JP2002151155A - Lithium ion secondary battery - Google Patents
Lithium ion secondary batteryInfo
- Publication number
- JP2002151155A JP2002151155A JP2000344599A JP2000344599A JP2002151155A JP 2002151155 A JP2002151155 A JP 2002151155A JP 2000344599 A JP2000344599 A JP 2000344599A JP 2000344599 A JP2000344599 A JP 2000344599A JP 2002151155 A JP2002151155 A JP 2002151155A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- composite oxide
- transition metal
- carbonate
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 27
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims abstract description 42
- 229910052808 lithium carbonate Inorganic materials 0.000 claims abstract description 42
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 32
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 9
- 239000011255 nonaqueous electrolyte Substances 0.000 claims abstract description 9
- -1 lithium transition metal Chemical class 0.000 claims description 35
- 239000002131 composite material Substances 0.000 claims description 30
- 229910052723 transition metal Inorganic materials 0.000 claims description 26
- 239000002905 metal composite material Substances 0.000 claims description 24
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 claims description 23
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 abstract description 6
- 238000007599 discharging Methods 0.000 abstract description 2
- 150000003623 transition metal compounds Chemical class 0.000 abstract 3
- 150000001869 cobalt compounds Chemical class 0.000 abstract 1
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 29
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 230000007246 mechanism Effects 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 239000002904 solvent Substances 0.000 description 7
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 239000007774 positive electrode material Substances 0.000 description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 5
- 239000011149 active material Substances 0.000 description 5
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000007773 negative electrode material Substances 0.000 description 5
- 229920001155 polypropylene Polymers 0.000 description 5
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910003002 lithium salt Inorganic materials 0.000 description 3
- 159000000002 lithium salts Chemical class 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910013716 LiNi Inorganic materials 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910000428 cobalt oxide Inorganic materials 0.000 description 2
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013733 LiCo Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910003005 LiNiO2 Inorganic materials 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011357 graphitized carbon fiber Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910021440 lithium nickel complex oxide Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 239000006253 pitch coke Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電池内圧の上昇に
より電池内部の電流遮断手段を備えてなる、リチウム遷
移金属複合酸化物、特にリチウムコバルト複合酸化物、
または、リチウムニッケル複合酸化物を正極活物質とし
たリチウムイオン2次電池に関し、さらに詳しくは、過
充電時に電流遮断が確実に作動するリチウムイオン2次
電池に関する。The present invention relates to a lithium-transition metal composite oxide, particularly a lithium-cobalt composite oxide, comprising a means for interrupting current inside a battery by increasing the internal pressure of the battery.
Alternatively, the present invention relates to a lithium ion secondary battery using a lithium nickel composite oxide as a positive electrode active material, and more particularly, to a lithium ion secondary battery in which current interruption reliably operates during overcharge.
【0002】[0002]
【従来技術】リチウムイオン二次電池は、リチウムイオ
ンを用いるため高容量化が可能となり、最近では携帯電
話や電子端末機などの電源として広く普及されつつあ
る。特にリチウムイオン電池の性能向上に大きく寄与す
る電極材料、例えば正極では、LiCoO2、LiNi
O2、LiMnO2などが、負極では、リチウム金属や
その合金、炭素材料が開発研究され、放電容量等の電気
的な特性の改良が行われている。ところで、リチウムイ
オン2次電池の発電要素体は、一般に、正極、負極、正
極と負極との間に介在している絶縁性のセパレーター、
及び正極と負極との間のリチウムイオンを往来させるた
めの電解液から構成されている。電解液としては、 カ
ーボーネート系有機材料を主体とすることが多く、この
ため、液漏れ防止の点から、リチウムイオン2次電池の
外套は、ステンレスなどの金属材料を用いて発電要素体
を収容した密閉型構造としている。したがって、何らか
の原因で所定以上の電流が流れた過充電状態となった場
合には、リチウムイオン2次電池内の電解液が電気分解
することによりガス化して電池の内圧が上昇し、電池缶
が損傷する場合がある。このため、リチウムイオン2次
電池内には内圧上昇すると電流を遮断する機構、例え
ば、内圧上昇した場合には正極集電体と正極タブとが離
間して導通を遮断する電流遮断機構などが具備されてい
る。しかし、この電流遮断機構は、電池の内圧が上昇す
ることを前提とした作動機構であるため、温度上昇が発
生しているものの、内圧はさほど上昇しなかった場合に
は、前記電流遮断機構は作動しないことになる。2. Description of the Related Art Lithium ion secondary batteries use lithium ions, and thus can have a high capacity. Recently, lithium ion secondary batteries have been widely used as power sources for mobile phones and electronic terminals. In particular, for an electrode material that greatly contributes to the performance improvement of a lithium ion battery, for example, for a positive electrode, LiCoO 2 or LiNi
For negative electrodes such as O 2 and LiMnO 2 , lithium metals, alloys thereof, and carbon materials have been developed and studied, and electric characteristics such as discharge capacity have been improved. By the way, a power generating element body of a lithium ion secondary battery generally includes a positive electrode, a negative electrode, an insulating separator interposed between the positive electrode and the negative electrode,
And an electrolyte for transferring lithium ions between the positive electrode and the negative electrode. As the electrolytic solution, a carbonate-based organic material is often used as a main component. For this reason, in order to prevent liquid leakage, the outer shell of the lithium ion secondary battery contains a power generating element body using a metal material such as stainless steel. It has a closed structure. Therefore, in the case of an overcharged state in which a predetermined current or more flows for some reason, the electrolytic solution in the lithium ion secondary battery is electrolyzed to gasify and the internal pressure of the battery increases, and the battery can May be damaged. For this reason, the lithium ion secondary battery has a mechanism for interrupting the current when the internal pressure increases, for example, a current interrupting mechanism for separating the positive electrode current collector and the positive electrode tab and interrupting conduction when the internal pressure increases. Have been. However, since this current cutoff mechanism is an operating mechanism on the premise that the internal pressure of the battery rises, if the temperature rises but the internal pressure does not rise so much, the current cutoff mechanism is It will not work.
【0003】このため、特開平4−3298278で
は、リチウムコバルト複合酸化物からなる正極に炭酸リ
チウムを0.5重量%〜15重量%添加させ、電池内部
の温度上昇時には、正極に含有されている炭酸リチウム
を炭酸ガス化させ、電池内圧を、より上昇させ、電流遮
断機構を作動させている。また、特開平4−32926
8では、リチウムコバルト複合酸化物からなる正極の表
面に炭酸リチウムを被覆して、特開平4−329827
8の技術と同様に、炭酸リチウムを炭酸ガス化して、電
流遮断機構を作動させている。For this reason, Japanese Patent Application Laid-Open No. Hei 4-3298278 discloses that lithium carbonate is added to a positive electrode made of a lithium-cobalt composite oxide in an amount of 0.5% by weight to 15% by weight. Lithium carbonate is converted into carbon dioxide gas, the internal pressure of the battery is further increased, and the current cutoff mechanism is operated. Also, Japanese Patent Application Laid-Open No. 4-32926
In JP-A-4-329927, the surface of a positive electrode made of a lithium-cobalt composite oxide is coated with lithium carbonate.
As in the technique of No. 8, lithium carbonate is converted into carbon dioxide gas to activate the current cutoff mechanism.
【0004】しかしながら、特開平4−3298278
に開示された方法では、電流遮断機構は作動するもの
の、正極活物質に対して炭酸リチウムの均一な分散が困
難であるため、高レート放電での放電容量を低下させる
だけでなく、炭酸リチウムを多量に使用しなければ過充
電における十分な破裂防止効果が得られなかった。ま
た、特開平4−329268に開示された方法において
は、活物質の合成条件が限定され、放電容量特性、サイ
クル特性を低下させる問題があった。However, Japanese Unexamined Patent Publication No.
In the method disclosed in the above, although the current interrupting mechanism operates, it is difficult to uniformly disperse lithium carbonate in the positive electrode active material. Unless used in a large amount, a sufficient burst prevention effect in overcharging could not be obtained. Further, the method disclosed in JP-A-4-329268 has a problem that the conditions for synthesizing the active material are limited and the discharge capacity characteristics and the cycle characteristics are deteriorated.
【0005】[0005]
【発明が解決しようとする課題】本発明は、放電容量特
性、サイクル特性を低下させることなく、過充電時に電
流遮断が確実に作動するリチウムイオン2次電池を提供
することを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to provide a lithium ion secondary battery in which current interruption is reliably performed during overcharge without lowering discharge capacity characteristics and cycle characteristics.
【0006】[0006]
【課題を解決するための手段】上記課題は、(1)0〜
0.5重量%未満の炭酸リチウムが吸着されたリチウム
遷移金属複合酸化物と炭酸リチウムが0.5〜5重量%
吸着されたリチウム遷移金属複合酸化物とが重量比で7
0〜98/30〜2の割合で混合されてなる正極、負
極、非水電解質、及び電池内圧の上昇により作動する電
池内部の電流遮断手段を備えてなるリチウムイオン2次
電池、(2) 正極のリチウム遷移金属複合酸化物は、
リチウムコバルト複合酸化物からなり、負極は、リチウ
ムイオンの放出、挿入が可能な炭素材料である(1)に
記載のリチウムイオン2次電池によって解決される。Means for Solving the Problems The above problems are (1) 0 to
Lithium transition metal composite oxide having less than 0.5% by weight of lithium carbonate adsorbed thereon and 0.5 to 5% by weight of lithium carbonate
7% by weight of the adsorbed lithium transition metal composite oxide
A lithium ion secondary battery comprising a positive electrode, a negative electrode, a non-aqueous electrolyte, and a current interrupting means inside the battery that is activated by an increase in the internal pressure of the battery, wherein the positive electrode is mixed at a ratio of 0 to 98/30 to 2; The lithium transition metal composite oxide of
The problem is solved by the lithium ion secondary battery according to (1), which is made of a lithium-cobalt composite oxide, and wherein the negative electrode is a carbon material capable of releasing and inserting lithium ions.
【0007】[0007]
【発明の実施の形態】本発明では、0〜0.5重量%未
満の炭酸リチウムが吸着されたリチウム遷移金属複合酸
化物と、炭酸リチウムが0.5〜5重量%吸着されたリ
チウム遷移金属複合酸化物とからなる正極を用いる。な
お、0〜0.5重量%未満の炭酸リチウムが吸着された
リチウム遷移金属複合酸化物なる概念は、炭酸リチウム
が吸着されていないリチウム遷移金属複合酸化物をも含
んでいる。また、0〜0.5重量%未満の炭酸リチウム
が吸着されたリチウム遷移金属複合酸化物と炭酸リチウ
ムが0.5〜5重量%吸着されたリチウム遷移金属複合
酸化物とは重量比で70〜98/30〜2の割合で混合
されている。すなわち、本発明の構成をとれば、単に炭
酸リチウムとリチウム遷移金属複合酸化物とを混合した
ときのような炭酸リチウムの凝集が起こらず、少量の炭
酸リチウムでも有効に作用する。また、単一の活物質に
高い濃度の炭酸リチウムを吸着させた場合のように、活
物質表面全体が炭酸リチウムにより覆われ、充放電反応
が阻害されることがないという理由から、放電容量特
性、サイクル特性が低下することなく、電流遮断の作動
効果を奏する。なお、0〜0.5重量%未満の炭酸リチ
ウムが吸着されたリチウム遷移金属複合酸化物を用いな
ければ、放電容量特性が低下する。 また、炭酸リチウ
ムが0.5〜5重量%吸着されたリチウム遷移金属複合
酸化物を用いなければ、電流遮断の作動効果が少なくな
る。 0〜0.5重量%未満の炭酸リチウムが吸着され
たリチウム遷移金属複合酸化物と、炭酸リチウムが0.
5〜5重量%吸着されたリチウム遷移金属複合酸化物と
の混合比率は、重量比で70〜98/30〜2、好まし
くは、75〜95/25〜5である。DETAILED DESCRIPTION OF THE INVENTION In the present invention, a lithium transition metal composite oxide having 0 to less than 0.5% by weight of lithium carbonate adsorbed thereon and a lithium transition metal having 0.5 to 5% by weight of lithium carbonate adsorbed therein A positive electrode composed of a composite oxide is used. In addition, the concept of the lithium transition metal composite oxide in which lithium carbonate of 0 to less than 0.5% by weight is adsorbed also includes a lithium transition metal composite oxide in which lithium carbonate is not adsorbed. The lithium transition metal composite oxide having lithium carbonate adsorbed in an amount of 0 to less than 0.5% by weight and the lithium transition metal composite oxide having lithium carbonate adsorbed in an amount of 0.5 to 5% by weight have a weight ratio of 70 to 70%. 98 / 30-2. That is, according to the structure of the present invention, aggregation of lithium carbonate does not occur, unlike when lithium carbonate and a lithium transition metal composite oxide are simply mixed, and a small amount of lithium carbonate works effectively. In addition, unlike the case where a high concentration of lithium carbonate is adsorbed on a single active material, the entire surface of the active material is covered with lithium carbonate and the charge / discharge reaction is not hindered. In addition, an operation effect of current interruption can be obtained without lowering cycle characteristics. Unless a lithium transition metal composite oxide having lithium carbonate adsorbed in an amount of 0 to less than 0.5% by weight is used, the discharge capacity characteristics deteriorate. If the lithium transition metal composite oxide in which lithium carbonate is adsorbed in an amount of 0.5 to 5% by weight is not used, the operation effect of current interruption is reduced. A lithium transition metal composite oxide to which 0 to less than 0.5% by weight of lithium carbonate is adsorbed;
The mixing ratio with the lithium transition metal composite oxide adsorbed by 5 to 5% by weight is 70 to 98/30 to 2, preferably 75 to 95/25 to 5 by weight.
【0008】かかるリチウム遷移金属複合酸化物として
は、LiCoO2、LiNiO2、LiMn2O4など
を用いることができ、LiCoO2としては、公知のも
のを用いることができ、また、LiCoXP(1−X)
O2(0<X<1)などのCoの一部を他の元素(P,
Al,Mn,Niなど)と置換したものなども用いるこ
とができる。また、リチウムニッケル複合酸化物として
も同様に、LiNiO2、LiNiXP(1−X)O2
(0<X<1)などのMnの一部を他の元素(P、A
l、Mn、Coなど)と置換したものなどを用いること
もできる。[0008] As such a lithium transition metal complex oxide, LiCoO 2, LiNiO 2, LiMn 2 O 4 or the like can be used, as is LiCoO 2, can be a known, also, LiCo X P ( 1-X)
A part of Co such as O 2 (0 <X <1) is replaced with another element (P,
Al, Mn, Ni, etc.) can also be used. Similarly, a lithium nickel complex oxide, LiNiO2, LiNi X P (1 -X) O 2
(0 <X <1) and other parts of Mn to other elements (P, A
l, Mn, Co, etc.).
【0009】本発明に用いられるリチウム遷移金属複合
酸化物の代表例であるリチウムコバルト複合酸化物、ま
たはリチウムニッケル複合酸化物の平均粒径は、1〜3
0μm程度であれば良い。好ましい態様としては、0〜
0.5重量%未満の炭酸リチウムが吸着されたリチウム
コバルト複合酸化物の平均粒径は10〜25μmであ
る。 平均粒径が10μmよりも小さいと熱安定性低下
の問題が生じる傾向にあり、25μmよりも大きくなる
と大電流放電おける容量低下の問題が生じる傾向にあ
る。また、炭酸リチウムが0.5〜5重量%吸着された
リチウムコバルト複合酸化物または リチウムニッケル
複合酸化物の平均粒径は1〜10μm未満が好ましい。
平均粒径が1μmよりも小さいと(嵩密度の上昇によ
る)体積あたりの容量低下の問題が生じる傾向にあり、
10μm以上になると(比表面積減少による)炭酸ガス
発生速度の低下の問題が生じる傾向にある。これらの理
由から、特に好ましい正極活物質の態様としては、0〜
0.5重量%未満の炭酸リチウムが吸着されたリチウム
コバルト複合酸化物またはリチウムニッケル複合酸化
物、好ましくはリチウムコバルト複合酸化物の平均粒径
が10〜25μmであり、且つ、炭酸リチウムが0.5
〜5重量%吸着されたリチウムコバルト複合酸化物また
はリチウムニッケル複合酸化物、好ましくはリチウムコ
バルト複合酸化物の平均粒径が1〜10μm未満であ
る。The average particle size of the lithium cobalt composite oxide or lithium nickel composite oxide, which is a typical example of the lithium transition metal composite oxide used in the present invention, is 1 to 3.
It may be about 0 μm. As a preferred embodiment, 0 to
The average particle size of the lithium cobalt composite oxide to which less than 0.5% by weight of lithium carbonate is adsorbed is 10 to 25 μm. If the average particle size is smaller than 10 μm, there is a tendency for the problem of reduced thermal stability to occur, and if it is larger than 25 μm, there tends to be a problem of reduced capacity in large current discharge. The average particle size of the lithium cobalt composite oxide or lithium nickel composite oxide in which lithium carbonate is adsorbed at 0.5 to 5% by weight is preferably less than 1 to 10 μm.
When the average particle size is smaller than 1 μm, there is a tendency that a problem of a decrease in capacity per volume (due to an increase in bulk density) occurs,
When it is 10 μm or more, there is a tendency that a problem of a decrease in the carbon dioxide gas generation rate (due to a decrease in specific surface area) occurs. For these reasons, particularly preferred embodiments of the positive electrode active material include 0 to
The lithium cobalt composite oxide or lithium nickel composite oxide to which less than 0.5% by weight of lithium carbonate is adsorbed, preferably the lithium cobalt composite oxide has an average particle size of 10 to 25 μm and the lithium carbonate is 0.1 to 0.1 μm. 5
The average particle size of the lithium cobalt composite oxide or lithium nickel composite oxide, preferably lithium cobalt composite oxide, adsorbed by 55% by weight is less than 1 to 10 μm.
【0010】なお、リチウム遷移金属複合酸化物の平均
粒径は、以下の方法により測定することができる。最初
に測定対象となるリチウムコバルト複合酸化物等の粒状
物を、水やエタノールなどの有機液体に投入し、35k
Hz〜40kHz程度の超音波を付与して約2分間分散
処理を行う。なお、測定対象となる粒状物の量は、分散
処理後の分散液のレーザー透過率(入射光量に対する出
力光量の比)が70%〜90%となる量とする。次に、
この分散液をマイクロトラック粒度分析計にかけ、レー
ザー光の散乱により個々の粒子の粒径(D1、D2、D
3・・・)、および各粒径毎の存在個数(N1、N2,
N3・・・・)を計測する。なお、マイクロトラック粒
度分析計では、観測された散乱強度分布に最も近い理論
強度になる粒形粒子群の粒径分布を算出している。即
ち、粒子はmレーザー光の照射によって得られる投影像
と同面積の断面円を持つ球体と想定され、この断面円の
直径(球相当径)が粒径として計測される。[0010] The average particle size of the lithium transition metal composite oxide can be measured by the following method. First, a granular substance such as a lithium-cobalt composite oxide to be measured is charged into an organic liquid such as water or ethanol, and is charged at 35k.
A dispersion process is performed for about 2 minutes by applying ultrasonic waves of about Hz to 40 kHz. The amount of the particulate matter to be measured is such that the laser transmittance (the ratio of the output light amount to the incident light amount) of the dispersion liquid after the dispersion treatment is 70% to 90%. next,
This dispersion is applied to a Microtrac particle size analyzer, and the particle size (D1, D2, D
3 ...) and the number of particles present for each particle size (N1, N2,
N3 ...) is measured. Note that the Microtrac particle size analyzer calculates the particle size distribution of the group of particles having the theoretical intensity closest to the observed scattering intensity distribution. That is, the particle is assumed to be a sphere having a sectional circle having the same area as the projected image obtained by the irradiation of the m laser beam, and the diameter (equivalent sphere diameter) of this sectional circle is measured as the particle diameter.
【0011】平均粒径(μm)は、上記で得られた個々
の粒子の粒径(D)と各粒径毎の存在個数(N)とか
ら、下記の式を用いて算出される。 平均粒径(μm)=(ΣND3/ΣN)1/3 The average particle size (μm) is calculated from the particle size (D) of the individual particles obtained above and the number (N) of each particle size by using the following equation. Average particle size (μm) = (ΔND 3 / ΔN) 1/3
【0012】また、本発明に用いるリチウム遷移金属複
合酸化物には、導電材を添加配合することができる。導
電材としては、公知のもの、例えば、人造黒鉛、天然黒
鉛、アセチレンブラック、オイルファーネスブラック、
ケッチェンブラック、メソフェーズカーボンマイクロフ
ェーズなどが例示される。特に、粒径が3μm以上の粒
状の鱗片状黒鉛、球状黒鉛、メソフェーズカーボンマイ
クロフェーズを用いることが好ましく、特に、サイクル
特性の点から鱗片状黒鉛が好ましい。なお、本発明でい
う、「粒状」には、鱗片状、球状、疑似球状、塊状、ウイ
スカー状などが含まれる。Further, a conductive material can be added to the lithium transition metal composite oxide used in the present invention. As the conductive material, known materials, for example, artificial graphite, natural graphite, acetylene black, oil furnace black,
Ketjen black, mesophase carbon microphase and the like are exemplified. In particular, it is preferable to use granular flaky graphite, spherical graphite and mesophase carbon microphase having a particle diameter of 3 μm or more, and flaky graphite is particularly preferable in terms of cycle characteristics. In the present invention, the term “granular” includes scaly, spherical, pseudo-spherical, massive, and whisker-like shapes.
【0013】炭酸リチウムを吸着させたリチウム遷移金
属複合酸化物を得る方法としては、例えば、リチウム遷
移金属複合酸化物の合成時に必要量の炭酸リチウムを混
合して焼成する方法、水酸化リチウムを混合して焼成し
た後に炭酸ガスを吹き付けて反応させる方法、合成後の
リチウム遷移金属複合酸化物に炭酸リチウム水溶液を添
加して混練し乾燥する方法などがある。As a method of obtaining a lithium transition metal composite oxide having lithium carbonate adsorbed thereon, for example, a method of mixing and firing a required amount of lithium carbonate at the time of synthesizing the lithium transition metal composite oxide, and a method of mixing lithium hydroxide And baking and then reacting by blowing carbon dioxide gas, and a method of adding an aqueous solution of lithium carbonate to the synthesized lithium transition metal composite oxide, kneading and drying, and the like.
【0014】上記の炭酸リチウムが吸着されたリチウム
遷移金属複合酸化物は、例えば、ポリビニリデンフルオ
リドなどの結着剤、導電材と共にアルミ箔などの金属集
電体上に積層され、正極活物質層を形成する。正極活物
質層の形成方法は特に制限はなく、例えば、上記LiM
O系(MはCoまたはNi)複合酸化物、結着剤、及び
導電剤をN−メチル−2−ピロリドンなどの溶剤に分散
させてぺースト状とし、該ぺーストを金属集電体の両面
に均一の厚さに塗付し、乾燥させて溶剤を揮発させた
後、これをローラープレス機などで圧延するなどして活
物質層を形成することなどが挙げられる。The lithium transition metal composite oxide having lithium carbonate adsorbed thereon is laminated on a metal current collector such as an aluminum foil together with a binder such as polyvinylidene fluoride and a conductive material to form a positive electrode active material. Form a layer. The method for forming the positive electrode active material layer is not particularly limited.
An O-based (M is Co or Ni) composite oxide, a binder, and a conductive agent are dispersed in a solvent such as N-methyl-2-pyrrolidone to form a paste, and the paste is formed on both surfaces of a metal current collector. And then drying it to evaporate the solvent, and then rolling it with a roller press or the like to form an active material layer.
【0015】また、負極活物質は、特に限定はないが、
放電容量特性の点からリチウムイオンを吸蔵・放出可能
な炭素材料が好ましく用いることができる。リチウムイ
オンを吸蔵・放出可能な炭素材料について詳しく説明す
ると、本発明では各種天然や人造の炭素材料が適用で
き、例えば、ピッチコークスや石油コークスなどのコー
クス、黒鉛、熱分解炭素、炭素繊維、活性炭などが挙げ
られ、その形状もファイバ状、鱗片状、または球状など
適宜の形状であってよい。本発明の負極活物質では安全
性、高容量化及びサイクル特性の点から特にファイバ状
黒鉛が好適に用いられる。The negative electrode active material is not particularly limited.
From the viewpoint of discharge capacity characteristics, a carbon material capable of inserting and extracting lithium ions can be preferably used. The carbon material capable of occluding and releasing lithium ions will be described in detail. In the present invention, various natural and artificial carbon materials can be applied, for example, coke such as pitch coke and petroleum coke, graphite, pyrolytic carbon, carbon fiber, and activated carbon. And the like, and the shape may be an appropriate shape such as a fiber shape, a scale shape, or a spherical shape. In the negative electrode active material of the present invention, in particular, fibrous graphite is suitably used in view of safety, high capacity, and cycle characteristics.
【0016】上記炭素材料は、例えば、ポリビニリデン
フルオリドなどの結着剤と共に銅箔などの金属集電体上
に積層され、負極活物質層を形成する。負極活物質層の
形成方法は特に制限はなく、例えば、上記炭素材料と結
着剤とをN−メチル−2−ピロリドンなどの溶剤に分散
させてぺ一スト状とし、該ぺ一ストを金属集電体の両面
に均一の厚さに塗付し、乾燥させて溶剤を揮発させた
後、これをローラープレス機などで圧延するなどして活
物質層を形成することなどが挙げられる。The carbon material is laminated on a metal current collector such as a copper foil with a binder such as polyvinylidene fluoride to form a negative electrode active material layer. The method for forming the negative electrode active material layer is not particularly limited. For example, the carbon material and the binder are dispersed in a solvent such as N-methyl-2-pyrrolidone to form a paste, and the paste is formed of a metal. After applying a uniform thickness to both surfaces of the current collector and drying it to evaporate the solvent, the active material layer is formed by rolling this with a roller press or the like.
【0017】また、本発明に用いられる非水電解質とし
ては、通常用いられるものであれば特に制限はない。リ
チウム二次電池の非水電解質は、高誘電率溶媒と低粘度
溶媒とを混合した混合溶媒からなる有機溶媒とリチウム
塩とからなるのが一般的であり、本発明においては、高
誘電率溶媒であるエチレンカーボネイト、プロピレンカ
ーボネイト、ジメチルスルホキシド、γ−ブチルラクト
ンなどと、低粘度溶媒であるジメチルカーボネイト、ジ
エチルカーボネイト、エチルメチルカーボネイト、ジオ
キソラン、テトラヒドロフラン、1,2−ジメトキシエ
タンなどとを適宜組み合わせて混合溶媒とし、該混合溶
媒にLiPF6、LiBF4などのリチウム塩を配合し
て非水電解質とすればよい。The non-aqueous electrolyte used in the present invention is not particularly limited as long as it is a commonly used non-aqueous electrolyte. The non-aqueous electrolyte of the lithium secondary battery is generally composed of an organic solvent composed of a mixed solvent obtained by mixing a high dielectric constant solvent and a low viscosity solvent, and a lithium salt. Ethylene carbonate, propylene carbonate, dimethyl sulfoxide, γ-butyl lactone and the like, and a low viscosity solvent such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dioxolan, tetrahydrofuran, 1,2-dimethoxyethane and the like are appropriately mixed and mixed. A non-aqueous electrolyte may be obtained by mixing a lithium salt such as LiPF 6 or LiBF 4 with the mixed solvent.
【0018】非水電解質の好ましい組成としては、エチ
レンカーボネイト、または、及び、プロピレンカーボネ
イトを20〜50重量%、ジメチルカーボネイト、ジエ
チルカーボネイト、エチルメチルカーボネイトの少なく
とも1種または2種以上を50重量%〜80重量%を組
み合わせた混合溶媒とし、該混合溶媒にLiPF6、L
iBF4などのリチウム塩を配合すればよい。Preferred compositions of the non-aqueous electrolyte include ethylene carbonate and / or propylene carbonate in an amount of from 20 to 50% by weight, and dimethyl carbonate, diethyl carbonate and / or ethyl methyl carbonate in an amount of from 50% by weight or more. 80% by weight as a mixed solvent, and LiPF 6 , L
a lithium salt such as iBF 4 may be blended.
【0019】セパレータとしては、公知のセパレータを
用いることができる。例えば、ポリエチレンフィルムか
らなるセパレータ、ポリプロピレンフィルムからなるセ
パレータ、ポリプロピレン/ポリエチレン/ポリプロピ
レンフィルムの3層構造からなるセパレータなどが例示
できる。As the separator, a known separator can be used. For example, a separator composed of a polyethylene film, a separator composed of a polypropylene film, and a separator composed of a three-layer structure of a polypropylene / polyethylene / polypropylene film can be exemplified.
【0020】本発明では、電池内圧の上昇により作動す
る電池内部の電流遮断手段が備えられている。該電流遮
断手段としては、公知の手段を採用することができ、電
池内圧の上昇によって電池内部の電流が遮断される機構
であれば特に限定はない。In the present invention, there is provided a current interrupting means inside the battery which is activated by an increase in the internal pressure of the battery. As the current interrupting means, a known means can be adopted, and there is no particular limitation as long as the current inside the battery is interrupted by an increase in battery internal pressure.
【0021】以下に、本発明の実施例について説明す
る。 [実施例]以下の方法により、炭酸リチウムが吸着され
たリチウムコバルト複合酸化物(LiCoO2)を作成
して正極とした。 [炭酸リチウムが0.2%吸着のリチウムコバルト複合
酸化物作成]化学量論量の酸化コバルト(平均粒径17
μm)と化学量論量の1.01倍の炭酸リチウムを乾燥
空気中、900℃にて9時間焼成、引き続いて500℃
にて12時間焼成を行うことにより平均粒径20μmの
リチウムコバルト複合酸化物を得た。なお、当該リチウ
ムコバルト複合酸化物 中には炭酸リチウムが0.2%
吸着されていた。 [炭酸リチウムが2.0%吸着のリチウムコバルト複合
酸化物作成]化学量論量の酸化コバルト(平均粒径4μ
m)と化学量論量の1.06倍の炭酸リチウムを乾燥空
気中、900℃にて9時間焼成を行うことにより平均粒
径5μmのコバルト酸リチウム粉末を得た。なお、当該
リチウムコバルト複合酸化物 中には炭酸リチウムが
2.0%吸着されていた。次いで、上記2種のリチウム
コバルト複合酸化物を後記の表1の比率で混合したリチ
ウムコバルト複合酸化物を90重量部、鱗片状黒鉛7重
量部、ポリフッ化ビニリデンフロライド3重量部をN−
メチル2ピロリドン中に均一分散してスラリーとした。
このスラリーを集電体となるアルミニウム箔(厚さ20
μm)の両面に塗付して、乾燥させて正極とした。Hereinafter, embodiments of the present invention will be described. Example A lithium-cobalt composite oxide (LiCoO 2 ) on which lithium carbonate was adsorbed was prepared by the following method to prepare a positive electrode. [Preparation of lithium cobalt composite oxide with 0.2% lithium carbonate adsorption] Stoichiometric amount of cobalt oxide (average particle size of 17
μm) and 1.01 times the stoichiometric amount of lithium carbonate in dry air at 900 ° C. for 9 hours, followed by 500 ° C.
For 12 hours to obtain a lithium-cobalt composite oxide having an average particle size of 20 μm. The lithium cobalt composite oxide contained 0.2% of lithium carbonate.
Had been adsorbed. [Preparation of lithium-cobalt composite oxide adsorbing 2.0% of lithium carbonate] Stoichiometric amount of cobalt oxide (average particle size 4μ)
m) and 1.06 times the stoichiometric amount of lithium carbonate were calcined in dry air at 900 ° C. for 9 hours to obtain lithium cobaltate powder having an average particle size of 5 μm. In addition, 2.0% of lithium carbonate was adsorbed in the lithium-cobalt composite oxide. Next, 90 parts by weight of the lithium-cobalt composite oxide obtained by mixing the above two kinds of lithium-cobalt composite oxides in the ratio shown in Table 1 below, 7 parts by weight of flaky graphite, and 3 parts by weight of polyvinylidene fluoride were mixed with N-
It was uniformly dispersed in methyl 2-pyrrolidone to obtain a slurry.
This slurry is made into an aluminum foil (thickness: 20) serving as a current collector.
μm) and dried to obtain a positive electrode.
【0022】上記した正極を、ポリプロピレン、ポリエ
チレン、ポリプロピレンからなる3層構造の多孔質セパ
レータ及び黒鉛化炭素繊維を負極活物質とする負極と共
に巻回し、これを高さ65mm、外径18mmの円筒缶
に収容し、リチウムイオン2次電池(放電容量1500
mAh)を作成した。なお、電解質は、エチレンカーボ
ネイト40g、エチルメチルカーボネイト60g、ジメ
チルカーボネート40gの混合物に対して、LiPF6
を1mol/L添加して非水電解質を作成して用いた。
また、電流遮断機構は、発電要素体を封口している電流
遮断用薄膜に正極集電体から引き出された正極タブを溶
接し、電池内圧が上昇した場合には、電流遮断用薄膜が
電池の外圧方向に押し上げられて、溶接部が切断され
て、電池内部の導通を遮断する手段を利用した。The above positive electrode is wound together with a porous separator having a three-layer structure made of polypropylene, polyethylene and polypropylene and a negative electrode having graphitized carbon fibers as a negative electrode active material, and is wound into a cylindrical can having a height of 65 mm and an outer diameter of 18 mm. And a lithium ion secondary battery (discharge capacity 1500
mAh). The electrolyte was LiPF 6 with respect to a mixture of 40 g of ethylene carbonate, 60 g of ethyl methyl carbonate and 40 g of dimethyl carbonate.
Was added at 1 mol / L to prepare and use a non-aqueous electrolyte.
In addition, the current interruption mechanism welds the positive electrode tab drawn from the positive electrode current collector to the current interruption thin film sealing the power generating element body, and when the internal pressure of the battery increases, the current interruption thin film A means was used to cut off the welded portion by being pushed up in the direction of the external pressure and to cut off conduction inside the battery.
【0023】[放電容量試験]1.5A定電流で充電電
圧が4.2Vとなるまで充電し、引き続いて4.2V定
電圧で総充電時間が2.5時間となるまで充電し、次い
で端子間電圧が3Vとなる時点まで0.75Aで放電を
行う。その際、0.75Aでの放電における放電容量を
求める。[Discharge capacity test] The battery was charged at a constant current of 1.5 A until the charging voltage reached 4.2 V, subsequently charged at a constant voltage of 4.2 V until the total charging time reached 2.5 hours, and then the terminal Discharge is performed at 0.75 A until the inter-voltage becomes 3 V. At this time, the discharge capacity at the discharge at 0.75 A is obtained.
【0024】[充放電サイクル特性試験] 1.5A定電流で充電電圧が4.2Vとなるまで充
電し、引き続いて4.2V定電圧で総充電時間が2.5
時間となるまで充電し、充電後に1時間の休止を行
い、端子間電圧が3Vとなる時点まで1.5Aで放電
を行い、放電後に1時間の休止を行うという4工程を
1サイクルとする。次に、室温(20℃)下でこの4工
程を500サイクル行い、各サイクルにおける放電容量
(mAh)、を測定する。また、初回の放電容量に対す
る各サイクル目の充放電容量の割合を放電容量変化率
(%)とする。表1には初回のと500サイクル目の放
電容量変化率(%)を示している。[Charge / Discharge Cycle Characteristic Test] The battery was charged at a constant current of 1.5 A until the charging voltage reached 4.2 V, and subsequently, the total charging time was 2.5 at a constant voltage of 4.2 V.
The four steps of charging until the time is reached, performing a 1-hour pause after the charging, discharging at 1.5 A until the terminal voltage becomes 3 V, and performing a 1-hour pause after the discharge are defined as one cycle. Next, 500 cycles of these four steps are performed at room temperature (20 ° C.), and the discharge capacity (mAh) in each cycle is measured. The ratio of the charge / discharge capacity in each cycle to the initial discharge capacity is defined as a discharge capacity change rate (%). Table 1 shows the discharge capacity change rate (%) at the first time and at the 500th cycle.
【0025】[電池缶の耐損傷試験]1.5Aで充電電
圧が10Vに達するか3時間経過するまで充電して過充
電の状態として、電池の状態を目視で観察した。[Damage Resistance Test of Battery Can] The battery was visually observed as a state of overcharge by charging at 1.5 A until the charging voltage reached 10 V or 3 hours had passed.
【0026】試験結果をまとめて表1に示した。The test results are summarized in Table 1.
【0027】[0027]
【表1】 [Table 1]
【0028】[0028]
【発明の効果】本発明によれば、放電容量特性、サイク
ル特性を低下させることなく、かつ過充電時に電流遮断
が確実に作動するリチウムイオン2次電池とすることが
できる。特に、正極活物質としては、0〜0.5重量%
未満の炭酸リチウムが吸着されたリチウムコバルト複合
酸化物の平均粒径が10〜25μmであり、且つ、炭酸
リチウムが0.5〜5重量%吸着されたリチウムコバル
ト複合酸化物の平均粒径が1〜10μm未満の混合物を
用いれば、上記効果は顕著となり、より高性能で安全性
の高いリチウムイオン2次電池を提供することができ
る。According to the present invention, it is possible to provide a lithium ion secondary battery in which current interruption is reliably performed during overcharge without deteriorating discharge capacity characteristics and cycle characteristics. In particular, as the positive electrode active material, 0 to 0.5% by weight
The average particle size of the lithium-cobalt composite oxide on which less than less than lithium carbonate is adsorbed is 10 to 25 μm, and the average particle size of the lithium-cobalt composite oxide on which lithium carbonate is adsorbed by 0.5 to 5% by weight is 1 When a mixture having a size of less than 10 μm is used, the above-mentioned effect becomes remarkable, and a higher performance and higher safety lithium ion secondary battery can be provided.
フロントページの続き Fターム(参考) 5H022 AA09 CC01 KK01 5H029 AJ12 AK03 AL06 AM03 AM04 AM05 AM07 DJ08 HJ01 5H050 AA04 AA15 BA17 CA08 CB07 DA09 EA01 HA01 Continued on the front page F-term (reference) 5H022 AA09 CC01 KK01 5H029 AJ12 AK03 AL06 AM03 AM04 AM05 AM07 DJ08 HJ01 5H050 AA04 AA15 BA17 CA08 CB07 DA09 EA01 HA01
Claims (2)
吸着されたリチウム遷移金属複合酸化物と炭酸リチウム
が0.5〜5重量%吸着されたリチウム遷移金属複合酸
化物とが重量比で70〜98/30〜2の割合で混合さ
れてなる正極、負極、非水電解質、及び電池内圧の上昇
により作動する電池内部の電流遮断手段を備えてなるリ
チウムイオン2次電池。1. A weight ratio of a lithium transition metal composite oxide in which 0 to less than 0.5% by weight of lithium carbonate is adsorbed to a lithium transition metal composite oxide in which lithium carbonate is adsorbed by 0.5 to 5% by weight. A lithium ion secondary battery comprising: a positive electrode, a negative electrode, a non-aqueous electrolyte, and a current interrupting means inside the battery that is activated by an increase in the internal pressure of the battery.
リチウムコバルト複合酸化物からなり、負極は、リチウ
ムイオンの放出、挿入が可能な炭素材料である請求項1
に記載のリチウムイオン2次電池。2. The lithium transition metal composite oxide of the positive electrode,
The negative electrode is made of a lithium-cobalt composite oxide, and the negative electrode is a carbon material capable of releasing and inserting lithium ions.
4. The lithium ion secondary battery according to 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000344599A JP2002151155A (en) | 2000-11-13 | 2000-11-13 | Lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000344599A JP2002151155A (en) | 2000-11-13 | 2000-11-13 | Lithium ion secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002151155A true JP2002151155A (en) | 2002-05-24 |
Family
ID=18818768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000344599A Pending JP2002151155A (en) | 2000-11-13 | 2000-11-13 | Lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002151155A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1328807C (en) * | 2002-10-10 | 2007-07-25 | 日本化学工业株式会社 | Lithium-cobalt composite oxide and its producing method and non-aqueous electrolyte cell |
JP2021096901A (en) * | 2019-12-13 | 2021-06-24 | Tdk株式会社 | Lithium ion secondary battery |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04328278A (en) * | 1991-04-26 | 1992-11-17 | Sony Corp | Nonaqueous electrolyte secondary battery |
JPH04329268A (en) * | 1991-05-02 | 1992-11-18 | Sony Corp | Nonaqueous electrolyte secondary battery |
-
2000
- 2000-11-13 JP JP2000344599A patent/JP2002151155A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04328278A (en) * | 1991-04-26 | 1992-11-17 | Sony Corp | Nonaqueous electrolyte secondary battery |
JPH04329268A (en) * | 1991-05-02 | 1992-11-18 | Sony Corp | Nonaqueous electrolyte secondary battery |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1328807C (en) * | 2002-10-10 | 2007-07-25 | 日本化学工业株式会社 | Lithium-cobalt composite oxide and its producing method and non-aqueous electrolyte cell |
JP2021096901A (en) * | 2019-12-13 | 2021-06-24 | Tdk株式会社 | Lithium ion secondary battery |
JP7363443B2 (en) | 2019-12-13 | 2023-10-18 | Tdk株式会社 | Lithium ion secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4237074B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
KR102217574B1 (en) | Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same | |
JP2020506522A (en) | Prelithiation using lithium metal and inorganic composite layer | |
JP2020518105A (en) | Method for producing lithium metal/inorganic composite thin film and method for prelithiation of negative electrode of lithium secondary battery using the same | |
CN1190494A (en) | Non-aqueous electrolyte secondary battery | |
TW200301022A (en) | Lithium ion secondary battery | |
WO2013099279A1 (en) | Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery comprising negative electrode for nonaqueous electrolyte secondary batteries | |
JP2012146590A (en) | Positive electrode for nonaqueous electrolyte secondary battery, method for producing positive electrode, and nonaqueous electrolyte secondary battery | |
WO2011070748A1 (en) | Non-aqueous electrolyte secondary battery, and method for charging same | |
JP3529750B2 (en) | Non-aqueous electrolyte secondary battery | |
JP5030559B2 (en) | Nonaqueous electrolyte secondary battery | |
JP3579280B2 (en) | Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode | |
JP2011014254A (en) | Manufacturing method of nonaqueous electrolyte secondary battery | |
JP2000012030A (en) | Non-aqueous electrolyte secondary battery | |
JP2002087807A (en) | Multilayer graphite, method for producing the same, and nonaqueous electrolyte secondary battery using the same | |
JP2002124257A (en) | Nonaqueous electrolyte secondary battery | |
JP2004071159A (en) | Nonaqueous electrolyte secondary battery | |
JP4795509B2 (en) | Non-aqueous electrolyte battery | |
JP7122653B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2002093405A (en) | Non-aqueous secondary battery and charging method thereof | |
JP2002110251A (en) | Lithium ion secondary battery | |
JPH08329946A (en) | Manufacturing method of non-aqueous electrolyte secondary battery | |
JP2001297763A (en) | Nonaqueous electrolyte secondary cell | |
JP2001185143A (en) | Secondary battery using non-aqueous electrolyte and its battery pack | |
JP4296591B2 (en) | Nonaqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070928 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100802 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100824 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110118 |