determined. Here, k is a specific heat ratio of the gas to be compressed.
【0016】なお、通常の冷凍機に使用する冷媒ガスの
場合、比熱比k は1.33程である。In the case of a refrigerant gas used in an ordinary refrigerator, the specific heat ratio k is about 1.33.
【0017】この条件を満たすように、基準線と長径と
のなす角度wおよび次数n1、n2、吸入穴角度位置、
吐出穴角度位置を定めると、吐出穴と連通する直前の圧
縮室の圧力Pi が吐出室の圧力Pd よりも大きくなり、
圧縮室に先行するベーンが吐出穴に達して圧縮室が交替
したときの圧力はほとんど下がることがなくなり、逆流
発生がなくなって、吐出弁を用いる必要がなくなる。In order to satisfy this condition, the angle w between the reference line and the major axis and the orders n1 and n2, the angle position of the suction hole,
When the discharge hole angular position is determined, the pressure Pi of the compression chamber immediately before communicating with the discharge hole becomes larger than the pressure Pd of the discharge chamber,
The pressure at the time when the vane preceding the compression chamber reaches the discharge hole and the compression chamber is replaced hardly drops, so that backflow does not occur and the use of a discharge valve is not required.
【0018】この種の気体圧縮機においては、通常の運
転状態ではPd /Ps が6よりやや小さい値であること
が確かめられているが、この発明の上記の長円形状が
[数2]の条件を満たす形状として、例えば、w=70
°、u=3°、n1=2、n2=4と設定して吸入口と
吐出口の位置を調節すると、In this type of gas compressor, it has been confirmed that Pd / Ps is slightly smaller than 6 in a normal operation state. As a shape satisfying the condition, for example, w = 70
°, u = 3 °, n1 = 2, n2 = 4 to adjust the positions of the inlet and outlet,
【0019】Vmax /Vi =4/1Vmax / Vi = 4/1
【0020】となり、(Vmax /Vi )k=(4/1)
1.33≒6.32となるから、通常の運転状態でも吐出弁
を不要とすることができるのである。(Vmax / Vi) k = (4/1)
Since 1.33 ≒ 6.32, the discharge valve can be dispensed with even in the normal operation state.
【0021】[0021]
【発明の実施の形態】この発明の実施の形態を、以下、
図1および図2を参照して説明する。Embodiments of the present invention will be described below.
This will be described with reference to FIGS.
【0022】図1は、気体圧縮機のシリンダブロック1
を示す横断面図、図2は、図1の気体圧縮機の縦断面図
である。図1において、図4と同一部分については、同
一の符号を付してその説明を省略する。FIG. 1 shows a cylinder block 1 of a gas compressor.
FIG. 2 is a longitudinal sectional view of the gas compressor of FIG. 1, the same parts as those in FIG. 4 are denoted by the same reference numerals, and the description thereof will be omitted.
【0023】図1に示したシリンダブロック1のシリン
ダ室1aは、5枚ベーンの気体圧縮機(図4参照)に使
用するもので、180°の間隔で配置された短径O−R
Cの付近が短径円弧部1cとなっていて、この短径円弧
部1cでロータ2と摺接し、その他の内周面1bには図
示省略の5枚のベーンの先端が摺接するようになってお
り、シリンダ室1aの断面形状は、長径O−RAが吸入
穴7側に傾いた長円形状をなしている。The cylinder chamber 1a of the cylinder block 1 shown in FIG. 1 is used for a five-vane gas compressor (see FIG. 4), and has short diameters OR arranged at 180 ° intervals.
The vicinity of C is a short-diameter arc portion 1c, and the short-diameter arc portion 1c is in sliding contact with the rotor 2, and the other inner peripheral surface 1b is in sliding contact with the tips of five vanes (not shown). The cross-sectional shape of the cylinder chamber 1a is an elliptical shape in which the major axis O-RA is inclined toward the suction hole 7 side.
【0024】上記シリンダ室1aの長円形の断面形状
は、この実施の形態では、以下のようにして設定した。
すなわち、短径円弧部1cの中心Oと短径円弧部1cの
中央部RCとを結ぶ線を基準線X−Xとして、ロータ2
の回転方向Cに角度θ進んだ位置での上記中心Oから内
周面1bまでの距離(半径)Rが、[数3]のようにな
るようにした。The oval cross section of the cylinder chamber 1a is set as follows in this embodiment.
In other words, a line connecting the center O of the short-diameter arc portion 1c and the center portion RC of the short-diameter arc portion 1c is defined as the reference line XX, and the rotor 2
The distance (radius) R from the center O to the inner peripheral surface 1b at the position advanced by the angle θ in the rotation direction C is set as shown in [Equation 3].
【0025】[0025]
【数3】 (Equation 3)
【0026】ただし、2uは短径円弧部1cのなす角
度、wは基準線X−Xと長径O−RAとのなす角度、A
は長径と短径との差、n1、n2は任意の次数である。Where 2u is the angle formed by the short-diameter arc portion 1c, w is the angle formed between the reference line XX and the long-diameter O-RA, A
Is the difference between the major axis and the minor axis, and n1 and n2 are arbitrary orders.
【0027】図2において、2aは、上記ロータ2と一
体のロータ軸、11は、上記吐出室10内の底部に設け
られた潤滑油用油溜り、12、12は、上記ロータ軸2
aを軸支する軸受、14は、上記吸入穴7と連通してい
る吸入室、21は、上記シリンダブロック1の前面に密
着されてシリンダ室1aの一方の側面を内壁面21aに
より塞ぐフロントサイドブロック、22は、シリンダブ
ロック1の後面に密着されてシリンダ室1aの他方の側
面を内壁面22aにより塞ぐリアサイドブロック、24
は、上記吸入室14へ気体圧縮機外部から気体を吸入す
るための吸入ポート、26は、上記吐出穴8から吐出室
10への圧縮気体通路、27は、圧縮気体通路26の出
口に取り付けられ、圧縮気体中の潤滑油回収用の油分離
器、28は、吐出室10中の圧縮気体を気体圧縮機外部
へ吐出するための吐出ポートである。In FIG. 2, 2a is a rotor shaft integral with the rotor 2, 11 is a lubricating oil reservoir provided at the bottom in the discharge chamber 10, and 12 and 12 are the rotor shaft 2
a is a suction chamber communicating with the suction hole 7; 21 is a front side which is in close contact with the front surface of the cylinder block 1 and closes one side of the cylinder chamber 1a with an inner wall surface 21a. A block 22 is a rear side block that is in close contact with the rear surface of the cylinder block 1 and closes the other side surface of the cylinder chamber 1a with an inner wall surface 22a.
Is a suction port for sucking gas from the outside of the gas compressor into the suction chamber 14, 26 is a compressed gas passage from the discharge hole 8 to the discharge chamber 10, and 27 is attached to an outlet of the compressed gas passage 26. The oil separator 28 for collecting lubricating oil in the compressed gas is a discharge port for discharging the compressed gas in the discharge chamber 10 to the outside of the gas compressor.
【0028】以下、この実施の形態の気体圧縮機の動作
を、図3を参照して説明する。Hereinafter, the operation of the gas compressor of this embodiment will be described with reference to FIG.
【0029】ロータ軸2a、2aが軸受12、12によ
り軸支されてロータ2が回転駆動されると、圧縮室6
が、ロータ軸回りに回転しながら、その容積を増減し
て、吸入室14の気体を吸入穴7から吸入し、圧縮して
吐出穴8から吐出して、吐出室に圧縮気体を吐出する点
は、従来の気体圧縮機と同様である。When the rotor shafts 2a, 2a are rotatably driven by the bearings 12, 12, the compression chamber 6
However, while rotating around the rotor axis, the volume is increased or decreased, and the gas in the suction chamber 14 is sucked from the suction hole 7, compressed and discharged from the discharge hole 8, and the compressed gas is discharged to the discharge chamber. Is the same as a conventional gas compressor.
【0030】圧縮室6に後行するベーン4が、ロータ2
の回転に伴い、吸入穴7を通過すると、圧縮室6は吸入
室14から気体を吸入する。この間、圧縮室6の圧力は
吸入室14の圧力となっている。The vane 4 trailing into the compression chamber 6 is
When the gas passes through the suction hole 7 with the rotation of, the compression chamber 6 sucks gas from the suction chamber 14. During this time, the pressure in the compression chamber 6 is the pressure in the suction chamber 14.
【0031】上記ベーン4が吸入穴7との連通を閉じた
後は、図1の圧縮室6に先行するベーン4−1が吐出穴
8に達する前のごく早いタイミング、すなわち、吸入室
7との連通を断った直後に圧縮室容積(図1の横斜線部
分)が最大Vmax となっている。その後のロータ2の回
転に伴う圧縮室6の容積減少により圧縮室内の気体の圧
縮が始まる。シリンダ室1aの断面形状が、長径O−R
Aが吸入穴7側に傾いた長円形状となっているので、先
行するベーン4−21が吐出穴8に達したときの圧縮室
の容積はVmax からVi (図1の立斜線部分)へと急速
に減少する。従って、圧縮速度は、従来の気体圧縮機よ
りも著しく速く、先行するベーン4−21が吐出穴8に
達したときの圧縮室圧力Pi は、吐出開始圧力Pd (≒
吐出室10の圧力)に近くなっている(図3の発明1の
曲線)。それ故、先行して吐出穴8に圧縮気体を吐出し
ていた圧縮室の圧力Pmax とも大きな圧力差がなく、吐
出弁9の弁体9aが急激に弁座9bに衝突することもな
く、比較的静かに弁が閉じられる。従って、吐出弁9の
発する騒音レベルも減少し、弁体9aの損傷も防止され
る。After the vane 4 closes the communication with the suction hole 7, the timing is very short before the vane 4-1 preceding the compression chamber 6 of FIG. Immediately after the communication is cut off, the compression chamber volume (the hatched portion in FIG. 1) reaches the maximum Vmax. The compression of the gas in the compression chamber starts due to the reduction in the volume of the compression chamber 6 following the rotation of the rotor 2. The cross-sectional shape of the cylinder chamber 1a has a long diameter OR
Since A has an oblong shape inclined toward the suction hole 7, the volume of the compression chamber when the preceding vane 4-21 reaches the discharge hole 8 changes from Vmax to Vi (the hatched portion in FIG. 1). And decrease rapidly. Accordingly, the compression speed is significantly higher than that of the conventional gas compressor, and the compression chamber pressure Pi when the preceding vane 4-21 reaches the discharge hole 8 becomes the discharge start pressure Pd (≒).
(Pressure of the discharge chamber 10) (curve of invention 1 in FIG. 3). Therefore, there is no large pressure difference between the pressure Pmax of the compression chamber, which previously discharged the compressed gas to the discharge hole 8, and the valve body 9a of the discharge valve 9 does not suddenly collide with the valve seat 9b. The valve is closed quietly. Accordingly, the noise level generated by the discharge valve 9 is also reduced, and the valve body 9a is prevented from being damaged.
【0032】次に、この発明の他の実施の形態を説明す
る。この実施の形態は、吐出弁9を設ける必要がなく、
気体圧縮機の信頼性向上、コスト低減にも寄与するもの
である。Next, another embodiment of the present invention will be described. In this embodiment, there is no need to provide the discharge valve 9,
It also contributes to improving the reliability of the gas compressor and reducing costs.
【0033】この実施の形態の基本形状は、図1で説明
した上述の実施の形態と同様であるが、基準線と長径と
のなす上記角度wおよび次数n1、n2、更に、吸入穴
7の角度位置、すなわち、後行するベーン4−12が吸
入穴7から圧縮室6を隔離する角度位置と、吐出穴8の
角度位置を調節して、吸入を終了した直後の圧縮室6の
容積Vmax 、吸入圧力Ps 、吐出穴8と連通する直前の
圧縮室6の容積Vi 、吐出圧力Pd がThe basic shape of this embodiment is the same as that of the above-described embodiment described with reference to FIG. 1, except that the angle w formed by the reference line and the major axis and the orders n1 and n2, The angular position, that is, the angular position at which the trailing vane 4-12 separates the compression chamber 6 from the suction hole 7, and the angular position of the discharge hole 8 are adjusted to set the volume Vmax of the compression chamber 6 immediately after the end of suction. , The suction pressure Ps, the volume Vi of the compression chamber 6 immediately before communicating with the discharge hole 8, and the discharge pressure Pd.
【0034】(Vmax /Vi )k > Pd / Ps(Vmax / Vi) k > Pd / Ps
【0035】の条件(k は圧縮する気体の比熱比)を
満たすように、上記角度wおよび次数n1、n2、吸入
穴7の角度位置、および、吐出穴8の角度位置を定める
と、吐出穴8と連通する直前の圧縮室6の圧力Pi が吐
出室10の圧力Pd よりも大きくなり(図3の発明2の
曲線)、圧縮室6に先行するベーン4−21が吐出穴8
に達して圧縮室6が交替したときの圧力は下がることが
なくなり、吐出室10から圧縮室6への逆流発生がなく
なって、吐出弁9(図4参照)を用いる必要がなくな
る。If the angle w and the orders n1, n2, the angular position of the suction hole 7 and the angular position of the discharge hole 8 are determined so as to satisfy the condition (k is the specific heat ratio of the gas to be compressed), the discharge hole The pressure Pi of the compression chamber 6 immediately before communicating with the pressure chamber 8 becomes larger than the pressure Pd of the discharge chamber 10 (curve of the invention 2 in FIG. 3).
, The pressure when the compression chamber 6 is replaced does not drop, the backflow from the discharge chamber 10 to the compression chamber 6 does not occur, and the need to use the discharge valve 9 (see FIG. 4) is eliminated.
【0036】この発明のシリンダ室の長径が吸入穴側に
傾いた長円形断面形状は、上述の実施の形態に限らず、
種々の形状を採用することができる。The oblong cross-sectional shape of the present invention in which the major axis of the cylinder chamber is inclined toward the suction hole is not limited to the above-described embodiment.
Various shapes can be employed.
【0037】[0037]
【発明の効果】以上詳細に説明したように、この発明に
おいては、ロータリベーン型気体圧縮機において、シリ
ンダ室の断面形状を、長径が吸入穴側に傾いた長円形状
としたから、圧縮室が交替するときの圧力差が低減し、
吐出弁が発する騒音レベルを減少し、吐出弁のリーフ状
の弁体の損傷を防止することができる。As described above in detail, according to the present invention, in the rotary vane type gas compressor, the cross-sectional shape of the cylinder chamber is an elliptical shape whose major axis is inclined to the suction hole side. The pressure difference when the
The noise level generated by the discharge valve can be reduced, and damage to the leaf-shaped valve element of the discharge valve can be prevented.
【0038】更に、基準線と長径とのなす上記角度wお
よび次数n1、n2、吸入穴7の角度位置、吐出穴の角
度位置を調節して、吸入を終了した直後の圧縮室の容
積、吸入圧力 、吐出穴と連通する直前の圧縮室の容積
、吐出圧力が所定の条件を満たすようにすると、吐出
穴と連通する直前の圧縮室の圧力が吐出室の圧力よりも
大きくなり、圧縮室に先行するベーンが吐出穴に達して
ロータ回転中の圧縮室の交替による吐出穴付近の圧力変
動がなくなり、吐出室から圧縮室の逆流発生がなくなっ
て、従来必要であった吐出弁を用いないロータリベーン
型気体圧縮機が実現でき、吐出弁が元となる騒音がなく
なるだけでなく、コスト低減、信頼性向上に寄与する。Further, the angle w and the order n1, n2 formed by the reference line and the major axis, the angle position of the suction hole 7, and the angle position of the discharge hole are adjusted so that the volume of the compression chamber immediately after the end of the suction, the suction When the pressure, the volume of the compression chamber immediately before communication with the discharge hole, and the discharge pressure satisfy predetermined conditions, the pressure of the compression chamber immediately before communication with the discharge hole becomes larger than the pressure of the discharge chamber, and When the preceding vane reaches the discharge hole, pressure fluctuation near the discharge hole due to replacement of the compression chamber during rotation of the rotor is eliminated, and backflow of the compression chamber from the discharge chamber is eliminated. A vane type gas compressor can be realized, which not only eliminates noise caused by the discharge valve, but also contributes to cost reduction and reliability improvement.
【図1】この発明の一実施の形態の気体圧縮機のシリン
ダブロックを示す横断面図。FIG. 1 is a cross-sectional view showing a cylinder block of a gas compressor according to an embodiment of the present invention.
【図2】図1の気体圧縮機の縦断面図。FIG. 2 is a longitudinal sectional view of the gas compressor of FIG.
【図3】5枚ベーンの気体圧縮機のベーン位置と圧縮室
圧力との関係を示す説明図。FIG. 3 is an explanatory diagram showing a relationship between a vane position and a compression chamber pressure of a five-vane gas compressor.
【図4】従来の気体圧縮機を示す横断面図。FIG. 4 is a cross-sectional view showing a conventional gas compressor.
1 シリンダブロック 1a シリンダ室 1b 内周面 1c 短径円弧部 2 ロータ 3 ベーン溝 4 ベーン 4a ベーン先端 6 圧縮室 7 吸入穴 8 吐出穴 9 吐出弁 9a 弁体 9b 弁座 9c バルブサポート 10 吐出室 Vmax 圧縮室の最大容積 Vi 吐出穴連通直前の圧縮室容積 DESCRIPTION OF SYMBOLS 1 Cylinder block 1a Cylinder chamber 1b Inner peripheral surface 1c Minor arc part 2 Rotor 3 Vane groove 4 Vane 4a Vane tip 6 Compression chamber 7 Suction hole 8 Discharge hole 9 Discharge valve 9a Valve body 9b Valve seat 9c Valve support 10 Discharge chamber Vmax Maximum volume of compression chamber Vi Volume of compression chamber immediately before discharge hole communication
Claims (3)
ダブロック内に形成された断面長円形状のシリンダ室
と、このシリンダ室内にあって、上記サイドブロックの
内壁面に両側面を摺接しながら回転するロータと、この
ロータにほぼ放射状に刻設されたベーン溝と、このベー
ン溝に摺動自在に出没して、先端が上記シリンダブロッ
クの内周面に、両側面がサイドブロックの内壁面にそれ
ぞれ摺接するベーンと、このベーンにより上記シリンダ
室を分割して形成された圧縮室と、上記シリンダ室内の
短径円弧部よりもロータ進行方向やや先方側に開口して
シリンダ室と吸入室とを連通させる吸入穴と、上記短径
円弧部よりもロータ進行方向やや手前側に開口してシリ
ンダ室と吐出室とを連通させる吐出穴と、この吐出穴と
吐出室との間に介在して、上記圧縮室から吐出室へ圧縮
された気体を通過させ、吐出室からシリンダ室への気体
の逆流を遮断するリーフ弁式の吐出弁とを有し、上記ロ
ータの回転に伴い圧縮室の容積を増減させて、上記吸入
穴から吸入室内の気体を圧縮室内に吸入し、圧縮室内で
上記気体を圧縮し、吐出穴から吐出室へ圧縮した圧縮気
体を吐出する気体圧縮機において、 シリンダ室の断面形状が、長径が吸入穴側に傾いた長円
形状をなしていることを特徴とする気体圧縮機。1. A cylinder chamber having a front and rear side closed by a side block and formed in a cylinder block and having an elliptical cross section. The cylinder chamber is located inside the cylinder chamber and slidingly contacts both side surfaces with an inner wall surface of the side block. A rotating rotor, a vane groove engraved substantially radially on the rotor, and slidably protruding and retracting in the vane groove, with the tip on the inner peripheral surface of the cylinder block and the two side surfaces on the inner wall surface of the side block. And a compression chamber formed by dividing the cylinder chamber by the vane, and a cylinder chamber and a suction chamber which are opened slightly forward in the rotor traveling direction from a short circular arc portion in the cylinder chamber. And a discharge hole that opens slightly forward in the rotor traveling direction than the short circular arc portion to communicate the cylinder chamber and the discharge chamber, and is interposed between the discharge hole and the discharge chamber. A discharge valve of a leaf valve type that allows the compressed gas to pass from the compression chamber to the discharge chamber, and blocks a reverse flow of the gas from the discharge chamber to the cylinder chamber. A gas compressor that increases or decreases the volume, sucks gas in the suction chamber from the suction hole into the compression chamber, compresses the gas in the compression chamber, and discharges compressed gas from the discharge hole to the discharge chamber. A gas compressor characterized in that the cross section of the gas compressor has an oblong shape whose major axis is inclined toward the suction hole.
ダブロック内に形成された断面長円形状のシリンダ室
と、このシリンダ室内にあって、上記サイドブロックの
内壁面に両側面を摺接しながら回転するロータと、この
ロータにほぼ放射状に刻設されたベーン溝と、このベー
ン溝に摺動自在に出没して、先端が上記シリンダブロッ
クの内周面に、両側面がサイドブロックの内壁面にそれ
ぞれ摺接するベーンと、このベーンにより上記シリンダ
室を分割して形成された圧縮室と、上記シリンダ室内の
短径円弧部よりもロータ進行方向やや先方側に開口して
シリンダ室と吸入室とを連通させる吸入穴と、上記短径
円弧部よりもロータ進行方向やや手前側に開口してシリ
ンダ室と吐出室とを連通させる吐出穴とを有し、上記ロ
ータの回転に伴い圧縮室の容積を増減させて、上記吸入
穴から吸入室内の気体を圧縮室内に吸入し、圧縮室内で
上記気体を圧縮し、吐出穴から吐出室へ圧縮した圧縮気
体を吐出する気体圧縮機において、シリンダ室の断面形
状が、長径が吸入穴側に傾いた長円形状をなしていて、
その長円形状が下記の[数1]の条件を満たす形状であ
ることを特徴とする気体圧縮機、ただし、θは基準線か
らロータの回転方向に進んだ角度、Rは角度θにおける
ロータ中心からの半径、Aは長径と短径との差、2uは
短径円弧部のなす角度、RO は短径円弧部半径、wは基
準線と長径とのなす90°未満の角度、n1、n2は任
意の次数である。 【数1】 2. A cylinder chamber having an oblong cross-section formed in a cylinder block, which is closed in the front and rear by a side block, and is provided in the cylinder chamber, with both sides slidingly contacting the inner wall surface of the side block. A rotating rotor, a vane groove engraved substantially radially on the rotor, and slidably protruding and retracting in the vane groove, with the tip on the inner peripheral surface of the cylinder block and the two side surfaces on the inner wall surface of the side block. And a compression chamber formed by dividing the cylinder chamber by the vane, and a cylinder chamber and a suction chamber which are opened slightly forward in the rotor traveling direction from a short circular arc portion in the cylinder chamber. And a discharge hole that opens slightly forward in the rotor traveling direction than the short-diameter arc portion to communicate the cylinder chamber and the discharge chamber, and is compressed by rotation of the rotor. By increasing or decreasing the volume of the chamber, a gas compressor that sucks gas in the suction chamber from the suction hole into the compression chamber, compresses the gas in the compression chamber, and discharges compressed gas from the discharge hole to the discharge chamber. The cross-sectional shape of the cylinder chamber has an elliptical shape whose major axis is inclined toward the suction hole,
A gas compressor characterized in that the shape of the ellipse satisfies the condition of the following [Equation 1], where θ is an angle advanced from a reference line in the rotation direction of the rotor, and R is the center of the rotor at the angle θ. , A is the difference between the major axis and minor axis, 2u is the angle formed by the minor axis arc, RO is the minor arc radius, w is the angle of less than 90 ° between the reference line and the major axis, n1, n2 Is any order. (Equation 1)
x 、吸入圧力Ps 、吐出穴と連通する直前の圧縮室の容
積Vi 、吐出圧力Pd が(Vmax /Vi )k> Pd / P
sの条件を満たすように、短径円弧部半径RO 、短径円
弧部のなす角度2u、長径と短径との差Aに対して、基
準線と長径とのなす角度wおよび次数n1、n2、吸入
穴角度位置、吐出穴角度位置を定めたことを特徴とする
請求項2記載の気体圧縮機、ただし、k は圧縮する気体
の比熱比である。 (Vmax /Vi )k > Pd / Ps3. The volume Vma of the compression chamber immediately after the end of suction.
x, the suction pressure Ps, the volume Vi of the compression chamber immediately before communicating with the discharge hole, and the discharge pressure Pd are (Vmax / Vi) k > Pd / P
To satisfy the condition of s, the angle w between the reference line and the major axis and the orders n1 and n2 with respect to the radius RO of the minor arc part, the angle 2u formed by the minor arc part, and the difference A between the major and minor axes are satisfied. 3. The gas compressor according to claim 2, wherein the suction hole angular position and the discharge hole angular position are determined, wherein k is a specific heat ratio of the gas to be compressed. (Vmax / Vi) k > Pd / Ps
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000360874A JP2002161882A (en) | 2000-11-28 | 2000-11-28 | Gas compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000360874A JP2002161882A (en) | 2000-11-28 | 2000-11-28 | Gas compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002161882A true JP2002161882A (en) | 2002-06-07 |
Family
ID=18832399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000360874A Pending JP2002161882A (en) | 2000-11-28 | 2000-11-28 | Gas compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002161882A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013183609A1 (en) * | 2012-06-05 | 2013-12-12 | カルソニックカンセイ株式会社 | Gas compressor |
JP2013249768A (en) * | 2012-05-31 | 2013-12-12 | Calsonic Kansei Corp | Gas compressor |
JP2014040797A (en) * | 2012-08-22 | 2014-03-06 | Calsonic Kansei Corp | Gas compressor |
JP2014058961A (en) * | 2012-08-22 | 2014-04-03 | Calsonic Kansei Corp | Gas compressor |
KR20150145173A (en) * | 2014-06-18 | 2015-12-29 | 아이상 고교 가부시키가이샤 | Vane pump |
WO2018179701A1 (en) * | 2017-03-27 | 2018-10-04 | カルソニックカンセイ株式会社 | Gas compressor |
JP2018162782A (en) * | 2017-03-27 | 2018-10-18 | カルソニックカンセイ株式会社 | Gas compressor |
WO2020240966A1 (en) * | 2019-05-31 | 2020-12-03 | 株式会社ミクニ | Vane pump |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50156016A (en) * | 1974-06-07 | 1975-12-16 | ||
JPS57191489A (en) * | 1981-05-21 | 1982-11-25 | Daikin Ind Ltd | Elliptic displacement type fluid machine |
JPS5810190A (en) * | 1981-07-13 | 1983-01-20 | Diesel Kiki Co Ltd | Vane type compressor |
-
2000
- 2000-11-28 JP JP2000360874A patent/JP2002161882A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50156016A (en) * | 1974-06-07 | 1975-12-16 | ||
JPS57191489A (en) * | 1981-05-21 | 1982-11-25 | Daikin Ind Ltd | Elliptic displacement type fluid machine |
JPS5810190A (en) * | 1981-07-13 | 1983-01-20 | Diesel Kiki Co Ltd | Vane type compressor |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013249768A (en) * | 2012-05-31 | 2013-12-12 | Calsonic Kansei Corp | Gas compressor |
WO2013183609A1 (en) * | 2012-06-05 | 2013-12-12 | カルソニックカンセイ株式会社 | Gas compressor |
JP2014013035A (en) * | 2012-06-05 | 2014-01-23 | Calsonic Kansei Corp | Gas compressor |
JP2014040797A (en) * | 2012-08-22 | 2014-03-06 | Calsonic Kansei Corp | Gas compressor |
JP2014058961A (en) * | 2012-08-22 | 2014-04-03 | Calsonic Kansei Corp | Gas compressor |
KR101710261B1 (en) | 2014-06-18 | 2017-02-24 | 아이상 고교 가부시키가이샤 | Vane pump |
KR20150145173A (en) * | 2014-06-18 | 2015-12-29 | 아이상 고교 가부시키가이샤 | Vane pump |
WO2018179701A1 (en) * | 2017-03-27 | 2018-10-04 | カルソニックカンセイ株式会社 | Gas compressor |
JP2018162782A (en) * | 2017-03-27 | 2018-10-18 | カルソニックカンセイ株式会社 | Gas compressor |
CN110546385A (en) * | 2017-03-27 | 2019-12-06 | 康奈可关精株式会社 | Gas compressor |
CN110546385B (en) * | 2017-03-27 | 2021-07-16 | 马瑞利(中国)汽车空调有限公司 | Gas compressor |
WO2020240966A1 (en) * | 2019-05-31 | 2020-12-03 | 株式会社ミクニ | Vane pump |
JP2020197151A (en) * | 2019-05-31 | 2020-12-10 | 株式会社ミクニ | Vane pump |
JP7299759B2 (en) | 2019-05-31 | 2023-06-28 | 株式会社ミクニ | vane pump |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2581605B1 (en) | Scroll compressor with bypass hole | |
EP2886864B1 (en) | Compressor | |
US20070217938A1 (en) | Scroll compressor with bypass apparatus | |
JP2002161882A (en) | Gas compressor | |
WO2003081043A1 (en) | Compressor | |
US10851789B2 (en) | Compressor having improved discharge structure including discharge inlets, communication hole, and discharge outlet | |
JP5456099B2 (en) | Rotary compressor | |
US11078908B2 (en) | Scroll compressor having communication groove | |
JP3106721B2 (en) | Scroll compressor | |
EP3636929B1 (en) | Rotary compressor | |
JP2002070774A (en) | Gaseous compressor | |
US11732584B2 (en) | Rotary compressor with unequally spaced vane slots | |
JP2016020651A (en) | Screw compressor | |
JP2003155985A (en) | Gas compressor | |
JP3882343B2 (en) | Scroll compressor | |
US8961159B2 (en) | Scroll compressor | |
US8967987B2 (en) | Scroll compressor having at least one bypass hole | |
JP2008180143A (en) | Hermetic compressor | |
JP4076764B2 (en) | Gas compressor | |
JP4015776B2 (en) | Gas compressor | |
JP3383602B2 (en) | Gas compressor | |
KR101951199B1 (en) | Vane rotary compressor | |
JP2002242863A (en) | Scroll compressor | |
JP2000265980A (en) | Gas compressor | |
JPS5999088A (en) | Rolling piston type compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20040617 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071122 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20090610 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100226 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100702 |