[go: up one dir, main page]

JP2002151155A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery

Info

Publication number
JP2002151155A
JP2002151155A JP2000344599A JP2000344599A JP2002151155A JP 2002151155 A JP2002151155 A JP 2002151155A JP 2000344599 A JP2000344599 A JP 2000344599A JP 2000344599 A JP2000344599 A JP 2000344599A JP 2002151155 A JP2002151155 A JP 2002151155A
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
transition metal
carbonate
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000344599A
Other languages
Japanese (ja)
Inventor
Kenichi Kizu
賢一 木津
Toshihiro Zushi
敏博 厨子
Masaharu Kamauchi
正治 鎌内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2000344599A priority Critical patent/JP2002151155A/en
Publication of JP2002151155A publication Critical patent/JP2002151155A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery ensuring current shutoff when overcharged, without decreasing its discharging capacity characteristic. SOLUTION: The lithium ion secondary battery comprises a positive electrode wherein lithium/transition metal compound oxide with lithium carbonate of 0 to less than 0.5 wt.% absorbed thereto and lithium/transition metal compound oxide with lithium carbonate of 0.5 to 5 wt.% absorbed thereto are mixed in a weight ratio of 70-98 to 30-2; a negative electrode, a nonaqueous electrolyte, and a current shutoff means for the inside of the battery, the means being actuated upon buildup of the internal pressure of the battery. Preferably, the lithium/transition metal compound oxide of the positive electrode are lithium/ cobalt compound oxide and the negative electrode is made of a carbonaceous material enabling lithium ions to be released and inserted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池内圧の上昇に
より電池内部の電流遮断手段を備えてなる、リチウム遷
移金属複合酸化物、特にリチウムコバルト複合酸化物、
または、リチウムニッケル複合酸化物を正極活物質とし
たリチウムイオン2次電池に関し、さらに詳しくは、過
充電時に電流遮断が確実に作動するリチウムイオン2次
電池に関する。
The present invention relates to a lithium-transition metal composite oxide, particularly a lithium-cobalt composite oxide, comprising a means for interrupting current inside a battery by increasing the internal pressure of the battery.
Alternatively, the present invention relates to a lithium ion secondary battery using a lithium nickel composite oxide as a positive electrode active material, and more particularly, to a lithium ion secondary battery in which current interruption reliably operates during overcharge.

【0002】[0002]

【従来技術】リチウムイオン二次電池は、リチウムイオ
ンを用いるため高容量化が可能となり、最近では携帯電
話や電子端末機などの電源として広く普及されつつあ
る。特にリチウムイオン電池の性能向上に大きく寄与す
る電極材料、例えば正極では、LiCoO、LiNi
、LiMnOなどが、負極では、リチウム金属や
その合金、炭素材料が開発研究され、放電容量等の電気
的な特性の改良が行われている。ところで、リチウムイ
オン2次電池の発電要素体は、一般に、正極、負極、正
極と負極との間に介在している絶縁性のセパレーター、
及び正極と負極との間のリチウムイオンを往来させるた
めの電解液から構成されている。電解液としては、 カ
ーボーネート系有機材料を主体とすることが多く、この
ため、液漏れ防止の点から、リチウムイオン2次電池の
外套は、ステンレスなどの金属材料を用いて発電要素体
を収容した密閉型構造としている。したがって、何らか
の原因で所定以上の電流が流れた過充電状態となった場
合には、リチウムイオン2次電池内の電解液が電気分解
することによりガス化して電池の内圧が上昇し、電池缶
が損傷する場合がある。このため、リチウムイオン2次
電池内には内圧上昇すると電流を遮断する機構、例え
ば、内圧上昇した場合には正極集電体と正極タブとが離
間して導通を遮断する電流遮断機構などが具備されてい
る。しかし、この電流遮断機構は、電池の内圧が上昇す
ることを前提とした作動機構であるため、温度上昇が発
生しているものの、内圧はさほど上昇しなかった場合に
は、前記電流遮断機構は作動しないことになる。
2. Description of the Related Art Lithium ion secondary batteries use lithium ions, and thus can have a high capacity. Recently, lithium ion secondary batteries have been widely used as power sources for mobile phones and electronic terminals. In particular, for an electrode material that greatly contributes to the performance improvement of a lithium ion battery, for example, for a positive electrode, LiCoO 2 or LiNi
For negative electrodes such as O 2 and LiMnO 2 , lithium metals, alloys thereof, and carbon materials have been developed and studied, and electric characteristics such as discharge capacity have been improved. By the way, a power generating element body of a lithium ion secondary battery generally includes a positive electrode, a negative electrode, an insulating separator interposed between the positive electrode and the negative electrode,
And an electrolyte for transferring lithium ions between the positive electrode and the negative electrode. As the electrolytic solution, a carbonate-based organic material is often used as a main component. For this reason, in order to prevent liquid leakage, the outer shell of the lithium ion secondary battery contains a power generating element body using a metal material such as stainless steel. It has a closed structure. Therefore, in the case of an overcharged state in which a predetermined current or more flows for some reason, the electrolytic solution in the lithium ion secondary battery is electrolyzed to gasify and the internal pressure of the battery increases, and the battery can May be damaged. For this reason, the lithium ion secondary battery has a mechanism for interrupting the current when the internal pressure increases, for example, a current interrupting mechanism for separating the positive electrode current collector and the positive electrode tab and interrupting conduction when the internal pressure increases. Have been. However, since this current cutoff mechanism is an operating mechanism on the premise that the internal pressure of the battery rises, if the temperature rises but the internal pressure does not rise so much, the current cutoff mechanism is It will not work.

【0003】このため、特開平4−3298278で
は、リチウムコバルト複合酸化物からなる正極に炭酸リ
チウムを0.5重量%〜15重量%添加させ、電池内部
の温度上昇時には、正極に含有されている炭酸リチウム
を炭酸ガス化させ、電池内圧を、より上昇させ、電流遮
断機構を作動させている。また、特開平4−32926
8では、リチウムコバルト複合酸化物からなる正極の表
面に炭酸リチウムを被覆して、特開平4−329827
8の技術と同様に、炭酸リチウムを炭酸ガス化して、電
流遮断機構を作動させている。
For this reason, Japanese Patent Application Laid-Open No. Hei 4-3298278 discloses that lithium carbonate is added to a positive electrode made of a lithium-cobalt composite oxide in an amount of 0.5% by weight to 15% by weight. Lithium carbonate is converted into carbon dioxide gas, the internal pressure of the battery is further increased, and the current cutoff mechanism is operated. Also, Japanese Patent Application Laid-Open No. 4-32926
In JP-A-4-329927, the surface of a positive electrode made of a lithium-cobalt composite oxide is coated with lithium carbonate.
As in the technique of No. 8, lithium carbonate is converted into carbon dioxide gas to activate the current cutoff mechanism.

【0004】しかしながら、特開平4−3298278
に開示された方法では、電流遮断機構は作動するもの
の、正極活物質に対して炭酸リチウムの均一な分散が困
難であるため、高レート放電での放電容量を低下させる
だけでなく、炭酸リチウムを多量に使用しなければ過充
電における十分な破裂防止効果が得られなかった。ま
た、特開平4−329268に開示された方法において
は、活物質の合成条件が限定され、放電容量特性、サイ
クル特性を低下させる問題があった。
However, Japanese Unexamined Patent Publication No.
In the method disclosed in the above, although the current interrupting mechanism operates, it is difficult to uniformly disperse lithium carbonate in the positive electrode active material. Unless used in a large amount, a sufficient burst prevention effect in overcharging could not be obtained. Further, the method disclosed in JP-A-4-329268 has a problem that the conditions for synthesizing the active material are limited and the discharge capacity characteristics and the cycle characteristics are deteriorated.

【0005】[0005]

【発明が解決しようとする課題】本発明は、放電容量特
性、サイクル特性を低下させることなく、過充電時に電
流遮断が確実に作動するリチウムイオン2次電池を提供
することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a lithium ion secondary battery in which current interruption is reliably performed during overcharge without lowering discharge capacity characteristics and cycle characteristics.

【0006】[0006]

【課題を解決するための手段】上記課題は、(1)0〜
0.5重量%未満の炭酸リチウムが吸着されたリチウム
遷移金属複合酸化物と炭酸リチウムが0.5〜5重量%
吸着されたリチウム遷移金属複合酸化物とが重量比で7
0〜98/30〜2の割合で混合されてなる正極、負
極、非水電解質、及び電池内圧の上昇により作動する電
池内部の電流遮断手段を備えてなるリチウムイオン2次
電池、(2) 正極のリチウム遷移金属複合酸化物は、
リチウムコバルト複合酸化物からなり、負極は、リチウ
ムイオンの放出、挿入が可能な炭素材料である(1)に
記載のリチウムイオン2次電池によって解決される。
Means for Solving the Problems The above problems are (1) 0 to
Lithium transition metal composite oxide having less than 0.5% by weight of lithium carbonate adsorbed thereon and 0.5 to 5% by weight of lithium carbonate
7% by weight of the adsorbed lithium transition metal composite oxide
A lithium ion secondary battery comprising a positive electrode, a negative electrode, a non-aqueous electrolyte, and a current interrupting means inside the battery that is activated by an increase in the internal pressure of the battery, wherein the positive electrode is mixed at a ratio of 0 to 98/30 to 2; The lithium transition metal composite oxide of
The problem is solved by the lithium ion secondary battery according to (1), which is made of a lithium-cobalt composite oxide, and wherein the negative electrode is a carbon material capable of releasing and inserting lithium ions.

【0007】[0007]

【発明の実施の形態】本発明では、0〜0.5重量%未
満の炭酸リチウムが吸着されたリチウム遷移金属複合酸
化物と、炭酸リチウムが0.5〜5重量%吸着されたリ
チウム遷移金属複合酸化物とからなる正極を用いる。な
お、0〜0.5重量%未満の炭酸リチウムが吸着された
リチウム遷移金属複合酸化物なる概念は、炭酸リチウム
が吸着されていないリチウム遷移金属複合酸化物をも含
んでいる。また、0〜0.5重量%未満の炭酸リチウム
が吸着されたリチウム遷移金属複合酸化物と炭酸リチウ
ムが0.5〜5重量%吸着されたリチウム遷移金属複合
酸化物とは重量比で70〜98/30〜2の割合で混合
されている。すなわち、本発明の構成をとれば、単に炭
酸リチウムとリチウム遷移金属複合酸化物とを混合した
ときのような炭酸リチウムの凝集が起こらず、少量の炭
酸リチウムでも有効に作用する。また、単一の活物質に
高い濃度の炭酸リチウムを吸着させた場合のように、活
物質表面全体が炭酸リチウムにより覆われ、充放電反応
が阻害されることがないという理由から、放電容量特
性、サイクル特性が低下することなく、電流遮断の作動
効果を奏する。なお、0〜0.5重量%未満の炭酸リチ
ウムが吸着されたリチウム遷移金属複合酸化物を用いな
ければ、放電容量特性が低下する。 また、炭酸リチウ
ムが0.5〜5重量%吸着されたリチウム遷移金属複合
酸化物を用いなければ、電流遮断の作動効果が少なくな
る。 0〜0.5重量%未満の炭酸リチウムが吸着され
たリチウム遷移金属複合酸化物と、炭酸リチウムが0.
5〜5重量%吸着されたリチウム遷移金属複合酸化物と
の混合比率は、重量比で70〜98/30〜2、好まし
くは、75〜95/25〜5である。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, a lithium transition metal composite oxide having 0 to less than 0.5% by weight of lithium carbonate adsorbed thereon and a lithium transition metal having 0.5 to 5% by weight of lithium carbonate adsorbed therein A positive electrode composed of a composite oxide is used. In addition, the concept of the lithium transition metal composite oxide in which lithium carbonate of 0 to less than 0.5% by weight is adsorbed also includes a lithium transition metal composite oxide in which lithium carbonate is not adsorbed. The lithium transition metal composite oxide having lithium carbonate adsorbed in an amount of 0 to less than 0.5% by weight and the lithium transition metal composite oxide having lithium carbonate adsorbed in an amount of 0.5 to 5% by weight have a weight ratio of 70 to 70%. 98 / 30-2. That is, according to the structure of the present invention, aggregation of lithium carbonate does not occur, unlike when lithium carbonate and a lithium transition metal composite oxide are simply mixed, and a small amount of lithium carbonate works effectively. In addition, unlike the case where a high concentration of lithium carbonate is adsorbed on a single active material, the entire surface of the active material is covered with lithium carbonate and the charge / discharge reaction is not hindered. In addition, an operation effect of current interruption can be obtained without lowering cycle characteristics. Unless a lithium transition metal composite oxide having lithium carbonate adsorbed in an amount of 0 to less than 0.5% by weight is used, the discharge capacity characteristics deteriorate. If the lithium transition metal composite oxide in which lithium carbonate is adsorbed in an amount of 0.5 to 5% by weight is not used, the operation effect of current interruption is reduced. A lithium transition metal composite oxide to which 0 to less than 0.5% by weight of lithium carbonate is adsorbed;
The mixing ratio with the lithium transition metal composite oxide adsorbed by 5 to 5% by weight is 70 to 98/30 to 2, preferably 75 to 95/25 to 5 by weight.

【0008】かかるリチウム遷移金属複合酸化物として
は、LiCoO、LiNiO、LiMnなど
を用いることができ、LiCoOとしては、公知のも
のを用いることができ、また、LiCo(1−X)
(0<X<1)などのCoの一部を他の元素(P,
Al,Mn,Niなど)と置換したものなども用いるこ
とができる。また、リチウムニッケル複合酸化物として
も同様に、LiNiO2、LiNi(1−X)
(0<X<1)などのMnの一部を他の元素(P、A
l、Mn、Coなど)と置換したものなどを用いること
もできる。
[0008] As such a lithium transition metal complex oxide, LiCoO 2, LiNiO 2, LiMn 2 O 4 or the like can be used, as is LiCoO 2, can be a known, also, LiCo X P ( 1-X)
A part of Co such as O 2 (0 <X <1) is replaced with another element (P,
Al, Mn, Ni, etc.) can also be used. Similarly, a lithium nickel complex oxide, LiNiO2, LiNi X P (1 -X) O 2
(0 <X <1) and other parts of Mn to other elements (P, A
l, Mn, Co, etc.).

【0009】本発明に用いられるリチウム遷移金属複合
酸化物の代表例であるリチウムコバルト複合酸化物、ま
たはリチウムニッケル複合酸化物の平均粒径は、1〜3
0μm程度であれば良い。好ましい態様としては、0〜
0.5重量%未満の炭酸リチウムが吸着されたリチウム
コバルト複合酸化物の平均粒径は10〜25μmであ
る。 平均粒径が10μmよりも小さいと熱安定性低下
の問題が生じる傾向にあり、25μmよりも大きくなる
と大電流放電おける容量低下の問題が生じる傾向にあ
る。また、炭酸リチウムが0.5〜5重量%吸着された
リチウムコバルト複合酸化物または リチウムニッケル
複合酸化物の平均粒径は1〜10μm未満が好ましい。
平均粒径が1μmよりも小さいと(嵩密度の上昇によ
る)体積あたりの容量低下の問題が生じる傾向にあり、
10μm以上になると(比表面積減少による)炭酸ガス
発生速度の低下の問題が生じる傾向にある。これらの理
由から、特に好ましい正極活物質の態様としては、0〜
0.5重量%未満の炭酸リチウムが吸着されたリチウム
コバルト複合酸化物またはリチウムニッケル複合酸化
物、好ましくはリチウムコバルト複合酸化物の平均粒径
が10〜25μmであり、且つ、炭酸リチウムが0.5
〜5重量%吸着されたリチウムコバルト複合酸化物また
はリチウムニッケル複合酸化物、好ましくはリチウムコ
バルト複合酸化物の平均粒径が1〜10μm未満であ
る。
The average particle size of the lithium cobalt composite oxide or lithium nickel composite oxide, which is a typical example of the lithium transition metal composite oxide used in the present invention, is 1 to 3.
It may be about 0 μm. As a preferred embodiment, 0 to
The average particle size of the lithium cobalt composite oxide to which less than 0.5% by weight of lithium carbonate is adsorbed is 10 to 25 μm. If the average particle size is smaller than 10 μm, there is a tendency for the problem of reduced thermal stability to occur, and if it is larger than 25 μm, there tends to be a problem of reduced capacity in large current discharge. The average particle size of the lithium cobalt composite oxide or lithium nickel composite oxide in which lithium carbonate is adsorbed at 0.5 to 5% by weight is preferably less than 1 to 10 μm.
When the average particle size is smaller than 1 μm, there is a tendency that a problem of a decrease in capacity per volume (due to an increase in bulk density) occurs,
When it is 10 μm or more, there is a tendency that a problem of a decrease in the carbon dioxide gas generation rate (due to a decrease in specific surface area) occurs. For these reasons, particularly preferred embodiments of the positive electrode active material include 0 to
The lithium cobalt composite oxide or lithium nickel composite oxide to which less than 0.5% by weight of lithium carbonate is adsorbed, preferably the lithium cobalt composite oxide has an average particle size of 10 to 25 μm and the lithium carbonate is 0.1 to 0.1 μm. 5
The average particle size of the lithium cobalt composite oxide or lithium nickel composite oxide, preferably lithium cobalt composite oxide, adsorbed by 55% by weight is less than 1 to 10 μm.

【0010】なお、リチウム遷移金属複合酸化物の平均
粒径は、以下の方法により測定することができる。最初
に測定対象となるリチウムコバルト複合酸化物等の粒状
物を、水やエタノールなどの有機液体に投入し、35k
Hz〜40kHz程度の超音波を付与して約2分間分散
処理を行う。なお、測定対象となる粒状物の量は、分散
処理後の分散液のレーザー透過率(入射光量に対する出
力光量の比)が70%〜90%となる量とする。次に、
この分散液をマイクロトラック粒度分析計にかけ、レー
ザー光の散乱により個々の粒子の粒径(D1、D2、D
3・・・)、および各粒径毎の存在個数(N1、N2,
N3・・・・)を計測する。なお、マイクロトラック粒
度分析計では、観測された散乱強度分布に最も近い理論
強度になる粒形粒子群の粒径分布を算出している。即
ち、粒子はmレーザー光の照射によって得られる投影像
と同面積の断面円を持つ球体と想定され、この断面円の
直径(球相当径)が粒径として計測される。
[0010] The average particle size of the lithium transition metal composite oxide can be measured by the following method. First, a granular substance such as a lithium-cobalt composite oxide to be measured is charged into an organic liquid such as water or ethanol, and is charged at 35k.
A dispersion process is performed for about 2 minutes by applying ultrasonic waves of about Hz to 40 kHz. The amount of the particulate matter to be measured is such that the laser transmittance (the ratio of the output light amount to the incident light amount) of the dispersion liquid after the dispersion treatment is 70% to 90%. next,
This dispersion is applied to a Microtrac particle size analyzer, and the particle size (D1, D2, D
3 ...) and the number of particles present for each particle size (N1, N2,
N3 ...) is measured. Note that the Microtrac particle size analyzer calculates the particle size distribution of the group of particles having the theoretical intensity closest to the observed scattering intensity distribution. That is, the particle is assumed to be a sphere having a sectional circle having the same area as the projected image obtained by the irradiation of the m laser beam, and the diameter (equivalent sphere diameter) of this sectional circle is measured as the particle diameter.

【0011】平均粒径(μm)は、上記で得られた個々
の粒子の粒径(D)と各粒径毎の存在個数(N)とか
ら、下記の式を用いて算出される。 平均粒径(μm)=(ΣND/ΣN)1/3
The average particle size (μm) is calculated from the particle size (D) of the individual particles obtained above and the number (N) of each particle size by using the following equation. Average particle size (μm) = (ΔND 3 / ΔN) 1/3

【0012】また、本発明に用いるリチウム遷移金属複
合酸化物には、導電材を添加配合することができる。導
電材としては、公知のもの、例えば、人造黒鉛、天然黒
鉛、アセチレンブラック、オイルファーネスブラック、
ケッチェンブラック、メソフェーズカーボンマイクロフ
ェーズなどが例示される。特に、粒径が3μm以上の粒
状の鱗片状黒鉛、球状黒鉛、メソフェーズカーボンマイ
クロフェーズを用いることが好ましく、特に、サイクル
特性の点から鱗片状黒鉛が好ましい。なお、本発明でい
う、「粒状」には、鱗片状、球状、疑似球状、塊状、ウイ
スカー状などが含まれる。
Further, a conductive material can be added to the lithium transition metal composite oxide used in the present invention. As the conductive material, known materials, for example, artificial graphite, natural graphite, acetylene black, oil furnace black,
Ketjen black, mesophase carbon microphase and the like are exemplified. In particular, it is preferable to use granular flaky graphite, spherical graphite and mesophase carbon microphase having a particle diameter of 3 μm or more, and flaky graphite is particularly preferable in terms of cycle characteristics. In the present invention, the term “granular” includes scaly, spherical, pseudo-spherical, massive, and whisker-like shapes.

【0013】炭酸リチウムを吸着させたリチウム遷移金
属複合酸化物を得る方法としては、例えば、リチウム遷
移金属複合酸化物の合成時に必要量の炭酸リチウムを混
合して焼成する方法、水酸化リチウムを混合して焼成し
た後に炭酸ガスを吹き付けて反応させる方法、合成後の
リチウム遷移金属複合酸化物に炭酸リチウム水溶液を添
加して混練し乾燥する方法などがある。
As a method of obtaining a lithium transition metal composite oxide having lithium carbonate adsorbed thereon, for example, a method of mixing and firing a required amount of lithium carbonate at the time of synthesizing the lithium transition metal composite oxide, and a method of mixing lithium hydroxide And baking and then reacting by blowing carbon dioxide gas, and a method of adding an aqueous solution of lithium carbonate to the synthesized lithium transition metal composite oxide, kneading and drying, and the like.

【0014】上記の炭酸リチウムが吸着されたリチウム
遷移金属複合酸化物は、例えば、ポリビニリデンフルオ
リドなどの結着剤、導電材と共にアルミ箔などの金属集
電体上に積層され、正極活物質層を形成する。正極活物
質層の形成方法は特に制限はなく、例えば、上記LiM
O系(MはCoまたはNi)複合酸化物、結着剤、及び
導電剤をN−メチル−2−ピロリドンなどの溶剤に分散
させてぺースト状とし、該ぺーストを金属集電体の両面
に均一の厚さに塗付し、乾燥させて溶剤を揮発させた
後、これをローラープレス機などで圧延するなどして活
物質層を形成することなどが挙げられる。
The lithium transition metal composite oxide having lithium carbonate adsorbed thereon is laminated on a metal current collector such as an aluminum foil together with a binder such as polyvinylidene fluoride and a conductive material to form a positive electrode active material. Form a layer. The method for forming the positive electrode active material layer is not particularly limited.
An O-based (M is Co or Ni) composite oxide, a binder, and a conductive agent are dispersed in a solvent such as N-methyl-2-pyrrolidone to form a paste, and the paste is formed on both surfaces of a metal current collector. And then drying it to evaporate the solvent, and then rolling it with a roller press or the like to form an active material layer.

【0015】また、負極活物質は、特に限定はないが、
放電容量特性の点からリチウムイオンを吸蔵・放出可能
な炭素材料が好ましく用いることができる。リチウムイ
オンを吸蔵・放出可能な炭素材料について詳しく説明す
ると、本発明では各種天然や人造の炭素材料が適用で
き、例えば、ピッチコークスや石油コークスなどのコー
クス、黒鉛、熱分解炭素、炭素繊維、活性炭などが挙げ
られ、その形状もファイバ状、鱗片状、または球状など
適宜の形状であってよい。本発明の負極活物質では安全
性、高容量化及びサイクル特性の点から特にファイバ状
黒鉛が好適に用いられる。
The negative electrode active material is not particularly limited.
From the viewpoint of discharge capacity characteristics, a carbon material capable of inserting and extracting lithium ions can be preferably used. The carbon material capable of occluding and releasing lithium ions will be described in detail. In the present invention, various natural and artificial carbon materials can be applied, for example, coke such as pitch coke and petroleum coke, graphite, pyrolytic carbon, carbon fiber, and activated carbon. And the like, and the shape may be an appropriate shape such as a fiber shape, a scale shape, or a spherical shape. In the negative electrode active material of the present invention, in particular, fibrous graphite is suitably used in view of safety, high capacity, and cycle characteristics.

【0016】上記炭素材料は、例えば、ポリビニリデン
フルオリドなどの結着剤と共に銅箔などの金属集電体上
に積層され、負極活物質層を形成する。負極活物質層の
形成方法は特に制限はなく、例えば、上記炭素材料と結
着剤とをN−メチル−2−ピロリドンなどの溶剤に分散
させてぺ一スト状とし、該ぺ一ストを金属集電体の両面
に均一の厚さに塗付し、乾燥させて溶剤を揮発させた
後、これをローラープレス機などで圧延するなどして活
物質層を形成することなどが挙げられる。
The carbon material is laminated on a metal current collector such as a copper foil with a binder such as polyvinylidene fluoride to form a negative electrode active material layer. The method for forming the negative electrode active material layer is not particularly limited. For example, the carbon material and the binder are dispersed in a solvent such as N-methyl-2-pyrrolidone to form a paste, and the paste is formed of a metal. After applying a uniform thickness to both surfaces of the current collector and drying it to evaporate the solvent, the active material layer is formed by rolling this with a roller press or the like.

【0017】また、本発明に用いられる非水電解質とし
ては、通常用いられるものであれば特に制限はない。リ
チウム二次電池の非水電解質は、高誘電率溶媒と低粘度
溶媒とを混合した混合溶媒からなる有機溶媒とリチウム
塩とからなるのが一般的であり、本発明においては、高
誘電率溶媒であるエチレンカーボネイト、プロピレンカ
ーボネイト、ジメチルスルホキシド、γ−ブチルラクト
ンなどと、低粘度溶媒であるジメチルカーボネイト、ジ
エチルカーボネイト、エチルメチルカーボネイト、ジオ
キソラン、テトラヒドロフラン、1,2−ジメトキシエ
タンなどとを適宜組み合わせて混合溶媒とし、該混合溶
媒にLiPF、LiBFなどのリチウム塩を配合し
て非水電解質とすればよい。
The non-aqueous electrolyte used in the present invention is not particularly limited as long as it is a commonly used non-aqueous electrolyte. The non-aqueous electrolyte of the lithium secondary battery is generally composed of an organic solvent composed of a mixed solvent obtained by mixing a high dielectric constant solvent and a low viscosity solvent, and a lithium salt. Ethylene carbonate, propylene carbonate, dimethyl sulfoxide, γ-butyl lactone and the like, and a low viscosity solvent such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dioxolan, tetrahydrofuran, 1,2-dimethoxyethane and the like are appropriately mixed and mixed. A non-aqueous electrolyte may be obtained by mixing a lithium salt such as LiPF 6 or LiBF 4 with the mixed solvent.

【0018】非水電解質の好ましい組成としては、エチ
レンカーボネイト、または、及び、プロピレンカーボネ
イトを20〜50重量%、ジメチルカーボネイト、ジエ
チルカーボネイト、エチルメチルカーボネイトの少なく
とも1種または2種以上を50重量%〜80重量%を組
み合わせた混合溶媒とし、該混合溶媒にLiPF、L
iBFなどのリチウム塩を配合すればよい。
Preferred compositions of the non-aqueous electrolyte include ethylene carbonate and / or propylene carbonate in an amount of from 20 to 50% by weight, and dimethyl carbonate, diethyl carbonate and / or ethyl methyl carbonate in an amount of from 50% by weight or more. 80% by weight as a mixed solvent, and LiPF 6 , L
a lithium salt such as iBF 4 may be blended.

【0019】セパレータとしては、公知のセパレータを
用いることができる。例えば、ポリエチレンフィルムか
らなるセパレータ、ポリプロピレンフィルムからなるセ
パレータ、ポリプロピレン/ポリエチレン/ポリプロピ
レンフィルムの3層構造からなるセパレータなどが例示
できる。
As the separator, a known separator can be used. For example, a separator composed of a polyethylene film, a separator composed of a polypropylene film, and a separator composed of a three-layer structure of a polypropylene / polyethylene / polypropylene film can be exemplified.

【0020】本発明では、電池内圧の上昇により作動す
る電池内部の電流遮断手段が備えられている。該電流遮
断手段としては、公知の手段を採用することができ、電
池内圧の上昇によって電池内部の電流が遮断される機構
であれば特に限定はない。
In the present invention, there is provided a current interrupting means inside the battery which is activated by an increase in the internal pressure of the battery. As the current interrupting means, a known means can be adopted, and there is no particular limitation as long as the current inside the battery is interrupted by an increase in battery internal pressure.

【0021】以下に、本発明の実施例について説明す
る。 [実施例]以下の方法により、炭酸リチウムが吸着され
たリチウムコバルト複合酸化物(LiCoO)を作成
して正極とした。 [炭酸リチウムが0.2%吸着のリチウムコバルト複合
酸化物作成]化学量論量の酸化コバルト(平均粒径17
μm)と化学量論量の1.01倍の炭酸リチウムを乾燥
空気中、900℃にて9時間焼成、引き続いて500℃
にて12時間焼成を行うことにより平均粒径20μmの
リチウムコバルト複合酸化物を得た。なお、当該リチウ
ムコバルト複合酸化物 中には炭酸リチウムが0.2%
吸着されていた。 [炭酸リチウムが2.0%吸着のリチウムコバルト複合
酸化物作成]化学量論量の酸化コバルト(平均粒径4μ
m)と化学量論量の1.06倍の炭酸リチウムを乾燥空
気中、900℃にて9時間焼成を行うことにより平均粒
径5μmのコバルト酸リチウム粉末を得た。なお、当該
リチウムコバルト複合酸化物 中には炭酸リチウムが
2.0%吸着されていた。次いで、上記2種のリチウム
コバルト複合酸化物を後記の表1の比率で混合したリチ
ウムコバルト複合酸化物を90重量部、鱗片状黒鉛7重
量部、ポリフッ化ビニリデンフロライド3重量部をN−
メチル2ピロリドン中に均一分散してスラリーとした。
このスラリーを集電体となるアルミニウム箔(厚さ20
μm)の両面に塗付して、乾燥させて正極とした。
Hereinafter, embodiments of the present invention will be described. Example A lithium-cobalt composite oxide (LiCoO 2 ) on which lithium carbonate was adsorbed was prepared by the following method to prepare a positive electrode. [Preparation of lithium cobalt composite oxide with 0.2% lithium carbonate adsorption] Stoichiometric amount of cobalt oxide (average particle size of 17
μm) and 1.01 times the stoichiometric amount of lithium carbonate in dry air at 900 ° C. for 9 hours, followed by 500 ° C.
For 12 hours to obtain a lithium-cobalt composite oxide having an average particle size of 20 μm. The lithium cobalt composite oxide contained 0.2% of lithium carbonate.
Had been adsorbed. [Preparation of lithium-cobalt composite oxide adsorbing 2.0% of lithium carbonate] Stoichiometric amount of cobalt oxide (average particle size 4μ)
m) and 1.06 times the stoichiometric amount of lithium carbonate were calcined in dry air at 900 ° C. for 9 hours to obtain lithium cobaltate powder having an average particle size of 5 μm. In addition, 2.0% of lithium carbonate was adsorbed in the lithium-cobalt composite oxide. Next, 90 parts by weight of the lithium-cobalt composite oxide obtained by mixing the above two kinds of lithium-cobalt composite oxides in the ratio shown in Table 1 below, 7 parts by weight of flaky graphite, and 3 parts by weight of polyvinylidene fluoride were mixed with N-
It was uniformly dispersed in methyl 2-pyrrolidone to obtain a slurry.
This slurry is made into an aluminum foil (thickness: 20) serving as a current collector.
μm) and dried to obtain a positive electrode.

【0022】上記した正極を、ポリプロピレン、ポリエ
チレン、ポリプロピレンからなる3層構造の多孔質セパ
レータ及び黒鉛化炭素繊維を負極活物質とする負極と共
に巻回し、これを高さ65mm、外径18mmの円筒缶
に収容し、リチウムイオン2次電池(放電容量1500
mAh)を作成した。なお、電解質は、エチレンカーボ
ネイト40g、エチルメチルカーボネイト60g、ジメ
チルカーボネート40gの混合物に対して、LiPF
を1mol/L添加して非水電解質を作成して用いた。
また、電流遮断機構は、発電要素体を封口している電流
遮断用薄膜に正極集電体から引き出された正極タブを溶
接し、電池内圧が上昇した場合には、電流遮断用薄膜が
電池の外圧方向に押し上げられて、溶接部が切断され
て、電池内部の導通を遮断する手段を利用した。
The above positive electrode is wound together with a porous separator having a three-layer structure made of polypropylene, polyethylene and polypropylene and a negative electrode having graphitized carbon fibers as a negative electrode active material, and is wound into a cylindrical can having a height of 65 mm and an outer diameter of 18 mm. And a lithium ion secondary battery (discharge capacity 1500
mAh). The electrolyte was LiPF 6 with respect to a mixture of 40 g of ethylene carbonate, 60 g of ethyl methyl carbonate and 40 g of dimethyl carbonate.
Was added at 1 mol / L to prepare and use a non-aqueous electrolyte.
In addition, the current interruption mechanism welds the positive electrode tab drawn from the positive electrode current collector to the current interruption thin film sealing the power generating element body, and when the internal pressure of the battery increases, the current interruption thin film A means was used to cut off the welded portion by being pushed up in the direction of the external pressure and to cut off conduction inside the battery.

【0023】[放電容量試験]1.5A定電流で充電電
圧が4.2Vとなるまで充電し、引き続いて4.2V定
電圧で総充電時間が2.5時間となるまで充電し、次い
で端子間電圧が3Vとなる時点まで0.75Aで放電を
行う。その際、0.75Aでの放電における放電容量を
求める。
[Discharge capacity test] The battery was charged at a constant current of 1.5 A until the charging voltage reached 4.2 V, subsequently charged at a constant voltage of 4.2 V until the total charging time reached 2.5 hours, and then the terminal Discharge is performed at 0.75 A until the inter-voltage becomes 3 V. At this time, the discharge capacity at the discharge at 0.75 A is obtained.

【0024】[充放電サイクル特性試験] 1.5A定電流で充電電圧が4.2Vとなるまで充
電し、引き続いて4.2V定電圧で総充電時間が2.5
時間となるまで充電し、充電後に1時間の休止を行
い、端子間電圧が3Vとなる時点まで1.5Aで放電
を行い、放電後に1時間の休止を行うという4工程を
1サイクルとする。次に、室温(20℃)下でこの4工
程を500サイクル行い、各サイクルにおける放電容量
(mAh)、を測定する。また、初回の放電容量に対す
る各サイクル目の充放電容量の割合を放電容量変化率
(%)とする。表1には初回のと500サイクル目の放
電容量変化率(%)を示している。
[Charge / Discharge Cycle Characteristic Test] The battery was charged at a constant current of 1.5 A until the charging voltage reached 4.2 V, and subsequently, the total charging time was 2.5 at a constant voltage of 4.2 V.
The four steps of charging until the time is reached, performing a 1-hour pause after the charging, discharging at 1.5 A until the terminal voltage becomes 3 V, and performing a 1-hour pause after the discharge are defined as one cycle. Next, 500 cycles of these four steps are performed at room temperature (20 ° C.), and the discharge capacity (mAh) in each cycle is measured. The ratio of the charge / discharge capacity in each cycle to the initial discharge capacity is defined as a discharge capacity change rate (%). Table 1 shows the discharge capacity change rate (%) at the first time and at the 500th cycle.

【0025】[電池缶の耐損傷試験]1.5Aで充電電
圧が10Vに達するか3時間経過するまで充電して過充
電の状態として、電池の状態を目視で観察した。
[Damage Resistance Test of Battery Can] The battery was visually observed as a state of overcharge by charging at 1.5 A until the charging voltage reached 10 V or 3 hours had passed.

【0026】試験結果をまとめて表1に示した。The test results are summarized in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】本発明によれば、放電容量特性、サイク
ル特性を低下させることなく、かつ過充電時に電流遮断
が確実に作動するリチウムイオン2次電池とすることが
できる。特に、正極活物質としては、0〜0.5重量%
未満の炭酸リチウムが吸着されたリチウムコバルト複合
酸化物の平均粒径が10〜25μmであり、且つ、炭酸
リチウムが0.5〜5重量%吸着されたリチウムコバル
ト複合酸化物の平均粒径が1〜10μm未満の混合物を
用いれば、上記効果は顕著となり、より高性能で安全性
の高いリチウムイオン2次電池を提供することができ
る。
According to the present invention, it is possible to provide a lithium ion secondary battery in which current interruption is reliably performed during overcharge without deteriorating discharge capacity characteristics and cycle characteristics. In particular, as the positive electrode active material, 0 to 0.5% by weight
The average particle size of the lithium-cobalt composite oxide on which less than less than lithium carbonate is adsorbed is 10 to 25 μm, and the average particle size of the lithium-cobalt composite oxide on which lithium carbonate is adsorbed by 0.5 to 5% by weight is 1 When a mixture having a size of less than 10 μm is used, the above-mentioned effect becomes remarkable, and a higher performance and higher safety lithium ion secondary battery can be provided.

フロントページの続き Fターム(参考) 5H022 AA09 CC01 KK01 5H029 AJ12 AK03 AL06 AM03 AM04 AM05 AM07 DJ08 HJ01 5H050 AA04 AA15 BA17 CA08 CB07 DA09 EA01 HA01 Continued on the front page F-term (reference) 5H022 AA09 CC01 KK01 5H029 AJ12 AK03 AL06 AM03 AM04 AM05 AM07 DJ08 HJ01 5H050 AA04 AA15 BA17 CA08 CB07 DA09 EA01 HA01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 0〜0.5重量%未満の炭酸リチウムが
吸着されたリチウム遷移金属複合酸化物と炭酸リチウム
が0.5〜5重量%吸着されたリチウム遷移金属複合酸
化物とが重量比で70〜98/30〜2の割合で混合さ
れてなる正極、負極、非水電解質、及び電池内圧の上昇
により作動する電池内部の電流遮断手段を備えてなるリ
チウムイオン2次電池。
1. A weight ratio of a lithium transition metal composite oxide in which 0 to less than 0.5% by weight of lithium carbonate is adsorbed to a lithium transition metal composite oxide in which lithium carbonate is adsorbed by 0.5 to 5% by weight. A lithium ion secondary battery comprising: a positive electrode, a negative electrode, a non-aqueous electrolyte, and a current interrupting means inside the battery that is activated by an increase in the internal pressure of the battery.
【請求項2】 正極のリチウム遷移金属複合酸化物は、
リチウムコバルト複合酸化物からなり、負極は、リチウ
ムイオンの放出、挿入が可能な炭素材料である請求項1
に記載のリチウムイオン2次電池。
2. The lithium transition metal composite oxide of the positive electrode,
The negative electrode is made of a lithium-cobalt composite oxide, and the negative electrode is a carbon material capable of releasing and inserting lithium ions.
4. The lithium ion secondary battery according to 1.
JP2000344599A 2000-11-13 2000-11-13 Lithium ion secondary battery Pending JP2002151155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000344599A JP2002151155A (en) 2000-11-13 2000-11-13 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000344599A JP2002151155A (en) 2000-11-13 2000-11-13 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2002151155A true JP2002151155A (en) 2002-05-24

Family

ID=18818768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000344599A Pending JP2002151155A (en) 2000-11-13 2000-11-13 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2002151155A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1328807C (en) * 2002-10-10 2007-07-25 日本化学工业株式会社 Lithium-cobalt composite oxide and its producing method and non-aqueous electrolyte cell
JP2021096901A (en) * 2019-12-13 2021-06-24 Tdk株式会社 Lithium ion secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328278A (en) * 1991-04-26 1992-11-17 Sony Corp Nonaqueous electrolyte secondary battery
JPH04329268A (en) * 1991-05-02 1992-11-18 Sony Corp Nonaqueous electrolyte secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328278A (en) * 1991-04-26 1992-11-17 Sony Corp Nonaqueous electrolyte secondary battery
JPH04329268A (en) * 1991-05-02 1992-11-18 Sony Corp Nonaqueous electrolyte secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1328807C (en) * 2002-10-10 2007-07-25 日本化学工业株式会社 Lithium-cobalt composite oxide and its producing method and non-aqueous electrolyte cell
JP2021096901A (en) * 2019-12-13 2021-06-24 Tdk株式会社 Lithium ion secondary battery
JP7363443B2 (en) 2019-12-13 2023-10-18 Tdk株式会社 Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP4237074B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR102217574B1 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
JP2020506522A (en) Prelithiation using lithium metal and inorganic composite layer
JP2020518105A (en) Method for producing lithium metal/inorganic composite thin film and method for prelithiation of negative electrode of lithium secondary battery using the same
CN1190494A (en) Non-aqueous electrolyte secondary battery
TW200301022A (en) Lithium ion secondary battery
WO2013099279A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery comprising negative electrode for nonaqueous electrolyte secondary batteries
JP2012146590A (en) Positive electrode for nonaqueous electrolyte secondary battery, method for producing positive electrode, and nonaqueous electrolyte secondary battery
WO2011070748A1 (en) Non-aqueous electrolyte secondary battery, and method for charging same
JP3529750B2 (en) Non-aqueous electrolyte secondary battery
JP5030559B2 (en) Nonaqueous electrolyte secondary battery
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JP2011014254A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP2000012030A (en) Non-aqueous electrolyte secondary battery
JP2002087807A (en) Multilayer graphite, method for producing the same, and nonaqueous electrolyte secondary battery using the same
JP2002124257A (en) Nonaqueous electrolyte secondary battery
JP2004071159A (en) Nonaqueous electrolyte secondary battery
JP4795509B2 (en) Non-aqueous electrolyte battery
JP7122653B2 (en) Non-aqueous electrolyte secondary battery
JP2002093405A (en) Non-aqueous secondary battery and charging method thereof
JP2002110251A (en) Lithium ion secondary battery
JPH08329946A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2001297763A (en) Nonaqueous electrolyte secondary cell
JP2001185143A (en) Secondary battery using non-aqueous electrolyte and its battery pack
JP4296591B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118