[go: up one dir, main page]

JP2002142464A - 補助電源をパワー・グリッドに接続し同期する方法 - Google Patents

補助電源をパワー・グリッドに接続し同期する方法

Info

Publication number
JP2002142464A
JP2002142464A JP2001263126A JP2001263126A JP2002142464A JP 2002142464 A JP2002142464 A JP 2002142464A JP 2001263126 A JP2001263126 A JP 2001263126A JP 2001263126 A JP2001263126 A JP 2001263126A JP 2002142464 A JP2002142464 A JP 2002142464A
Authority
JP
Japan
Prior art keywords
voltage
phase
grid
auxiliary power
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001263126A
Other languages
English (en)
Inventor
Doug D Deng
ディー.デン ダグ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens VDO Electric Drives Inc
Original Assignee
Ecostar Electric Drive Systems LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecostar Electric Drive Systems LLC filed Critical Ecostar Electric Drive Systems LLC
Publication of JP2002142464A publication Critical patent/JP2002142464A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

(57)【要約】 【課題】 補助電源10とパワー・グリッド26とを同期さ
せるシステム及び方法を提供する。 【解決手段】 本発明は、補助電源10の三相出力電圧Ua
_p,Ub_p及びUc_pを制御してパワー・グリッドと同
期させるために、電流フィードバック信号ia及びibとグ
リッド位相電圧入力信号Ua_g,Ub_g及びUc_gを検出
する。本発明の方法は、補助電源の三相電圧Ua_p,Ub
_p及びUc_pとパワー・グリッドの三相電圧Ua_g,Ub
_g及びUc_gの両方を検出し、検出された電圧をd-q面
上の2成分Ud_com及びUq_comに変換する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、概略的には、補助
電源に関し、より具体的には、補助電源をパワー・グリ
ッドと同期させるシステム及び方法に関する。
【0002】
【従来の技術】三相発電機の様な補助電源がパワー・グ
リッドに接続されるときには、電源とグリッドとの間
の、周波数、位相角又は振幅の差が非常に小さくても、
非常に大きな過電流を生じることがある。これが、電圧
源のインピーダンスが非常に低い理由である。過電流状
態は、パワー・グリッドが「遮断」する要因となった
り、回路部品を損傷することもある。
【0003】それで、補助電源をパワー・グリッドに接
続する際には、電源の三相出力電圧が、パワー・グリッ
ドの三相電圧と、同じ相順、同じ位相角及び同じ振幅と
周波数を持つのを保証することが必要である。これは、
電源とパワー・グリッドの同期と呼ばれる。
【0004】従来技術において、補助電源(supplement
al power source略してSPS)とパワー・グリッドとの位
相同期を取るために、フェース・ロック・ループ法を用
いることが知られている。本発明の以前には、この技術
は基本的に、ハードウェア及びそれに付随するハードウ
ェア制御技術を必要とする、ハードワイヤード(hard-w
ired)構成とするものであった。この技術は、補助電源
の電圧位相と振幅を制御するために、別個の位相検出回
路と振幅検出回路を必要とする。補助電源又はパワー・
グリッドの周波数を計算するために、更に別の回路が必
要である。
【0005】
【発明が解決しようとする課題】本発明の目的は、補助
電源をパワー・グリッドに接続することである。補助電
源のパワー・グリッドへの接続を同期することが、本発
明のもう一つの目的である。
【0006】補助電源をパワー・グリッドに接続するた
めのソフトウェア的解決手法を提供することも、本発明
の更なる目的である。また、パワー・グリッドの三相電
圧を検出し、補助電源の電圧振幅と位相を制御して、自
由度の高い接続方法を提供することも、本発明の更なる
目的である。
【0007】
【課題を解決するための手段】本発明の上記のものなど
の目的を達成するために、補助電源をパワー・グリッド
へ接続するためのソフトウェア的解決手法が提供され
る。本発明のシステム及び方法は、応答速度を高めると
共に、制御自由度を高めながら、より少ない機器を用い
て、より有用な情報、つまり、相順、位相角、グリッド
周波数等を、生成する。
【0008】本発明は、グリッド電圧と電流を検出する
回路と制御部を持つ電子補助電源であり、それは、補助
電源の三相出力電圧をパワー・グリッドと同期そして接
続するために用いられるものである。この様な制御を介
して、本発明の方法は、補助電源の三相電圧とパワー・
グリッドの三相電圧の両方を検出し、検出された電圧を
d-q面上の成分に変換する。
【0009】変換された値は、出力電圧誤差を無くすと
共に、補助電源からの実際の三相出力電圧を、パワー・
グリッドの電圧に出来るだけ近付く様に修正するため
に、制御され、変換される。
【0010】本発明の方法によれば、補助電源とパワー
・グリッドとの間の電圧誤差により生じる可能性のある
過電流を排除するために、電流レギュレーターが用いら
れる。
【0011】本発明の他の目的及び効果は、以下の詳細
な説明と特許請求の範囲を読むと共に、図面を参照する
ことにより、明らかとなる。
【0012】本発明のより完全な理解のためには、図面
により詳細に図示され、本発明の例として後述される実
施の形態を参照すべきである。
【0013】
【発明の実施の形態】図1は、本発明の制御方法に関し
て用いられる回路の概略図である。図1には、補助電源
10が示されており、それは、直流電源12、電子インバー
ター14、インバーター14を制御するためのマイクロプロ
セッサーをベースとする制御器16、三相交流ライン・フ
ィルター18及び三相回路接触器20、を持つ。
【0014】直流電源12は、補助電源10のためのエネル
ギー源である。それは、いくつかの直流電源の中から選
ぶことが出来る。例えば、バッテリー、エンジン駆動の
直流発電機、エンジン駆動の整流器付交流発電機、燃料
電池、太陽電池などである。インバーター14は、直流の
入力電力を三相交流出力電力に変換する。この実施形態
において示されたインバーター14は、6個の半導体スイ
ッチ素子22からなる。マイクロプロセッサー制御器16
は、パルス・ゲート信号24をインバーター14へ供給す
る。パルス幅変調技術を用いて、マイクロプロセッサー
制御器16は、インバーター14の出力ライン間電圧を、所
望の振幅と周波数つまり208V/60Hz又は480V/60Hzへ、制
御する。交流ライン・フィルター18は、インバーター14
のスイッチ動作により生じる出力電圧と電流の中に存在
する調和成分、を排除する。接触器20は、補助電源10を
パワー・グリッド26へ接続そして切断する。
【0015】本発明の方法100が、図2のブロック図に
示されている。本発明の方法100によれば、補助電源が
ソフトウェア制御を用いて、パワー・グリッドに接続さ
れる。
【0016】三相電圧Ua_g,Ub_g及びUc_gは、R1, R2
及びR3(図1にのみ示される)を含む星形(Y)結線の
抵抗網28により検出され、これらの電圧は、電圧センサ
ーVS1,VS2及びVS3により測定される(図1及び2に示さ
れる)。そして検出された電圧Ua_g, Ub_g及びUc_g
は、ブロック104において、以下のアルゴリズムに従
い、α-β面上の回転ベクトルUα_g,Uβ_gへ変換さ
れる。すなわち、 Uα_g = (2/3)Ua_g−(1/3)(Ub_g+Uc_g) (1) Uβ_g = (√3/3)*(Ub_g−Uc_g) (2)
【0017】アルゴリズム(1)及び(2)に従い、三相グリ
ッド電圧Ua_g, Ub_g及びUc_gは、2軸面であるα-β
面上の、2つの成分Uα_g及びUβ_gを持つ、回転グリ
ッド電圧ベクトルに変換される。図3は、2軸α-β面上
のグリッド電圧ベクトル34を示したグラフ32である。
【0018】再び図2を参照すると、α-β面上のグリ
ッド電圧ベクトルの回転角γu_gが、以下のアルゴリズ
ムから信号106として得られる。すなわち、 γu_g = arctan(Uβ_g / Uα_g) (3)
【0019】グリッド電圧ベクトル34の回転方向36が、
図3に示されている。回転角は、この制御方法には重要
な制御変数であり、ここで詳細に述べる。グリッド電圧
ベクトルの回転周波数ωu_gは、回転位相角γu_gの時
間的変化を計算することにより、得ることが出来る。グ
リッド電圧周波数ωu_gは、以下の式により求めること
が出来る。 ωu_g = (γu_g[k]−γu_g[k-1])/Δtk (4) ここで、Δtkはk番目の角度γu_g[k]とk-1番目の角度
γu_g[k-1]との間の時間間隔である。グリッド電圧の
相順は、計算されたグリッド周波数ωu_gから判る。+
符号が正順を示し、−符号が逆順を示す。グリッド電圧
ベクトルの大きさは、電圧成分Uα_gとUβ_gから計算
される。
【0020】再び図2を参照すると、三相補助電源の出
力電圧Ua_p,Ub_p及びUc_pが、抵抗R4, R5及びR6
(図1にのみ示される)を含む星形結線の抵抗網30によ
り検出され、電圧センサーVS4, VS5及びVS6(図1及び
2に示される)により108で検出される。検出された電
圧は、ブロック110で、以下のアルゴリズムに従い、α-
β上の回転電圧ベクトル Ua_p, Ub_p及びUc_pへ変換
される。すなわち、 Uα_p = (2/3)Ua_p−(1/3)(Ub_p+Uc_p) (5) Uβ_p = (√3/3)*(Ub_p−Uc_p) (6) 図3は、補助電源の電圧ベクトル38を示している。
【0021】再び図2を参照すると、グリッドと補助電
源についての回転ベクトルは次に、ブロック112でd-q面
上のベクトルに変換される。回転ベクトルをd-q面上の
電圧へと変換するために用いられるアルゴリズムは、d-
q面がグリッド電圧ベクトルと同期した角速度を持つの
を保証するために、回転角γu_gを含む。ブロック112
での変換のためのアルゴリズムは、以下の通りである。 Ud_g = Uα_g cos γu_g−Uβ_g sin γu_g (7) Uq_g = Uα_g sin γu_g+Uβ_g cos γu_g (8) Ud_p = Uα_p cos γu_g−Uβ_p sin γu_g (9) Uq_p = Uα_p sin γu_g+Uβ_p cos γu_g (10) 図4は、α-β面とd-q面上での、グリッド電圧ベクトル
36を示している。
【0022】d-q面内のグリッド電圧Ud_gとUq_gはラ
イン114において、2つの比例−積分電圧レギュレーター
PI1とPI2へ、基準電圧として、供給される。d-q面内の
補助電源電圧Ud_pとUq_pがライン116において、電圧
レギュレーターPI1とPI2へのフィードバックとして、供
給される。2つの基準電圧Ud_gとUq_gが三相グリッド
電圧として検出され、フィードバック電圧Ud_pとUq_p
はインバーターの出力電圧であるので、インバーターか
らの三相出力電圧は、2つの電圧レギュレーターPI1とPI
2により、位相角と振幅がグリッド三相電圧に従う様
に、制御される。基準電圧とフィードバック電圧は、誤
差信号Ud_errとUq_errを決定するために、用いられ
る。Ud_errは、基準電圧Ud_gとフィードバック電圧Ud
_pとの差である。Uq_errは、基準電圧Uq_gとフィー
ドバック電圧Uq_pとの差である。
【0023】補助電源の出力電圧とグリッドの出力電圧
の同期を判定するためのアルゴリズムが、用いられる。
このアルゴリズムは、Ud_errとUq_errが所定の誤差範
囲内に到達する時期を判定し、それにより、118と120で
同期が実現した時期を示す。誤差アルゴリズムの出力状
態は、誤差信号が所定の許容範囲内であるときに、ゼロ
から1へ変化する。誤差信号の出力は、論理和演算122
へ進み、接触器閉信号を1又はゼロのいずれかにすべき
かを決定する。1の信号は、接触器を閉じることにな
る。両方の誤差信号が所定範囲内の値であるときに、1
の信号が出力される。接触器が閉じられると、ゼロの信
号が124で、PIレギュレーターPI1とPI2への入力とし
て、供給される。
【0024】電圧ΔUdvとΔUqvは、PI1とPI2の出力であ
り、126でd-q軸のグリッド電圧Ud_g及びUq_gと加えら
れ、Ud_comとUq_comを得る。PIレギュレーターの出力
は、d-qグリッド基準電圧がインバーター出力のいかな
る電圧誤差も無くすのを補うために、用いられる。それ
で、補助電源からの出力電圧Ua_p, Ub_p及びUc_p
を、振幅と位相角の両方について、出来るだけグリッド
からの出力電圧Ua_g, Ub_g及びUc_gに、近付ける様
に制御することが可能になる。補助電源がグリッドに接
続される前に、補助電源からの実際の三相出力電圧を、
位相角と振幅について、グリッド電圧の電圧基準に出来
るだけ近付く様に修正するために、電圧レギュレーター
が用いられる。接触器は、この時点では開いている。
【0025】接触器が閉じているときに、ゼロ信号が、
SW1がゼロに切換わるにより、PI1及びPI2に供給され、P
I1及びPI2の電圧制御機能が中止される。先に計算され
た出力、電圧レギュレーターPI1及びPI2の出力ΔUdv及
びΔUqvはそのままとなり、電圧制御から電流制御への
過渡的な「ジャンプ」を排除し、それにより平滑な過渡
を維持する。
【0026】電流制御のために、電流センサーCS1及びC
S2が、130で、補助電源の出力位相電流ia及びibを検出
する。検出された電流は、132で、以下のアルゴリズム
に従い、α-β面上の電流に変換される。 iα = ia (11) iβ = (2/√3)*(0.5ia+ib) (12)
【0027】電流iα及びiβは、134で、以下のアルゴ
リズムに従い、d-q面上のid及びiqに変換される。 id = iα cos γu_g− iβ sin γu_g (13) iq = iα sin γu_g+ iβ cos γu_g (14)
【0028】d-q軸上の電流は136において、電流レギュ
レーターPI3及びPI4へのフィードバックとして、供給さ
れる。基準電流id_ref及びiq_refが138で、電圧同期
中に、ゼロに設定される。基準電流をゼロに設定するこ
とは、制御器が、電圧又は電流の誤差により生じた過電
流を排除するのを可能とする。電流レギュレーターに対
する2つの基準電流は、補助電源がグリッドに接続され
る前及びその間に、電流レギュレーターが、電流を出来
るだけゼロ近くに保つ様に、ゼロに設定される。
【0029】パワー・グリッドへの接続が確立される
と、基準電圧id_ref及びiq_refが、所定の増加率に従
い(つまり、時間に比例して)増大させられ、そして、
補助電源が、パワー・グリッド140に電流そして電力を
供給することになる。
【0030】補助電源の出力電圧を制御するために、レ
ギュレーターPI3及びPI4の出力電圧ΔUdi及びΔUqiが12
5で、電圧レギュレーターPI1及びPI2の出力電圧ΔUdv及
びΔUqvに加えられる。
【0031】接触器が閉じられる前には、基準電流はゼ
ロであり、そして電流フィードバックはゼロである。出
力電圧ΔUdi及びΔUqiは、ゼロである。電流レギュレー
ターPI3及びPI4内では、動作が行われない。接触器が閉
じられた後、電圧レギュレーターPI1及びPI2は、前の出
力電圧を維持し、制御動作は中断される。電流レギュレ
ーターPI3及びPI4は、過渡電流のいかなる可能性も排除
するために、自動的に起動される。何らかの過渡電流が
生じた場合には、フィードバック電流id及びiqが、レギ
ュレーターPI3及びPI4の入力に生じる。基準電流id_re
f及びiq_refがゼロであり、レギュレーターPI3及びPI4
は、フィードバック電流をゼロにすることになる。
【0032】インバーターの出力電圧を、位相角、相順
及び周波数に関して、インバーターの出力電圧がグリッ
ド電圧に従う様に制御するために、d-q面からabc面への
電圧変換140において、回転角γu_gが用いられる。そ
のアルゴリズムは、以下の様に回転角を用いる。 ua_ref = ud_com cos γu_g−uq_com sin γu_g (15) ub_ref = ud_com cos [γu_g−(2/3)p]+uq_com sin [γu_g−(2/3)p] (16) uc_ref = ud_com cos [γu_g+(2/3)p]+uq_com sin [γu_g+(2/3)p] (17) 電圧ua_ref, ub_ref及びuc_refは、パルス幅変調器1
41に供給され、そこからの信号が、インバーターのスイ
ッチ素子を制御するために用いられる。
【0033】まとめると、本発明は、2つの星形結線の
抵抗網28及び30、又は1つの星形結線の変換器(不図
示)を用いることにより、グリッドの三相電圧Ua_g, U
b_g及びUc_g、及び補助電源の出力電圧Ua_p, Ub_p
及びUc_pを検出する。グリッド電圧は、2軸面であるα
-β面上の2つの成分Uα_g及びUβ_gを持つ回転グリッ
ド電圧ベクトルに104で変換される。ベクトルのα-β面
上の回転位相角γu_gは、2つの成分Uα_g及びUβ_g
から計算される。グリッド電圧ベクトルの、角周波数wu
_g、相順及び振幅が全て、計算される。三相交流シス
テムのための直流システム制御特性が、α-β面上の回
転グリッド電圧ベクトルを、2軸d-q面上の2成分Ud_g及
びUq_gを持つベクトルに112で変換することにより、得
られる。その回転速度は、グリッド電圧ベクトルの回転
速度wu_gと等しい。インバーター14は、インバーター1
4へのゲート・パルスを制御するために、制御器16内の
基準電圧として、d-q軸グリッド電圧を用いることによ
り、その三相出力電圧を供給する。基準電圧Ud_g及びU
q_gは、三相グリッド電圧として検出されるので、イン
バーター14からの出力三相電圧Ua_p, Ub_p及びUc_p
は、位相角及び振幅についてグリッドの三相電圧に従う
様に制御される。
【0034】電圧及び電流のフィードバック制御器PI1,
PI2, PI3及びPI4は、インバーター14内の電圧誤差をd-
q面上で排除する。電圧制御器PI1及びPI2は、接触器が
閉じられる前に、補助電源10からの三相出力電圧Ua_p,
Ub_p及びUc_pを修正し、それらを位相及び振幅につ
いて、グリッド電圧の基準電圧Ud_g及びUq_gの出来る
だけ近くに保つ。
【0035】電流レギュレーターPI3及びPI4は、接触器
が閉じられている短い期間の過電流を排除する。過渡電
流が生じるときには、フィードバック電流がPI3及びPI4
の入力に表れる。基準電流がゼロとなり、そしてPI3及
びPI4が電流をゼロにすることになる。補助電源の「接
続」が完了した後は、基準電流Id_ref及びIq_refが所
定の割合で増大させられる。
【0036】本発明のシステム及び方法によれば、電圧
及び電流の変換そして各面上での制御の全てについて、
回転グリッド電圧ベクトルが参照される。
【0037】本発明は、添付の請求項の思想及び観点の
範囲内に含まれる様な、全ての代替例、改良案及び等価
物を、包含するものである。
【0038】
【発明の効果】本発明によれば、ソフトウェア的解決手
法により、補助電源をパワー・グリッドに接続すると共
に、同期させることが出来る。
【図面の簡単な説明】
【図1】本発明に従い、パワー・グリッドに接続された
電子補助電源の回路図である。
【図2】補助電源とパワー・グリッドの三相出力電圧を
同期する制御方法のブロック図である。
【図3】グリッド・ベクトル電圧と補助電源ベクトル電
圧を、二相の固定α-β面上に示す回転ベクトルのベク
トル図である。
【図4】α-β面上及びd-q面上のグリッド電圧ベクトル
のベクトル図である。
【符号の説明】
12 直流電源 14 電子インバーター 16 制御器 18 三相交流ライン・フィルター 20 三相回路接触器 26 パワー・グリッド 28, 30 星形結線抵抗網
フロントページの続き Fターム(参考) 5G066 AE09 AE11 HA01 HB05 5H007 AA17 BB00 CA01 CB02 CB05 DA06 DB02 DB13 DC02 DC05 EA15 FA03 FA13 FA19 GA03 GA06

Claims (8)

    【特許請求の範囲】
  1. 【請求項1】 直流電源、電子インバーター、制御器、
    三相交流ライン・フィルター及び三相回路接触器を持つ
    と共に、三相出力電圧を持つ補助電源を、三相グリッド
    電圧を持つパワー・グリッドへ接続する方法であって、 三相グリッド電圧を検出する工程、 該三相グリッド電圧をd-q面上の電圧へ変換する工程、 上記補助電源の三相出力電圧を検出する工程、 該検出された出力電圧をd-q面上の電圧へ変換する工
    程、及び上記三相出力電圧を、上記三相グリッド電圧に
    出来るだけ近くになる様に制御する電圧命令を決定する
    工程、 を有する、方法。
  2. 【請求項2】 上記補助電源の出力電圧の振幅と位相角
    を、上記補助電源と上記パワー・グリッドが同期する様
    に、制御する工程、を更に有する、請求項1の方法。
  3. 【請求項3】 上記グリッド電圧をd-q平面上の電圧に
    変換する上記工程が、 上記検出されたグリッド電圧をα-β平面上の回転ベク
    トルへ変換する工程、及び上記グリッド電圧のベクトル
    から回転角を導く工程、 を更に有する、請求項1に記載の方法。
  4. 【請求項4】 上記三相交流出力電圧をd-q平面上の電
    圧へ変換する上記工程が、上記検出された出力電圧を回
    転ベクトルへ変換する工程を更に有する、請求項3に記
    載の方法。
  5. 【請求項5】 上記グリッド電圧を検出する上記工程
    が、星形結線の抵抗網を用いて上記グリッド電圧を検出
    する工程を更に有し、上記出力電圧を検出する工程が、
    星形結線の抵抗網を用いて上記出力電圧を検出する工程
    を更に有する、請求項1に記載の方法。
  6. 【請求項6】 上記グリッド電圧を検出する上記工程
    が、星形結線の変換器を用いて上記グリッド電圧を検出
    する工程を更に有し、上記出力電圧を検出する上記工程
    が、星形結線の変換器を用いて出力電圧を検出する工程
    を更に有する、請求項1に記載の方法。
  7. 【請求項7】 上記回転位相角の時間的変化を計算し、
    回転角度の周波数を判定する工程、を更に有する、請求
    項1に記載の方法。
  8. 【請求項8】 上記回転角度周波数の符号から上記グリ
    ッド電圧の相順を判定する工程、を更に有する、請求項
    7に記載の方法。
JP2001263126A 2000-09-01 2001-08-31 補助電源をパワー・グリッドに接続し同期する方法 Pending JP2002142464A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/653,478 US6239997B1 (en) 2000-09-01 2000-09-01 System for connecting and synchronizing a supplemental power source to a power grid
US09/653,478 2000-09-01

Publications (1)

Publication Number Publication Date
JP2002142464A true JP2002142464A (ja) 2002-05-17

Family

ID=24621050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001263126A Pending JP2002142464A (ja) 2000-09-01 2001-08-31 補助電源をパワー・グリッドに接続し同期する方法

Country Status (4)

Country Link
US (1) US6239997B1 (ja)
EP (1) EP1187291A3 (ja)
JP (1) JP2002142464A (ja)
CA (1) CA2354426C (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014166002A (ja) * 2013-02-22 2014-09-08 Takasago Seisakusho:Kk 交流電源装置
CN104124712A (zh) * 2013-04-29 2014-10-29 控制技术有限公司 用于将电源和三相电网同步的方法、装置及系统
JP2019041446A (ja) * 2017-08-22 2019-03-14 富士電機株式会社 母線切替制御装置

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301313B1 (en) * 1999-03-23 2007-11-27 Intel Corporation Multiple voltage regulators for use with a single load
US6362988B1 (en) * 2000-06-29 2002-03-26 Ford Global Tech., Inc. System and method for synchronizing the phase angle for an AC power source in parallel operation with a grid
US6603672B1 (en) * 2000-11-10 2003-08-05 Ballard Power Systems Corporation Power converter system
EP1361639B1 (en) * 2001-02-16 2008-08-13 Yanmar Co., Ltd. Power system having generator driven by engine
FI113106B (fi) * 2001-06-14 2004-02-27 Abb Oy Menetelmä vaihtosuuntaajan kytkemiseksi vaihtojännitteeseen
FR2831349B1 (fr) * 2001-10-18 2003-12-12 Electricite De France Dispositif de commande de chaine de conversion de source d'energie decentralisee
WO2003038970A2 (en) * 2001-10-26 2003-05-08 Youtility, Inc. Anti-islanding techniques for distributed power generation
US6919650B2 (en) * 2002-05-31 2005-07-19 Ballard Power Systems Corporation Hybrid synchronization phase angle generation method
US7180210B1 (en) * 2002-10-11 2007-02-20 Joel Jorgenson Standby generator integration system
US7940506B2 (en) * 2003-03-05 2011-05-10 Dollar Energy Group, Inc. Automated AC line filter and surge suppression apparatus and method
US20040212353A1 (en) * 2003-04-25 2004-10-28 Siemens Westinghouse Power Corporation Use of a closing impedance to minimize the adverse impact of out-of-phase generator synchronization
US7158395B2 (en) * 2003-05-02 2007-01-02 Ballard Power Systems Corporation Method and apparatus for tracking maximum power point for inverters, for example, in photovoltaic applications
US7183667B2 (en) * 2003-12-19 2007-02-27 Square D Company Method and apparatus for power inverter synchronization
US7280377B2 (en) * 2004-08-16 2007-10-09 Caterpillar Inc. Power converter in a utility interactive system
US7417336B2 (en) * 2004-08-31 2008-08-26 Caterpillar Inc. Combination current hysteresis and voltage hysteresis control for a power converter
EP1691463A1 (en) 2005-02-09 2006-08-16 Magnetek S.p.A. Method and device for the control of a three-phase inverter
US7190143B2 (en) * 2005-05-27 2007-03-13 Rockwell Automation Technologies, Inc. Pulse width modulation (PWM) rectifier with variable switching frequency
US7932693B2 (en) * 2005-07-07 2011-04-26 Eaton Corporation System and method of controlling power to a non-motor load
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US7710082B2 (en) * 2007-10-18 2010-05-04 Instituto Potosino De Investigacion Cientifica Y Technologica (Ipicyt) Controller for the three-phase cascade multilevel converter used as shunt active filter in unbalanced operation with guaranteed capacitors voltages balance
CN105244905B (zh) 2007-12-05 2019-05-21 太阳能安吉有限公司 分布式电力装置中的安全机构、醒来和关闭方法
WO2009072076A2 (en) 2007-12-05 2009-06-11 Solaredge Technologies Ltd. Current sensing on a mosfet
US8289742B2 (en) 2007-12-05 2012-10-16 Solaredge Ltd. Parallel connected inverters
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
GB2455755B (en) * 2007-12-20 2010-10-20 Enecsys Ltd Grid synchronisation
WO2009081205A2 (en) 2007-12-20 2009-07-02 Enecsys Limited Grid synchronisation
WO2009118682A2 (en) 2008-03-24 2009-10-01 Solaredge Technolgies Ltd. Zero current switching
EP3121922B1 (en) 2008-05-05 2020-03-04 Solaredge Technologies Ltd. Direct current power combiner
DK2228895T3 (da) * 2009-03-09 2013-04-08 Sma Solar Technology Ag Vekselretter med netværksgrænseflade
WO2010104966A1 (en) * 2009-03-11 2010-09-16 Schweitzer Engineering Laboratories, Inc. Mobile auxilliary power system for electrical distribution and transmission systems
DE102010009709A1 (de) 2009-09-09 2011-03-24 Siemens Aktiengesellschaft Synchronisiereinrichtung und Sychronisierverfahren für den Betrieb von Inselnetzen
WO2011104882A1 (ja) * 2010-02-26 2011-09-01 東芝三菱電機産業システム株式会社 太陽光発電システム
US8358031B2 (en) * 2010-02-26 2013-01-22 General Electric Company System and method for a single stage power conversion system
EP2671315A2 (en) * 2010-06-04 2013-12-11 ABB Inc. Detection of welded switch contacts in a line converter system
US8310214B2 (en) * 2010-06-28 2012-11-13 General Electric Company System and method for control of multiphase power converters
US20120212064A1 (en) * 2010-08-23 2012-08-23 Array Converter Inc. Methods and Devices for Controlling a Photovoltaic Panel in a Three Phase Power Generation System
JP5585371B2 (ja) * 2010-10-14 2014-09-10 富士電機株式会社 分散型電源システム
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
EP2512000B1 (en) 2011-04-15 2022-03-02 ABB Schweiz AG Reconfigurable power systems and converters
US8866340B2 (en) * 2011-05-04 2014-10-21 King Fahd University Of Petroleum And Minerals Supercapacitor-based grid fault ride-through system
WO2012169013A1 (ja) 2011-06-07 2012-12-13 東芝三菱電機産業システム株式会社 太陽光発電システムの運転制御装置
JP2014522226A (ja) * 2011-08-04 2014-08-28 アーベーベー テクノロジー アクチェンゲゼルシャフト 無変圧器マルチレベルコンバータ
US8971065B2 (en) * 2011-08-04 2015-03-03 Industrial Technology Research Institute System for providing an alternating current, and control apparatus and method thereof
GB201114868D0 (en) 2011-08-30 2011-10-12 Rolls Royce Plc Method of controlling an inverter and a controller for controlling an inverter
US9621073B1 (en) * 2011-08-31 2017-04-11 The Florida State University Research Foundation, Inc. 1MHz scalable cascaded Z-source inverter using gallium nitride (GAN) device
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
DE102011055220B4 (de) * 2011-11-10 2017-02-09 Sma Solar Technology Ag Zuschalten eines Wechselrichters in einem Solarkraftwerk mit verschobenem Potentialmittelpunkt
GB2497275A (en) 2011-11-25 2013-06-12 Enecsys Ltd Modular adjustable power factor renewable energy inverter system
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
EP2904680B1 (en) 2012-10-01 2020-04-29 ABB Schweiz AG A method and a system for a fast bus transfer in an electrical power system
US10516295B2 (en) 2012-10-16 2019-12-24 Greensmith Energy Management Systems, Inc. System and method for group control of distributed energy storage devices
KR101224463B1 (ko) * 2012-10-30 2013-01-21 데스틴파워 주식회사 대용량 전력 제어 시스템 및 제어 방법
CN103094924A (zh) * 2013-01-04 2013-05-08 广西电网公司电力科学研究院 基于无锁相环实现电网同步基准正弦的方法及其装置
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
EP3506370B1 (en) 2013-03-15 2023-12-20 Solaredge Technologies Ltd. Bypass mechanism
US9882507B2 (en) 2013-04-16 2018-01-30 Solarcity Corporation Power factor adjustment in multi-phase power system
US20140333141A1 (en) * 2013-05-07 2014-11-13 University Of Central Florida Research Foundation, Inc. Photovoltaic (pv)-based ac module and solar systems therefrom
EP2868919A1 (en) * 2013-11-05 2015-05-06 Openhydro IP Limited Turbulence protection system and method for turbine generators
CN103887818B (zh) * 2014-03-17 2015-10-21 电子科技大学 一种适用于并网逆变器的低电压穿越控制方法
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
CN104410096B (zh) * 2014-06-20 2016-08-24 上海吉亿电机有限公司 线序主动检测及自适应系统以及方法
EP3089347B1 (en) * 2015-04-27 2018-06-27 ABB Schweiz AG A method for acquiring values indicative of an ac current of an inverter and related circuit and inverter
GB2539204B (en) * 2015-06-08 2021-03-24 Ec Power As Starter for a combined heat and power unit
EP3176901A1 (en) * 2015-12-01 2017-06-07 DET International Holding Limited Controller for a multiphase inverter
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US12057807B2 (en) 2016-04-05 2024-08-06 Solaredge Technologies Ltd. Chain of power devices
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
CN106100310B (zh) * 2016-06-21 2019-03-26 广州智光电气股份有限公司 一种优化电压源型换流器软启动过程的方法和装置
TW201806289A (zh) * 2016-08-02 2018-02-16 台達電子工業股份有限公司 智慧型開關系統及開關箱控制方法
GB2560195B (en) * 2017-03-03 2020-01-08 Ge Energy Power Conversion Technology Ltd Electric circuits and power systems incorporating the same
CN108347056B (zh) * 2018-01-30 2020-06-26 北京四方继保自动化股份有限公司 交直流混合微电网控制方法
CN109412176A (zh) * 2018-09-19 2019-03-01 华北电力大学 一种用于提高电力系统稳定性的控制方法
US11710970B2 (en) 2020-01-17 2023-07-25 BWR Innovations LLC Remotely controlled electrical power generating system
US11018508B1 (en) 2020-01-17 2021-05-25 BWR Innovations LLC Electrical power generating system
US12156950B2 (en) 2020-07-08 2024-12-03 BWR Innovations LLC Software architecture and system for delivering selected sanitation protocols for multiple pathogens and pests
CN111707881B (zh) * 2020-07-10 2022-08-19 陕西航空电气有限责任公司 一种三相交流电源相序识别方法及装置
US11945338B2 (en) 2021-08-13 2024-04-02 BWR Innovations LLC Fuel cell auxiliary power generation system for a vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0919065A (ja) * 1995-06-27 1997-01-17 Mitsubishi Electric Corp インバータの同期切り換え回路
JPH09140147A (ja) * 1995-11-09 1997-05-27 Fuji Electric Co Ltd Pwm制御自励式整流装置
JPH1141814A (ja) * 1997-07-22 1999-02-12 Toshiba Corp 電力変換装置の制御装置
JPH1189217A (ja) * 1997-09-03 1999-03-30 Mitsubishi Electric Corp 同期制御方法、同期制御装置及び無停電電源装置
JPH11252798A (ja) * 1998-03-05 1999-09-17 Tohoku Electric Power Co Inc 直列形系統補償装置の電圧挿入制御回路

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4536126A (en) * 1970-12-18 1985-08-20 Westinghouse Electric Corp. System and method employing a digital computer for automatically synchronizing a gas turbine or other electric power plant generator with a power system
US4121111A (en) * 1976-10-18 1978-10-17 Gould Inc. Apparatus for detection of synchronism by means of vector difference measurement
DE3161614D1 (en) * 1980-03-28 1984-01-19 Siemens Ag Inverter device
DE3346291A1 (de) * 1983-12-21 1985-07-04 Siemens Ag Verfahren und vorrichtung zum schnellen ermitteln einer netzsynchronen referenzspannung fuer einen netzgefuehrten stromrichter nach einer netzstoerung
US4656413A (en) 1986-06-19 1987-04-07 Bourbeau Frank J Stabilized control system and method for coupling an induction generator to AC power mains
US4766327A (en) * 1987-07-31 1988-08-23 Westinghouse Electric Corp. Circuit and method for synchronizing power sources in a parallel AC electrical power system
DE3938460C1 (ja) * 1989-11-20 1991-02-07 Hartmann & Braun Ag, 6000 Frankfurt, De
EP0471107A1 (de) * 1990-08-16 1992-02-19 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Symmetrierung eines Drehstromsystems
US5083039B1 (en) 1991-02-01 1999-11-16 Zond Energy Systems Inc Variable speed wind turbine
US5329221A (en) * 1992-08-12 1994-07-12 Electric Power Research Institute Advanced static var compensator control system
US5625539A (en) * 1994-05-30 1997-04-29 Sharp Kabushiki Kaisha Method and apparatus for controlling a DC to AC inverter system by a plurality of pulse-width modulated pulse trains
JP3382434B2 (ja) * 1995-09-22 2003-03-04 キヤノン株式会社 電池電源の電圧制御装置および電圧制御方法
US5798633A (en) 1996-07-26 1998-08-25 General Electric Company Battery energy storage power conditioning system
US5892664A (en) 1997-01-10 1999-04-06 Vedder; Dietrich Inverter for connecting a variable voltage power source to a utility grid
JP3744679B2 (ja) * 1998-03-30 2006-02-15 三洋電機株式会社 太陽光発電装置
US6052297A (en) * 1998-05-06 2000-04-18 Mitsubishi Denki Kabushiki Kaisha Power conversion apparatus
US6111767A (en) * 1998-06-22 2000-08-29 Heliotronics, Inc. Inverter integrated instrumentation having a current-voltage curve tracer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0919065A (ja) * 1995-06-27 1997-01-17 Mitsubishi Electric Corp インバータの同期切り換え回路
JPH09140147A (ja) * 1995-11-09 1997-05-27 Fuji Electric Co Ltd Pwm制御自励式整流装置
JPH1141814A (ja) * 1997-07-22 1999-02-12 Toshiba Corp 電力変換装置の制御装置
JPH1189217A (ja) * 1997-09-03 1999-03-30 Mitsubishi Electric Corp 同期制御方法、同期制御装置及び無停電電源装置
JPH11252798A (ja) * 1998-03-05 1999-09-17 Tohoku Electric Power Co Inc 直列形系統補償装置の電圧挿入制御回路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014166002A (ja) * 2013-02-22 2014-09-08 Takasago Seisakusho:Kk 交流電源装置
CN104124712A (zh) * 2013-04-29 2014-10-29 控制技术有限公司 用于将电源和三相电网同步的方法、装置及系统
JP2019041446A (ja) * 2017-08-22 2019-03-14 富士電機株式会社 母線切替制御装置

Also Published As

Publication number Publication date
CA2354426A1 (en) 2002-03-01
EP1187291A2 (en) 2002-03-13
EP1187291A3 (en) 2006-07-12
US6239997B1 (en) 2001-05-29
CA2354426C (en) 2008-07-08

Similar Documents

Publication Publication Date Title
JP2002142464A (ja) 補助電源をパワー・グリッドに接続し同期する方法
US5212630A (en) Parallel inverter system
JP2526992B2 (ja) 交流出力変換器の並列運転システム
US5212438A (en) Induction motor control system
US5091839A (en) Method and apparatus for supplying voltage to a three-phase voltage system having a load-carrying neutral conductor with a pulse width modulated three phase invertor
JP4056852B2 (ja) 電力変換装置
KR101804469B1 (ko) 각 상 개별제어 기술을 탑재한 3 레그 3상 4선식 인버터를 구비하는 무정전 전원 장치
US6862163B2 (en) Method and device for bridging brief power outages in a matrix converter
US5003455A (en) Circuitry and method for controlling the firing of a thyristor
EP1269600A2 (en) Synchronous frame regulation to extract a positive sequence component of a line voltage
JP2008220018A (ja) 交流出力電力変換装置の位相同期制御方法及び位相同期制御装置
JP4935166B2 (ja) 電力変換装置の位相同期制御装置
CN101534070A (zh) 单相全桥升压变换器系统和方法
US20230400489A1 (en) Inverter and method for detecting insulation impedance of inverter
JP3550573B2 (ja) 電力変換装置
JPH10313574A (ja) 電力変換装置及びその位相同期制御方法
JPH10234135A (ja) 電力変換装置
US6388903B2 (en) Voltage compensating apparatus and method for 3-phase inverter employing four switches
JPH0956170A (ja) 系統連系用インバータの制御装置
JP3269515B2 (ja) インバータの並列運転装置
JPH09135535A (ja) 静止型無効電力補償装置
JP2007225427A (ja) 停電検出回路及び無停電電源装置
JP4576068B2 (ja) 系統連系電力変換システムの制御装置
JP2001025171A (ja) 自励式交直変換器の制御装置及び位相検出回路
JP2785260B2 (ja) 3相変換装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070807

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080311

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080516

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20080708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101105

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110428