[go: up one dir, main page]

JP2002151074A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2002151074A
JP2002151074A JP2000345124A JP2000345124A JP2002151074A JP 2002151074 A JP2002151074 A JP 2002151074A JP 2000345124 A JP2000345124 A JP 2000345124A JP 2000345124 A JP2000345124 A JP 2000345124A JP 2002151074 A JP2002151074 A JP 2002151074A
Authority
JP
Japan
Prior art keywords
positive electrode
electrolyte secondary
secondary battery
aqueous electrolyte
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000345124A
Other languages
Japanese (ja)
Other versions
JP3778794B2 (en
Inventor
Yasuyuki Kusumoto
靖幸 樟本
Masahisa Fujimoto
正久 藤本
Shin Fujitani
伸 藤谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000345124A priority Critical patent/JP3778794B2/en
Priority to US09/986,067 priority patent/US7045250B2/en
Publication of JP2002151074A publication Critical patent/JP2002151074A/en
Priority to US10/632,834 priority patent/US20040029007A1/en
Application granted granted Critical
Publication of JP3778794B2 publication Critical patent/JP3778794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having high battery capacity by increasing a specific capacity of a positive electrode material in the positive electrode and by improving energy density, in the nonaqueous electrolyte secondary battery equipped with the positive electrode, the negative electrode, and the nonaqueous electrolyte using a organic solvent. SOLUTION: In the nonaqueous electrolyte secondary battery equipped with the positive electrode 11, the negative electrode 12, and the nonaqueous electrolyte 14 using the organic solvent, while using a transition metal oxide (however, LiCoO2 is excepted), which has a space group R3m crystal structure for the positive electrode material in the positive electrode, the negative electrode material containing lithium is used for the negative electrode material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、正極と、負極
と、有機溶媒を用いた非水電解質とを備えた非水電解質
二次電池に係り、特に、その正極に用いる正極材料を改
善して、電池容量の高い非水電解質二次電池が得られる
ようにした点に特徴を有するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte using an organic solvent. And a non-aqueous electrolyte secondary battery having a high battery capacity.

【0002】[0002]

【従来の技術】近年、高出力,高エネルギー密度の新型
電池の1つとして、有機溶媒を用いた非水電解質を用
い、リチウムイオンを正極と負極との間で移動させて充
放電を行うようにした非水電解質二次電池が利用される
ようになった。
2. Description of the Related Art In recent years, as one of new batteries with high output and high energy density, a non-aqueous electrolyte using an organic solvent is used to perform charge and discharge by moving lithium ions between a positive electrode and a negative electrode. Non-aqueous electrolyte secondary batteries have been used.

【0003】そして、このような非水電解質二次電池に
おいては、一般に、正極における正極材料にLiCoO
2 等のリチウムの吸蔵,放出が可能なリチウム−遷移金
属複合酸化物が使用されており、また負極における負極
材料に黒鉛等の炭素材料が広く使用されていた。
In such a non-aqueous electrolyte secondary battery, generally, LiCoO
Lithium-transition metal composite oxides capable of absorbing and releasing lithium, such as 2, have been used, and carbon materials such as graphite have been widely used as negative electrode materials in negative electrodes.

【0004】ここで、このような非水電解質二次電池に
おいて、負極材料として用いられる黒鉛の比容量は約3
70mAh/gであるのに対して、正極材料として用い
られるLiCoO2 の場合、LiCoO2 中におけるL
iが十分に放出されず、比容量は150mAh/g程度
になっており、このような非水電解質二次電池における
エネルギー密度は150Wh/kg程度であった。
Here, in such a nonaqueous electrolyte secondary battery, the specific capacity of graphite used as a negative electrode material is about 3
Whereas it is 70 mAh / g, if the LiCoO 2 used as the positive electrode material, L in the LiCoO 2
i was not sufficiently released, the specific capacity was about 150 mAh / g, and the energy density of such a nonaqueous electrolyte secondary battery was about 150 Wh / kg.

【0005】しかし、近年においては、このような非水
電解質二次電池が携帯電話やパーソナルコンピュータ等
の電源として広く使用されるようになり、非水電解質二
次電池におけるエネルギー密度をさらに高めて、高い電
池容量を得られるようにすることが要望されている。
However, in recent years, such non-aqueous electrolyte secondary batteries have been widely used as power sources for mobile phones, personal computers and the like, and the energy density of the non-aqueous electrolyte secondary batteries has been further increased. There is a demand for obtaining a high battery capacity.

【0006】[0006]

【発明が解決しようとする課題】この発明は、正極と、
負極と、有機溶媒を用いた非水電解質とを備えた非水電
解質二次電池において、正極に用いる正極材料の比容量
を向上させて、エネルギー密度を高め、電池容量の高い
非水電解質二次電池重が得られるようにすることを課題
とするものである。
SUMMARY OF THE INVENTION The present invention provides a positive electrode,
In a non-aqueous electrolyte secondary battery including a negative electrode and a non-aqueous electrolyte using an organic solvent, the specific capacity of the positive electrode material used for the positive electrode is increased, the energy density is increased, and the non-aqueous electrolyte secondary It is an object to obtain a battery weight.

【0007】[0007]

【課題を解決するための手段】この発明における非水電
解質二次電池においては、上記のような課題を解決する
ため、正極と、負極と、有機溶媒を用いた非水電解質と
を備えた非水電解質二次電池において、上記の正極にお
ける正極材料に、空間群R3mの結晶構造を有する遷移
金属酸化物(但し、LiCoO2 を除く。)を用いると
共に、負極にリチウムを含有する負極材料を用いるよう
にしたのである。
In order to solve the above-mentioned problems, a non-aqueous electrolyte secondary battery according to the present invention has a non-aqueous electrolyte including a positive electrode, a negative electrode, and a non-aqueous electrolyte using an organic solvent. In the water electrolyte secondary battery, a transition metal oxide having a crystal structure of a space group R3m (excluding LiCoO 2 ) is used as a positive electrode material of the positive electrode, and a negative electrode material containing lithium is used as a negative electrode. I did it.

【0008】ここで、この発明における非水電解質二次
電池においては、先ず放電を行って、負極における負極
材料に含まれているリチウムを、上記の空間群R3mの
結晶構造を有する遷移金属酸化物(但し、LiCoO2
を除く。)を用いた正極材料に挿入させ、その後、この
正極と負極との間でリチウムイオンを移動させて充放電
を行うようになっている。
In the non-aqueous electrolyte secondary battery according to the present invention, first, discharge is performed to replace lithium contained in the negative electrode material of the negative electrode with a transition metal oxide having a crystal structure of the above space group R3m. (However, LiCoO 2
except for. ), And then charge and discharge by moving lithium ions between the positive electrode and the negative electrode.

【0009】ここで、上記のように先ず放電を行って、
負極における負極材料に含まれているリチウムを、空間
群R3mの結晶構造を有する遷移金属酸化物(但し、L
iCoO2 を除く。)を用いた正極材料に挿入させるよ
うにすると、多くの量のリチウムを充放電に関与させる
ことができるようになり、正極材料における比容量が高
くなってエネルギー密度が向上し、電池容量の高い非水
電解質二次電池が得られるようになる。
Here, first, as described above, discharge is performed,
Lithium contained in the negative electrode material of the negative electrode is replaced with a transition metal oxide having a crystal structure of a space group R3m (L
Excludes iCoO 2 . ) Allows a large amount of lithium to be involved in charge and discharge, increasing the specific capacity of the positive electrode material, improving the energy density, and increasing the battery capacity. A non-aqueous electrolyte secondary battery can be obtained.

【0010】ここで、空間群R3mの結晶構造を有する
遷移金属酸化物としては、NaFeO2 ,LiNi
2 ,LiCoO2 等が存在するが、この発明における
非水電解質二次電池において、LiCoO2 を除いたの
は、LiCoO2 の場合、先の放電によって負極材料に
含まれているリチウムを挿入させると、その後、正極か
らリチウムが放出されなくなって、充放電が行えなくな
るためである。これは、リチウムの挿入によりLiCo
2 の結晶構造が変化したためであると考えられる。
Here, transition metal oxides having a crystal structure of space group R3m include NaFeO 2 , LiNi
Although O 2 , LiCoO 2, etc. are present, in the non-aqueous electrolyte secondary battery of the present invention, LiCoO 2 is excluded in the case of LiCoO 2 , in which lithium contained in the negative electrode material is inserted by the previous discharge. Then, lithium is no longer released from the positive electrode, and charging and discharging cannot be performed. This is due to the LiCo
This is probably because the crystal structure of O 2 changed.

【0011】これに対して、空間群R3mの結晶構造を
有する他の遷移金属酸化物の場合、特にNaFeO2
場合には、先の放電によって負極材料に含まれているリ
チウムを挿入させた後においても、正極からリチウムが
適切に放出されて、正極材料における比容量が非常に高
くなり、エネルギー密度が著しく向上して、電池容量の
高い非水電解質二次電池が得られるようになる。
On the other hand, in the case of another transition metal oxide having a crystal structure of the space group R3m, especially in the case of NaFeO 2 , after the lithium contained in the negative electrode material is inserted by the previous discharge, In this case, lithium is appropriately released from the positive electrode, the specific capacity of the positive electrode material becomes extremely high, the energy density is remarkably improved, and a nonaqueous electrolyte secondary battery having a high battery capacity can be obtained.

【0012】また、この発明における非水電解質二次電
池において、負極に用いる負極材料は、上記のようにリ
チウムを含有しており、先の放電によりリチウムを上記
の正極材料に供給できるものであればよく、例えば、金
属リチウムや各種のリチウム合金を用いることができる
他、リチウムを吸蔵させた炭素材料等を用いることもで
き、特に、比容量の高いLi−Si合金を用いることが
好ましい。
In the non-aqueous electrolyte secondary battery according to the present invention, the negative electrode material used for the negative electrode contains lithium as described above, and any material capable of supplying lithium to the positive electrode material by the previous discharge. For example, metallic lithium or various lithium alloys can be used, and a carbon material in which lithium is occluded can be used. In particular, a Li—Si alloy having a high specific capacity is preferably used.

【0013】また、この発明における非水電解質二次電
池において、上記の有機溶媒を用いた非水電解質として
は、従来より一般に使用されているものを用いることが
できる。
Further, in the non-aqueous electrolyte secondary battery of the present invention, as the non-aqueous electrolyte using the above-mentioned organic solvent, a conventionally used non-aqueous electrolyte can be used.

【0014】そして、その有機溶媒としては、非水電解
液において従来より一般に使用されている公知の有機溶
媒を使用することができ、例えば、エチレンカーボネー
ト、プロピレンカーボネート、ブチレンカーボネート、
ビニレンカーボネート等の環状炭酸エステルや、ジメチ
ルカーボネート、ジエチルカーボネート、ジプロピルカ
ーボネート、エチルメチルカーボネート、エチルプロピ
ルカーボネート等の鎖状炭酸エステル等を1種又は複数
混合させたものを用いることができる。
As the organic solvent, known organic solvents conventionally used in nonaqueous electrolytes can be used. Examples thereof include ethylene carbonate, propylene carbonate, butylene carbonate, and the like.
A cyclic carbonate such as vinylene carbonate, or a chain carbonate such as dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, ethyl propyl carbonate or the like may be used alone or in combination.

【0015】また、この非水電解質において、上記の有
機溶媒に溶解させる溶質としても公知のものを使用する
ことができ、例えば、トリフルオロメタンスルホン酸リ
チウムLiCF3 SO3 ,ヘキサフルオロリン酸リチウ
ムLiPF6 ,過塩素酸リチウムLiClO4 ,テトラ
フルオロホウ酸リチウムLiBF4 ,トリフルオロメタ
ンスルホン酸イミドリチウムLiN(CF3 SO2 2
等のリチウム化合物を用いることができる。
In the non-aqueous electrolyte, known solutes to be dissolved in the above-mentioned organic solvent can be used. For example, lithium trifluoromethanesulfonate LiCF 3 SO 3 and lithium hexafluorophosphate LiPF 6 , Lithium perchlorate LiClO 4 , lithium tetrafluoroborate LiBF 4 , lithium trifluoromethanesulfonate LiN (CF 3 SO 2 ) 2
And the like.

【0016】さらに、この発明における非水電解質二次
電池においては、正極と負極とを分離させるセパレータ
等についても従来より一般に使用されている公知のもの
を用いることができる。
Further, in the non-aqueous electrolyte secondary battery according to the present invention, as the separator for separating the positive electrode and the negative electrode, a known one generally used conventionally can be used.

【0017】[0017]

【実施例】以下、この発明の非水電解質二次電池につい
て、実施例を挙げて具体的に説明すると共に、この実施
例における非水電解質二次電池の場合、正極材料におけ
る比容量が大きくなってエネルギー密度が向上し、高い
電池容量が得られるようになることを、実験に基づいて
明らかにする。なお、この発明における非水電解質二次
電池は、下記の実施例に示したものに限定されず、その
要旨を変更しない範囲において適宜変更して実施できる
ものである。
EXAMPLES Hereinafter, the nonaqueous electrolyte secondary battery of the present invention will be specifically described with reference to examples, and in the case of the nonaqueous electrolyte secondary battery in this example, the specific capacity of the positive electrode material will increase. It is clarified based on experiments that the energy density is improved and a high battery capacity can be obtained. The non-aqueous electrolyte secondary battery according to the present invention is not limited to those described in the following examples, and can be implemented by appropriately changing the scope of the invention without changing its gist.

【0018】この実施例においては、下記のようにして
作製した正極と非水電解液とを用いるようにした。
In this example, a positive electrode and a non-aqueous electrolyte prepared as described below were used.

【0019】[正極の作製]正極を作製するにあたって
は、正極材料に空間群R3mの結晶構造を有する遷移金
属酸化物であるNaFeO2 を用い、このNaFeO2
が40重量部、導電剤であるアセチレンブラックが40
重量部、結着剤であるポリテトラフルオロエチレンが2
0重量部の割合になるように混合した後、これを直径が
16mm、厚みが0.1mmの円板状に加圧成形し、こ
れを110℃で真空乾燥させて正極を作製した。
[0019] In preparing the positive electrode fabricated positive electrode uses a NaFeO 2 is a transition metal oxide having a crystal structure of the space group R3m the positive electrode material, the NaFeO 2
Is 40 parts by weight, and acetylene black as a conductive agent is 40 parts by weight.
2 parts by weight of polytetrafluoroethylene as a binder
After mixing so as to have a ratio of 0 parts by weight, this was press-formed into a disk having a diameter of 16 mm and a thickness of 0.1 mm, and this was vacuum-dried at 110 ° C. to produce a positive electrode.

【0020】[非水電解液の作製]非水電解液を作製す
るにあたっては、エチレンカーボネートとジメチルカー
ボネートとを1:1の体積比で混合させた混合溶媒に、
6フッ化リン酸リチウムLiPF6 を1mol/kgの
割合で溶解させて非水電解液を作製した。
[Preparation of Non-Aqueous Electrolyte] In preparing a non-aqueous electrolyte, a mixed solvent obtained by mixing ethylene carbonate and dimethyl carbonate at a volume ratio of 1: 1 was used.
Lithium hexafluorophosphate LiPF 6 was dissolved at a rate of 1 mol / kg to prepare a non-aqueous electrolyte.

【0021】そして、図1に示すように、試験セル10
内に、上記のようにして作製した非水電解液14を収容
させると共に、上記のようにして作製した正極を作用極
11に用い、負極になる対極12と、参照極13とにそ
れぞれ金属リチウムを用いるようにした。
Then, as shown in FIG.
The non-aqueous electrolyte 14 prepared as described above is accommodated therein, and the positive electrode prepared as described above is used for the working electrode 11, and the counter electrode 12 serving as the negative electrode and the reference electrode 13 are each made of metallic lithium. Was used.

【0022】そして、上記の試験セル10において、先
ず、放電電流2mAで参照極13に対する作用極11の
電位が0.5Vになるまで放電を行った後、充電電流2
mAで参照極13に対する作用極11の電位が4.0V
になるまで充電を行った。その後も、同様にして放電と
充電とを繰り返して行った。図2において、第1回目の
放電時における電圧と正極における正極材料の比容量
(mAh/g)との関係を示す放電曲線を破線で、第1
回目の充電時における電圧と正極における正極材料の比
容量(mAh/g)との関係を示す充電曲線を実線で示
した。また、図3において、第2回目の放電時における
電圧と正極における正極材料の比容量(mAh/g)と
の関係を示す放電曲線を破線で、第2回目の充電時にお
ける電圧と正極における正極材料の比容量(mAh/
g)との関係を示す充電曲線を実線で示した。
Then, in the test cell 10 described above, first, the discharge is performed at a discharge current of 2 mA until the potential of the working electrode 11 with respect to the reference electrode 13 becomes 0.5 V, and then the charge current 2
At mA, the potential of the working electrode 11 with respect to the reference electrode 13 is 4.0 V
The battery was charged until it became. Thereafter, the discharging and charging were repeated in the same manner. In FIG. 2, the discharge curve showing the relationship between the voltage at the time of the first discharge and the specific capacity (mAh / g) of the positive electrode material in the positive electrode is represented by a broken line,
A solid curve shows a charging curve showing the relationship between the voltage at the time of the second charging and the specific capacity (mAh / g) of the positive electrode material in the positive electrode. In FIG. 3, a broken line represents a discharge curve indicating the relationship between the voltage at the time of the second discharge and the specific capacity (mAh / g) of the positive electrode material at the positive electrode, and the voltage at the time of the second charge and the positive electrode at the positive electrode. Specific capacity of material (mAh /
The charging curve showing the relationship with g) was shown by a solid line.

【0023】また、上記のような放電と充電とを1サイ
クルとして、放電と充電とを繰り返して行い、各サイク
ルの放電時における正極材料の比容量(mAh/g)を
求め、その結果を図4に示した。
Further, the discharge and charge as described above are regarded as one cycle, and the discharge and charge are repeatedly performed, and the specific capacity (mAh / g) of the positive electrode material at the time of discharge in each cycle is obtained. The results are shown in FIG.

【0024】さらに、各サイクルにおける放電容量に対
する充電容量の比率、すなわち放充電効率(%)を求
め、その結果を図5に示した。
Further, the ratio of the charge capacity to the discharge capacity in each cycle, that is, the discharge / charge efficiency (%) was determined, and the results are shown in FIG.

【0025】これらの結果から明らかなように、正極材
料に空間群R3mの結晶構造を有する遷移金属酸化物で
あるNaFeO2 を用いた場合、第1回目の放電時にお
いては、正極材料の比容量が993mAh/gと非常に
高くなっており、また第1回目と第2回目との間におい
ては正極材料の比容量が大きく低下したが、このように
比容量が大きく低下した2回目以降においても、従来の
比容量が150mAh/g程度のLiCoO2 に比べる
と、非常に高い比容量を示した。
As is apparent from these results, when NaFeO 2 , which is a transition metal oxide having a crystal structure of space group R3m, is used as the cathode material, the specific capacity of the cathode material during the first discharge Is very high at 993 mAh / g, and the specific capacity of the positive electrode material is significantly reduced between the first and second times. In comparison with the conventional LiCoO 2 having a specific capacity of about 150 mAh / g, the specific capacity was very high.

【0026】また、第2回目以降においては、正極材料
の比容量の低下は非常に少なく、放充電効率も100%
に近い値になっており、高い容量で安定した充放電が行
えるようになっていた。
In the second and subsequent times, the decrease in the specific capacity of the positive electrode material is very small, and the discharge / charge efficiency is 100%.
, And stable charge and discharge can be performed with a high capacity.

【0027】次に、正極材料に比容量が993mAh/
gになった上記のNaFeO2 を用いると共に、負極材
料に特願2000−321200号や特願2000−3
21201号に示す比容量が3000mAh/gになっ
たLi−Si合金を用いた実施例の非水電解質二次電池
と、正極材料に比容量が150mAh/gになったLi
CoO2 を用いると共に、負極材料に比容量が370m
Ah/gになった黒鉛を用いた比較例の非水電解質二次
電池において、電池電圧を求めると共に、第1回目のサ
イクル時における容量密度(Ah/kg)を下記の式
(1)により求め、さらにエネルギー密度(Wh/k
g)を下記の式(2)によって求め、その結果を下記の
表1に示した。
Next, the specific capacity of the positive electrode material is 993 mAh /
g of the above-mentioned NaFeO 2 and the negative electrode material as disclosed in Japanese Patent Application Nos. 2000-321200 and 2000-3
Non-aqueous electrolyte secondary battery of Example using a Li-Si alloy having a specific capacity of 3000 mAh / g shown in No. 21201, and Li having a specific capacity of 150 mAh / g for a positive electrode material
Using CoO 2 , the specific capacity of the negative electrode material is 370 m
In the non-aqueous electrolyte secondary battery of Comparative Example using Ah / g of graphite, the battery voltage was determined, and the capacity density (Ah / kg) at the first cycle was determined by the following equation (1). , And the energy density (Wh / k
g) was determined by the following equation (2), and the results are shown in Table 1 below.

【0028】 容量密度=(正極材料の比容量×負極材料の比容量)/(正極材料の比容量+負 極材料の比容量) …(1)Capacity density = (specific capacity of positive electrode material × specific capacity of negative electrode material) / (specific capacity of positive electrode material + specific capacity of negative electrode material) (1)

【0029】 エネルギー密度=容量密度×電池電圧 …(2)Energy density = capacity density × battery voltage (2)

【0030】[0030]

【表1】 [Table 1]

【0031】この結果から明らかなように、実施例の非
水電解質二次電池は、比較例の非水電解質二次電池に比
べて、容量密度及びエネルギー密度が大きく向上してい
た。
As is apparent from the results, the nonaqueous electrolyte secondary batteries of the examples had greatly improved capacity density and energy density as compared with the nonaqueous electrolyte secondary batteries of the comparative examples.

【0032】[0032]

【発明の効果】以上詳述したように、この発明における
非水電解質二次電池においては、正極における正極材料
に、空間群R3mの結晶構造を有する遷移金属酸化物
(但し、LiCoO2 を除く。)を用いると共に、負極
にリチウムを含有する負極材料を用いるようにし、先ず
放電を行って、負極材料に含まれているリチウムを上記
の正極材料に挿入させた後、この正極と負極との間でリ
チウムイオンを移動させて充放電を行うようにしたた
め、多くの量のリチウムを充放電に関与させることがで
きるようになり、正極材料における比容量が高くなっ
て、エネルギー密度が向上し、高い電池容量をもつ非水
電解質二次電池が得られるようになった。
As described in detail above, in the nonaqueous electrolyte secondary battery according to the present invention, the positive electrode material of the positive electrode is a transition metal oxide having a crystal structure of the space group R3m (excluding LiCoO 2 ). ) And using a negative electrode material containing lithium for the negative electrode. First, discharge is performed to insert the lithium contained in the negative electrode material into the above positive electrode material, and then between the positive electrode and the negative electrode. In order to perform charge and discharge by moving lithium ions, a large amount of lithium can be involved in charge and discharge, the specific capacity of the positive electrode material is increased, the energy density is improved, and the A non-aqueous electrolyte secondary battery having a battery capacity has been obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例において使用した試験セルの
概略説明図である。
FIG. 1 is a schematic explanatory view of a test cell used in an embodiment of the present invention.

【図2】上記の実施例の試験セルにおいて、1サイクル
目における放電及び充電の特性を示した図である。
FIG. 2 is a diagram showing discharge and charge characteristics in a first cycle in the test cell of the above embodiment.

【図3】上記の実施例の試験セルにおいて、2サイクル
目における放電及び充電の特性を示した図である。
FIG. 3 is a diagram showing discharge and charge characteristics in a second cycle in the test cell of the above example.

【図4】上記の実施例の試験セルにおいて、サイクル数
と正極材料の比容量との関係を示した図である。
FIG. 4 is a diagram showing the relationship between the number of cycles and the specific capacity of a positive electrode material in the test cell of the above example.

【図5】上記の実施例の試験セルにおいて、サイクル数
と放充電効率との関係を示した図である。
FIG. 5 is a diagram showing the relationship between the number of cycles and the discharge / charge efficiency in the test cell of the above embodiment.

【符号の説明】[Explanation of symbols]

10 試験セル 11 作用極(正極) 12 対極(負極) 13 参照極 14 非水電解液(非水電解質) 10 Test cell 11 Working electrode (positive electrode) 12 Counter electrode (negative electrode) 13 Reference electrode 14 Non-aqueous electrolyte (non-aqueous electrolyte)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤谷 伸 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H029 AJ03 AK03 AL12 AM03 AM05 AM07 DJ17 5H050 AA08 BA16 CA07 CA08 CB12 FA19 HA02 HA13  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shin Fujitani 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. F-term (reference) 5H029 AJ03 AK03 AL12 AM03 AM05 AM07 DJ17 5H050 AA08 BA16 CA07 CA08 CB12 FA19 HA02 HA13

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極と、負極と、有機溶媒を用いた非水
電解質とを備えた非水電解質二次電池において、上記の
正極における正極材料に、空間群R3mの結晶構造を有
する遷移金属酸化物(但し、LiCoO2 を除く。)を
用いると共に、負極にリチウムを含有する負極材料を用
いたことを特徴とする非水電解質二次電池。
1. A non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte using an organic solvent, wherein the positive electrode material of the positive electrode has a transition metal oxide having a crystal structure of a space group R3m. A non-aqueous electrolyte secondary battery using a material (however, excluding LiCoO 2 ) and using a negative electrode material containing lithium for the negative electrode.
【請求項2】 請求項1に記載した非水電解質二次電池
において、上記の負極における負極材料に、金属リチウ
ム又はリチウム合金を用いたことを特徴とする非水電解
質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein lithium metal or a lithium alloy is used as a negative electrode material in the negative electrode.
【請求項3】 請求項1又は2に記載した非水電解質二
次電池において、上記の空間群R3mの結晶構造を有す
る遷移金属酸化物がNaFeO2 であることを特徴とす
る非水電解質二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the transition metal oxide having a crystal structure of the space group R3m is NaFeO 2. battery.
【請求項4】 請求項1〜3の何れか1項に記載した非
水電解質二次電池において、上記の負極材料が、Li−
Si合金であることを特徴とする非水電解質二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode material is Li-
A non-aqueous electrolyte secondary battery comprising a Si alloy.
JP2000345124A 2000-11-13 2000-11-13 Non-aqueous electrolyte secondary battery charge / discharge method Expired - Fee Related JP3778794B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000345124A JP3778794B2 (en) 2000-11-13 2000-11-13 Non-aqueous electrolyte secondary battery charge / discharge method
US09/986,067 US7045250B2 (en) 2000-11-13 2001-11-07 Non-aqueous electrolyte battery
US10/632,834 US20040029007A1 (en) 2000-11-13 2003-08-04 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000345124A JP3778794B2 (en) 2000-11-13 2000-11-13 Non-aqueous electrolyte secondary battery charge / discharge method

Publications (2)

Publication Number Publication Date
JP2002151074A true JP2002151074A (en) 2002-05-24
JP3778794B2 JP3778794B2 (en) 2006-05-24

Family

ID=18819212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000345124A Expired - Fee Related JP3778794B2 (en) 2000-11-13 2000-11-13 Non-aqueous electrolyte secondary battery charge / discharge method

Country Status (1)

Country Link
JP (1) JP3778794B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060828A1 (en) 2007-11-09 2009-05-14 Sumitomo Chemical Company, Limited Complex metal oxide and sodium secondary battery
US7794879B2 (en) 2004-03-31 2010-09-14 Jun-ichi Yamaki Positive electrode active material for non-aqueous electrolyte secondary cell
US9502714B2 (en) 2009-03-13 2016-11-22 Sumitomo Chemical Company, Limited Mixed metal oxide, electrode, and sodium secondary battery
JP2023031127A (en) * 2021-08-24 2023-03-08 トヨタ自動車株式会社 Manufacturing method for battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7794879B2 (en) 2004-03-31 2010-09-14 Jun-ichi Yamaki Positive electrode active material for non-aqueous electrolyte secondary cell
KR101245535B1 (en) 2004-03-31 2013-03-21 스미또모 가가꾸 가부시키가이샤 Positive electrode active material for non-aqueous electrolyte secondary battery
WO2009060828A1 (en) 2007-11-09 2009-05-14 Sumitomo Chemical Company, Limited Complex metal oxide and sodium secondary battery
US9502714B2 (en) 2009-03-13 2016-11-22 Sumitomo Chemical Company, Limited Mixed metal oxide, electrode, and sodium secondary battery
JP2023031127A (en) * 2021-08-24 2023-03-08 トヨタ自動車株式会社 Manufacturing method for battery
JP7655148B2 (en) 2021-08-24 2025-04-02 トヨタ自動車株式会社 Battery manufacturing method

Also Published As

Publication number Publication date
JP3778794B2 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
JPH09147913A (en) Nonaqueous electrolyte battery
JP5159133B2 (en) Nonaqueous electrolyte secondary battery
JP5100069B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2004185931A (en) Nonaqueous electrolyte secondary battery
JP3349399B2 (en) Lithium secondary battery
JP4798951B2 (en) Non-aqueous electrolyte battery positive electrode and battery using this positive electrode
JP2002025609A (en) Lithium secondary battery
JP2006164695A (en) Nonaqueous electrolyte secondary battery
JP2000100469A (en) Nonaqueous electrolyte battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2006127933A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using it
JP3778794B2 (en) Non-aqueous electrolyte secondary battery charge / discharge method
JP2005259629A (en) Positive electrode for nonaqueous electrolyte battery, its manufacturing method, battery using the electrode, and manufacturing method of the battery
JP3691380B2 (en) Nonaqueous electrolyte secondary battery
JP2000030743A (en) Battery
JP2010218834A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JP2010218855A (en) Negative electrode for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
JP3895903B2 (en) Nonaqueous electrolyte secondary battery
JP2008235148A (en) Non-aqueous electrolyte secondary battery
JP4356127B2 (en) Lithium secondary battery
JP4738039B2 (en) Method for producing graphite-based carbon material
JP2006040557A (en) Organic electrolyte secondary battery
JP3258907B2 (en) Non-aqueous electrolyte secondary battery
JP6337019B2 (en) Electrochemical cell for lithium ion battery having negative electrode made of silicon and specific electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees