[go: up one dir, main page]

JP2002137146A - Aspherical machining device and machining method - Google Patents

Aspherical machining device and machining method

Info

Publication number
JP2002137146A
JP2002137146A JP2000331829A JP2000331829A JP2002137146A JP 2002137146 A JP2002137146 A JP 2002137146A JP 2000331829 A JP2000331829 A JP 2000331829A JP 2000331829 A JP2000331829 A JP 2000331829A JP 2002137146 A JP2002137146 A JP 2002137146A
Authority
JP
Japan
Prior art keywords
tool
work
drive shaft
shaft
fore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000331829A
Other languages
Japanese (ja)
Inventor
Katsu Maeda
克 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2000331829A priority Critical patent/JP2002137146A/en
Publication of JP2002137146A publication Critical patent/JP2002137146A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize improvement of reliability of machining precision and to enable machining of an aspherical lens of high quality by correcting displacement in a relative speed at which each drive shaft during machining reaches a target position and accurately keeping a position relation being a target of each drive shaft. SOLUTION: A tool angle detecting dog 10 to detect the position of a tool longitudinal moving shaft 7 moved in the direction of an arrow mark A on a tool angle moving shaft 6 and a tool angle detecting sensor 13 are provided. Further, a tool fore and aft detecting dog 11 to detect the position of the tool longitudinal moving shaft 7 to move a tool rotary shaft 5, holding a tool 3, in the direction of an arrow mark C and a tool fore and aft detecting sensor 14 are provided, and a work fore and aft detecting dog 12 to detect the position of a work longitudinal moving shaft 8 to move a work 7 in the direction of an arrow mark B and a work fore and aft detecting sensor 15 are provided. A difference between a time at which the tool angle detecting dog 10 passes the tool angle sensors 13 and 13 and a time at which the tool fore and aft detecting dog 11 and the work fore and aft detecting sensor 12 pass through the tool fore and aft detecting sensors 14 and 14 and the work fore and aft detecting sensors 15 and 15 is determined and the moving speeds of the tool rotary shaft 5 and the work fore and aft moving shaft 8 are corrected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学非球面レンズ
加工機や加工方法、非球面レンズの成形に用いられる金
型加工機や加工方法における非球面加工装置および加工
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical aspherical lens processing machine and a processing method, and a die processing machine and a processing method for forming an aspherical lens.

【0002】[0002]

【従来の技術】非球面の加工装置および加工方法に関す
る従来技術としては、特開平5−138521号公報に
開示されている。この加工装置は、加工工具を取り付け
た直線移動可能な工具駆動軸と、上記加工工具により加
工されるワークを取り付け上記工具駆動軸の移動方向に
対して垂直方向に直線移動可能なワーク駆動軸と、ワー
ク駆動軸を旋回移動させワークを揺動させる揺動駆動軸
とを備え、上記工具駆動軸を上記揺動駆動軸と平行もし
くは垂直に配置し、工具駆動軸およびワーク駆動軸は回
転可能となっている。
2. Description of the Related Art Japanese Patent Application Laid-Open No. 5-138521 discloses a prior art relating to an aspherical surface processing apparatus and method. The processing device includes a linearly movable tool drive shaft to which a processing tool is attached, a work drive axis to which a workpiece to be processed by the above processing tool is attached, and which is linearly movable in a direction perpendicular to a moving direction of the tool drive axis. A swing drive shaft that swings the work drive shaft to swing the work, the tool drive shaft is arranged parallel or perpendicular to the swing drive shaft, and the tool drive shaft and the work drive shaft are rotatable. Has become.

【0003】この加工装置によりワークを加工する際に
は、加工工具の回転および移動と、ワークの回転と揺動
および移動させ、加工工具によりワークを非球面形状に
加工する。このとき、ワーク駆動軸の旋回によるワーク
の揺動位置において、各々の相対的位置関係の計算機能
を用いて、非球面形状を作り出す加工工具およびワーク
の位置座標を計算し、この計算結果に基づいて各駆動軸
を駆動して上記位置座標に移動させ、揺動するワークを
所望の非球面形状に加工する。
When a work is machined by this machining apparatus, the work is rotated and moved, and the work is rotated, rocked and moved, and the work is machined into an aspherical shape by the work tool. At this time, at the swinging position of the work due to the turning of the work drive shaft, the position coordinates of the processing tool and the work that create the aspherical shape are calculated by using the calculation function of the relative positional relationship, and based on the calculation result. Then, each drive shaft is driven to move to the above-mentioned position coordinates, and the swinging work is processed into a desired aspherical shape.

【0004】[0004]

【発明が解決しようとする課題】前述した従来技術で
は、ワークの非球面加工に必要な複数の駆動軸(工具駆
動軸、ワーク駆動軸および揺動駆動軸)の相対的な位置
関係を保つために、各駆動軸の移動速度を加工装置に付
属する計算機能を用いて複雑な計算式で導き出す必要が
あるが、計算機能の扱いうる桁数に限度がある場合が多
く、その場合計算の過程で行う下位の桁の切り捨て・切
り上げ等の影響で、各駆動軸が加工中の目標位置座標に
到達する時間に微小なズレが生じるような速度が導き出
される場合がある。そのため、各駆動軸の目標とする位
置関係より相対的に微小なズレが生じ、加工精度に微妙
な影響を与える可能性がある。
In the prior art described above, a plurality of drive shafts (a tool drive shaft, a work drive shaft, and a swing drive shaft) required for aspherical machining of a workpiece are maintained in a relative positional relationship. In addition, it is necessary to derive the moving speed of each drive axis using a complicated calculation formula using the calculation function attached to the processing equipment.However, the number of digits that can be handled by the calculation function is often limited, in which case the calculation process Due to the effects of rounding down or rounding up the lower digits performed in the above, there may be a case where a speed is generated such that a slight shift occurs in the time when each drive axis reaches the target position coordinates during machining. Therefore, there is a possibility that a relatively small deviation occurs relative to the target positional relationship of each drive shaft, and the processing accuracy is delicately affected.

【0005】本発明は、上記問題点に鑑みてなされたも
ので、加工時の各駆動軸を目標位置に到達させる相対的
速度のズレを補正し、それにより各駆動軸の目標とする
位置関係を正確に保つことにより、加工精度の信頼性の
向上を実現し、高品質な非球面レンズの加工を可能とし
た非球面加工装置および加工方法を提供することを目的
とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and corrects a deviation in relative speed at which each drive shaft reaches a target position at the time of machining. It is an object of the present invention to provide an aspherical surface processing apparatus and a processing method capable of realizing an improvement in the reliability of processing accuracy by maintaining the accuracy of (1) and capable of processing a high-quality aspherical lens.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1に係る非球面加工装置は、加工工
具を保持する駆動軸と、ワークを保持する駆動軸と、加
工工具とワークを相対的に旋回する駆動軸の複数の駆動
軸を備え、各駆動軸の相対的な位置関係によって加工工
具とワークを接触させることによりワークを非球面形状
に加工する非球面加工装置において、各駆動軸の目標位
置への到達時間の相対的な差を検出する検出機能と、こ
の検出機能により得た検出結果を記憶する記憶手段と、
上記検出結果を用いて各駆動軸の移動速度を補正する補
正手段を有することを特徴とする。
According to a first aspect of the present invention, there is provided an aspherical surface processing apparatus comprising: a drive shaft for holding a work tool; a drive shaft for holding a work; And a plurality of drive shafts for rotating the work relative to each other, the aspherical surface processing device for processing the work into an aspherical shape by contacting the work tool with the work according to the relative positional relationship of each drive shaft. A detection function for detecting a relative difference in arrival time of each drive shaft to a target position, and storage means for storing a detection result obtained by this detection function,
It is characterized by having a correction means for correcting the moving speed of each drive shaft using the detection result.

【0007】また、本発明の請求項2に係る非球面加工
方法は、加工工具を保持する駆動軸と、ワークを保持す
る駆動軸と、加工工具とワークを相対的に旋回する駆動
軸をそれぞれ移動させ、各駆動軸の相対的な位置関係に
よって加工工具とワークを接触させることによりワーク
を非球面形状に加工する非球面加工方法において、各駆
動軸の目標位置への到達時間を検出し、この検出結果と
所望の非球面形状を加工する際の各駆動軸の目標位置へ
の到達時間との差により各駆動軸の移動速度を補正し、
この補正後の移動速度に基づいて各駆動軸を移動して加
工することを特徴とする。
According to a second aspect of the present invention, there is provided a method for machining an aspherical surface, comprising: a drive shaft for holding a machining tool; a drive shaft for holding a work; and a drive shaft for relatively rotating the machining tool and the work. In the aspherical surface machining method of moving the workpiece and making the workpiece into an aspherical shape by bringing the machining tool into contact with the workpiece according to the relative positional relationship of each drive shaft, the arrival time of each drive shaft to the target position is detected, The moving speed of each drive shaft is corrected by the difference between the detection result and the arrival time of each drive shaft at the target position when processing a desired aspherical shape,
Each drive shaft is moved and processed based on the corrected moving speed.

【0008】すなわち、本発明の非球面加工装置および
加工方法は、加工工具によるワークの加工時に各駆動軸
が各目標位置にそれぞれ同じタイミングで到達すべきポ
イントを各駆動軸ごとに複数点設け、センサーまたはコ
ントローラ内部の現在位置認識機能を用いてポイントご
とに各駆動軸の通過時間を検出し、ある駆動軸の通過時
間を基準とした各駆動軸との通過時間差を検出し、その
検出時間差を加工装置に付属する制御機能に記憶させ
る。このとき、ポイント間の距離L、各駆動軸のポイン
ト間の移動時間T,T1、検出時間差t=T−T1によ
り、ある駆動軸の移動速度を基準にして他の駆動軸の補
正速度が求められる。そして、時間差を生じている他の
駆動軸の実際の速度に上記補正速度を加えて理想の移動
速度Vを求めて、この理想の速度Vを上記制御機能に記
憶させ、次回からは上記理想の速度Vで動作を行い、ワ
ークの非球面加工を行う。
That is, in the aspherical surface processing apparatus and the processing method of the present invention, a plurality of points for each drive shaft to reach each target position at the same timing at the time of processing a work by a processing tool are provided for each drive shaft. The passing time of each drive axis is detected for each point using the current position recognition function inside the sensor or controller, the difference in the passing time with each drive axis based on the passing time of a certain drive axis is detected, and the detection time difference is detected. It is stored in the control function attached to the processing device. At this time, based on the distance L between the points, the movement times T and T1 between the points of each drive shaft, and the detection time difference t = T-T1, the correction speed of another drive shaft is determined based on the movement speed of one drive shaft. Can be Then, the correction speed is added to the actual speeds of the other drive shafts having a time difference to obtain an ideal moving speed V, and this ideal speed V is stored in the control function. The operation is performed at the speed V, and the aspherical surface processing of the work is performed.

【0009】上記構成によれば、ある駆動軸を基準にし
た場合の、他のすべての駆動軸の限りなく理想に近い速
度を得ることができるので、複数駆動軸の同時制御によ
る非球面加工時に発生しうる駆動軸間の相対的な位置関
係のズレを大幅に減少することができ、加工精度を理想
値に限りなく近づけることができる。
According to the above configuration, it is possible to obtain an almost ideal speed with respect to all the other drive shafts with respect to a certain drive shaft. It is possible to greatly reduce the possible deviation of the relative positional relationship between the drive shafts, and it is possible to make the processing accuracy as close as possible to the ideal value.

【0010】[0010]

【発明の実施の形態】(実施の形態1)本発明の実施の
形態1を図1に基づいて説明する。図1は本実施の形態
の非球面加工装置を上部方向から見た概略構成図であ
る。
(Embodiment 1) Embodiment 1 of the present invention will be described with reference to FIG. FIG. 1 is a schematic configuration diagram of the aspherical surface processing apparatus of the present embodiment viewed from above.

【0011】図1において、フレーム1内に、加工工具
とワークを相対的に旋回する駆動軸としての工具角度移
動軸6と、加工工具を保持する駆動軸としての工具前後
移動軸7と、ワークを保持する駆動軸としてのワーク前
後移動軸8の3軸が搭載されている。工具角度移動軸6
は、工具前後移動軸7を矢印A方向に旋回可能となって
いる。
In FIG. 1, a tool angle moving shaft 6 as a drive shaft for relatively rotating a working tool and a work, a tool longitudinal moving shaft 7 as a drive shaft for holding a working tool, a work The three axes of the workpiece longitudinal movement axis 8 are mounted as drive axes for holding the workpiece. Tool angle movement axis 6
Is capable of turning the tool longitudinal movement shaft 7 in the direction of arrow A.

【0012】ワーク前後移動軸8には、ワーク2を回転
させるためのワーク回転軸4が搭載され、その先端には
ワーク2が取り付けられており、ワーク2はワーク回転
軸4の軸線まわりに回転される。ワーク前後移動軸8は
矢印B方向に直線移動可能となっており、ワーク2はワ
ーク前後移動軸8と同じ速度で矢印B方向に直線移動さ
れる。
A work rotating shaft 4 for rotating the work 2 is mounted on the work longitudinal movement shaft 8, and the work 2 is attached to a tip of the work rotating shaft 4. The work 2 rotates around the axis of the work rotating shaft 4. Is done. The work longitudinal movement axis 8 is linearly movable in the direction of arrow B, and the work 2 is linearly moved in the direction of arrow B at the same speed as the work longitudinal movement axis 8.

【0013】工具前後移動軸7には、加工工具としての
工具3を高速回転させるための工具回転軸5が搭載され
ている。工具回転軸5の先端には工具3が取り付けられ
てワーク2の加工面に対向して配置され、工具3は回転
工具軸5の軸線まわりに回転される。回転工具軸5は、
矢印C方向に直線移動可能となっており、工具3は回転
工具軸5と同じ速度で矢印C方向に直線移動され、ワー
ク2の加工面に対して、少なくともワーク2の回転中心
から加工面外縁部まで移動されるようになっている。
A tool rotation shaft 5 for rotating the tool 3 as a machining tool at high speed is mounted on the tool longitudinal movement shaft 7. The tool 3 is attached to the tip of the tool rotation shaft 5 and is arranged so as to face the processing surface of the work 2, and the tool 3 is rotated around the axis of the rotation tool shaft 5. The rotary tool shaft 5 is
The tool 3 is linearly movable in the direction of the arrow C, and the tool 3 is linearly moved in the direction of the arrow C at the same speed as the rotary tool shaft 5. Section.

【0014】さらに、各軸5,7,8の位置などの状態
認識および状態を解析したデータ処理、各軸6,7,8
等への動作命令などが行える記憶手段や補正手段を備え
た制御機能9が設置されており、制御機能9の命令によ
って各軸5,7,8の位置やその移動速度が同時に制御
され、回転するワーク2と工具3が接触することによ
り、ワーク2の非球面加工を行う構造になっている。
Further, state recognition such as the position of each axis 5, 7, 8 and the like and data processing analyzing the state, each axis 6, 7, 8
A control function 9 having storage means and correction means capable of giving an operation command to the like is installed, and the position of each axis 5, 7, 8 and its moving speed are simultaneously controlled by the command of the control function 9, and The workpiece 2 and the tool 3 contact each other, so that the workpiece 2 is aspherically processed.

【0015】また、工具前後移動軸7には工具角度検出
ドグ10が取り付けられており、工具前後移動軸7とと
もに矢印A方向に旋回移動される工具角度検出ドグ10
によって検出し得る任意の位置に複数の工具角度検出セ
ンサー13を設け、工具角度移動軸6により旋回移動さ
れる工具前後移動軸7の通過時が検出可能となってい
る。また、工具前後移動軸7には、矢印C方向に沿って
任意の位置に複数の工具前後検出センサー14を設け、
工具角度移動軸7に搭載する工具回転軸5の搭載部に
は、工具回転軸5とともに矢印C方向に直線移動される
工具前後検出ドグ11が工具前後検出センサー14を検
出しうる位置に取り付けられ、工具前後移動軸7により
矢印C方向に直線移動される工具回転軸5の通過時が検
出可能となっている。
A tool angle detection dog 10 is attached to the tool longitudinal movement shaft 7 and is turned together with the tool longitudinal movement shaft 7 in the direction of arrow A.
A plurality of tool angle detection sensors 13 are provided at arbitrary positions that can be detected by the tool angle detection tool, and it is possible to detect the passage of the tool longitudinal movement axis 7 which is turned by the tool angle movement axis 6. Further, a plurality of tool front / rear detection sensors 14 are provided on the tool front / rear movement shaft 7 at arbitrary positions along the arrow C direction,
A tool front / rear detection dog 11 which is linearly moved in the direction of arrow C together with the tool rotation axis 5 is attached to a position where the tool front / rear detection sensor 14 can be detected. It is possible to detect the passage of the tool rotating shaft 5 which is linearly moved in the direction of arrow C by the tool longitudinal movement shaft 7.

【0016】そして、それぞれの工具角度検出センサー
13と工具前後検出センサー14は、工具3によりワー
ク2を加工する際に、目標とする非球面形状の各部にお
いて、それぞれの工具角度検出センサー13を工具角度
検出ドク10が検出しうる理論上相対する位置に工具前
後移動軸7が位置した際に、工具回転軸5すなわち工具
3が理論上位置するポイントで工具前後検出センサー1
4が工具前後検出ドク11により検出される位置に、そ
れぞれ工具前後検出センサー14が配設されている。す
なわち、工具角度移動軸6により旋回移動される工具前
後移動軸7の工具角度検出ドグ10がそれぞれの工具角
度検出センサー13を通過すると同時に、工具回転軸5
の工具前後検出ドグ11が工具前後検出センサー14を
通過した際、工具3を目標とする非球面形状の各部を加
工しうる位置に位置させるように、工具前後移動軸7と
工具回転軸5を目標位置へ位置させることができるよう
な位置関係で、工具角度検出センサー13と工具前後検
出センサー14は配設されている。
When the workpiece 3 is machined by the tool 3, the respective tool angle detection sensors 13 and the tool front-rear detection sensors 14 detect the respective tool angle detection sensors 13 in the target aspherical portions. When the tool longitudinal movement axis 7 is located at a theoretically opposite position that can be detected by the angle detection doc 10, the tool rotational axis 5, that is, the tool longitudinal detection sensor 1 at the point where the tool 3 is theoretically located
A tool front / rear detection sensor 14 is provided at a position where 4 is detected by the tool front / rear detection dock 11. That is, at the same time when the tool angle detection dog 10 of the tool longitudinal movement shaft 7 that is turned by the tool angle movement shaft 6 passes through the respective tool angle detection sensors 13, the tool rotation shaft 5
When the tool front / rear detection dog 11 passes through the tool front / rear detection sensor 14, the tool front / rear movement axis 7 and the tool rotation axis 5 are positioned so that the tool 3 is positioned at a position where the target aspherical part can be machined. The tool angle detection sensor 13 and the tool front-rear detection sensor 14 are provided in such a positional relationship as to be able to be positioned at the target position.

【0017】一方、ワーク前後移動軸8には、ワーク前
後検出ドグ12が取り付けられ、ワーク前後移動軸8と
ともに矢印B方向に移動されるワーク前後検出ドク12
の検出しうる位置に矢印C方向に沿って複数のワーク前
後検出センサー15が設けられている。ワーク前後検出
センサー15は、工具角度検出センサー13を基準に配
設され、ワーク前後検出ドグ12がそれぞれのワーク前
後検出センサー15を通過する際、上記目標位置に位置
する回転工具5の工具3に対して、理想とする非球面形
状を創成しるようにワーク2を移動し得るようになって
いる。
On the other hand, a work front-rear detection dog 12 is attached to the work front-rear movement shaft 8, and is moved in the direction of arrow B together with the work front-rear movement shaft 8.
A plurality of work front-rear detection sensors 15 are provided along the direction of the arrow C at positions where can be detected. The work front / rear detection sensor 15 is provided with reference to the tool angle detection sensor 13. When the work front / rear detection dog 12 passes through the respective work front / rear detection sensors 15, the tool 3 of the rotary tool 5 located at the target position is provided. On the other hand, the work 2 can be moved so as to create an ideal aspherical shape.

【0018】上記のように構成された非球面加工装置に
よる非球面加工方法を説明する。図1において、目標と
する非球面形状において、工具角度移動軸6で旋回移動
されれる工具前後移動軸7の工具角度検出ドグ10が工
具角度検出センサー13を通過するセンサー通過ポイン
トをa1,a2,a3,…、また工具前後移動軸7で矢
印C方向に移動され工具前後検出ドク11が工具前後検
出センサー14を通過する際、上記センサー通過ポイン
トa1,a2,a3,…に相対する工具前後検出ドグ1
1のセンサー通過ポイントをb1,b2,b3,…と
し、工具角度検出センサー13間のピッチをa2−a1
=La1、工具前後検出センサー14間のピッチをb2
−b1=Lb1とする。また、工具角度移動軸7の移動
速度に対応して目標とする非球面形状が得られるであろ
うワーク前後移動軸8の理論上の移動速度を求める。そ
して、それらのデータに従い、制御機能9により工具前
後移動軸7、工具回転軸5およびワーク前後移動軸8の
それぞれを理論上の移動速度で移動し、回転しているワ
ーク2を回転している工具3で加工動作を行う。
An aspherical surface processing method using the aspherical surface processing apparatus configured as described above will be described. In FIG. 1, in a target aspherical shape, sensor passing points at which a tool angle detection dog 10 of a tool longitudinal movement shaft 7 swiveled by a tool angle movement shaft 6 passes through a tool angle detection sensor 13 are defined as a1, a2, a3,..., and when the tool front-rear detection dock 11 is moved in the direction of arrow C by the tool front-rear movement axis 7 and passes through the tool front-rear detection sensor 14, the tool front-rear detection corresponding to the sensor passing points a1, a2, a3,. Dog 1
, And the pitch between the tool angle detection sensors 13 is a2-a1.
= La1, the pitch between the tool front-back detection sensors 14 is b2
-B1 = Lb1. In addition, a theoretical moving speed of the workpiece longitudinal moving shaft 8 at which a target aspherical shape can be obtained corresponding to the moving speed of the tool angle moving shaft 7 is obtained. According to these data, the control function 9 moves the tool longitudinal movement axis 7, the tool rotation axis 5 and the work longitudinal movement axis 8 at the theoretical movement speed, respectively, and rotates the rotating work 2. The machining operation is performed by the tool 3.

【0019】非球面加工動作中に、各センサー13,1
4によって上記各センサー通過ポイントa1,a2,b
1,b2の通過時間を検出し、その検出時間を制御機能
9に記憶する。そして、センサー通過ポイントa2の通
過時間Ta2(センサー通過ポイントa1からセンサー
通過ポイント2aの通過に要する時間)を基準にし、目
標とする非球面形状においてセンサー通過ポイントa2
に相対するセンサー通過ポイントb2の通過時間Tb2
(センサー通過ポイントb1からセンサー通過ポイント
baの通過に要する時間)を検出し、通過時間Ta2と
通過時間Tb2との差Ta2−Tb2から、Lb1/
(Ta2−Tb2)をセンサー通過ポイントb1,b2
間の回転工具軸5の補正速度として得る。さらに、セン
サー通過ポイントa2,b2以降のセンサー通過ポイン
トa3,…、b3,…の通過時間を検出し、工具前後移
動軸7の移動速度を基準にして工具3によりワーク2の
全面を加工する際の各センサー通過ポイントb3,…間
の回転工具軸5の補正速度をそれぞれ求める。
During the aspherical machining operation, each of the sensors 13, 1
4, the respective sensor passing points a1, a2, b
The passing time of 1 and b2 is detected, and the detected time is stored in the control function 9. Then, based on the passing time Ta2 of the sensor passing point a2 (the time required to pass from the sensor passing point a1 to the sensor passing point 2a), the sensor passing point a2 in the target aspherical shape is used.
Time Tb2 of the sensor passing point b2 relative to
(The time required for passing the sensor passing point ba from the sensor passing point b1) is detected, and the difference Ta2-Tb2 between the passing time Ta2 and the passing time Tb2 is calculated as Lb1 / Lb1 /
(Ta2-Tb2) is set to sensor passing points b1, b2
It is obtained as the correction speed of the rotary tool shaft 5 during the rotation. Further, the passage time of the sensor passing points a3,..., B3,... After the sensor passing points a2, b2 is detected, and the entire surface of the workpiece 2 is machined by the tool 3 based on the moving speed of the tool longitudinal movement shaft 7. The correction speed of the rotary tool shaft 5 between the sensor passing points b3,.

【0020】また、ワーク前後移動軸8においても、セ
ンサー通過ポイントa1,a2,…に相対するワーク前
後検出センサー15を通過するワーク前後検出ドグ12
のセンサー通過ポイントc1,c2,…間の通過時間を
検出し、工具角度移動軸7の移動速度を基準にして上記
工具回転軸5と同様にワーク2の全面を加工する際の各
通過ポイントc1,c2,…間のワーク前後移動軸8の
補正速度を求める。そして、新たなワーク2を加工する
次回からは、各センサー通過ポイント間において求めた
補正速度をそれぞれのセンサー通過ポイント間に加えた
移動速度で、工具回転軸5およびワーク前後移動軸8を
矢印Cおよび矢印B方向に移動し、ワーク2の非球面加
工を行う。
Also, the work front / rear detection dog 12 passing through the work front / rear detection sensor 15 corresponding to the sensor passing points a1, a2,.
, The passing time between the sensor passing points c1, c2,... Is detected, and each passing point c1 when the entire surface of the workpiece 2 is machined in the same manner as the tool rotating shaft 5 with reference to the moving speed of the tool angle moving shaft 7. , C2, ..., the correction speed of the work longitudinal movement axis 8 is determined. From the next time when a new workpiece 2 is machined, the tool rotation axis 5 and the workpiece longitudinal movement axis 8 are moved by the arrow C at a moving speed obtained by adding the correction speed obtained between the sensor passing points between the sensor passing points. Then, the workpiece 2 is moved in the direction of arrow B to perform aspherical processing of the workpiece 2.

【0021】本実施の形態によれば、工具前後移動軸
7、工具回転軸5およびワーク前後移動軸8を相対的に
移動しつつ目標とする非球面形状に加工する際に、非球
面形状の軌跡上の上記各軸7,5,8が相対的に一致す
る位置に各軸7,5,8の検出センサー13,14,1
5を固定し、相対的に移動する各軸7,5,8の動作を
検出することで、加工動作における実動作と理想的な動
作との差を認識でき、それにより各軸7,5,8の移動
速度の補正速度を求めることで、各軸7,5,8の相対
的な位置関係を補正することができ、目標とする非球面
形状にワーク2を加工することができる。
According to this embodiment, when the tool longitudinal movement axis 7, the tool rotation axis 5 and the work longitudinal movement axis 8 are relatively moved and machined into the target aspherical shape, the aspherical shape is used. The detection sensors 13, 14, 1 of the axes 7, 5, 8 are located at positions where the axes 7, 5, 8 relatively match on the trajectory.
5, and by detecting the movement of each of the axes 7, 5, 8 that move relatively, it is possible to recognize the difference between the actual operation and the ideal operation in the machining operation. By calculating the correction speed of the moving speed 8, the relative positional relationship between the axes 7, 5, and 8 can be corrected, and the workpiece 2 can be processed into a target aspherical shape.

【0022】(実施の形態2)本発明の実施の形態2を
図2に基づいて説明する。図2は本実施の形態の非球面
加工装置を上部方向から見た概略構成図である。本実施
の形態は、図1に示す実施の形態1の各検出ドグ10,
11,12と各検出センサー13,14,15を取り除
いて構成されており、その他の構成は実施の形態1と同
様であり、その説明は省略する。
(Embodiment 2) Embodiment 2 of the present invention will be described with reference to FIG. FIG. 2 is a schematic configuration diagram of the aspherical surface processing apparatus of the present embodiment viewed from above. In the present embodiment, the detection dogs 10 and 10 of the first embodiment shown in FIG.
11 and 12 and the respective detection sensors 13, 14 and 15 are removed, and the other configuration is the same as that of the first embodiment, and the description is omitted.

【0023】上記構成の非球面加工装置による非球面加
工方法を説明する。図2において、加工中の工具角度移
動軸6による工具前後移動軸7の移動過程において複数
の任意の通過ポイントa1,a2,…を設定して制御機
能9に記憶させ、制御機能9によって目標とする非球面
形状において通過ポイントa1,a2,…に相対する工
具前後移動軸7上の理論上のポイント、すなわち工具3
により目標とする非球面形状にワーク2を加工する際に
通過ポイントa1,a2,…と同時に通過する工具前後
移動軸7上の工具回転軸5の理論上の通過ポイントb
1,b2,…を制御機能9内にて計算させる。さらに、
通過ポイントa1,a2,…に相対するワーク前後移動
軸8上の理論上の通過ポイントc1,c2,…を制御機
能9内にて計算させる。また、工具角度移動軸6の移動
速度に対応して目標とする非球面形状が得られるであろ
う工具前後移動軸7およびワーク前後移動軸8の理論上
の移動速度を求める。そして、それらのデータに従い、
制御機能9により工具前後移動軸7、工具回転軸5およ
びワーク前後移動軸8のそれぞれを理論上の移動速度で
移動し、回転しているワーク2を回転している工具3で
加工動作を行う。
An aspherical surface processing method using the aspherical surface processing apparatus having the above configuration will be described. 2, a plurality of arbitrary passing points a1, a2,... Are set in the process of moving the tool longitudinal movement axis 7 by the tool angle movement axis 6 during machining and stored in the control function 9, and the target is set by the control function 9. Point on the tool longitudinal movement axis 7 corresponding to the passing points a1, a2,...
, The theoretical passing point b of the tool rotation axis 5 on the tool longitudinal movement axis 7 that passes simultaneously with the passing points a1, a2,.
Are calculated in the control function 9. further,
The control function 9 calculates the theoretical passing points c1, c2,... On the work longitudinal movement axis 8 that are relative to the passing points a1, a2,. In addition, the theoretical moving speed of the tool longitudinal movement shaft 7 and the work longitudinal movement shaft 8 that will obtain the target aspherical shape corresponding to the moving speed of the tool angle moving shaft 6 is obtained. And according to those data,
The control function 9 moves each of the tool longitudinal movement axis 7, the tool rotation axis 5 and the work longitudinal movement axis 8 at a theoretical moving speed, and performs a machining operation on the rotating workpiece 2 with the rotating tool 3. .

【0024】非球面加工動作中に制御機能9によって、
各軸6,7,8の現在位置を常に認識し、各通過ポイン
トa1,a2,…、b1,b2,…、c1,c2,…の
通過時間を検出し、通過ポイントa2の通過時間Ta2
を基準にした各軸5,8の通過ポイントb1,b2,
…、c1,c2,…における通過時間との差を求める。
そして、実施の形態1と同様な方法で各軸5,8の補正
速度をそれぞれ求め、この補正速度を加えた速度で各軸
5,8を移動し、工具3によりワーク2の非球面加工を
行う。
During the aspherical surface machining operation, the control function 9
.., B1, b2,..., C1, c2,..., The passing time of each passing point a1, a2,.
Passing point b1, b2 of each axis 5, 8 based on
., C1, c2,...
Then, the correction speeds of the respective axes 5 and 8 are obtained in the same manner as in the first embodiment, and the respective axes 5 and 8 are moved at a speed obtained by adding the correction speeds. Do.

【0025】本実施の形態によれば、各軸6,7,8の
位置検出を制御機能9のみで行うので、実施の形態1に
比べ構造をシンプルにすることができ、また各検出セン
サー13,14,15の調整のズレもなく、現在位置の
認識のレスポンスも良いことから、加工の信頼性を確保
し、より高精度の非球面形状を得ることができる。
According to the present embodiment, since the position detection of each axis 6, 7, 8 is performed only by the control function 9, the structure can be simplified as compared with the first embodiment. , 14 and 15 and the response of the recognition of the current position is good, so that the processing reliability can be ensured and a more accurate aspherical shape can be obtained.

【0026】[0026]

【発明の効果】以上説明したように、本発明の非球面加
工装置および加工方法によれば、非球面形状の加工デー
タを求める複雑な計算式を各駆動軸ごとに求める場合に
発生する、計算中の下位の桁の切り上げ・切り下げ等の
繰り返しによる各駆動軸の速度の相対的な誤差を補正で
きるため、速度の相対的誤差による相対的位置関係の誤
差を解消し、限りなく理想に近い非球面形状を得ること
ができる。
As described above, according to the aspherical surface processing apparatus and the processing method of the present invention, the calculation that occurs when a complicated calculation formula for obtaining the processing data of the aspherical shape is obtained for each drive shaft. Since the relative error of the speed of each drive shaft due to the repetition of rounding up and down of the lower digit in the middle can be corrected, the error of the relative positional relationship due to the relative error of the speed is eliminated, and the non-ideal A spherical shape can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1の非球面加工装置を上部
方向から見た概略構成図である。
FIG. 1 is a schematic configuration diagram of an aspherical surface processing apparatus according to a first embodiment of the present invention as viewed from above.

【図2】本発明の実施の形態2の非球面加工装置を上部
方向から見た概略構成図である。
FIG. 2 is a schematic configuration diagram of an aspherical surface processing apparatus according to a second embodiment of the present invention as viewed from above.

【符号の説明】[Explanation of symbols]

1 フレーム 2 ワーク 3 工具 4 ワーク回転軸 5 工具回転軸 6 工具角度移動軸 7 工具前後移動軸 8 ワーク前後移動軸 9 制御機能 10 工具角度検出ドグ 11 工具前後検出ドグ 12 ワーク前後検出ドグ 13 工具角度検出センサー 14 工具前後検出センサー 15 ワーク前後検出センサー 1 Frame 2 Work 3 Tool 4 Work rotation axis 5 Tool rotation axis 6 Tool angle movement axis 7 Tool back and forth movement axis 8 Work back and forth movement axis 9 Control function 10 Tool angle detection dog 11 Tool front and rear detection dog 12 Work front and back detection dog 13 Tool angle Detection sensor 14 Tool front / rear detection sensor 15 Work front / rear detection sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 加工工具を保持する駆動軸と、ワークを
保持する駆動軸と、加工工具とワークを相対的に旋回す
る駆動軸の複数の駆動軸を備え、各駆動軸の相対的な位
置関係によって加工工具とワークを接触させることによ
りワークを非球面形状に加工する非球面加工装置におい
て、各駆動軸の目標位置への到達時間の相対的な差を検
出する検出機能と、この検出機能により得た検出結果を
記憶する記憶手段と、上記検出結果を用いて各駆動軸の
移動速度を補正する補正手段を有することを特徴とする
非球面加工装置。
1. A drive shaft for holding a machining tool, a drive shaft for holding a work, and a plurality of drive shafts for rotating the machining tool and the work relative to each other, and a relative position of each drive shaft. In an aspherical surface processing device that processes a workpiece into an aspherical shape by contacting the workpiece with the workpiece according to the relationship, a detection function that detects the relative difference in the arrival time of each drive shaft to a target position, and this detection function An aspherical surface processing apparatus, comprising: storage means for storing a detection result obtained by the method; and correction means for correcting the moving speed of each drive shaft using the detection result.
【請求項2】 加工工具を保持する駆動軸と、ワークを
保持する駆動軸と、加工工具とワークを相対的に旋回す
る駆動軸をそれぞれ移動させ、各駆動軸の相対的な位置
関係によって加工工具とワークを接触させることにより
ワークを非球面形状に加工する非球面加工方法におい
て、各駆動軸の目標位置への到達時間を検出し、この検
出結果と所望の非球面形状を加工する際の各駆動軸の目
標位置への到達時間との差により各駆動軸の移動速度を
補正し、この補正後の移動速度に基づいて各駆動軸を移
動して加工することを特徴とする非球面加工方法。
2. A drive shaft for holding a processing tool, a drive shaft for holding a work, and a drive shaft for relatively turning the work tool and the work are moved, and processing is performed based on a relative positional relationship between the drive shafts. In an aspherical surface processing method of processing a workpiece into an aspherical shape by contacting a tool with the workpiece, the arrival time of each drive shaft to a target position is detected, and this detection result is used when processing a desired aspherical shape. Aspherical surface processing wherein the moving speed of each drive shaft is corrected based on the difference from the arrival time of each drive shaft to a target position, and each drive shaft is moved and processed based on the corrected moving speed. Method.
JP2000331829A 2000-10-31 2000-10-31 Aspherical machining device and machining method Withdrawn JP2002137146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000331829A JP2002137146A (en) 2000-10-31 2000-10-31 Aspherical machining device and machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000331829A JP2002137146A (en) 2000-10-31 2000-10-31 Aspherical machining device and machining method

Publications (1)

Publication Number Publication Date
JP2002137146A true JP2002137146A (en) 2002-05-14

Family

ID=18808122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000331829A Withdrawn JP2002137146A (en) 2000-10-31 2000-10-31 Aspherical machining device and machining method

Country Status (1)

Country Link
JP (1) JP2002137146A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297520A (en) * 2005-04-19 2006-11-02 Nakamura Tome Precision Ind Co Ltd Multi-axis spherical grinding device and grinding method
CN106312749A (en) * 2016-08-29 2017-01-11 苏州市诚品精密机械有限公司 Method for precisely grinding 45-degree corner of workpiece

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297520A (en) * 2005-04-19 2006-11-02 Nakamura Tome Precision Ind Co Ltd Multi-axis spherical grinding device and grinding method
CN106312749A (en) * 2016-08-29 2017-01-11 苏州市诚品精密机械有限公司 Method for precisely grinding 45-degree corner of workpiece

Similar Documents

Publication Publication Date Title
JP6484213B2 (en) Robot system including a plurality of robots, robot control apparatus, and robot control method
KR101218047B1 (en) Grinding machine with concentric correction device
JPS61281305A (en) Articulated robot control device
US20230100988A1 (en) Painting robot and painting method using painting robot
SE515374C2 (en) Method and apparatus for determining an object's coordinates and orientation in a reference coordinate system
CN113710417A (en) Machining head with active correction, method for operating a machining head and use thereof
US5189351A (en) Corrective positioning method in a robot
JP2007265237A (en) Work correction device and work processing device
JP2002137146A (en) Aspherical machining device and machining method
JP4251793B2 (en) Paste applicator
WO2017130412A1 (en) Machining apparatus correction method and machining apparatus
CN115870951B (en) Multi-robot flexible assembly and cooperative posture adjustment system
JP2919754B2 (en) Backlash measurement and correction device for spherical or circular surface machining
KR20100077232A (en) Robot hand process for approaching an object
JP7204309B2 (en) Drilling system
JP2005066683A (en) Seam welding method
WO2025069418A1 (en) Line tracing method
JP2004358607A (en) Cam top detection method and cam grinder
JP2523932B2 (en) Correcting method of normal direction of cutting work tool of robot
JP2005052878A (en) Seam welding method and seam welding equipment
JPS62139006A (en) Robot controller
JP2021004801A (en) Sealer application apparatus
KR101341236B1 (en) Method for calibrating an ophthalmic lens machining tool, and machining tool for implementing same
JP2005074584A (en) Grooving method and numerical control device
JP3204692B2 (en) How to capture continuous images

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108