JP2002154890A - Crucible for pulling semiconductor silicon single crystal and method for producing semiconductor silicon single crystal - Google Patents
Crucible for pulling semiconductor silicon single crystal and method for producing semiconductor silicon single crystalInfo
- Publication number
- JP2002154890A JP2002154890A JP2000344710A JP2000344710A JP2002154890A JP 2002154890 A JP2002154890 A JP 2002154890A JP 2000344710 A JP2000344710 A JP 2000344710A JP 2000344710 A JP2000344710 A JP 2000344710A JP 2002154890 A JP2002154890 A JP 2002154890A
- Authority
- JP
- Japan
- Prior art keywords
- crucible
- single crystal
- semiconductor silicon
- silicon single
- transparent layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 13
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 13
- 239000010703 silicon Substances 0.000 title claims abstract description 13
- 239000004065 semiconductor Substances 0.000 title claims abstract description 7
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 4
- 239000013078 crystal Substances 0.000 title abstract description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000010453 quartz Substances 0.000 claims abstract description 10
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims abstract description 3
- 239000007788 liquid Substances 0.000 abstract description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 229910002804 graphite Inorganic materials 0.000 description 7
- 239000010439 graphite Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 229920005591 polysilicon Polymers 0.000 description 4
- 238000005245 sintering Methods 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000004031 devitrification Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 229910008051 Si-OH Inorganic materials 0.000 description 1
- 229910006358 Si—OH Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical class [H]O* 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/09—Other methods of shaping glass by fusing powdered glass in a shaping mould
- C03B19/095—Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/07—Impurity concentration specified
- C03B2201/075—Hydroxyl ion (OH)
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Melting And Manufacturing (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、単結晶シリコン引
上げ用の石英ガラスルツボに関するものである。特に大
口径シリコンインゴットを引き上げる為に最適な石英ガ
ラスルツボに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quartz glass crucible for pulling single crystal silicon. Particularly, the present invention relates to a quartz glass crucible which is most suitable for pulling a large-diameter silicon ingot.
【0002】[0002]
【従来の技術】シリコン単結晶を製造する方法であるCZ
(チョコラルスキー)法は石英ガラスルツボにポリシリ
コンを入れ、溶解したのち種結晶を融液につけ、単結晶
を引き上げるが、近年、大口径化によりポリシリコンの
チャージ量が急激に増えている。ポリシリコンのチャー
ジ量が増えることは引上げ時間の長時間化、加熱温度の
高温化を意味し、各使用部材に対する負荷も急激に高く
なっている。従来、22インチや24インチ、または32イン
チ石英ガラスルツボとしては内面に失透しにくい合成石
英ガラスの層を持つルツボが使われている。特公昭58-5
0955には合成石英をライニングしたルツボの記述があ
る。当初この合成ルツボは超高純度ゆえ、シリコン単結
晶の純度向上を目的としていたが、コストに見合うだけ
のメリットがなかったのが実情である。しかしながら平
成10年から11年の半導体不景気により大口径化が遅れ、
半導体各社は8インチウェハーのコストダウンに重点を
おいたため、リチャージや一回のチャージ量を増やす方
向となり、長時間でも失透しにくい合成石英ガラスルツ
ボが主流となっている。2. Description of the Related Art CZ which is a method of manufacturing a silicon single crystal
In the (Czochralski) method, polysilicon is put in a quartz glass crucible, melted, a seed crystal is applied to a melt, and a single crystal is pulled up. In recent years, however, the charge amount of polysilicon has been rapidly increased due to an increase in diameter. Increasing the charge amount of polysilicon means prolonging the pulling time and increasing the heating temperature, and the load on each used member is also rapidly increasing. Conventionally, as a 22-inch, 24-inch or 32-inch quartz glass crucible, a crucible having a layer of synthetic quartz glass which is hardly devitrified on its inner surface is used. Japanese Patent Publication 58-5
0955 describes a crucible lined with synthetic quartz. Initially, this synthetic crucible was of ultra-high purity and was aimed at improving the purity of a silicon single crystal, but in reality there was no merit worth the cost. However, due to the semiconductor recession from 1998 to 2011, the large diameter was delayed,
Since semiconductor companies have focused on reducing the cost of 8-inch wafers, the trend has been to increase the amount of recharge or single charge, and synthetic quartz glass crucibles that do not easily devitrify even for a long time have become mainstream.
【0003】[0003]
【発明が解決しようとする課題】合成石英ルツボはその
シリカマトリクス構造が天然石英ガラスに比べてランダ
ムであることから粘度が低く、ルツボ自体の変形や内面
の透明層中の気泡が膨張し易いという問題がある。また
合成層と天然層との構造の差は液面振動発生の原因にも
なっている。The synthetic quartz crucible has a low viscosity because its silica matrix structure is random compared to natural quartz glass, and it is easy to deform the crucible itself and expand bubbles in the transparent layer on the inner surface. There's a problem. The difference in structure between the synthetic layer and the natural layer also causes the occurrence of liquid level vibration.
【0004】[0004]
【課題を解決するための手段】本発明者らは真空容器の
中に回転するモールドと加熱電極とを設け、真空排気し
ながら溶融することによって、ルツボの内面透明層のOH
含有量が5ppm以下になり、液面振動が実用上問題なくな
るまで小さくなること、かつ内面透明層が少なくとも表
面より1mm以上あれば、石英ガラス内表面の失透によっ
て歩留まりを下げることはないことを見い出して本発明
を完成させた。Means for Solving the Problems The present inventors provided a rotating mold and a heating electrode in a vacuum vessel, and melted them while evacuating them to thereby reduce the OH of the inner transparent layer of the crucible.
If the content is 5 ppm or less, the liquid surface vibration will be reduced until practically no problem occurs, and if the inner transparent layer is at least 1 mm from the surface, the yield will not be reduced by devitrification of the inner surface of quartz glass. We have found and completed the present invention.
【0005】[0005]
【発明の実施の形態】本発明によれば、真空容器の中に
回転するモールドと加熱電極とを設け、真空排気しなが
ら溶融することによって、ルツボの内面透明層のOH含有
量が5ppm以下で、かつ内面透明層の少なくとも表面より
1mm以上ある石英ルツボが提供される。回転するモール
ドに遠心力によって天然石英粉を成形し、次に合成粉を
内面に成形する。このときの合成粉の成形厚味を1.7mm
以上とする。1.7mm以上とすることで溶融後の内面に1mm
以上の合成層が形成される。真空容器を閉じ、徐々に排
気し、真空度を1torr以下、好ましくは0.01torr以下と
する。これは溶融時に発生する大量のガスを系外に排出
させるためである。このガスが気泡の中に残ったままで
あった場合、気泡はシリコン単結晶引上げ時に膨張し、
単結晶化歩留まりに影響を及ぼす。次に加熱電極をモー
ルドに挿入し電圧を印価していく。この場合の加熱電極
としてグラファイトやタングステン等が使用できる。昇
温プログラムは焼結と密接に関係している。合成粉の焼
結は1400℃より始まり、1500〜1700℃では急激に焼結す
る。焼結は速くとも、遅くとも気泡の発生がある。好ま
しくは1650℃まで急激に昇温し、それから1750℃まで10
0℃/hから20℃/hで昇温することが好ましい。透明層が
必要厚味分できたら真空を60torr程度までArガスで解除
し、加熱温度を1800から2000℃まであげて溶融を行い外
層を不透明層とする。溶融終了後、電極はすみやかに上
昇させ、石英ルツボの温度を1150〜1250℃程度としたら
再度電極を挿入し、1150〜1250℃で30分程度保持し、そ
のあと急冷を行ってルツボを取り出す。この合成石英ガ
ラス内層のOH値は赤外吸収分光器によって、算出された
値で次式より計算される。 OH(ppm)=910×(1/T)×log(Ta/Tb) T:試料厚さ(mm) Ta:2.6μmの透過率(%) Tb:2.73
μmの透過率(%) このOH基の含有量は使用する合成粉のOH含有量が50ppm
や100ppmでも5ppm以下となる。これは高温で保持するこ
とによりSi-OHが解離し拡散して石英ガラスより逸散す
るからである。OH含有量が5ppm以下となることにより、
合成層の粘度は天然石英ガラスとほぼ近い値となる。こ
のことはルツボ全体の粘度を向上させるのみならず、シ
リコン融液の液面振動も少なくすることができる。内面
合成層の厚味を1mm以上とした理由は、長時間のシリコ
ンの溶解によって、石英ガラスが溶解し、場合によって
は1mm以上溶け、天然石英が露出し、失透を発生させ、
単結晶化歩留まりを低下させるためである。DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the present invention, a rotating mold and a heating electrode are provided in a vacuum vessel and melted while evacuating, so that the OH content of the inner transparent layer of the crucible is 5 ppm or less. , And at least from the surface of the inner transparent layer
Quartz crucibles of 1 mm or more are provided. Natural quartz powder is formed by centrifugal force in a rotating mold, and then synthetic powder is formed on the inner surface. The thickness of the synthetic powder at this time is 1.7 mm
Above. 1 mm or more on the inner surface after melting by setting it to 1.7 mm or more
The above composite layer is formed. The vacuum vessel is closed, and the air is gradually evacuated to a degree of vacuum of 1 Torr or less, preferably 0.01 Torr or less. This is to discharge a large amount of gas generated during melting out of the system. If this gas remains in the bubbles, the bubbles expand when the silicon single crystal is pulled up,
Affects the yield of single crystallization. Next, the heating electrode is inserted into the mold and the voltage is charged. In this case, graphite, tungsten, or the like can be used as the heating electrode. The heating program is closely related to sintering. The sintering of the synthetic powder starts at 1400 ° C and rapidly sinters between 1500 and 1700 ° C. Sintering occurs at the earliest or later, and bubbles are generated. Preferably the temperature rises sharply to 1650 ° C, then 10 ° C to 1750 ° C.
Preferably, the temperature is raised from 0 ° C / h to 20 ° C / h. When the required thickness of the transparent layer is achieved, the vacuum is released to about 60 torr with Ar gas, the heating temperature is increased from 1800 to 2000 ° C, and the outer layer is made an opaque layer. After the completion of the melting, the electrode is immediately raised, and when the temperature of the quartz crucible is about 1150 to 1250 ° C., the electrode is inserted again, the temperature is maintained at 1150 to 1250 ° C. for about 30 minutes, and then the crucible is taken out by rapid cooling. The OH value of the synthetic silica glass inner layer is calculated by the following equation using the value calculated by the infrared absorption spectrometer. OH (ppm) = 910 × (1 / T) × log (Ta / Tb) T: sample thickness (mm) Ta: transmittance of 2.6 μm (%) Tb: 2.73
μm transmittance (%) The content of this OH group is 50 ppm for the synthetic powder used.
Or even 100 ppm will be less than 5 ppm. This is because the Si-OH dissociates and diffuses when held at a high temperature and escapes from quartz glass. When the OH content becomes 5 ppm or less,
The viscosity of the synthetic layer is almost the same as that of natural quartz glass. This not only improves the viscosity of the entire crucible, but also reduces the liquid surface vibration of the silicon melt. The reason why the thickness of the inner surface synthetic layer is set to 1 mm or more is that, due to the melting of silicon for a long time, quartz glass is melted, and in some cases 1 mm or more is melted, natural quartz is exposed, causing devitrification,
This is for reducing the yield of single crystallization.
【0006】[0006]
【実施例】以下、本発明の実施例を示す。 実施例 図1の装置は本発明で用いられた装置である。1は水令
されたステンレス製の真空容器で、上部には2グラファ
イト電極が設置され3昇降装置が取り付けられている。
4サイリスタ式制御回路は11の水冷容器上部ののぞき窓
に取り付けられた放射温度計の信号を取込みながら、温
度が制御される。真空容器下部には回転機構付きのモー
ルド5があり、その周りはグラファイトの断熱材6が設
置されている。真空容器はメカニカルブースター8とロ
ータリポンプ9が取り付けられ、真空度を制御するため
にPICとArガス導入のための弁10が取り付けられてい
る。回転する内径650φのステンレス製水冷モールドに
天然石英粉IOTA-6(米国UNIMINE社製)を40kg投入し成
形し、その上より合成粉SQ(旭電化社製)を10kg投入し
成形した。真空容器を閉め、ロータリポンプとメカニカ
ルブースターで0.005torrまで減圧した。そのあとグラ
ファイト電極を降下させ、30分で1650℃まで昇温し、17
50℃まで1時間で昇温したのち1950℃まで10分で到達さ
せた。そのあと、メカニカルブースターを切り、Arガス
を注入し、40torrまで真空度を解除し、1950℃で20分間
溶融を行った。次にルツボ内面の温度を1250℃まで急冷
し、1250℃で15分間保持し、グラファイト電極の電源を
切り、電極をルツボより離し、放冷した。このルツボの
内面合成透明層のOH値は2ppmで外面天然石英ガラス層の
OH値は1ppm以下であった。それぞれの粘度は1400℃にお
いてlog値で10.75と10.87となった。このルツボの透明
層は5mmでそのうち合成層は4mmであった。この合成透明
層中には目視で見ることができる気泡は存在しなかっ
た。高さを450mmに切りそろえ、洗浄した後、200kgのポ
リシリコンを投入し、12"単結晶を引き上げたところ、
液面振動は起こらず、全て自動で引き上げることができ
た。また歩留まりは予想歩留まりに対し、100%となっ
た。このルツボの使用後の断面を顕微鏡で調べたとこ
ろ、内面合成透明層に目視でみられる気泡は存在しなか
った。また、電子顕微鏡で調べた結果引き上げる前は1
から10μmの気泡が存在していたが、引上げ後はなくな
っていた。Embodiments of the present invention will be described below. Example The apparatus shown in FIG. 1 is the apparatus used in the present invention. Reference numeral 1 denotes a water-retained stainless steel vacuum vessel, in which an upper portion is provided with a graphite electrode and a lifting device.
The 4-thyristor control circuit controls the temperature while taking in the signal of the radiation thermometer attached to the viewing window at the top of the 11 water-cooled containers. A mold 5 with a rotating mechanism is provided below the vacuum vessel, and a graphite heat insulating material 6 is provided around the mold 5. The vacuum vessel is provided with a mechanical booster 8 and a rotary pump 9, and a PIC for controlling the degree of vacuum and a valve 10 for introducing Ar gas. 40 kg of natural quartz powder IOTA-6 (manufactured by UNIMINE, USA) was charged into a rotating stainless steel water-cooled mold having an inner diameter of 650φ and molded, and 10 kg of synthetic powder SQ (manufactured by Asahi Denka) was charged from above. The vacuum vessel was closed, and the pressure was reduced to 0.005 torr with a rotary pump and a mechanical booster. After that, the graphite electrode was lowered, and the temperature was raised to 1650 ° C in 30 minutes.
After the temperature was raised to 50 ° C. in 1 hour, the temperature was raised to 1950 ° C. in 10 minutes. Thereafter, the mechanical booster was turned off, Ar gas was injected, the degree of vacuum was released to 40 torr, and melting was performed at 1950 ° C. for 20 minutes. Next, the temperature of the inner surface of the crucible was rapidly cooled to 1250 ° C., kept at 1250 ° C. for 15 minutes, the graphite electrode was turned off, the electrode was separated from the crucible, and allowed to cool. The OH value of the inner synthetic transparent layer of this crucible is 2 ppm and that of the outer natural quartz glass layer
The OH value was 1 ppm or less. The respective viscosities were log values of 10.75 and 10.87 at 1400 ° C. The transparent layer of this crucible was 5 mm, of which the composite layer was 4 mm. No visible bubbles were present in this synthetic transparent layer. After trimming the height to 450mm and washing, pour 200kg of polysilicon and pull up 12 "single crystal,
The liquid surface vibration did not occur, and all liquids could be pulled up automatically. The yield was 100% of the expected yield. When a cross section of the crucible after use was examined with a microscope, no bubbles were visually observed in the inner synthetic transparent layer. In addition, as a result of examination with an electron microscope, 1
Bubbles were present, but disappeared after withdrawal.
【0007】[0007]
【発明の効果】本発明のルツボは粘度が高く、液面振動
の発生がないうえに、気泡がほとんど存在しない内面合
成層をもつ、実用上使用できうる合成ルツボを提供でき
るものである。Industrial Applicability The crucible of the present invention can provide a practically usable synthetic crucible having a high viscosity, having no occurrence of liquid level vibration, and having an inner surface synthetic layer having almost no air bubbles.
【図1】は本発明の装置である。FIG. 1 is an apparatus of the present invention.
1 ステンレス製水冷真空容器 2 グラファイト
製電極 3 電極昇降装置 4 電源制御盤 5 水冷
モールド 6 グラファイト板 7 圧力コントロール弁 8 メカニカルブースター 9 ロータリーポンプ 10 アルゴン導入マスフロー 11 圧力センサ
ー 12 放射温度計 13 回転モーターDESCRIPTION OF SYMBOLS 1 Stainless steel water-cooled vacuum vessel 2 Graphite electrode 3 Electrode raising / lowering device 4 Power control panel 5 Water-cooled mold 6 Graphite plate 7 Pressure control valve 8 Mechanical booster 9 Rotary pump 10 Argon introduction mass flow 11 Pressure sensor 12 Radiation thermometer 13 Rotary motor
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G014 AH00 4G077 AA02 BA04 CF10 EG01 HA12 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G014 AH00 4G077 AA02 BA04 CF10 EG01 HA12
Claims (2)
極とを設け、真空排気しながら溶融することを特徴とす
る半導体シリコン引上げ用ルツボの製造方法1. A method of manufacturing a semiconductor silicon pulling crucible, comprising: providing a rotating mold and a heating electrode in a vacuum vessel;
ツボの内面透明層のOH含有量が5ppm以下であることを特
徴とし、かつ内面透明層の少なくとも表面より1mm以上
が合成石英でつくられていることを特徴とする半導体シ
リコン引上げ用ルツボ2. The crucible produced by the method of claim 1, wherein the inner transparent layer has an OH content of 5 ppm or less, and at least 1 mm from the surface of the inner transparent layer is made of synthetic quartz. Crucible for pulling up semiconductor silicon
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000344710A JP2002154890A (en) | 2000-11-13 | 2000-11-13 | Crucible for pulling semiconductor silicon single crystal and method for producing semiconductor silicon single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000344710A JP2002154890A (en) | 2000-11-13 | 2000-11-13 | Crucible for pulling semiconductor silicon single crystal and method for producing semiconductor silicon single crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002154890A true JP2002154890A (en) | 2002-05-28 |
Family
ID=18818863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000344710A Pending JP2002154890A (en) | 2000-11-13 | 2000-11-13 | Crucible for pulling semiconductor silicon single crystal and method for producing semiconductor silicon single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002154890A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2138468A2 (en) | 2008-06-28 | 2009-12-30 | Japan Super Quartz Corporation | Water-cooled mold |
JP2010138005A (en) * | 2008-12-09 | 2010-06-24 | Japan Siper Quarts Corp | Quartz glass crucible for pulling up silicon single crystal and method for manufacturing the same |
CN102531346A (en) * | 2010-12-31 | 2012-07-04 | 日本超精石英株式会社 | Method of manufacturing vitreous silica crucible |
CN102531350A (en) * | 2010-12-31 | 2012-07-04 | 日本超精石英株式会社 | Method of manufacturing vitreous silica crucible |
CN102531349A (en) * | 2010-12-31 | 2012-07-04 | 日本超精石英株式会社 | Method of manufacturing vitreous silica crucible |
CN102531347A (en) * | 2010-12-31 | 2012-07-04 | 日本超精石英株式会社 | Method of manufacturing vitreous silica crucible |
US20120167623A1 (en) * | 2010-12-31 | 2012-07-05 | Japan Super Quartz Corporation | Method and apparatus for manufacturing vitreous silica crucible |
-
2000
- 2000-11-13 JP JP2000344710A patent/JP2002154890A/en active Pending
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2138468A2 (en) | 2008-06-28 | 2009-12-30 | Japan Super Quartz Corporation | Water-cooled mold |
US8082757B2 (en) | 2008-06-28 | 2011-12-27 | Japan Super Quartz Corporation | Fluid-cooled mold |
JP2010138005A (en) * | 2008-12-09 | 2010-06-24 | Japan Siper Quarts Corp | Quartz glass crucible for pulling up silicon single crystal and method for manufacturing the same |
EP2471754A3 (en) * | 2010-12-31 | 2012-11-21 | Japan Super Quartz Corporation | Method of manufacturing vitreous silica crucible |
US8689584B2 (en) | 2010-12-31 | 2014-04-08 | Japan Super Quartz Corporation | Method of manufacturing vitreous silica crucible |
CN102531349A (en) * | 2010-12-31 | 2012-07-04 | 日本超精石英株式会社 | Method of manufacturing vitreous silica crucible |
CN102531347A (en) * | 2010-12-31 | 2012-07-04 | 日本超精石英株式会社 | Method of manufacturing vitreous silica crucible |
US20120167623A1 (en) * | 2010-12-31 | 2012-07-05 | Japan Super Quartz Corporation | Method and apparatus for manufacturing vitreous silica crucible |
US20120167625A1 (en) * | 2010-12-31 | 2012-07-05 | Japan Super Quartz Corporation | Method of manufacturing vitreous silica crucible |
JP2012140301A (en) * | 2010-12-31 | 2012-07-26 | Japan Siper Quarts Corp | Method for manufacturing silica-glass crucible |
JP2012148961A (en) * | 2010-12-31 | 2012-08-09 | Japan Siper Quarts Corp | Method of manufacturing vitreous silica crucible |
EP2471751A3 (en) * | 2010-12-31 | 2012-08-15 | Japan Super Quartz Corporation | Method and apparatus for manufacturing vitreous silica crucible |
EP2471752A3 (en) * | 2010-12-31 | 2012-10-24 | Japan Super Quartz Corporation | Method of manufacturing vitreous silica crucible |
EP2471755A3 (en) * | 2010-12-31 | 2012-11-21 | Japan Super Quartz Corporation | Method of manufacturing vitreous silica crucible |
CN102531346A (en) * | 2010-12-31 | 2012-07-04 | 日本超精石英株式会社 | Method of manufacturing vitreous silica crucible |
KR101366755B1 (en) * | 2010-12-31 | 2014-02-24 | 쟈판 스파 쿼츠 가부시키가이샤 | Method for manufacturing vitreous silica crucible |
CN102531350A (en) * | 2010-12-31 | 2012-07-04 | 日本超精石英株式会社 | Method of manufacturing vitreous silica crucible |
KR101395787B1 (en) * | 2010-12-31 | 2014-05-15 | 쟈판 스파 쿼츠 가부시키가이샤 | Method of manufacturing vitreous silica crucible |
KR101395786B1 (en) * | 2010-12-31 | 2014-05-15 | 쟈판 스파 쿼츠 가부시키가이샤 | Method and apparatus for manufacturing vitreous silica crucible |
US8726692B2 (en) | 2010-12-31 | 2014-05-20 | Japan Super Quartz Corporation | Method of manufacturing vitreous silica crucible |
KR101403333B1 (en) * | 2010-12-31 | 2014-06-03 | 쟈판 스파 쿼츠 가부시키가이샤 | Method for manufacturing vitreous silica crucible |
KR101403335B1 (en) * | 2010-12-31 | 2014-06-03 | 쟈판 스파 쿼츠 가부시키가이샤 | Method for manufacturing vitreous silica crucible |
US8806892B2 (en) | 2010-12-31 | 2014-08-19 | Japan Super Quartz Corporation | Method of manufacturing vitreous silica crucible |
US20140283552A1 (en) * | 2010-12-31 | 2014-09-25 | Sumco Corporation | Method for manufacturing vitreous silica crucible |
JP2015091758A (en) * | 2010-12-31 | 2015-05-14 | 株式会社Sumco | Manufacturing method of silica glass crucible |
CN102531350B (en) * | 2010-12-31 | 2015-05-27 | 日本超精石英株式会社 | Method of manufacturing vitreous silica crucible |
CN102531347B (en) * | 2010-12-31 | 2015-06-10 | 日本超精石英株式会社 | Method of manufacturing vitreous silica crucible |
US9085480B2 (en) | 2010-12-31 | 2015-07-21 | Japan Super Quartz Corporation | Method of manufacturing vitreous silica crucible |
US9181121B2 (en) | 2010-12-31 | 2015-11-10 | Sumco Corporation | Method for manufacturing vitreous silica crucible |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5022230B2 (en) | Quartz glass crucible and its manufacturing method and application | |
EP1094039B1 (en) | Method for manufacturing quartz glass crucible | |
JP5686861B2 (en) | Silica crucible having pure and bubble-free crucible inner layer and method for producing the same | |
EP1241141B1 (en) | A method and an intermediate product for making a silica crucible | |
US20020166341A1 (en) | Technique for quartz crucible fabrication having reduced bubble content in the wall | |
KR20010113746A (en) | Barium doping of molten silicon for use in crystal growing process | |
EP1655270B1 (en) | Quartz glass crucible for pulling up silicon single crystal | |
US10822716B2 (en) | Quartz glass crucible and manufacturing method thereof | |
JP5588012B2 (en) | Quartz crucible and method for producing the same | |
KR930005016B1 (en) | Molten quartz member for semiconductor manufacturing | |
JP2001519752A (en) | Crucible and its manufacturing method | |
JP2002154890A (en) | Crucible for pulling semiconductor silicon single crystal and method for producing semiconductor silicon single crystal | |
US20100147213A1 (en) | Silica glass crucible for pulling up silicon single crystal and method for manufacturing thereof | |
KR101497385B1 (en) | Silica vessel for drawing up monocrystalline silicon and method for producing same | |
JP2006124235A (en) | Quartz glass crucible, method of manufacturing the same and application thereof | |
JP2001233629A (en) | Method of producing quartz glass crucible | |
JP2010280567A (en) | Method for producing silica glass crucible | |
KR20100042506A (en) | Manufacturing device for silicon ingot having refining function | |
JP5685894B2 (en) | Quartz glass crucible, method for producing the same, and method for producing silicon single crystal | |
JP3770566B2 (en) | Method for producing cylindrical quartz glass | |
JP2800713B2 (en) | Method for manufacturing compound semiconductor single crystal | |
JP2007091532A (en) | Silica glass crucible | |
JP3624633B2 (en) | Single crystal puller | |
KR20250033293A (en) | Quartz glass crucible for silicon single crystal impression and method for manufacturing silicon single crystal using the same | |
JP2004292214A (en) | Manufacturing method of quartz crucible |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20051209 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20051209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20051209 |