[go: up one dir, main page]

JP2002130863A - Dehumidification method - Google Patents

Dehumidification method

Info

Publication number
JP2002130863A
JP2002130863A JP2000318852A JP2000318852A JP2002130863A JP 2002130863 A JP2002130863 A JP 2002130863A JP 2000318852 A JP2000318852 A JP 2000318852A JP 2000318852 A JP2000318852 A JP 2000318852A JP 2002130863 A JP2002130863 A JP 2002130863A
Authority
JP
Japan
Prior art keywords
evaporator
temperature
air
dehumidification
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000318852A
Other languages
Japanese (ja)
Other versions
JP2002130863A5 (en
Inventor
Chikayoshi Sato
近義 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000318852A priority Critical patent/JP2002130863A/en
Priority to TW091107041A priority patent/TW517149B/en
Priority to PCT/JP2002/003717 priority patent/WO2003087683A1/en
Priority to CNB028003411A priority patent/CN100365359C/en
Publication of JP2002130863A publication Critical patent/JP2002130863A/en
Publication of JP2002130863A5 publication Critical patent/JP2002130863A5/ja
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/153Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Gases (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Abstract

(57)【要約】 (修正有) 【課題】 装置の最低露点温度を0℃付近まで低下させ
て除湿量の増大を図ることができる除湿方法を提供する
こと。 【解決手段】 空気流中の水分を蒸発器12の表面で滴
状凝縮させて、除湿することを特徴とする除湿方法、に
よって解決される。空気中の水分を蒸発器12の表面で
滴状に凝縮させるには、蒸発器12の風上側に凝縮器を
分割して構成される予熱器11を配置し、この予熱器1
1によって蒸発器12を通る空気の温度を上昇させる方
法が好適である。これにより、凝縮器11,13の凝縮
負荷が低減されて凝縮温度が低下するとともに蒸発温度
も低下する。したがって、空気流と蒸発器表面との間の
温度差が大きくなって水分の滴状凝縮が促され、除湿量
の向上が図られる。
(57) [Summary] (Problem corrected) [PROBLEMS] To provide a dehumidification method capable of lowering the minimum dew point temperature of an apparatus to around 0 ° C. to increase the amount of dehumidification. SOLUTION: This is solved by a dehumidifying method characterized in that moisture in an air stream is dropped and condensed on the surface of an evaporator 12, and dehumidified. In order to condense water in the air in the form of droplets on the surface of the evaporator 12, a preheater 11 constituted by dividing the condenser on the windward side of the evaporator 12 is disposed.
The method of raising the temperature of the air passing through the evaporator 12 by 1 is preferred. As a result, the condensation load on the condensers 11 and 13 is reduced, so that the condensation temperature is reduced and the evaporation temperature is also reduced. Therefore, the temperature difference between the air flow and the surface of the evaporator increases, and the condensation of moisture is promoted, and the amount of dehumidification is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、室内の空気を蒸発
器で冷却し除湿する除湿方法に関し、更に詳しくは、従
来の除湿方法に比べて除湿量を大幅に向上させることが
できる除湿方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dehumidification method for cooling and dehumidifying indoor air with an evaporator, and more particularly, to a dehumidification method capable of greatly increasing the amount of dehumidification as compared with a conventional dehumidification method. .

【0002】[0002]

【従来の技術】従来、除湿機の除湿方法には、冷却式、
圧縮式、吸収式および吸着式などの種々の方式がある。
このうち、冷却式は直膨コイル方式とも呼ばれ、圧縮式
冷凍機で空気を冷却することで、飽和水蒸気圧を低下し
空気中の水分を凝縮させることを除湿の原理としてい
る。この方式は、設備費が安価であるという長所を有
し、家庭用除湿機または業務用除湿機として広く適用さ
れている。
2. Description of the Related Art Conventionally, a dehumidifier has a cooling method,
There are various types such as a compression type, an absorption type and an adsorption type.
Of these, the cooling type is also called a direct expansion coil type, and the principle of dehumidification is to reduce the saturated steam pressure and condense moisture in the air by cooling the air with a compression refrigerator. This method has an advantage that the equipment cost is low, and is widely applied as a home dehumidifier or a commercial dehumidifier.

【0003】従来の冷却式除湿機は、図5に示すように
風上側に配置される蒸発器1と、風下側に配置される凝
縮器2と、蒸発器1から凝縮器2へ向かう空気流を形成
する送風機(図示略)とを有し、蒸発器1で室内の空気
を冷却して除湿した後、凝縮器2で当該空気を再熱する
構成が一般的である。
As shown in FIG. 5, a conventional cooling type dehumidifier comprises an evaporator 1 arranged on the windward side, a condenser 2 arranged on the leeward side, and an air flow from the evaporator 1 to the condenser 2. And an air blower (not shown) that forms air-cooled air, and the air in the room is cooled and dehumidified by the evaporator 1, and then the air is reheated by the condenser 2.

【0004】通常、除湿量は、図6に示す湿り空気線図
から求めることができる。例えば、図中I点で示す標準
点(温度27℃、相対湿度60%)の状態にある空気を
蒸発器1で冷却したときのその出口における空気がO点
(温度17℃)である場合、その除湿量は、x1−x2
=3.67g/kg(DR)と算出される。
Normally, the amount of dehumidification can be obtained from a psychrometric chart shown in FIG. For example, when air at the standard point (temperature 27 ° C., relative humidity 60%) indicated by the point I in the drawing is cooled at the evaporator 1 at the outlet at the point O (temperature 17 ° C.), The dehumidification amount is x1-x2
= 3.67 g / kg (DR).

【0005】また、I点とO点とを結ぶ直線は空気操作
線と呼ばれ、さらに延長線をたどると飽和温度曲線に接
し、このときの温度F(本例では10℃)は通常、装置
の露点温度(蒸発温度)と呼ばれる。この露点温度(蒸
発温度)が低いほど、上記O点の温度が低下し、大きな
除湿量を得ることが可能となる。
[0005] A straight line connecting the points I and O is called an air operation line, and if it follows an extension line, it comes into contact with the saturation temperature curve. Is called the dew point temperature (evaporation temperature). As the dew point temperature (evaporation temperature) is lower, the temperature at the point O is lower, and a large amount of dehumidification can be obtained.

【0006】この湿り空気線図から又、装置の顕熱比
(SHF;Sensible Heat Factor)を求めることができ
る。顕熱比は、ある空間を冷却する場合、顕熱量が全熱
量に占める割合で、顕熱比=顕熱量QS/(顕熱量QS
+潜熱量QL)である。顕熱量QSは空気の温度を変化
させるのに必要な熱量で、潜熱量QLは空気中の水分を
凝縮させるのに必要な熱量である。ここで上記の例の場
合では、顕熱比は約0.54で、空気のもつ熱量のうち
温度変化に必要な熱量(顕熱量QS)が全体熱量の54
%であり、残りの46%が湿気をとる潜熱量QLとな
る。
The sensible heat ratio (SHF: Sensible Heat Factor) of the apparatus can also be determined from the psychrometric chart. The sensible heat ratio is the ratio of the amount of sensible heat to the total amount of heat when cooling a certain space, and sensible heat ratio = sensible heat amount QS / (sensible heat amount QS)
+ Latent heat quantity QL). The sensible heat QS is the heat required to change the temperature of the air, and the latent heat QL is the heat required to condense the moisture in the air. Here, in the case of the above example, the sensible heat ratio is about 0.54, and the amount of heat (sensible heat amount QS) required for temperature change among the heat amounts of air is 54% of the total heat amount.
%, And the remaining 46% is the amount of latent heat QL for taking moisture.

【0007】[0007]

【発明が解決しようとする課題】さて、上記したような
従来の冷却式除湿方法で得られる最低可能到達露点温度
は、湿り空気線図からでは約5℃までであり、0℃以下
にすることができない。空気操作線が飽和温度曲線から
離れると、運転状態(冷凍サイクル)が不安定となるか
らである。冷却式の除湿方法で除湿量を増加させるため
には、装置の最低露点温度を下げ、空気から奪う潜熱量
(QL)を増大して顕熱比(SHF)を低下させること
が条件となるが、熱交換器(蒸発器1,凝縮器2)を上
記のように配置して除湿する従来の方法では、装置の最
低露点温度を5℃以下に下げることは不可能であった。
The lowest possible dew point temperature obtained by the conventional cooling type dehumidifying method as described above is up to about 5 ° C. from a psychrometric chart, and should be set to 0 ° C. or less. Can not. This is because when the air operation line deviates from the saturation temperature curve, the operation state (refrigeration cycle) becomes unstable. In order to increase the amount of dehumidification by the cooling type dehumidification method, it is necessary to lower the minimum dew point temperature of the apparatus, increase the latent heat amount (QL) taken from the air, and lower the sensible heat ratio (SHF). In the conventional method of dehumidifying by arranging the heat exchangers (evaporator 1 and condenser 2) as described above, it was impossible to lower the minimum dew point temperature of the apparatus to 5 ° C. or less.

【0008】本発明は上述の問題に鑑みてなされ、装置
の最低露点温度を0℃付近まで低下させて除湿量の増大
を図ることができる除湿方法を提供することを課題とす
る。
The present invention has been made in view of the above problems, and has as its object to provide a dehumidifying method capable of reducing the minimum dew point temperature of an apparatus to around 0 ° C. to increase the amount of dehumidifying.

【0009】[0009]

【課題を解決するための手段】以上の課題は、風上側か
ら蒸発器および凝縮器を順に配置し、空気流を前記蒸発
器で露点温度にまで冷却して水分を除去した後、該空気
流を前記凝縮器で所定温度に再熱する除湿方法であっ
て、前記空気流中の水分を前記蒸発器の表面で滴状凝縮
させて、除湿することを特徴とする除湿方法、によって
解決される。
An object of the present invention is to provide an evaporator and a condenser arranged in this order from the windward side, and cooling the air flow to a dew point temperature by the evaporator to remove moisture. Is dehumidified by reheating the water to a predetermined temperature in the condenser, wherein the moisture in the air stream is dropped and condensed on the surface of the evaporator to dehumidify. .

【0010】従来の除湿方法では、凝縮液(空気中の水
分)が蒸発器の表面(凝縮面)を膜状に覆う膜状凝縮と
なり、凝縮面の伝熱はこの液膜を通して行われるため、
この液膜が大きな伝熱抵抗となる。これに対して本発明
は、空気中の水分を、凝縮液が凝縮面を滴状に覆う滴状
凝縮の形態で凝縮させることにより、膜状凝縮に比べて
空気流が凝縮面と直接接触する部分の面積を増大させ、
熱貫流率(熱伝達率)を高める。
In the conventional dehumidifying method, the condensed liquid (moisture in the air) forms a film-like condensation covering the surface (condensation surface) of the evaporator in a film form, and the heat transfer on the condensation surface is performed through this liquid film.
This liquid film has a large heat transfer resistance. In contrast, the present invention condenses the water in the air in the form of droplet condensation in which the condensed liquid covers the condensing surface in a droplet form, whereby the air flow comes into direct contact with the condensing surface as compared with the film-shaped condensation. Increase the area of the part,
Increase the heat transmission coefficient (heat transfer coefficient).

【0011】したがって、本発明によれば、熱貫流率の
向上により水分の凝縮が促進され、空気流から奪う潜熱
量が増大し、結果的に露点温度の低下がもたらされる。
これにより、露点温度を0℃付近まで低下させることが
でき、除湿量の大幅な向上を図ることが可能となる。
Therefore, according to the present invention, the condensation of water is promoted by the improvement of the heat transmission coefficient, the amount of latent heat taken from the air flow is increased, and as a result, the dew point temperature is lowered.
As a result, the dew point temperature can be reduced to around 0 ° C., and the amount of dehumidification can be significantly improved.

【0012】空気中の水分を蒸発器の表面で滴状に凝縮
させるには、蒸発器の風上側に凝縮器を分割して構成さ
れる予熱器を配置し、この予熱器によって蒸発器を通る
空気の温度を上昇させる方法が好適である。これによ
り、凝縮器の凝縮負荷が低減されて凝縮温度が低下する
とともに蒸発温度も低下する。したがって、空気流と蒸
発器表面との間の温度差が大きくなって水分の滴状凝縮
が促され、除湿量の向上が図られる。
In order to condense water in the air in the form of droplets on the surface of the evaporator, a preheater constituted by dividing the condenser is arranged on the windward side of the evaporator, and the preheater is passed through the evaporator by the preheater. A method of increasing the temperature of the air is preferred. As a result, the condensation load of the condenser is reduced, the condensation temperature is reduced, and the evaporation temperature is also reduced. Therefore, the temperature difference between the air flow and the surface of the evaporator increases, and the condensation of moisture is promoted, and the amount of dehumidification is improved.

【0013】特に、顕熱比が0.5未満となるように上
記予熱器、蒸発器および凝縮器を配置構成することによ
り、空気流の滴状凝縮化を促進させることができる。
In particular, by arranging the preheater, the evaporator and the condenser so that the sensible heat ratio is less than 0.5, it is possible to promote the droplet condensation of the air flow.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1は本発明の実施の形態を示している。
本実施の形態では、風上側から順に予熱凝縮器11、蒸
発器12および再熱凝縮器13を鉛直方向に立設配置し
て室内の空気を除湿する構成を採用している。また、図
示せずとも、再熱凝縮器13の風下側には予熱凝縮器1
1から再熱凝縮器13へ向かう空気流を形成するための
送風機が配置されている。なお、図中符号14は、空気
の通過を遮断するシールドである。
FIG. 1 shows an embodiment of the present invention.
In the present embodiment, a configuration is adopted in which a preheat condenser 11, an evaporator 12, and a reheat condenser 13 are vertically arranged in order from the windward side to dehumidify indoor air. Although not shown, the preheat condenser 1 is located on the lee side of the reheat condenser 13.
A blower is provided for forming an air flow from 1 to the reheat condenser 13. Reference numeral 14 in the figure denotes a shield that blocks passage of air.

【0016】予熱凝縮器11と再熱凝縮器13は、1台
の凝縮器を2つに分割して蒸発器12の風上側および風
下側にそれぞれ配置して成るもので、図2に示すように
圧縮機27からの冷媒の流れに関して並列的な関係にあ
る。なお、図2において符号32は、冷媒の流量調整用
のキャピラリチューブを示している。
The preheat condenser 11 and the reheat condenser 13 are obtained by dividing one condenser into two parts and disposing them on the upstream and downstream sides of the evaporator 12, respectively, as shown in FIG. Are in a parallel relationship with respect to the flow of the refrigerant from the compressor 27. In FIG. 2, reference numeral 32 indicates a capillary tube for adjusting the flow rate of the refrigerant.

【0017】予熱凝縮器11,蒸発器12および再熱凝
縮器13はそれぞれ同様な構成を有し、等ピッチに配置
される複数枚の放熱フィン111,121,131と、
これら放熱フィンを貫通するように配置される冷媒の循
環パイプ112,122,132とから構成される。
The preheat condenser 11, the evaporator 12, and the reheat condenser 13 have the same configuration, and include a plurality of radiation fins 111, 121, 131 arranged at equal pitches.
The refrigerant circulating pipes 112, 122, and 132 are arranged so as to penetrate through the radiation fins.

【0018】特に、本実施の形態では蒸発器12の面積
が、図6を参照して説明した従来の除湿機の蒸発器1の
面積に比べて小さく構成されている。この蒸発面積はパ
イプ122のヘアピン部分の本数で比較すると、本実施
の形態の蒸発器12では2本、従来の蒸発器1では7本
であり、本実施の形態の蒸発器12の面積は、従来の蒸
発器1の面積の3.5分の1である。
In particular, in this embodiment, the area of the evaporator 12 is smaller than the area of the evaporator 1 of the conventional dehumidifier described with reference to FIG. Comparing the evaporation area with the number of hairpin portions of the pipe 122, the evaporator 12 of the present embodiment is two, and the conventional evaporator 1 is seven, and the area of the evaporator 12 of the present embodiment is: It is 3.5 times smaller than the area of the conventional evaporator 1.

【0019】次に、本実施の形態の作用について説明す
る。図示しない送風機の駆動により室内の空気が予熱凝
縮器11へ導かれ、ここで所定温度(本実施の形態では
5℃)上昇された空気は蒸発器12で冷却され、水分が
除去された後、後段の再熱凝縮器13によって所定温度
に再熱され、室内へ放出される。
Next, the operation of the present embodiment will be described. The air in the room is guided to the preheating condenser 11 by driving a blower (not shown), and the air whose temperature has been raised by a predetermined temperature (5 ° C. in the present embodiment) is cooled by the evaporator 12 to remove water. It is reheated to a predetermined temperature by the reheat condenser 13 at the subsequent stage, and is discharged into the room.

【0020】本実施の形態では、予熱凝縮器11の通過
により、空気は所定温度高められた状態で蒸発器12の
表面に接触するため、当該予熱凝縮器11がない場合に
比べて大きな温度差で蒸発器12と接触することにな
る。また、凝縮器の分割配置により凝縮温度が低下し、
露点温度(蒸発温度)が低下する。以上から、水分の滴
状凝縮が促進され、空気から奪う潜熱量を増やして除湿
量の向上が図られる。
In this embodiment, the air passes through the preheating condenser 11 and contacts the surface of the evaporator 12 in a state where the temperature is raised by a predetermined temperature. And comes into contact with the evaporator 12. In addition, the condensation temperature is reduced by the split arrangement of the condenser,
Dew point temperature (evaporation temperature) decreases. As described above, the droplet condensation of moisture is promoted, and the amount of latent heat taken from the air is increased to improve the dehumidification amount.

【0021】露点温度の低下を図3に示す湿り空気線図
上で説明すると、室内の空気が例えば標準点(温度27
℃、相対湿度60%)にあるとすると、予熱凝縮器11
により32℃にまで予熱された後、蒸発器12で冷却さ
れることになるが、このとき操作線は、0℃以下(本例
では−1℃)で飽和温度曲線と接し、この温度が露点温
度(蒸発温度)となる。
The lowering of the dew point temperature will be described with reference to the psychrometric chart shown in FIG.
° C, 60% relative humidity).
After being preheated to 32 ° C. by cooling, it is cooled by the evaporator 12, and at this time, the operation line contacts the saturation temperature curve at 0 ° C. or less (−1 ° C. in this example), Temperature (evaporation temperature).

【0022】この湿り空気線図からでは装置の顕熱比
(SHF)を表すことはできない。しかし、後述するよ
うに、装置の蒸発温度(露点温度)、除湿量、圧縮機の
能力表より計算にて、顕熱比を算出することは可能であ
る。
The sensible heat ratio (SHF) of the apparatus cannot be represented from the psychrometric chart. However, as will be described later, it is possible to calculate the sensible heat ratio by calculation from the evaporating temperature (dew point temperature) of the apparatus, the amount of dehumidification, and the capacity table of the compressor.

【0023】表1に、標準点(27℃、相対湿度60
%)を基準とした、予熱凝縮器11による空気の上昇温
度と最低到達蒸発温度との関係を例示的に示す。空気を
3℃以上上昇させるように予熱凝縮器の凝縮温度を設定
すれば(例えば40℃)、−1℃の最低到達蒸発温度を
得ることができる。
Table 1 shows the standard points (27 ° C., relative humidity 60
The relationship between the rising temperature of the air by the preheating condenser 11 and the lowest attained evaporation temperature on the basis of%) is exemplarily shown. If the condensing temperature of the preheating condenser is set so that the air is raised by 3 ° C. or more (for example, 40 ° C.), a minimum ultimate evaporation temperature of −1 ° C. can be obtained.

【0024】[0024]

【表1】 [Table 1]

【0025】また、本実施の形態では、従来の凝縮器2
(図5参照)を予熱凝縮器11と再熱凝縮器13とに分
割して配置しているため、その凝縮能力は従来の凝縮器
1の凝縮能力より増加し、しかも、圧縮機27の能力を
低下させないように凝縮負荷を低減して凝縮圧力(凝縮
温度)を低くすることができるため(本実施の形態では
40℃)、冷凍能力を低下させることなく除湿量を向上
させることができる。同時に、凝縮負荷の低減により周
囲温度の上昇を抑制することができる。
In the present embodiment, the conventional condenser 2
(See FIG. 5) is divided into a preheat condenser 11 and a reheat condenser 13, so that the condensation capacity thereof is greater than that of the conventional condenser 1, and the capacity of the compressor 27 is increased. The condensing load can be reduced so as not to lower the condensing pressure (condensing temperature) (40 ° C. in the present embodiment), so that the amount of dehumidification can be improved without lowering the refrigerating capacity. At the same time, an increase in the ambient temperature can be suppressed by reducing the condensation load.

【0026】図4に、以上のように構成される除湿機
で、温湿度の調整のないプレハブ倉庫で行ったときの除
湿量を、従来の家庭用除湿機と対比して示す。ここで、
実線は発明機を、一点鎖線は従来機をそれぞれ示してい
る。
FIG. 4 shows the amount of dehumidification performed in a prefabricated warehouse without temperature and humidity adjustment in the dehumidifier configured as described above, in comparison with a conventional home dehumidifier. here,
The solid line indicates the invented machine, and the dashed line indicates the conventional machine.

【0027】図においてA1点およびA2点は、温度2
2.5℃、相対湿度47.6%における発明機および従
来機のデータをそれぞれ示している。除湿量を比較する
と、従来機では190cc/hであるのに対して、発明
機では300cc/hで、従来機の1.58倍である。
これから発明機の顕熱比(SHF)を求めると、従来機
の顕熱比(QS)が0.54であるとすると(前述)、
QLは0.46であり、したがって、0.46×1.5
8=0.73より、発明機の顕熱比は、0.27とな
る。
In the figure, the points A1 and A2 correspond to the temperature 2
The data of the invention machine and the conventional machine at 2.5 ° C. and 47.6% relative humidity are shown, respectively. Comparing the dehumidification amount, the conventional machine is 190 cc / h, while the inventive machine is 300 cc / h, which is 1.58 times that of the conventional machine.
From this, the sensible heat ratio (SHF) of the invented machine is calculated. Assuming that the sensible heat ratio (QS) of the conventional machine is 0.54 (described above),
QL is 0.46 and therefore 0.46 × 1.5
From 8 = 0.73, the sensible heat ratio of the invention machine is 0.27.

【0028】また、図においてB1点およびB2点は、
温度24.5℃、相対湿度93.3%における発明機お
よび従来機のデータをそれぞれ示している。除湿量を比
較すると、従来機では520cc/hであるのに対し
て、発明機では950cc/hで、従来機の1.8倍で
ある。これから発明機の顕熱比(SHF)を求めると、
従来機の顕熱比(QS)が0.54であるとすると、Q
Lは0.46であり、したがって、0.46×1.8=
0.83より、発明機の顕熱比は、0.17となる。
In the figure, points B1 and B2 are:
The data of the invention machine and the conventional machine at a temperature of 24.5 ° C. and a relative humidity of 93.3% are shown, respectively. Comparing the dehumidification amount, the conventional machine is 520 cc / h, whereas the inventive machine is 950 cc / h, which is 1.8 times that of the conventional machine. When the sensible heat ratio (SHF) of the invented machine is calculated from this,
Assuming that the sensible heat ratio (QS) of the conventional machine is 0.54, Q
L is 0.46, so 0.46 × 1.8 =
From 0.83, the sensible heat ratio of the invention machine is 0.17.

【0029】なお、図においてC1点およびC2点は、
温度27℃、相対湿度60%、すなわち標準点における
発明機および従来機のそれぞれ除湿量を示している。し
かし実際にはこの点で測定していないので詳細は不明で
あるが、発明機の方が従来機に比べて約2倍の除湿量を
有することが推定される。したがって、上記A1点およ
びB1点の場合と同様、発明機の顕熱比は0.5以下と
なる。
In the figure, points C1 and C2 are:
The graph shows the dehumidification amount of the invention machine and the conventional machine at the temperature of 27 ° C. and the relative humidity of 60%, that is, the standard point. However, since the measurement is not actually performed at this point, the details are unknown, but it is estimated that the invented device has a dehumidification amount about twice that of the conventional device. Therefore, the sensible heat ratio of the invented machine is 0.5 or less, as in the case of the points A1 and B1.

【0030】特に、本実施の形態では、蒸発器12の面
積が従来の蒸発器1の面積の3.5分の1であり、しか
も上述のように従来機の除湿量の約2倍の除湿量を得る
ことができることから、従来機の蒸発器1表面に平均に
除湿水が膜状にあるものとすれば、本実施の形態の蒸発
器12の除湿水の膜の厚さは、従来の蒸発器1の除湿水
の約7倍の厚さの水膜があることになる。したがって、
従来機の約7倍の水膜であれば、それは膜というよりも
水滴と表現することも可能である。すなわち、本実施の
形態では、空気中の水分を滴状凝縮の形態で除湿してい
ると言うことができる。
In particular, in this embodiment, the area of the evaporator 12 is 3.5 times smaller than the area of the conventional evaporator 1, and as described above, the dehumidification amount is about twice the dehumidification amount of the conventional machine. Since the amount of dehumidified water can be obtained, if the dehumidified water has a film shape on the surface of the evaporator 1 of the conventional machine on average, the thickness of the film of the dehumidified water of the evaporator 12 of the present embodiment is There will be a water film about 7 times thicker of the dehumidified water of the evaporator 1. Therefore,
If the water film is about seven times that of the conventional machine, it can be expressed as a water droplet rather than a film. That is, in this embodiment, it can be said that the moisture in the air is dehumidified in the form of droplet condensation.

【0031】更に、凝縮温度および蒸発温度の低下によ
り、冷媒の比容積が増大し、これが冷媒の循環量の低下
をもたらすため、消費電力の減少と、蒸発器12の小型
化、ひいては除湿機全体の小型化を図ることができる。
すなわち本実施の形態によれば、従来よりも小さい蒸発
面積(容量)で除湿量の向上を図ることができる。
Further, since the specific volume of the refrigerant increases due to the decrease in the condensing temperature and the evaporating temperature, which causes a decrease in the circulation amount of the refrigerant, the power consumption is reduced, the evaporator 12 is downsized, and the dehumidifier as a whole is reduced. Can be reduced in size.
That is, according to the present embodiment, the amount of dehumidification can be improved with a smaller evaporation area (capacity) than in the related art.

【0032】ここで、蒸発器の理論設計式より、本発明
の蒸発器12と従来の蒸発器1との容量の関係を、下記
の計算式にて確認する。 Qe=K・F・td ……(1) Qe:蒸発器の冷却能力(kcal/h)、 K:蒸発器の熱貫流率(kcal/℃m2h)、 F:蒸発器の表面積(m2) td=(ta+tb)/2−te……(2) ta:蒸発器入口の空気温度(℃)、 tb:蒸発器出口の空気温度(℃)、 te:蒸発器の蒸発温度(℃) 発明器の設計条件としては、従来機と同一の圧縮機を使
用して、かつ冷却能力もほぼ同じとする。従来機の蒸発
器の冷却能力をQe1とし、発明機の蒸発器の冷却能力
をQe2とすると、Qe1=Qe2となる。従来機の蒸
発器の熱貫流率K1と発明機の蒸発器の熱貫流率K2と
の関係については、K1は膜状凝縮における熱貫流率で
あり、K2は滴状凝縮における熱貫流率であるため、K
1<K2となる。そこで(2)式より、従来機td1=
(ta1+tb1)/2−te1、発明機td2=(t
a2+tb2)/2−te2とすれば、ta1=27
℃、ta2=32℃、tb1=17℃、tb2=14
℃、te1=10℃、te2=7℃とした場合、td1
=12℃、td2=16℃となり、td1<td2とな
る。したがって、Qe1=Qe2、K1<K2、td1
<td2の関係より、蒸発器の表面積Fは、(1)式よ
り、F1>F2となるので、結論として、従来機の蒸発
器の容量より発明機の蒸発器の容量は小さいものでなけ
ればならないことが分かる。
Here, the relationship between the capacity of the evaporator 12 of the present invention and the capacity of the conventional evaporator 1 will be confirmed by the following calculation formula from the theoretical design formula of the evaporator. Qe = K · F · td (1) Qe: Cooling capacity of the evaporator (kcal / h), K: Heat transmission coefficient of the evaporator (kcal / ° C. m 2 h), F: Surface area of the evaporator (m 2 ) td = (ta + tb) / 2−te (2) ta: air temperature at the inlet of the evaporator (° C.), tb: air temperature at the outlet of the evaporator (° C.), te: evaporation temperature of the evaporator (° C.) As the design conditions of the inventor, the same compressor as that of the conventional machine is used, and the cooling capacity is almost the same. If the cooling capacity of the evaporator of the conventional machine is Qe1 and the cooling capacity of the evaporator of the invention machine is Qe2, Qe1 = Qe2. Regarding the relationship between the heat transfer coefficient K1 of the conventional evaporator and the heat transfer coefficient K2 of the inventor's evaporator, K1 is the heat transfer coefficient in the film condensation and K2 is the heat transfer coefficient in the droplet condensation. Therefore, K
1 <K2. Therefore, from the equation (2), the conventional machine td1 =
(Ta1 + tb1) / 2-te1, invention machine td2 = (t
a2 + tb2) / 2−te2, then ta1 = 27
° C, ta2 = 32 ° C, tb1 = 17 ° C, tb2 = 14
° C, te1 = 10 ° C, te2 = 7 ° C, td1
= 12 ° C, td2 = 16 ° C, and td1 <td2. Therefore, Qe1 = Qe2, K1 <K2, td1
From the relationship of <td2>, the surface area F of the evaporator is F1> F2 from the equation (1), and consequently, unless the capacity of the evaporator of the inventor is smaller than the capacity of the evaporator of the conventional apparatus. It turns out that it does not become.

【0033】以上、本発明の実施の形態について説明し
たが、勿論、本発明はこれに限定されることなく、本発
明の技術的思想に基づいて種々の変形が可能である。
Although the embodiment of the present invention has been described above, the present invention is, of course, not limited to this, and various modifications can be made based on the technical concept of the present invention.

【0034】例えば以上の実施の形態では、空気中の水
分の滴状凝縮を図るべく蒸発器12の蒸発温度を下げる
方法として、蒸発器12の容量を従来よりも減少させる
方法を採用したが、これに代えて、送風機による風量を
従来よりも減少させるようにしても、蒸発温度の低下を
図ることができる。
For example, in the above-described embodiment, as a method of lowering the evaporation temperature of the evaporator 12 in order to achieve the droplet condensation of moisture in the air, a method of reducing the capacity of the evaporator 12 as compared with the conventional method is employed. Alternatively, the evaporating temperature can be reduced even if the air volume by the blower is reduced as compared with the conventional case.

【0035】また、以上の実施の形態では、冷媒の流量
調整手段としてキャピラリチューブ32を用いたが、蒸
発温度の低下による冷媒の流量調整を確実に行わせるた
め、キャピラリチューブ32に代えて電子膨張弁を採用
してもよい。
Further, in the above embodiment, the capillary tube 32 is used as the refrigerant flow rate adjusting means. However, in order to surely adjust the flow rate of the refrigerant due to the lowering of the evaporation temperature, electronic expansion is performed instead of the capillary tube 32. A valve may be employed.

【0036】[0036]

【発明の効果】以上述べたように、本発明の除湿方法に
よれば、空気中の水分を滴状凝縮させて蒸発器の熱貫流
率の向上を図ることによって、空気から奪う潜熱量を増
大し、除湿量の大幅な向上を図ることができる。
As described above, according to the dehumidifying method of the present invention, the amount of latent heat deprived from air is increased by condensing water in the air in a droplet form to improve the heat transmission coefficient of the evaporator. In addition, the amount of dehumidification can be significantly improved.

【0037】請求項2の発明によれば、空気流と蒸発器
表面との間の温度差を大きくして水分の滴状凝縮を促
し、また、蒸発温度とともに凝縮温度をも下げて冷凍能
力の向上、すなわち除湿量の向上を図ることができる。
さらに、凝縮負荷の低減により周囲温度の上昇を抑制す
るとともに、冷媒循環量の低減をもたらして熱交換器の
小型化を図り、消費電力の低減を図ることができる。
According to the second aspect of the present invention, the temperature difference between the air flow and the surface of the evaporator is increased to promote the droplet-like condensation of water. Improvement, that is, improvement in the amount of dehumidification can be achieved.
Further, the increase in the ambient temperature is suppressed by reducing the condensation load, and the amount of circulating refrigerant is reduced, so that the heat exchanger can be reduced in size and power consumption can be reduced.

【0038】さらに請求項3の発明によれば、蒸発器の
熱貫流率を向上させて水分の滴状凝縮を促進し、除湿量
の向上を図ることができる。
Further, according to the third aspect of the present invention, it is possible to improve the heat transmission coefficient of the evaporator, promote the droplet condensation of water, and improve the dehumidification amount.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態による除湿方法を説明する
熱交換器の側面図である。
FIG. 1 is a side view of a heat exchanger illustrating a dehumidification method according to an embodiment of the present invention.

【図2】同配管系統図である。FIG. 2 is a piping system diagram of the same.

【図3】本発明の実施の形態による露点温度(蒸発温
度)を説明する湿り空気線図である。
FIG. 3 is a psychrometric chart illustrating the dew point temperature (evaporation temperature) according to the embodiment of the present invention.

【図4】本発明を適用した除湿機と従来の除湿機との除
湿量の比較を示す図である。
FIG. 4 is a diagram showing a comparison of the amount of dehumidification between a dehumidifier to which the present invention is applied and a conventional dehumidifier.

【図5】従来の除湿方法を説明する各熱交換器の配置図
である。
FIG. 5 is an arrangement diagram of each heat exchanger for explaining a conventional dehumidification method.

【図6】従来の除湿方法による露点温度(蒸発温度)を
説明する湿り空気線図である。
FIG. 6 is a psychrometric chart explaining the dew point temperature (evaporation temperature) according to the conventional dehumidifying method.

【符号の説明】[Explanation of symbols]

11 予熱凝縮器 12 蒸発器 13 再熱凝縮器 27 圧縮機 120 蒸発器 122 循環パイプ DESCRIPTION OF SYMBOLS 11 Preheat condenser 12 Evaporator 13 Reheat condenser 27 Compressor 120 Evaporator 122 Circulation pipe

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 風上側から蒸発器および凝縮器を順に配
置し、空気流を前記蒸発器で露点温度にまで冷却して水
分を除去した後、該空気流を前記凝縮器で所定温度に再
熱する除湿方法であって、 前記空気流中の水分を前記蒸発器の表面で滴状凝縮させ
て、除湿することを特徴とする除湿方法。
1. An evaporator and a condenser are arranged in this order from the windward side. After the air flow is cooled to a dew point temperature by the evaporator to remove water, the air flow is returned to a predetermined temperature by the condenser. A dehumidifying method for heating, wherein moisture in the air stream is dropped and condensed on the surface of the evaporator to perform dehumidification.
【請求項2】 前記蒸発器の風上側に、前記凝縮器を分
割して構成される予熱器を配置し、該予熱器により前記
蒸発器を通る空気流の温度を上昇させることを特徴とす
る請求項1に記載の除湿方法。
2. A preheater, which is configured by dividing the condenser, is arranged on the windward side of the evaporator, and the temperature of an air flow passing through the evaporator is increased by the preheater. The dehumidification method according to claim 1.
【請求項3】 前記予熱器、前記蒸発器および前記凝縮
器を、顕熱比が0.5未満となるように配置構成するこ
とを特徴とする請求項2に記載の除湿方法。
3. The dehumidifying method according to claim 2, wherein the preheater, the evaporator, and the condenser are arranged so that a sensible heat ratio is less than 0.5.
JP2000318852A 2000-10-19 2000-10-19 Dehumidification method Pending JP2002130863A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000318852A JP2002130863A (en) 2000-10-19 2000-10-19 Dehumidification method
TW091107041A TW517149B (en) 2000-10-19 2002-04-09 Dehumidifying method
PCT/JP2002/003717 WO2003087683A1 (en) 2000-10-19 2002-04-15 Dehumidifying method
CNB028003411A CN100365359C (en) 2000-10-19 2002-04-15 Dehumidification method and dehumidification device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000318852A JP2002130863A (en) 2000-10-19 2000-10-19 Dehumidification method
PCT/JP2002/003717 WO2003087683A1 (en) 2000-10-19 2002-04-15 Dehumidifying method

Publications (2)

Publication Number Publication Date
JP2002130863A true JP2002130863A (en) 2002-05-09
JP2002130863A5 JP2002130863A5 (en) 2005-04-07

Family

ID=30772089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000318852A Pending JP2002130863A (en) 2000-10-19 2000-10-19 Dehumidification method

Country Status (4)

Country Link
JP (1) JP2002130863A (en)
CN (1) CN100365359C (en)
TW (1) TW517149B (en)
WO (1) WO2003087683A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005079957A1 (en) * 2004-02-23 2005-09-01 Chikayoshi Sato Air conditioning method and air conditioning system
CN103604165A (en) * 2013-11-29 2014-02-26 苏州浩佳节能科技有限公司 High-efficiency dehumidification air conditioning indoor unit
WO2021117199A1 (en) * 2019-12-12 2021-06-17 三菱電機株式会社 Dehumidifier
CN114893828A (en) * 2022-03-30 2022-08-12 青岛海信日立空调系统有限公司 Air conditioner

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007061420A1 (en) * 2005-11-28 2007-05-31 Carrier Commercial Refrigeration, Inc. Refrigerated case
DK177003B1 (en) * 2009-08-20 2010-11-15 Maersk Container Ind As Dehumidifier
CN115867752A (en) * 2020-06-05 2023-03-28 三菱电机株式会社 Dehumidifier

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126622U (en) * 1982-02-20 1983-08-27 森 善一 dehumidifier
JPH05340643A (en) * 1992-06-12 1993-12-21 Toshiba Corp Air conditioner
JPH0942747A (en) * 1995-07-31 1997-02-14 Matsushita Seiko Co Ltd Air conditioner
JPH10148416A (en) * 1996-11-15 1998-06-02 Yasuhiko Arai Dehumidifier
JPH10197028A (en) * 1997-01-13 1998-07-31 Hitachi Ltd Air conditioner
JP2001124434A (en) * 1999-10-29 2001-05-11 Daikin Ind Ltd Air conditioner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005079957A1 (en) * 2004-02-23 2005-09-01 Chikayoshi Sato Air conditioning method and air conditioning system
JP2005233562A (en) * 2004-02-23 2005-09-02 Chikayoshi Sato Air conditioning method and air conditioning apparatus
CN103604165A (en) * 2013-11-29 2014-02-26 苏州浩佳节能科技有限公司 High-efficiency dehumidification air conditioning indoor unit
WO2021117199A1 (en) * 2019-12-12 2021-06-17 三菱電機株式会社 Dehumidifier
JPWO2021117199A1 (en) * 2019-12-12 2021-06-17
JP7308975B2 (en) 2019-12-12 2023-07-14 三菱電機株式会社 dehumidifier
CN114893828A (en) * 2022-03-30 2022-08-12 青岛海信日立空调系统有限公司 Air conditioner
CN114893828B (en) * 2022-03-30 2023-08-18 青岛海信日立空调系统有限公司 Air conditioner

Also Published As

Publication number Publication date
TW517149B (en) 2003-01-11
WO2003087683A1 (en) 2003-10-23
CN1483131A (en) 2004-03-17
CN100365359C (en) 2008-01-30

Similar Documents

Publication Publication Date Title
US9920960B2 (en) Heat pump system having a pre-processing module
CN102844635B (en) Refrigeration system with continuous expansion and method
CN107429975A (en) Heat exchanger and air conditioner
GB2069117A (en) Heat production utilising a heat pump
US20250122701A1 (en) Water Harvester Adsorption Enthalpy Removal System
US3067592A (en) figure
JP6676163B2 (en) Dehumidifier
JP2002130863A (en) Dehumidification method
WO2008078194A2 (en) Thermal load management system
JP2002130863A5 (en)
JP3765732B2 (en) Heat pump and dehumidifying air conditioner
JP2005233562A (en) Air conditioning method and air conditioning apparatus
CN101307963A (en) Heat pump air conditioner
JPH0798162A (en) Air-conditioner
JP2003222436A (en) Heat exchanger for heat pump type air conditioner
TWI784343B (en) Dehumidifier
JP2006317012A (en) Air conditioner
JP2002162123A (en) Heat pump
CN108361869B (en) A heat pump driven solution dehumidification-regenerative air treatment system
JP2004353893A (en) Air conditioner having variable sensible heat ratio
JP3885063B2 (en) Air conditioner
JP2006153321A (en) Heat pump air conditioner
CN105612392A (en) System and method for air handling and air conditioning
JPH081416Y2 (en) Dehumidifier
KR200234358Y1 (en) The freezing dehumidifier using refrigeratory material and air-precooling method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040528

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20041119

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20041208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051108