[go: up one dir, main page]

JP2002150999A - Discharge lamp device - Google Patents

Discharge lamp device

Info

Publication number
JP2002150999A
JP2002150999A JP2000342853A JP2000342853A JP2002150999A JP 2002150999 A JP2002150999 A JP 2002150999A JP 2000342853 A JP2000342853 A JP 2000342853A JP 2000342853 A JP2000342853 A JP 2000342853A JP 2002150999 A JP2002150999 A JP 2002150999A
Authority
JP
Japan
Prior art keywords
arc tube
discharge lamp
film
effective
quartz glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000342853A
Other languages
Japanese (ja)
Other versions
JP3578080B2 (en
Inventor
Kiyoyuki Kaburagi
清幸 蕪木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2000342853A priority Critical patent/JP3578080B2/en
Publication of JP2002150999A publication Critical patent/JP2002150999A/en
Application granted granted Critical
Publication of JP3578080B2 publication Critical patent/JP3578080B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

(57)【要約】 【課題】 発光管の温度を低下させることが可能であ
り、発光管の失透を防止できてランプ寿命が長く、高輝
度で演色性に優れた放電ランプ装置を提供する。 【解決手段】 放電ランプ10と凹面反射鏡20とから
なる放電ランプ装置において、凹面反射鏡の有効反射面
へ照射する光利用有効角度外の発光管11の外面、こと
に外面の上半分に石英ガラスより赤外放射率の高い膜3
0を形成する。更には、可視・赤外反射膜31の上に石
英ガラスより赤外放射率の高い膜30を形成する。ま
た、発光管の上半球の外面であって、凹面反射鏡の有効
反射面22へ照射する光利用有効角度内の発光管の外面
に可視・赤外反射膜を形成し、この可視・赤外反射膜の
上に石英ガラスより赤外放射率の高い膜を形成する。
[PROBLEMS] To provide a discharge lamp device capable of lowering the temperature of an arc tube, preventing devitrification of the arc tube, having a long lamp life, high luminance, and excellent color rendering properties. . SOLUTION: In a discharge lamp device including a discharge lamp 10 and a concave reflecting mirror 20, quartz is formed on an outer surface of a light emitting tube 11 outside an effective angle for utilizing light, which irradiates an effective reflecting surface of the concave reflecting mirror, and particularly on an upper half of the outer surface. Film 3 with higher infrared emissivity than glass
0 is formed. Further, a film 30 having a higher infrared emissivity than quartz glass is formed on the visible / infrared reflective film 31. Also, a visible / infrared reflective film is formed on the outer surface of the arc tube on the outer surface of the upper hemisphere within the effective light utilization angle for irradiating the effective reflecting surface 22 of the concave reflector. A film having a higher infrared emissivity than quartz glass is formed on the reflective film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶プロジェクタ
装置やファイバー照明機器などに使用される放電ランプ
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a discharge lamp device used for a liquid crystal projector device, a fiber lighting device, and the like.

【0002】[0002]

【従来の技術】液晶プロジェクタ装置などの光源装置と
して、放電ランプと凹面反射鏡を組み合わせた放電ラン
プ装置が使用されるが、高画質な画像を得るために、放
電ランプは、高輝度で演色性に優れるショートアーク型
の超高圧水銀ランプ、メタルハライドランプ、キセノン
ランプなどが使用される。
2. Description of the Related Art As a light source device such as a liquid crystal projector device, a discharge lamp device combining a discharge lamp and a concave reflecting mirror is used. In order to obtain a high-quality image, the discharge lamp has a high luminance and a high color rendering property. A short arc type ultra-high pressure mercury lamp, a metal halide lamp, a xenon lamp, and the like are used.

【0003】超高圧水銀ランプとメタルハライドランプ
は、良好な演色性を得るためには水銀やメタルの蒸気圧
を制御する必要があるので、保温膜を使用したり発光管
の形状を工夫して発光管内の最冷部温度を一定温度以上
に保持しているが、最近では、より高輝度で演色性に優
れた光を得るために、発光管をより高い温度に保持する
傾向にある。一方、キセノンランプは、発光管内の温度
差が大きくなると対流によるアークの揺らぎによりフリ
ッカーが問題となることがあるので、発光管温度はでき
るだけ均一化する必要がある。このため、特開平5−2
83051号公報や特開平6−252836号公報など
に示されるように、温度上昇の著しい発光管の上部に送
風パイプから冷却風を送風して冷却する方法が提案され
ている。
[0003] Ultra-high pressure mercury lamps and metal halide lamps need to control the vapor pressure of mercury or metal in order to obtain good color rendering properties. The coldest part temperature in the tube is maintained at a certain temperature or higher, but recently, in order to obtain light with higher luminance and excellent color rendering properties, the arc tube tends to be maintained at a higher temperature. On the other hand, in a xenon lamp, if the temperature difference in the arc tube becomes large, flicker may become a problem due to fluctuations of the arc due to convection, and therefore, it is necessary to make the arc tube temperature as uniform as possible. For this reason, Japanese Unexamined Patent Application Publication No.
As disclosed in Japanese Patent Application Laid-Open No. 83051 and Japanese Patent Application Laid-Open No. 6-252836, a method has been proposed in which cooling air is blown from a blower pipe to an upper portion of a light emitting tube having a remarkable rise in temperature to cool it.

【0004】[0004]

【発明が解決しようとする課題】ところで、プロジェク
タ装置などは小型・軽量化の要請が非常に大きく、従っ
て、凹面反射鏡は口径が小さくても受光角度が大きくで
きる短い焦点を持ち、ランプ挿入穴も小さいものが使用
される。このため、かかる凹面反射鏡と組み合わされる
放電ランプも小型であることが必要となり、従って、発
光管の管壁負荷が大きくなり、例えば超高圧水銀ランプ
では50W/cc以上の管壁負荷で点灯されるので、発
光管の温度は極めて高くなる。
However, there is a great demand for miniaturization and weight reduction of a projector device or the like. Therefore, a concave reflecting mirror has a short focal point capable of increasing a light receiving angle even with a small aperture, and a lamp insertion hole. Also small ones are used. For this reason, the discharge lamp combined with such a concave reflecting mirror also needs to be small, and therefore, the load on the tube wall of the arc tube becomes large. For example, in the case of an ultra-high pressure mercury lamp, the discharge lamp is lit with a tube wall load of 50 W / cc or more. Therefore, the temperature of the arc tube becomes extremely high.

【0005】放電ランプの発光管を大きくすると管壁負
荷が小さくなって発光管の温度上昇を抑制できる。しか
し、発光管が大きいと、凹面反射鏡のランプ挿入穴が小
さいので、ランプ挿入穴近傍の有効反射面で反射した光
は再び発光管に当って一部が反射し、所定以外の方向に
照射される光の「ケラレ」現象が生じる。また、発光管
が大きいと、発光管の最冷部の温度確保が困難になり、
輝度や演色性が損なわれる。
[0005] When the arc tube of the discharge lamp is enlarged, the tube wall load is reduced and the temperature rise of the arc tube can be suppressed. However, if the arc tube is large, the lamp insertion hole of the concave reflector is small, so that the light reflected by the effective reflection surface near the lamp insertion hole again strikes the arc tube, partially reflects, and irradiates in a direction other than the predetermined direction. The "vignetting" phenomenon of the generated light occurs. Also, if the arc tube is large, it becomes difficult to secure the temperature of the coldest part of the arc tube,
Luminance and color rendering are impaired.

【0006】前述のとおり、液晶プロジェクタ装置など
においては、冷却風を凹面反射鏡内に送風パイプによっ
て送風して発光管を冷却することが行われるが、冷却風
の騒音を小さくするために緩やかな送風が望まれてい
る。また、装置の小型化のために、送風は凹面反射鏡の
側面から行われることが多く、十分な冷却効果を得るの
が困難になっている。
As described above, in a liquid crystal projector or the like, cooling air is blown into a concave reflecting mirror by a blower pipe to cool the light emitting tube. Ventilation is desired. Further, in order to reduce the size of the apparatus, air is often blown from the side of the concave reflecting mirror, making it difficult to obtain a sufficient cooling effect.

【0007】光源ランプとして使用される超高圧水銀ラ
ンプ、メタルハライドランプ、キセノンランプは、点灯
時には発光管の内圧が4MPaを超す高圧動作になるの
で、発光管が破壊する恐れがある。このため、凹面反射
鏡の開口部近傍に透明な前面ガラスを配置して略密閉構
造とし、防爆・防音構造が取られることが多いが、かか
る構造の場合は、送風パイプから送風された冷却風の圧
力損失が大きく、良好な冷却効果は期待できない。
Ultra-high pressure mercury lamps, metal halide lamps, and xenon lamps used as light source lamps operate at a high pressure in which the internal pressure of the arc tube exceeds 4 MPa at the time of lighting, and the arc tube may be broken. For this reason, a transparent front glass is arranged near the opening of the concave reflecting mirror to make it a substantially sealed structure and an explosion-proof / sound-proof structure is often adopted, but in such a case, the cooling air blown from the blower pipe is used. Has a large pressure loss, and a good cooling effect cannot be expected.

【0008】このように、液晶プロジェクタ装置の光源
ランプとして使用される放電ランプは、高輝度で演色性
に優れ、かつ小型化が要求されるので、その発光管は温
度が極めて高くなる傾向にある。しかし、一般に石英ガ
ラス製の発光管は、その外面が1100℃以上になると
内面が失透し、また発光管の膨れにより光量減衰が大き
くなり、ランプ寿命が著しく短くなる。
As described above, since the discharge lamp used as the light source lamp of the liquid crystal projector is required to have high luminance, excellent color rendering properties, and to be miniaturized, the temperature of the arc tube tends to be extremely high. . However, in general, the inner surface of a quartz glass arc tube becomes devitrified when its outer surface becomes 1100 ° C. or higher, and the luminous bulb swells to greatly reduce the amount of light, thereby significantly shortening the lamp life.

【0009】そこで本発明は、発光管のサイズを大きく
することなく、その温度を低下させることが可能であ
り、発光管を構成する石英ガラスの失透を防止できてラ
ンプ寿命が長く、高輝度で演色性に優れた放電ランプ装
置を提供することを目的とするものである。
Accordingly, the present invention can reduce the temperature of the arc tube without increasing the size of the arc tube, can prevent the devitrification of the quartz glass constituting the arc tube, prolong the lamp life, and achieve high brightness. Accordingly, it is an object of the present invention to provide a discharge lamp device having excellent color rendering properties.

【0010】[0010]

【課題を解決するための手段】かかる目的を達成するた
めに、請求項1の発明は、石英ガラス製の発光管とこの
発光管の両側に連設された封止管部を有し、封止管部に
保持された一対の電極が発光管内で対向配置された放電
ランプと、放電ランプの一方の封止管部側で固定され、
他方の封止管部側で開口する凹面反射鏡とからなる放電
ランプ装置において、凹面反射鏡の有効反射面へ照射す
る光利用有効角度外の発光管の外面に石英ガラスより赤
外放射率の高い膜を形成する。
In order to achieve the above object, an object of the present invention is to provide a luminous tube made of quartz glass and a sealing tube portion provided on both sides of the luminous tube. A discharge lamp in which a pair of electrodes held in the stop tube portion are disposed opposite to each other in the arc tube, and fixed on one sealing tube side of the discharge lamp,
In a discharge lamp device comprising a concave reflecting mirror which is opened on the other sealing tube side, an infrared emissivity of quartz glass is higher than that of quartz glass on an outer surface of a light emitting tube which is out of an effective angle of light utilization for irradiating an effective reflecting surface of the concave reflecting mirror. Form a high film.

【0011】ここで、石英ガラスの平均放射率をε、石
英ガラスより赤外放射率の高い膜の平均放射率をε′
(ε′>ε)とするとき、輻射による冷却能力をε′/
ε倍に改善できるので、発光管の表面にε′の大きな石
英ガラスより赤外放射率の高い膜を形成することによ
り、小さな発光管であっても発光管の温度上昇を抑制す
ることができてランプ寿命を長くすることができる。ま
た、石英ガラスより赤外放射率の高い膜を形成する範囲
は、凹面反射鏡の有効反射面へ照射する光利用有効角度
外であるので、有効に利用できる可視光が石英ガラスよ
り赤外放射率の高い膜によって遮られることがなく、光
の利用効率が低下することがない。
Here, the average emissivity of quartz glass is ε, and the average emissivity of a film having a higher infrared emissivity than quartz glass is ε ′.
When (ε ′> ε), the cooling capacity by radiation is ε ′ /
Since it can be improved by a factor of ε, forming a film with a higher infrared emissivity than quartz glass with a large ε 'on the surface of the arc tube can suppress the temperature rise of the arc tube even with a small arc tube. Lamp life can be prolonged. In addition, the range in which a film having an infrared emissivity higher than that of quartz glass is formed is outside the effective angle at which light is applied to the effective reflection surface of the concave reflecting mirror, so that visible light that can be effectively used emits infrared light more than quartz glass. There is no interruption by the film with high efficiency, and the light use efficiency does not decrease.

【0012】放電ランプを水平姿勢で点灯するとき、発
光管の上半球がより高温になるので、請求項2の発明の
ように、発光管の上半球の外面であって、凹面反射鏡の
有効反射面へ照射する光利用有効角度外の発光管の外面
に石英ガラスより赤外放射率の高い膜を形成すると、少
ない石英ガラスより赤外放射率の高い膜の形成面積で、
効率良く発光管の温度制御を行うことができる。
When the discharge lamp is turned on in a horizontal position, the upper hemisphere of the arc tube becomes hotter, so that the concave reflector is effective on the outer surface of the upper hemisphere of the arc tube. When a film with a higher infrared emissivity than quartz glass is formed on the outer surface of the arc tube outside the effective angle of light utilization to irradiate the reflecting surface, the film formation area with a higher infrared emissivity than quartz glass is small,
The temperature of the arc tube can be efficiently controlled.

【0013】請求項3の発明のように、凹面反射鏡の有
効反射面へ照射する光利用有効角度外の発光管の外面に
可視・赤外反射膜を形成し、この可視・赤外反射膜の上
に石英ガラスより赤外放射率の高い膜を形成すると、ア
ークや電極からの放射を受けても、発光管の熱吸収量が
少なく、かつ熱放射量を大きくできる。
According to a third aspect of the present invention, a visible / infrared reflecting film is formed on the outer surface of the arc tube outside the effective light use angle for irradiating the effective reflecting surface of the concave reflecting mirror. When a film having a higher infrared emissivity than quartz glass is formed thereon, the amount of heat absorbed by the arc tube can be reduced and the amount of heat radiation can be increased even when radiation from an arc or an electrode is received.

【0014】次に、放電ランプを水平姿勢で点灯すると
き、請求項4の発明のように、発光管の上半球の外面で
あって、凹面反射鏡の有効反射面へ照射する光利用有効
角度内の発光管の外面に可視・赤外反射膜を形成し、こ
の可視・赤外反射膜の上に石英ガラスより赤外放射率の
高い膜を形成すると、石英ガラスより赤外放射率の高い
膜の形成面積が拡大されて発光管の降温させたい部分の
温度を効率よく抑制することかできる。なお、光利用有
効角度内の可視・赤外反射膜で反射した可視光は、下半
球の発光管を透過し、凹面反射鏡の有効反射面で反射す
るので、光の利用効率がほとんど低下することがない。
Next, when the discharge lamp is turned on in a horizontal position, the effective light utilization angle for irradiating the outer surface of the upper hemisphere of the arc tube and the effective reflecting surface of the concave reflecting mirror is provided. When a visible / infrared reflective film is formed on the outer surface of the inner arc tube and a film with a higher infrared emissivity than quartz glass is formed on this visible / infrared reflective film, the infrared emissivity is higher than quartz glass. The area where the film is formed is enlarged, and the temperature of the portion of the arc tube where the temperature is desired to be lowered can be efficiently suppressed. In addition, the visible light reflected by the visible / infrared reflective film within the effective light use angle passes through the arc tube of the lower hemisphere and is reflected by the effective reflection surface of the concave reflector, so that the light use efficiency is almost reduced. Nothing.

【0015】[0015]

【発明の実施の形態】以下に、図面に基づいて本発明の
実施の形態を具体的に説明する。図1は請求項1の発明
の実施の形態を示す。図1において、放電ランプ10は
ランプ入力がAC150Wの超高圧放電ランプである。
石英ガラスからなる発光管11の両端には封止管部12
が一体に連設されている。発光管11内には一対の電極
13、13が所定間隔で対向配置され、また、所定量の
水銀が封入されている。封止管部12内にはモリブデン
箔14が埋設されており、電極13、13の端部がモリ
ブデン箔14に溶接されている。外部リード棒15の端
部もモリブデン箔14に溶接されて封止管部12の端部
から伸び出している。また、一方の封止管部12には口
金16が取り付けられている。
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 shows an embodiment of the present invention. In FIG. 1, a discharge lamp 10 is an ultra-high pressure discharge lamp having a lamp input of 150 W AC.
A sealing tube section 12 is provided at both ends of an arc tube 11 made of quartz glass.
Are connected continuously. A pair of electrodes 13 and 13 are arranged inside the arc tube 11 at a predetermined interval, and a predetermined amount of mercury is sealed therein. A molybdenum foil 14 is embedded in the sealing tube 12, and the ends of the electrodes 13, 13 are welded to the molybdenum foil 14. The end of the external lead rod 15 is also welded to the molybdenum foil 14 and extends from the end of the sealing tube 12. A base 16 is attached to one of the sealing tube portions 12.

【0016】この放電ランプ10の具体的数値例を挙げ
ると、発光管11の外径Dがφ10mm、肉厚が2.5
mm、封止管部12の外径dがφ6mm、長さSLが2
5mm、水銀の封入量が0.15mg/mmである。
As a specific numerical example of the discharge lamp 10, the outer diameter D of the arc tube 11 is 10 mm and the wall thickness is 2.5 mm.
mm, the outer diameter d of the sealing tube 12 is φ6 mm, and the length SL is 2
5 mm, the amount of enclosed mercury is 0.15 mg / mm 2 .

【0017】凹面反射鏡20は、結晶化ガラスで成形さ
れたF6放物面鏡である。凹面反射鏡20の背面の頂部
にはランプ挿入筒部21が形成されており、放電ランプ
10の一方の封止管部12がランプ挿入筒部21に挿入
され、所定の位置関係で保持されている。凹面反射鏡2
0の内面の放物面をなして反射光を凹面反射鏡20の開
口側に照射する面が有効反射面22であり、その表面に
可視光反射膜が形成されている。有効反射面22前方に
は2個の冷却風通過孔23が対向して設けられている。
また、凹面反射鏡20の前面開口には、防爆・防音用の
前面ガラス24が取り付けられている。
The concave reflecting mirror 20 is an F6 parabolic mirror formed of crystallized glass. A lamp insertion tube 21 is formed on the top of the back surface of the concave reflecting mirror 20, and one sealing tube 12 of the discharge lamp 10 is inserted into the lamp insertion tube 21 and held in a predetermined positional relationship. I have. Concave reflector 2
The effective reflection surface 22 is a surface that forms a paraboloid of the inner surface of the zero and irradiates the reflected light to the opening side of the concave reflection mirror 20, and a visible light reflection film is formed on the surface. Two cooling air passage holes 23 are provided in front of the effective reflection surface 22 so as to face each other.
An explosion-proof / sound-proof front glass 24 is attached to the front opening of the concave reflecting mirror 20.

【0018】この凹面反射鏡20の具体例を挙げると、
肉厚が2.5mm、口径がφ45mm、ランプ挿入筒部
21の内径がφ11mm、冷却風通過孔23の面積が約
200mmである。そして、可視光反射膜は、TiO
とSiOの薄膜を交互に37層積層したものでる。
A specific example of the concave reflecting mirror 20 is as follows.
The wall thickness is 2.5 mm, the diameter is 45 mm, the inner diameter of the lamp insertion tube 21 is 11 mm, and the area of the cooling air passage hole 23 is about 200 mm 2 . The visible light reflecting film is made of TiO.
2 and SiO 2 thin films are alternately laminated in 37 layers.

【0019】放電ランプ13の電極13、13間のアー
ク輝点から放射する光が凹面反射鏡20の有効反射面2
2で反射する角度、つまり、図1に示すように、有効反
射面22の開口側およびランプ挿入筒部側の端部を電極
13、13間の中心とそれぞれ結んだ線間のなす角度が
光利用有効角度であり、この例では48〜129°の領
域である。そして、発光管11の光利用有効角度の外領
域表面に石英ガラスより赤外放射率の高い膜30が円環
状に形成されている。石英ガラスより赤外放射率の高い
膜30は、例えばSiZrO・MnとFe
・CoOの混合微粉末を5〜20μmの厚さに塗布し
て焼き付けたものである。
The light radiated from the arc luminescent spot between the electrodes 13 of the discharge lamp 13 is applied to the effective reflecting surface 2 of the concave reflecting mirror 20.
2, the angle formed by the line connecting the end of the effective reflection surface 22 on the opening side and the end of the lamp insertion tube to the center between the electrodes 13 is light. The effective use angle, which is a range of 48 to 129 ° in this example. A film 30 having an infrared emissivity higher than that of quartz glass is formed in an annular shape on the outer surface of the arc tube 11 at an effective light use angle. The film 30 having a higher infrared emissivity than quartz glass is made of, for example, SiZrO 4 .Mn 2 O 3 and Fe 2 O
3. CoO mixed fine powder is applied to a thickness of 5 to 20 μm and baked.

【0020】しかして放電ランプ10を点灯し、冷却風
を凹面反射鏡20の側面に形成された一方の冷却風通過
孔23から風速が約数m/sで送風し、放電ランプ10
を冷却した後、他方の冷却風通過孔23から流出させ
た。そして、発光管11上部外面の温度を測定したとこ
ろ1070℃であった。石英ガラスより赤外放射率の高
い膜30を形成しない従来例においては、この温度は1
100℃あり、30℃低下した。その結果、点灯時間に
対する発光管11の失透速度が遅くなり、良好な光束維
持率が実現できるようになった。しかし、発光管11下
部外面の温度も、従来例の870℃から30℃程度低下
した。つまり、発光管11上下の温度差の割合が大きく
なり、発光管11の下部に白い「くもり」が認められ
た。そして、光出力は約5%低下した。
When the discharge lamp 10 is turned on, cooling air is blown from the cooling air passage hole 23 formed on the side surface of the concave reflecting mirror 20 at a wind speed of about several m / s.
After cooling, it was discharged from the other cooling air passage hole 23. When the temperature of the upper outer surface of the arc tube 11 was measured, it was 1070 ° C. In a conventional example in which the film 30 having a higher infrared emissivity than quartz glass is not formed, this temperature is 1
There was 100 ° C and the temperature dropped by 30 ° C. As a result, the devitrification speed of the arc tube 11 with respect to the lighting time becomes slow, and a good luminous flux maintenance ratio can be realized. However, the temperature of the lower outer surface of the arc tube 11 also dropped by about 30 ° C. from 870 ° C. in the conventional example. That is, the ratio of the temperature difference between the upper and lower portions of the arc tube 11 became large, and a white “cloud” was recognized at the lower portion of the arc tube 11. Then, the light output decreased by about 5%.

【0021】図2は、請求項2の発明の実施の形態を示
す。放電ランプ10および凹面反射鏡20は図1に示し
たものと同一であり、放電ランプ10は水平姿勢で点灯
される。そして、図1に示したものと同一の石英ガラス
より赤外放射率の高い膜30が、発光管11の光利用有
効角度の外領域の上表面にのみ形成されている。
FIG. 2 shows an embodiment of the second aspect of the present invention. The discharge lamp 10 and the concave reflecting mirror 20 are the same as those shown in FIG. 1, and the discharge lamp 10 is turned on in a horizontal posture. A film 30 having a higher infrared emissivity than the same quartz glass as that shown in FIG. 1 is formed only on the upper surface of the arc tube 11 outside the effective light use angle.

【0022】放電ランプ10を点灯し、前記と同じ冷却
条件で放電ランプ10を冷却して、発光管11上部外面
の温度を測定したところ、この例においても従来例の1
070℃から30℃低下した。その結果、図1の場合と
同様に、点灯時間に対する発光管11の失透速度が遅く
なり、良好な光束維持率が実現できるようになった。一
方、発光管11下部外面の温度は従来例と同じく870
℃であり、低下しなかった。つまり、発光管11上下の
温度差が小さくなり、発光管11の下部に白い「くも
り」が認められず、光出力もほとんど低下しなかった。
When the discharge lamp 10 was turned on, the discharge lamp 10 was cooled under the same cooling conditions as described above, and the temperature of the outer surface of the upper part of the arc tube 11 was measured.
The temperature dropped from 070 ° C to 30 ° C. As a result, as in the case of FIG. 1, the devitrification speed of the arc tube 11 with respect to the lighting time becomes slow, and a good luminous flux maintenance ratio can be realized. On the other hand, the temperature of the outer surface of the lower part of the arc tube 11 is 870 like the conventional example.
° C and did not decrease. In other words, the temperature difference between the upper and lower portions of the arc tube 11 became small, no white “cloud” was recognized below the arc tube 11, and the light output hardly decreased.

【0023】図3は、請求項3の発明の実施の形態の要
部を示す。放電ランプ10は、ランプ入力がDC150
Wの超高圧放電ランプであり、発光管11内に陰極13
Aと陽極13Bが対向配置されているが、その他の仕様
は図1に示した放電ランプ10と同じである。また、図
示しない凹面反射鏡も図1に示したものと同じであり、
放電ランプ10は水平姿勢で点灯される。そして、発光
管11の光利用有効角度の外領域の上表面にのみ、先
ず、可視・赤外反射膜31が形成され、この可視・赤外
反射膜31の上に、図2に示すものと同じ石英ガラスよ
り赤外放射率の高い膜30が形成されている。可視・赤
外反射膜31としては、「水白金」(大研化学工業株式
会社製、製品名:5611Vなど)や誘電体多層膜など
を使用することができる。水白金はバルサム白金やバル
サム金を主成分とする液状体であり、これらを10μm
程度の厚さで塗布して焼き付けるが、これらの薄膜は可
視・赤外光をよく反射し、かつ耐熱性が高い特性を有す
る。なお、図3において、理解しやすいように可視・赤
外反射膜31が一部露出しているように図示したが、実
際には可視・赤外反射膜31は石英ガラスより赤外放射
率の高い膜30で完全に覆われている。
FIG. 3 shows a main part of the third embodiment of the present invention. The discharge lamp 10 has a lamp input of DC 150
W is an ultra-high pressure discharge lamp having a cathode 13 in an arc tube 11.
A and the anode 13B are opposed to each other, but other specifications are the same as those of the discharge lamp 10 shown in FIG. Also, a concave reflecting mirror (not shown) is the same as that shown in FIG.
The discharge lamp 10 is turned on in a horizontal posture. A visible / infrared reflective film 31 is first formed only on the upper surface of the outer region of the effective light use angle of the arc tube 11, and the visible / infrared reflective film 31 is formed on the visible / infrared reflective film 31 as shown in FIG. A film 30 having a higher infrared emissivity than the same quartz glass is formed. As the visible / infrared reflective film 31, “water platinum” (manufactured by Daiken Chemical Co., Ltd., product name: 5611V, etc.), a dielectric multilayer film, or the like can be used. Water platinum is a liquid containing balsam platinum or balsam gold as a main component.
Although applied and baked with a thickness of about the same, these thin films have a property of reflecting visible and infrared light well and having high heat resistance. In FIG. 3, the visible / infrared reflective film 31 is illustrated as being partially exposed for easy understanding, but actually, the visible / infrared reflective film 31 has a higher infrared emissivity than quartz glass. It is completely covered by the high film 30.

【0024】前記と同じ冷却条件で冷却し、発光管11
上部外面の温度を測定したところ、前記の石英ガラスよ
り赤外放射率の高い膜30のみを形成した場合よりも更
に5℃以上低下させることができた。従って、前記の例
よりも、より大きな効果を得ることができる。これは、
可視・赤外反射膜31によって、主として陽極13Bか
ら放射される波長4μm以下の可視・赤外光の発光管1
1への入熱を減少できるためである。
After cooling under the same cooling conditions as described above,
When the temperature of the upper outer surface was measured, the temperature could be further lowered by 5 ° C. or more than when only the film 30 having a higher infrared emissivity than the quartz glass was formed. Therefore, a greater effect can be obtained than in the above example. this is,
The visible / infrared reflecting film 31 mainly emits visible / infrared light having a wavelength of 4 μm or less emitted from the anode 13B.
This is because the heat input to No. 1 can be reduced.

【0025】図4は、請求項4の発明の実施の態様の要
部を示す。放電ランプ10はランプ入力がDC1kWの
ショートアーク型キセノンランプである。石英ガラスか
らなる発光管11は、外径がφ32mm、肉厚が2mm
の略球状体であり、発光管11の両端に封止管部12が
一体に連設されている。発光管11内にはキセノンガス
が封入されいる。また、発光管11内には、封止管部1
2に埋設されたモリブデン箔14に端部が溶接された陰
極13Aと陽極13Bが3mm間隔で対向配置されてい
る。
FIG. 4 shows a main part of an embodiment of the present invention. The discharge lamp 10 is a short arc xenon lamp with a lamp input of DC 1 kW. The arc tube 11 made of quartz glass has an outer diameter of 32 mm and a thickness of 2 mm.
, And a sealing tube portion 12 is integrally connected to both ends of the arc tube 11. Xenon gas is sealed in the arc tube 11. In the arc tube 11, the sealing tube portion 1 is provided.
A cathode 13A and an anode 13B whose ends are welded to the molybdenum foil 14 embedded in the second 2 are arranged facing each other at an interval of 3 mm.

【0026】この放電ランプ10を水平姿勢で点灯した
ときに上面となる発光管11の光利用有効角度内領域の
表面に可視反射膜32、可視・赤外反射膜31、石英ガ
ラスより赤外放射率の高い膜30をこの順序で形成し
た。これらを形成した部位は、陽極13Bの先端上部を
中心Cとした約φ7mm領域である。可視反射膜32は
必ずしも必要でないが、可視・赤外反射膜31の下に可
視反射膜32を形成することにより、可視光をより確実
に反射することができて好ましい。また、図1〜図3の
場合と同様に、発光管11の光利用有効角度の外領域表
面にも石英ガラスより赤外放射率の高い膜30などを形
成してもよい。
When the discharge lamp 10 is turned on in a horizontal position, the visible reflection film 32, the visible / infrared reflection film 31, and infrared radiation from the quartz glass are formed on the surface of the arc tube 11 within the effective light use angle region on the upper surface. A film 30 having a high rate was formed in this order. The portion where these are formed is a region of about φ7 mm centered on the upper end of the tip of the anode 13B. Although the visible reflection film 32 is not always necessary, it is preferable to form the visible reflection film 32 under the visible / infrared reflection film 31 because visible light can be more reliably reflected. Also, as in the case of FIGS. 1 to 3, a film 30 having a higher infrared emissivity than quartz glass or the like may be formed on the outer surface of the arc tube 11 at an effective light use angle.

【0027】可視反射膜32は、例えば(SiO+T
)の誘電体多層膜であり、可視・赤外反射膜3
1は、(SiO+Ta)の誘電体多層膜+「水
白金」であり、これらを数十μmの厚さに塗布して焼き
付けたものである。石英ガラスより赤外放射率の高い膜
30は、前記と同じく、SiZrO・MnとF
・CoOの混合微粉末を数十μmの厚さに塗布
して焼き付けたものである。
The visible reflection film 32 is made of, for example, (SiO 2 + T
a 2 O 5 ), a visible / infrared reflective film 3
Reference numeral 1 denotes a dielectric multilayer film of (SiO 2 + Ta 2 O 5 ) + “water platinum”, which is applied to a thickness of several tens μm and baked. The film 30 having a higher infrared emissivity than quartz glass is made of SiZrO 4 .Mn 2 O 3 and F
It is obtained by applying and baking a mixed fine powder of e 2 O 3 .CoO to a thickness of several tens μm.

【0028】この放電ランプ10を凹面反射鏡と組み合
わせることなく、開放自然空冷の状態でランプ単体で点
灯し、発光管11の上部外面の温度を測定したところ、
石英ガラスより赤外放射率の高い膜30などを形成しな
い従来例に比べて、約80℃も下げることができた。従
って、凹面反射鏡と組み合わせて放電ランプ装置とした
ときも、発光管11の上部外面の温度を大きく低下する
ことができる。そして、可視反射膜32や可視・赤外反
射膜31で反射した光は、発光管11の下部を透過して
凹面反射鏡の有効反射面で反射されるので、光出力はほ
とんど低下することがない。
The discharge lamp 10 was turned on alone in an open natural air-cooled state without being combined with a concave reflecting mirror, and the temperature of the upper outer surface of the arc tube 11 was measured.
The temperature was reduced by about 80 ° C. as compared with the conventional example in which the film 30 having a higher infrared emissivity than quartz glass was not formed. Therefore, even when the discharge lamp device is used in combination with the concave reflecting mirror, the temperature of the upper outer surface of the arc tube 11 can be greatly reduced. Then, the light reflected by the visible reflection film 32 or the visible / infrared reflection film 31 passes through the lower part of the arc tube 11 and is reflected by the effective reflection surface of the concave reflecting mirror, so that the light output hardly decreases. Absent.

【0029】[0029]

【発明の効果】以上説明したように、請求項1〜3の発
明は、放電ランプと凹面反射鏡とからなる放電ランプ装
置において、凹面反射鏡の有効反射面へ照射する光利用
有効角度外の発光管の外面、ことに外面の上半分に石英
ガラスより赤外放射率の高い膜を形成し、更には、可視
・赤外反射膜の上に石英ガラスより赤外放射率の高い膜
を形成するので、発光管を小さくすることなく、発光管
の温度を低下させることが可能であり、発光管の失透を
防止できてランプ寿命が長く、高輝度で演色性に優れた
放電ランプ装置とすることができる。また、請求項4の
発明のように、発光管の上半球の外面であって、凹面反
射鏡の有効反射面へ照射する光利用有効角度内の発光管
の外面に可視反射膜や可視・赤外反射膜を形成し、この
可視・赤外反射膜の上に石英ガラスより赤外放射率の高
い膜を形成すると、更に良好な効果を得ることができ
る。
As described above, according to the first to third aspects of the present invention, there is provided a discharge lamp apparatus including a discharge lamp and a concave reflecting mirror, wherein the light is applied to an effective reflecting surface of the concave reflecting mirror outside an effective angle. A film with a higher infrared emissivity than quartz glass is formed on the outer surface of the arc tube, especially the upper half of the outer surface, and a film with a higher infrared emissivity than quartz glass is formed on the visible / infrared reflective film Therefore, it is possible to lower the temperature of the arc tube without reducing the size of the arc tube, to prevent devitrification of the arc tube, to have a long lamp life, to provide a high-luminance and excellent color rendering property. can do. Further, as in the invention of claim 4, a visible reflection film or a visible / red light is formed on the outer surface of the arc tube within the effective angle of using light for irradiating the effective reflection surface of the concave reflector on the outer surface of the upper hemisphere of the arc tube. If an external reflection film is formed and a film having an infrared emissivity higher than that of quartz glass is formed on the visible / infrared reflection film, a better effect can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1の実施の態様の説明図である。FIG. 1 is an explanatory diagram of an embodiment according to claim 1;

【図2】請求項2の実施の態様の説明図である。FIG. 2 is an explanatory diagram of an embodiment according to claim 2;

【図3】請求項3の実施の態様の要部の説明図である。FIG. 3 is an explanatory view of a main part of the third embodiment.

【図4】請求項4の実施の態様の要部の説明図である。FIG. 4 is an explanatory diagram of a main part according to an embodiment of claim 4;

【符号の説明】 10 放電ランプ 11 発光管 12 封止管部 13 電極 13A 陰極 13B 陽極 14 モリブデン箔 15 外部リード棒 16 口金 20 凹面反射鏡 21 ランプ挿入筒部 22 有効反射面 23 冷却風通過孔 24 前面ガラス 30 石英ガラスより赤外放射率の高い膜 31 可視・赤外反射膜 32 可視反射膜DESCRIPTION OF SYMBOLS 10 Discharge lamp 11 Arc tube 12 Seal tube portion 13 Electrode 13A Cathode 13B Anode 14 Molybdenum foil 15 External lead rod 16 Base 20 Concave reflecting mirror 21 Lamp insertion tube portion 22 Effective reflection surface 23 Cooling air passage hole 24 Front glass 30 Film with higher infrared emissivity than quartz glass 31 Visible / infrared reflective film 32 Visible reflective film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 石英ガラス製の発光管と該発光管の両側
に連設された封止管部を有し、該封止管部に保持された
一対の電極が該発光管内で対向配置された放電ランプ
と、該放電ランプの一方の封止管部側で固定され、他方
の封止管部側で開口する凹面反射鏡とからなる放電ラン
プ装置において、 前記凹面反射鏡の有効反射面へ照射する光利用有効角度
外の発光管の外面に石英ガラスより赤外放射率の高い膜
を形成したことを特徴とする放電ランプ装置。
1. An arc tube made of quartz glass and a sealing tube portion provided continuously on both sides of the arc tube, and a pair of electrodes held by the sealing tube portion are opposed to each other in the arc tube. A discharge lamp comprising a discharge lamp and a concave reflecting mirror fixed on one sealing tube side of the discharge lamp and opened on the other sealing tube side; A discharge lamp device characterized in that a film having an infrared emissivity higher than that of quartz glass is formed on the outer surface of an arc tube outside the effective angle for utilizing light for irradiation.
【請求項2】 前記放電ランプが水平姿勢で点灯され、
該発光管の上半球の外面であって、該凹面反射鏡の有効
反射面へ照射する光利用有効角度外の発光管の外面に石
英ガラスより赤外放射率の高い膜を形成したことを特徴
とする請求項1記載の放電ランプ装置。
2. The discharge lamp is lit in a horizontal position,
A film having a higher infrared emissivity than quartz glass is formed on the outer surface of the arc tube on the outer surface of the upper hemisphere outside the effective light utilization angle for irradiating the effective reflection surface of the concave reflecting mirror. The discharge lamp device according to claim 1, wherein
【請求項3】 前記凹面反射鏡の有効反射面へ照射する
光利用有効角度外の発光管の外面に可視・赤外反射膜を
形成し、該可視・赤外反射膜の上に石英ガラスより赤外
放射率の高い膜を形成したことを特徴とする請求項1又
は2記載の放電ランプ装置。
3. A visible / infrared reflective film is formed on the outer surface of the arc tube outside the effective angle of light utilization for irradiating the effective reflective surface of the concave reflecting mirror, and quartz glass is applied on the visible / infrared reflective film. 3. The discharge lamp device according to claim 1, wherein a film having a high infrared emissivity is formed.
【請求項4】 石英ガラス製の発光管と該発光管の両側
に連設された封止管部を有し、該封止管部に保持された
一対の電極が該発光管内で対向配置された放電ランプ
と、該放電ランプの一方の封止管部側で固定され、他方
の封止管部側で開口する凹面反射鏡とからなる放電ラン
プ装置において、 前記放電ランプが水平姿勢で点灯され、該発光管の上半
球の外面であって、該凹面反射鏡の有効反射面へ照射す
る光利用有効角度内の発光管の外面に可視・赤外反射膜
を形成し、該可視・赤外反射膜の上に石英ガラスより赤
外放射率の高い膜を形成したことを特徴とする放電ラン
プ装置。
4. An arc tube made of quartz glass and a sealing tube portion provided on both sides of the arc tube, and a pair of electrodes held by the sealing tube portion are arranged to face each other in the arc tube. A discharge lamp that is fixed on one sealing tube side of the discharge lamp and has a concave reflecting mirror that opens on the other sealing tube side, wherein the discharge lamp is lit in a horizontal position. Forming a visible / infrared reflective film on the outer surface of the upper hemisphere of the arc tube and at the outer surface of the arc tube within an effective light utilization angle for irradiating the effective reflection surface of the concave reflector; A discharge lamp device comprising a film having a higher infrared emissivity than quartz glass formed on a reflective film.
JP2000342853A 2000-11-10 2000-11-10 Discharge lamp device Expired - Fee Related JP3578080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000342853A JP3578080B2 (en) 2000-11-10 2000-11-10 Discharge lamp device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000342853A JP3578080B2 (en) 2000-11-10 2000-11-10 Discharge lamp device

Publications (2)

Publication Number Publication Date
JP2002150999A true JP2002150999A (en) 2002-05-24
JP3578080B2 JP3578080B2 (en) 2004-10-20

Family

ID=18817325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000342853A Expired - Fee Related JP3578080B2 (en) 2000-11-10 2000-11-10 Discharge lamp device

Country Status (1)

Country Link
JP (1) JP3578080B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102300A1 (en) * 2007-02-23 2008-08-28 Koninklijke Philips Electronics N.V. High-pressure discharge lamp for use in a headlamp for automotive applications and headlamp for automotive application
US7549771B2 (en) 2006-02-15 2009-06-23 Seiko Epson Corporation Light source device and projector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206437A (en) * 1990-11-30 1992-07-28 Matsushita Electron Corp Metal halide lamp
JPH05283051A (en) * 1992-04-01 1993-10-29 Iwasaki Electric Co Ltd Metal halide lamp device
JPH065259A (en) * 1992-06-18 1994-01-14 Hamamatsu Photonics Kk Metallic vapor discharge tube
JPH09274889A (en) * 1996-04-03 1997-10-21 Ushio Inc Short arc type metal halide lamp
JPH1092385A (en) * 1996-09-12 1998-04-10 Matsushita Electron Corp Bulb

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206437A (en) * 1990-11-30 1992-07-28 Matsushita Electron Corp Metal halide lamp
JPH05283051A (en) * 1992-04-01 1993-10-29 Iwasaki Electric Co Ltd Metal halide lamp device
JPH065259A (en) * 1992-06-18 1994-01-14 Hamamatsu Photonics Kk Metallic vapor discharge tube
JPH09274889A (en) * 1996-04-03 1997-10-21 Ushio Inc Short arc type metal halide lamp
JPH1092385A (en) * 1996-09-12 1998-04-10 Matsushita Electron Corp Bulb

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7549771B2 (en) 2006-02-15 2009-06-23 Seiko Epson Corporation Light source device and projector
WO2008102300A1 (en) * 2007-02-23 2008-08-28 Koninklijke Philips Electronics N.V. High-pressure discharge lamp for use in a headlamp for automotive applications and headlamp for automotive application

Also Published As

Publication number Publication date
JP3578080B2 (en) 2004-10-20

Similar Documents

Publication Publication Date Title
JP3738678B2 (en) Lamp unit for projector and dimming method thereof
JP2001345067A (en) Discharge lamp, lamp unit and image display device
US5689154A (en) Metal halide gas discharge lamp for projection purposes
JP2004031153A (en) High pressure mercury lamp and lamp unit
JP3570370B2 (en) Light source device
JP2002151005A (en) Discharge lamp
JP5120519B2 (en) Light source device
JP3578080B2 (en) Discharge lamp device
EP1862729A1 (en) Light source device
JP2010060855A (en) Optical device
JP4333212B2 (en) Light source device
JP2004055226A (en) Short arc type ultra-high pressure discharge lamp and light source device
JP4300950B2 (en) Light source device
TWI332671B (en)
JP3158633B2 (en) Short arc metal halide lamp equipment
JP4609224B2 (en) Light source device
JP2005228711A (en) Optical device
JP2011154931A (en) Light source apparatus and projective display device
JPH10241632A (en) High pressure discharge lamp lighting method, high pressure discharge lamp lighting device and lighting device
JP3139015B2 (en) Metal halide lamp equipment
JPH10188896A (en) Discharge lamp, lamp device, lighting device, and liquid crystal projector
JPH11111046A (en) Optical device for short arc metal halide lamp and liquid crystal projector device using the same
JP2002184233A (en) Light source device
JPS5880257A (en) Compact metal halide lamp
JP3345897B2 (en) Light source device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140723

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees