[go: up one dir, main page]

JP2002130856A - Refrigerating cycle device and control method thereof - Google Patents

Refrigerating cycle device and control method thereof

Info

Publication number
JP2002130856A
JP2002130856A JP2000322313A JP2000322313A JP2002130856A JP 2002130856 A JP2002130856 A JP 2002130856A JP 2000322313 A JP2000322313 A JP 2000322313A JP 2000322313 A JP2000322313 A JP 2000322313A JP 2002130856 A JP2002130856 A JP 2002130856A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigeration cycle
internal heat
temperature
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000322313A
Other languages
Japanese (ja)
Other versions
JP3693562B2 (en
Inventor
Tatsuya Hori
達也 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Original Assignee
Matsushita Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Seiko Co Ltd filed Critical Matsushita Seiko Co Ltd
Priority to JP2000322313A priority Critical patent/JP3693562B2/en
Publication of JP2002130856A publication Critical patent/JP2002130856A/en
Application granted granted Critical
Publication of JP3693562B2 publication Critical patent/JP3693562B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerating cycle device capable of expanding the capacity control range of an internal heat exchanger and functioning the internal heat exchanger even upon the reversible cycle of a refrigerating cycle, in the refrigerating cycle device employing a refrigerant capable of becoming a supercritical condition in a radiator such as carbon dioxide or the like. SOLUTION: A second expanding mechanism unit is provided at the high pressure refrigerant inlet port of the internal heat exchanger for the refrigerating cycle device to control the amount of expansion before and after the internal heat exchanger and change a high pressure refrigerant temperature whereby an internal heat exchanging capacity is controlled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二酸化炭素などの
放熱器で超臨界状態となりうる冷媒を用いた冷凍サイク
ル装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle apparatus using a refrigerant that can be brought into a supercritical state by a radiator such as carbon dioxide.

【0002】[0002]

【従来の技術】従来、この種の冷凍サイクル装置は、特
開平11−193967号公報に記載されたものが知ら
れている。
2. Description of the Related Art Hitherto, a refrigeration cycle apparatus of this type is known from Japanese Patent Application Laid-Open No. H11-193967.

【0003】以下、その冷凍サイクル装置について図1
2を参照しながら説明する。
FIG. 1 shows the refrigeration cycle apparatus.
This will be described with reference to FIG.

【0004】図12に示すように、圧縮機101と放熱
器102と膨張機構部103と吸熱器104と内部熱交
換器105と内部熱交換器バイパス106とバイパス流
量調整弁107と前記圧縮機101吐出冷媒温度センサ
ー108と吐出冷媒圧力センサー110と前記バイパス
流量調整弁107のコントローラー109を備えること
により冷凍サイクル装置を構成する。
As shown in FIG. 12, a compressor 101, a radiator 102, an expansion mechanism 103, a heat absorber 104, an internal heat exchanger 105, an internal heat exchanger bypass 106, a bypass flow control valve 107, the compressor 101 A refrigeration cycle apparatus is configured by including a discharged refrigerant temperature sensor 108, a discharged refrigerant pressure sensor 110, and a controller 109 of the bypass flow rate adjusting valve 107.

【0005】上記構成により、二酸化炭素などの放熱器
で超臨界状態となりうる冷媒を封入し、前記圧縮機10
1で圧縮された高圧高温冷媒ガスが前記放熱器102を
通り常温に近い温かい高圧冷媒ガスとなり、前記内部熱
交換器105にて低温の高圧冷媒ガスとなる。そして、
前記膨張機構部103で減圧し低温の二相冷媒となり、
前記吸熱器104にて吸熱して低圧冷媒ガスとなり、前
記内部熱交換器105にて加熱され、前記圧縮機101
へと戻り、周知の前記内部熱交換器105を用いた冷凍
サイクルとなる。
[0005] With the above structure, a refrigerant that can be brought into a supercritical state by a radiator such as carbon dioxide is sealed therein, and the compressor 10
The high-pressure high-temperature refrigerant gas compressed in 1 passes through the radiator 102 to become a high-pressure high-temperature refrigerant gas near normal temperature, and becomes a low-temperature high-pressure refrigerant gas in the internal heat exchanger 105. And
Decompressed by the expansion mechanism 103 to become a low-temperature two-phase refrigerant,
The heat is absorbed by the heat absorber 104 to form a low-pressure refrigerant gas, which is heated by the internal heat exchanger 105 and
Then, the refrigerating cycle using the well-known internal heat exchanger 105 is performed.

【0006】このとき、前記吐出冷媒温度センサー10
8と前記吐出冷媒圧力センサー110の検知値が設定値
となるように前記コントローラー109によって前記バ
イパス流量調整弁107を制御し前記内部熱交換器10
5の能力を調整することで、効率を改善する制御を可能
にしている。
At this time, the discharged refrigerant temperature sensor 10
8 and the controller 109 controls the bypass flow rate regulating valve 107 so that the detection value of the discharged refrigerant pressure sensor 110 becomes a set value.
By adjusting the capacity of the control unit 5, the control for improving the efficiency can be performed.

【0007】[0007]

【発明が解決しようとする課題】このような従来の冷暖
房給湯装置では第1に、内部熱交換器の能力制御範囲が
狭く一定以下とすることが出来ないという課題がある。
First, in such a conventional cooling and heating water heater, there is a problem that the capacity control range of the internal heat exchanger is so narrow that it cannot be kept below a certain level.

【0008】また、第2に、四方弁などで冷凍サイクル
を切替えた時に内部熱交換器が機能しないという課題が
ある。
[0008] Second, there is a problem that the internal heat exchanger does not function when the refrigeration cycle is switched by a four-way valve or the like.

【0009】本発明は、このような従来の課題を解決す
るものであり、内部熱交換器の能力制御範囲を拡大する
ことができ、また、冷凍サイクルの可逆サイクルとした
時においても内部熱交換器が機能することができる冷凍
サイクル装置を提供することを目的としている。
The present invention has been made to solve such a conventional problem, and can extend the control range of the capacity of the internal heat exchanger. It is an object of the present invention to provide a refrigeration cycle device in which a vessel can function.

【0010】[0010]

【課題を解決するための手段】本発明の冷凍サイクル装
置は上記目的を達成するために、膨張機構部を第1の膨
張機構部と第2の膨張機構部に分けて内部熱交換器の高
圧冷媒側出入口にそれぞれ設けたものである。
In order to achieve the above object, the refrigeration cycle apparatus of the present invention divides the expansion mechanism into a first expansion mechanism and a second expansion mechanism and controls the high pressure of the internal heat exchanger. These are provided at the refrigerant side entrance and exit, respectively.

【0011】本発明によれば、内部熱交換器の能力制御
範囲を拡大することができ、冷凍サイクルの可逆サイク
ルとした時においても内部熱交換器が機能することがで
きる冷凍サイクル装置が得られる。
According to the present invention, it is possible to obtain a refrigeration cycle apparatus in which the capacity control range of the internal heat exchanger can be expanded and the internal heat exchanger can function even in a reversible cycle of the refrigeration cycle. .

【0012】また他の手段は、利用側熱交換器が放熱器
として作用する場合に冷媒の流れが対向流となるように
内部熱交換器を接続するものである。
Another means is to connect the internal heat exchanger so that the flow of the refrigerant becomes countercurrent when the use side heat exchanger acts as a radiator.

【0013】そして本発明によれば、内部熱交換器の能
力制御範囲を拡大することができ、冷凍サイクルの可逆
サイクルとした時においても内部熱交換器が機能するこ
とができる冷凍サイクル装置が得られる。
According to the present invention, there is provided a refrigeration cycle apparatus in which the capacity control range of the internal heat exchanger can be expanded and the internal heat exchanger can function even in a reversible cycle of the refrigeration cycle. Can be

【0014】また他の手段は、利用側熱交換器が吸熱器
として作用する場合に冷媒の流れが対向流となるように
内部熱交換器を接続するものである。
Another means is to connect the internal heat exchanger so that the flow of the refrigerant becomes countercurrent when the use side heat exchanger acts as a heat absorber.

【0015】そして本発明によれば、内部熱交換器の能
力制御範囲を拡大することができ、冷凍サイクルの可逆
サイクルとした時においても内部熱交換器が機能するこ
とができる冷凍サイクル装置が得られる。
According to the present invention, there is provided a refrigeration cycle apparatus in which the capacity control range of the internal heat exchanger can be expanded and the internal heat exchanger can function even in a reversible cycle of the refrigeration cycle. Can be

【0016】また他の手段は、内部熱交換器の高圧冷媒
出入口に冷凍サイクルの逆転に対し内部熱交換器の冷媒
流れ方向を変えないようにする流路切替四方弁を設けた
ものである。
Another means is to provide a flow path switching four-way valve at the high pressure refrigerant inlet / outlet of the internal heat exchanger so as not to change the flow direction of the refrigerant in the internal heat exchanger when the refrigerating cycle is reversed.

【0017】そして本発明によれば、内部熱交換器の能
力制御範囲を拡大することができ、冷凍サイクルの可逆
サイクルとした時においても内部熱交換器が機能するこ
とができる冷凍サイクル装置が得られる。
According to the present invention, a refrigeration cycle apparatus can be provided in which the capacity control range of the internal heat exchanger can be expanded and the internal heat exchanger can function even when the refrigerating cycle is a reversible cycle. Can be

【0018】また他の手段は、内部熱交換器の高圧冷媒
出入口に冷凍サイクルの逆転に対し前記内部熱交換器の
冷媒流れ方向を変えないようにする流路切替四方弁を設
け、前記内部熱交換器の高圧冷媒出口と前記流路切替四
方弁の間に前記第1の膨張機構部を設けたものである。
Another means is to provide a four-way switching valve for preventing the refrigerant flow direction of the internal heat exchanger from being changed in response to the reversal of the refrigeration cycle at the high pressure refrigerant inlet / outlet of the internal heat exchanger. The first expansion mechanism is provided between the high-pressure refrigerant outlet of the exchanger and the four-way switching valve.

【0019】そして本発明によれば、冷凍サイクルの可
逆サイクルとした時においても内部熱交換器が機能する
ことができる冷凍サイクル装置が得られる。
According to the present invention, there is provided a refrigeration cycle apparatus in which the internal heat exchanger can function even when the refrigerating cycle is a reversible cycle.

【0020】また他の手段は、内部熱交換器の高圧冷媒
入口と流路切替四方弁の間に第2の膨張機構部を設けた
ものである。
Another means is that a second expansion mechanism is provided between the high-pressure refrigerant inlet of the internal heat exchanger and the four-way switching valve.

【0021】そして本発明によれば、内部熱交換器の能
力制御範囲を拡大することができ、冷凍サイクルの可逆
サイクルとした時においても内部熱交換器が機能するこ
とができる冷凍サイクル装置が得られる。
According to the present invention, there is provided a refrigeration cycle apparatus in which the capacity control range of the internal heat exchanger can be expanded and the internal heat exchanger can function even when the refrigerating cycle is a reversible cycle. Can be

【0022】また他の手段は、第2の膨張機構部の全開
時の減圧量が、膨張機構部の全開時の減圧量より小さい
ものである。
Another means is that the pressure reduction amount when the second expansion mechanism is fully opened is smaller than the pressure reduction amount when the expansion mechanism is fully opened.

【0023】そして本発明によれば、内部熱交換器の能
力制御範囲を拡大することができ、冷凍サイクルの可逆
サイクルとした時においても内部熱交換器が機能するこ
とができる冷凍サイクル装置が得られる。
According to the present invention, there is provided a refrigeration cycle apparatus in which the capacity control range of the internal heat exchanger can be expanded and the internal heat exchanger can function even when the refrigerating cycle is a reversible cycle. Can be

【0024】また他の手段は、利用側熱交換器で冷媒と
熱交換する媒体の温度検知手段を設け、この検知値によ
って設定された温度となるように第1の膨張機構部と第
2の膨張機構部を制御するものである。
Another means is provided with means for detecting the temperature of the medium that exchanges heat with the refrigerant in the use-side heat exchanger, and the first expansion mechanism and the second expansion mechanism are controlled so as to reach a temperature set by the detected value. It controls the expansion mechanism.

【0025】そして本発明によれば、内部熱交換器の能
力制御範囲を拡大することができ、冷凍サイクルの可逆
サイクルとした時においても内部熱交換器が機能するこ
とができる冷凍サイクル装置にて内部熱交換器を有効に
機能させる制御方法が得られる。
According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the refrigeration cycle apparatus can function even when the refrigerating cycle is a reversible cycle. A control method for effectively operating the internal heat exchanger is obtained.

【0026】また他の手段は、内部熱交換器の低圧冷媒
出入口温度を検知する温度検知手段を設け、これらの検
知値によって第1の膨張機構部と第2の膨張機構部を制
御するものである。
Another means is provided with temperature detecting means for detecting the low pressure refrigerant inlet / outlet temperature of the internal heat exchanger, and controls the first expansion mechanism and the second expansion mechanism based on the detected values. is there.

【0027】そして本発明によれば、内部熱交換器の能
力制御範囲を拡大することができ、冷凍サイクルの可逆
サイクルとした時においても内部熱交換器が機能するこ
とができる冷凍サイクル装置にて内部熱交換器を有効に
機能させる制御方法が得られる。
According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the refrigeration cycle apparatus can function even when the refrigerating cycle is a reversible cycle. A control method for effectively operating the internal heat exchanger is obtained.

【0028】また他の手段は、内部熱交換器の高圧冷媒
入口温度と低圧冷媒入口温度を検知する温度検知手段を
設け、これらの検知値によって第1の膨張機構部と第2
の膨張機構部を制御するものである。
Further, another means is provided with temperature detecting means for detecting a high-pressure refrigerant inlet temperature and a low-pressure refrigerant inlet temperature of the internal heat exchanger, and based on these detected values, the first expansion mechanism and the second expansion mechanism.
This is for controlling the expansion mechanism.

【0029】そして本発明によれば、内部熱交換器の能
力制御範囲を拡大することができ、冷凍サイクルの可逆
サイクルとした時においても内部熱交換器が機能するこ
とができる冷凍サイクル装置にて内部熱交換器を有効に
機能させる制御方法が得られる。
According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the refrigeration cycle apparatus can function even when the refrigerating cycle is a reversible cycle. A control method for effectively operating the internal heat exchanger is obtained.

【0030】また他の手段は、吸熱交換部分と圧縮機吸
入の冷媒温度を検知する温度検知手段を設け、これらの
検知値によって第1の膨張機構部と第2の膨張機構部を
制御するものである。
Further, another means is provided with a temperature detecting means for detecting a refrigerant temperature at an endothermic exchange portion and a suction of the compressor, and controls the first expansion mechanism and the second expansion mechanism based on the detected values. It is.

【0031】そして本発明によれば、内部熱交換器の能
力制御範囲を拡大することができ、冷凍サイクルの可逆
サイクルとした時においても内部熱交換器が機能するこ
とができる冷凍サイクル装置にて内部熱交換器を有効に
機能させる制御方法が得られる。
According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the refrigeration cycle apparatus can function even when the refrigerating cycle is a reversible cycle. A control method for effectively operating the internal heat exchanger is obtained.

【0032】また他の手段は、圧縮機吸入部の温度と圧
力を検知する検知手段を設け、これらの検知値によって
第1の膨張機構部と第2の膨張機構部を制御するもので
ある。
Further, another means is provided with detecting means for detecting the temperature and pressure of the compressor suction section, and controls the first expansion mechanism section and the second expansion mechanism section based on the detected values.

【0033】そして本発明によれば、内部熱交換器の能
力制御範囲を拡大することができ、冷凍サイクルの可逆
サイクルとした時においても内部熱交換器が機能するこ
とができる冷凍サイクル装置にて内部熱交換器を有効に
機能させる制御方法が得られる。
According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the refrigeration cycle apparatus can function even when the refrigerating cycle is a reversible cycle. A control method for effectively operating the internal heat exchanger is obtained.

【0034】また他の手段は、圧縮機の回転数を検知す
る検知手段を設け、この検知値によって第1の膨張機構
部と第2の膨張機構部を制御するものである。
Further, another means is provided with a detecting means for detecting the number of revolutions of the compressor, and controls the first expansion mechanism and the second expansion mechanism based on the detected value.

【0035】そして本発明によれば、内部熱交換器の能
力制御範囲を拡大することができ、冷凍サイクルの可逆
サイクルとした時においても内部熱交換器が機能するこ
とができる冷凍サイクル装置にて内部熱交換器を有効に
機能させる制御方法が得られる。
According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the refrigeration cycle apparatus can function even when the refrigerating cycle is a reversible cycle. A control method for effectively operating the internal heat exchanger is obtained.

【0036】また他の手段は、冷凍サイクルの冷媒循環
量を検知する検知手段を設け、この検知値によって第1
の膨張機構部と第2の膨張機構部を制御するものであ
る。
Further, another means is provided with a detecting means for detecting a refrigerant circulating amount of the refrigeration cycle, and the first value is detected based on the detected value.
And the second expansion mechanism.

【0037】そして本発明によれば、内部熱交換器の能
力制御範囲を拡大することができ、冷凍サイクルの可逆
サイクルとした時においても内部熱交換器が機能するこ
とができる冷凍サイクル装置にて内部熱交換器を有効に
機能させる制御方法が得られる。
According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the refrigeration cycle apparatus can function even when the refrigerating cycle is a reversible cycle. A control method for effectively operating the internal heat exchanger is obtained.

【0038】また他の手段は、内部熱交換器の冷媒回路
を複数とし、それぞれの回路に開閉弁を設けたものであ
る。
Another means is that the internal heat exchanger has a plurality of refrigerant circuits, and each circuit is provided with an on-off valve.

【0039】そして本発明によれば、内部熱交換器の能
力制御範囲を拡大することができる冷凍サイクル装置が
得られる。
According to the present invention, a refrigeration cycle apparatus capable of expanding the capacity control range of the internal heat exchanger can be obtained.

【0040】また他の手段は、利用側熱交換器と膨張機
構部を接続する配管と、室外熱交換器と膨張機構部を接
続する配管に冷凍サイクルの逆転に対し膨張機構部の冷
媒流れ方向を変えないようにする流路切替四方弁を設
け、膨張機構部にて減圧される前の高圧冷媒と圧縮機吸
入前の低圧冷媒とを熱交換させる内部熱交換器を設け、
内部熱交換器の冷媒回路を複数とし、それぞれの回路に
開閉弁を設けたものである。
Another means is to provide a pipe connecting the use side heat exchanger and the expansion mechanism and a pipe connecting the outdoor heat exchanger and the expansion mechanism to the refrigerant flow direction of the expansion mechanism with respect to the reversal of the refrigeration cycle. Provide a flow path switching four-way valve that does not change, provided an internal heat exchanger that exchanges heat between the high-pressure refrigerant before the pressure is reduced by the expansion mechanism and the low-pressure refrigerant before the suction of the compressor,
The internal heat exchanger has a plurality of refrigerant circuits, and each circuit is provided with an on-off valve.

【0041】そして本発明によれば、内部熱交換器の能
力制御範囲を拡大することができ、冷凍サイクルの可逆
サイクルとした時においても内部熱交換器が機能するこ
とができる冷凍サイクル装置が得られる。
According to the present invention, a refrigeration cycle apparatus can be provided in which the capacity control range of the internal heat exchanger can be expanded and the internal heat exchanger can function even when the refrigerating cycle is a reversible cycle. Can be

【0042】また他の手段は、利用側熱交換器で冷媒と
熱交換する媒体の温度検知手段を設け、この検知値によ
って設定された温度となるように開閉弁を制御するもの
である。
Further, another means is to provide a temperature detecting means for the medium which exchanges heat with the refrigerant in the use side heat exchanger, and to control the on-off valve so as to reach a temperature set by the detected value.

【0043】そして本発明によれば、内部熱交換器の能
力制御範囲を拡大することができ、冷凍サイクルの可逆
サイクルとした時においても内部熱交換器が機能するこ
とができる冷凍サイクル装置にて内部熱交換器を有効に
機能させる制御方法が得られる。
According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the refrigeration cycle apparatus in which the internal heat exchanger can function even in the reversible cycle of the refrigeration cycle. A control method for effectively operating the internal heat exchanger is obtained.

【0044】また他の手段は、内部熱交換器の低圧冷媒
出入口温度を検知する温度検知手段を設け、これらの検
知値によって開閉弁を制御するものである。
Another means is to provide a temperature detecting means for detecting the low pressure refrigerant inlet / outlet temperature of the internal heat exchanger, and to control the on-off valve based on the detected values.

【0045】そして本発明によれば、内部熱交換器の能
力制御範囲を拡大することができ、冷凍サイクルの可逆
サイクルとした時においても内部熱交換器が機能するこ
とができる冷凍サイクル装置にて内部熱交換器を有効に
機能させる制御方法が得られる。
According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the refrigeration cycle apparatus can function even when the refrigerating cycle is a reversible cycle. A control method for effectively operating the internal heat exchanger is obtained.

【0046】また他の手段は、内部熱交換器の高圧冷媒
入口温度と低圧冷媒入口温度を検知する温度検知手段を
設け、これらの検知値によって開閉弁を制御するもので
ある。
Another means is to provide temperature detecting means for detecting the high-pressure refrigerant inlet temperature and the low-pressure refrigerant inlet temperature of the internal heat exchanger, and to control the on-off valve based on the detected values.

【0047】そして本発明によれば、内部熱交換器の能
力制御範囲を拡大することができ、冷凍サイクルの可逆
サイクルとした時においても内部熱交換器が機能するこ
とができる冷凍サイクル装置にて内部熱交換器を有効に
機能させる制御方法が得られる。
According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the refrigeration cycle apparatus can function even when the refrigerating cycle is a reversible cycle. A control method for effectively operating the internal heat exchanger is obtained.

【0048】また他の手段は、吸熱交換部分と圧縮機吸
入の冷媒温度を検知する温度検知手段を設け、これらの
検知値によって開閉弁を制御するものである。
Further, another means is provided with temperature detecting means for detecting the temperature of the refrigerant at the endothermic exchange portion and the suction of the compressor, and controls the on-off valve based on the detected values.

【0049】そして本発明によれば、内部熱交換器の能
力制御範囲を拡大することができ、冷凍サイクルの可逆
サイクルとした時においても内部熱交換器が機能するこ
とができる冷凍サイクル装置にて内部熱交換器を有効に
機能させる制御方法が得られる。
According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the refrigeration cycle apparatus can function even when the refrigerating cycle is a reversible cycle. A control method for effectively operating the internal heat exchanger is obtained.

【0050】また他の手段は、圧縮機吸入部の温度と圧
力を検知する検知手段を設け、これらの検知値によって
開閉弁を制御するものである。
Further, another means is provided with a detecting means for detecting the temperature and pressure of the compressor suction section, and controls the on-off valve based on the detected values.

【0051】そして本発明によれば、内部熱交換器の能
力制御範囲を拡大することができ、冷凍サイクルの可逆
サイクルとした時においても内部熱交換器が機能するこ
とができる冷凍サイクル装置にて内部熱交換器を有効に
機能させる制御方法が得られる。
According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the refrigerating cycle apparatus can function even when the refrigerating cycle is a reversible cycle. A control method for effectively operating the internal heat exchanger is obtained.

【0052】また他の手段は、圧縮機回転数を検知する
検知手段を設け、この検知値によって開閉弁を制御する
ものである。
Further, another means is provided with a detecting means for detecting the number of revolutions of the compressor, and controls the on-off valve based on the detected value.

【0053】そして本発明によれば、内部熱交換器の能
力制御範囲を拡大することができ、冷凍サイクルの可逆
サイクルとした時においても内部熱交換器が機能するこ
とができる冷凍サイクル装置にて内部熱交換器を有効に
機能させる制御方法が得られる。
According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the refrigeration cycle apparatus can function even when the refrigerating cycle is a reversible cycle. A control method for effectively operating the internal heat exchanger is obtained.

【0054】また他の手段は、冷凍サイクルの冷媒循環
量を検知する検知手段を設け、この検知値によって開閉
弁を制御するものである。
Further, another means is provided with a detecting means for detecting the amount of circulating refrigerant in the refrigeration cycle, and controls the on-off valve based on the detected value.

【0055】そして本発明によれば、内部熱交換器の能
力制御範囲を拡大することができ、冷凍サイクルの可逆
サイクルとした時においても内部熱交換器が機能するこ
とができる冷凍サイクル装置にて内部熱交換器を有効に
機能させる制御方法が得られる。
According to the present invention, the capacity control range of the internal heat exchanger can be expanded, and the refrigeration cycle apparatus can function even when the refrigerating cycle is a reversible cycle. A control method for effectively operating the internal heat exchanger is obtained.

【0056】[0056]

【発明の実施の形態】本発明は、第1の膨張機構部にて
減圧される前の高圧冷媒と圧縮機吸入前の低圧冷媒とを
熱交換させる内部熱交換器を設け、内部熱交換器の高圧
冷媒入口に第2の膨張機構部を設けたものであり、第2
の膨張機構部を閉じる方向に制御すると内部熱交換器に
入る高圧冷媒の温度が低下し低圧冷媒と同温とするまで
冷媒温度差を減少させることができる。逆に第2の膨張
機構部を開ける方向に制御すると内部熱交換器に入る高
圧冷媒の温度が上昇し低圧冷媒との冷媒温度差を増加さ
せることができるという作用を有する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention provides an internal heat exchanger for exchanging heat between a high-pressure refrigerant before being depressurized by a first expansion mechanism and a low-pressure refrigerant before suction of a compressor. And a second expansion mechanism provided at the high-pressure refrigerant inlet of
When the expansion mechanism is controlled in the closing direction, the temperature of the high-pressure refrigerant entering the internal heat exchanger decreases, and the refrigerant temperature difference can be reduced until it reaches the same temperature as the low-pressure refrigerant. Conversely, if the second expansion mechanism is controlled in the opening direction, the temperature of the high-pressure refrigerant entering the internal heat exchanger rises and the temperature difference between the high-pressure refrigerant and the low-pressure refrigerant can be increased.

【0057】また、利用側熱交換器が放熱器として作用
する場合に、冷媒の流れが対向流となるように内部熱交
換器を接続するものであり、放熱器として熱利用する場
合に内部熱交換器の熱交換を効率的に行えるという作用
を有する。
Further, when the use side heat exchanger acts as a radiator, the internal heat exchanger is connected so that the flow of the refrigerant becomes countercurrent. When the heat is used as the radiator, the internal heat exchanger is connected. This has the effect that the heat exchange of the exchanger can be performed efficiently.

【0058】また、利用側熱交換器が吸熱器として作用
する場合に、冷媒の流れが対向流となるように内部熱交
換器を接続するものであり、吸熱器として熱利用する場
合に内部熱交換器の熱交換を効率的に行えるという作用
を有する。
Further, when the use side heat exchanger acts as a heat absorber, the internal heat exchanger is connected so that the flow of the refrigerant becomes countercurrent. When the heat is used as the heat absorber, the internal heat exchanger is connected. This has the effect that the heat exchange of the exchanger can be performed efficiently.

【0059】また、内部熱交換器の高圧冷媒出入口に冷
凍サイクルの逆転に対し前記内部熱交換器の冷媒流れ方
向を変えないようにする流路切替四方弁を設けたもので
あり、放熱と吸熱のどちらの熱利用をする場合において
も内部熱交換器の熱交換を効率的に行えるという作用を
有する。
Further, a four-way switching valve is provided at the inlet and outlet of the high-pressure refrigerant of the internal heat exchanger so as not to change the flow direction of the refrigerant in the internal heat exchanger against reversal of the refrigeration cycle. In either case, the heat exchange of the internal heat exchanger can be efficiently performed.

【0060】また、利用側熱交換器と膨張機構部を接続
する配管と、室外熱交換器と膨張機構部を接続する配管
に冷凍サイクルの逆転に対し膨張機構部の冷媒流れ方向
を変えないようにする流路切替四方弁を設け、膨張機構
部にて減圧される前の高圧冷媒と圧縮機吸入前の低圧冷
媒とを熱交換させる内部熱交換器を設けたものであり、
冷暖の冷凍サイクル切替えに同期して流路切替四方弁を
切り替えることで、冷暖どちらの冷凍サイクルでも内部
熱交換器に減圧前の高圧冷媒を入れられることによって
内部熱交換器が機能することができるという作用を有す
る。
The piping connecting the use side heat exchanger and the expansion mechanism and the piping connecting the outdoor heat exchanger and the expansion mechanism should not change the refrigerant flow direction of the expansion mechanism when the refrigeration cycle is reversed. A flow path switching four-way valve is provided, and an internal heat exchanger for exchanging heat between the high-pressure refrigerant before being depressurized by the expansion mechanism and the low-pressure refrigerant before suctioning the compressor is provided,
By switching the flow path switching four-way valve in synchronization with the switching of the cooling / heating refrigeration cycle, the internal heat exchanger can function by inserting the high-pressure refrigerant before depressurization into the internal heat exchanger in both the cooling and heating refrigeration cycles. It has the action of:

【0061】また、利用側熱交換器と第1の膨張機構部
を接続する配管と、室外熱交換器と第1の膨張機構部を
接続する配管に冷凍サイクルの逆転に対し第1の膨張機
構部の冷媒流れ方向を変えないようにする流路切替四方
弁を設け、第1の膨張機構部にて減圧される前の高圧冷
媒と圧縮機吸入前の低圧冷媒とを熱交換させる内部熱交
換器を設け、内部熱交換器の高圧冷媒入口に第2の膨張
機構部を設けたものであり、冷暖の冷凍サイクル切替え
に同期して流路切替四方弁を切り替えることで、冷暖ど
ちらの冷凍サイクルでも二つの膨張機構部の流れ方向が
変らないため膨張機構部の動作負荷低減することができ
るという作用を有する。
Further, a pipe connecting the use side heat exchanger and the first expansion mechanism and a pipe connecting the outdoor heat exchanger and the first expansion mechanism are provided with a first expansion mechanism for reversal of the refrigeration cycle. Heat exchange between the high-pressure refrigerant before the pressure is reduced by the first expansion mechanism and the low-pressure refrigerant before the suction of the compressor by providing a flow switching four-way valve that does not change the refrigerant flow direction of the compressor And a second expansion mechanism provided at the high-pressure refrigerant inlet of the internal heat exchanger. By switching the flow path switching four-way valve in synchronization with the cooling / heating refrigeration cycle switching, either the cooling / heating refrigeration cycle is provided. However, since the flow directions of the two expansion mechanisms are not changed, the operation load of the expansion mechanisms can be reduced.

【0062】また、利用側熱交換器と第1の膨張機構部
を接続する配管と、室外熱交換器と第1の膨張機構部を
接続する配管に冷凍サイクルの逆転に対し第1の膨張機
構部の冷媒流れ方向を変えないようにする流路切替四方
弁を設け、第1の膨張機構部にて減圧される前の高圧冷
媒と圧縮機吸入前の低圧冷媒とを熱交換させる内部熱交
換器を設け、内部熱交換器の高圧冷媒入口に第2の膨張
機構部を設け、第2の膨張機構部の全開時の減圧量を第
1の膨張機構部より小さくしたものであり、冷暖の冷凍
サイクル切替えに同期して流路切替四方弁を切り替える
ことで、冷暖どちらの冷凍サイクルでも二つの膨張機構
部の流れ方向が変らないため、第2の膨張機構部は内部
熱交換器能力制御専用となり、第1の膨張機構部はサイ
クル制御専用とすることができる。このとき第2の膨張
機構部の全開時の減圧量を極力小さくすることで内部熱
交換器能力を向上できるという作用を有する。
Further, a pipe connecting the use side heat exchanger and the first expansion mechanism and a pipe connecting the outdoor heat exchanger and the first expansion mechanism are provided with a first expansion mechanism for reversal of the refrigeration cycle. Heat exchange between the high-pressure refrigerant before the pressure is reduced by the first expansion mechanism and the low-pressure refrigerant before the suction of the compressor by providing a flow switching four-way valve that does not change the refrigerant flow direction of the compressor A second expansion mechanism is provided at the high-pressure refrigerant inlet of the internal heat exchanger, and the amount of pressure reduction when the second expansion mechanism is fully opened is smaller than that of the first expansion mechanism. By switching the four-way switching valve in synchronization with the switching of the refrigeration cycle, the flow direction of the two expansion mechanisms does not change in both the cooling and heating refrigeration cycles, so the second expansion mechanism is dedicated to internal heat exchanger capacity control. And the first expansion mechanism is dedicated to cycle control. It is possible. At this time, by reducing the amount of decompression when the second expansion mechanism is fully opened as much as possible, there is an effect that the capacity of the internal heat exchanger can be improved.

【0063】また、利用側熱交換器で冷媒と熱交換する
媒体の温度検知手段を設け、この検知値によって設定さ
れた温度となるように第1の膨張機構部と第2の膨張機
構部を制御するものであり、第2の膨張機構部を閉じる
方向に制御し、それに応じて第1の膨張機構部を開ける
と、内部熱交換器に入る高圧冷媒の温度が低下し低圧冷
媒との冷媒温度差が小さくなり内部熱交換器能力が減少
する。このため吸熱器では加熱域が増加し吸熱能力が減
少する。そして放熱器では、圧縮機吸入での過熱度が減
少するため吐出温度が減少し、放熱器の冷媒温度が低下
することで能力が減少する。逆に第2の膨張機構部を開
ける方向に制御し、それに応じて第1の膨張機構部を閉
めると内部熱交換器に入る高圧冷媒の温度が上昇し低圧
冷媒との冷媒温度差が大きくなり内部熱交換器能力が増
加する。このため吸熱器では加熱域が減少し吸熱能力が
増加する。そして放熱器では、圧縮機吸入での過熱度が
上昇するため吐出温度が上昇し、放熱器の冷媒温度が上
昇することで能力が増加するという作用を有する。
Further, a temperature detecting means for the medium which exchanges heat with the refrigerant in the use side heat exchanger is provided, and the first expansion mechanism and the second expansion mechanism are controlled so as to reach the temperature set by the detected value. When the second expansion mechanism is controlled in the closing direction and the first expansion mechanism is opened accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger decreases, and the refrigerant with the low-pressure refrigerant is controlled. The temperature difference becomes smaller and the internal heat exchanger capacity decreases. For this reason, in the heat absorber, the heating area increases and the heat absorbing ability decreases. In the radiator, the degree of superheat at the suction of the compressor is reduced, so that the discharge temperature is reduced, and the capacity of the radiator is reduced by lowering the refrigerant temperature. Conversely, when the second expansion mechanism is controlled to open, and the first expansion mechanism is closed accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger rises and the refrigerant temperature difference with the low-pressure refrigerant increases. Internal heat exchanger capacity is increased. For this reason, in the heat absorber, the heating area decreases, and the heat absorbing ability increases. The radiator has an effect that the discharge temperature rises because the degree of superheat at the suction of the compressor rises, and the capacity increases by raising the refrigerant temperature of the radiator.

【0064】また、内部熱交換器の低圧冷媒出入口温度
を検知する温度検知手段を設け、これらの検知値によっ
て第1の膨張機構部と第2の膨張機構部を制御するもの
であり、第2の膨張機構部を閉じる方向に制御し、それ
に応じて第1の膨張機構部を開けると、内部熱交換器に
入る高圧冷媒の温度が低下し低圧冷媒との冷媒温度差が
小さくなり内部熱交換器能力が減少する。このため低圧
冷媒出口温度が低下する。逆に第2の膨張機構部を開け
る方向に制御し、それに応じて第1の膨張機構部を閉め
ると内部熱交換器に入る高圧冷媒の温度が上昇し低圧冷
媒との冷媒温度差が大きくなり内部熱交換器能力が増加
する。このため低圧冷媒出口温度が上昇する。これによ
り内部熱交換器の低圧冷媒入口温度に応じた低圧冷媒出
口温度となるように第1膨張機構部と第2膨張機構部を
制御するという作用を有する。
Further, a temperature detecting means for detecting the temperature of the low pressure refrigerant inlet / outlet of the internal heat exchanger is provided, and the first expansion mechanism and the second expansion mechanism are controlled by the detected values. When the first expansion mechanism is controlled in the direction in which the expansion mechanism is closed, the temperature of the high-pressure refrigerant entering the internal heat exchanger decreases, the refrigerant temperature difference with the low-pressure refrigerant decreases, and the internal heat exchange decreases. The ability is reduced. For this reason, the low-pressure refrigerant outlet temperature decreases. Conversely, when the second expansion mechanism is controlled to open, and the first expansion mechanism is closed accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger rises and the refrigerant temperature difference with the low-pressure refrigerant increases. Internal heat exchanger capacity is increased. For this reason, the low-pressure refrigerant outlet temperature increases. This has the effect of controlling the first expansion mechanism and the second expansion mechanism to have a low-pressure refrigerant outlet temperature corresponding to the low-pressure refrigerant inlet temperature of the internal heat exchanger.

【0065】また、内部熱交換器の高圧冷媒入口温度と
低圧冷媒入口温度を検知する温度検知手段を設け、これ
らの検知値によって第1の膨張機構部と第2の膨張機構
部を制御するものであり、第2の膨張機構部を閉じる方
向に制御し、それに応じて第1の膨張機構部を開ける
と、内部熱交換器に入る高圧冷媒の温度が低下し低圧冷
媒との冷媒温度差が小さくなり内部熱交換器能力が減少
する。逆に第2の膨張機構部を開ける方向に制御し、そ
れに応じて第1の膨張機構部を閉めると内部熱交換器に
入る高圧冷媒の温度が上昇し低圧冷媒との冷媒温度差が
大きくなり内部熱交換器能力が増加する。この内部熱交
換器での冷媒温度差を内部熱交換器の高圧冷媒入口温度
と低圧冷媒入口温度で検知し設定値となるように第1の
膨張機構部と第2の膨張機構部を制御するという作用を
有する。
Further, a temperature detecting means for detecting the high-pressure refrigerant inlet temperature and the low-pressure refrigerant inlet temperature of the internal heat exchanger is provided, and the first expansion mechanism and the second expansion mechanism are controlled based on the detected values. When the second expansion mechanism is controlled in the closing direction and the first expansion mechanism is opened accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger decreases, and the refrigerant temperature difference with the low-pressure refrigerant decreases. Smaller and the internal heat exchanger capacity is reduced. Conversely, when the second expansion mechanism is controlled to open, and the first expansion mechanism is closed accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger rises and the refrigerant temperature difference with the low-pressure refrigerant increases. Internal heat exchanger capacity is increased. The refrigerant temperature difference in the internal heat exchanger is detected based on the high-pressure refrigerant inlet temperature and the low-pressure refrigerant inlet temperature of the internal heat exchanger, and the first expansion mechanism and the second expansion mechanism are controlled so as to be set values. It has the action of:

【0066】また、吸熱器と圧縮機吸入の冷媒温度を検
知する温度検知手段を設け、これらの検知値によって第
1の膨張機構部と第2の膨張機構部を制御するものであ
り、第2の膨張機構部を閉じる方向に制御し、それに応
じて第1の膨張機構部を開けると、内部熱交換器に入る
高圧冷媒の温度が低下し低圧冷媒との冷媒温度差が小さ
くなり内部熱交換器能力が減少する。このため圧縮機吸
入温度が低下する。逆に第2の膨張機構部を開ける方向
に制御し、それに応じて第1の膨張機構部を閉めると内
部熱交換器に入る高圧冷媒の温度が上昇し低圧冷媒との
冷媒温度差が大きくなり内部熱交換器能力が増加する。
このため圧縮機吸入温度が上昇する。これにより吸熱器
と圧縮機吸入の冷媒温度差を設定値となるように第1の
膨張機構部と第2の膨張機構部を制御するという作用を
有する。
Further, a temperature detecting means for detecting a refrigerant temperature of the heat absorber and the suction of the compressor is provided, and the first expansion mechanism and the second expansion mechanism are controlled by the detected values. When the first expansion mechanism is controlled in the direction in which the expansion mechanism is closed, the temperature of the high-pressure refrigerant entering the internal heat exchanger decreases, the refrigerant temperature difference with the low-pressure refrigerant decreases, and the internal heat exchange decreases. The ability is reduced. For this reason, the compressor suction temperature decreases. Conversely, when the second expansion mechanism is controlled to open, and the first expansion mechanism is closed accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger rises and the refrigerant temperature difference with the low-pressure refrigerant increases. Internal heat exchanger capacity is increased.
As a result, the compressor suction temperature increases. This has the effect of controlling the first expansion mechanism and the second expansion mechanism so that the difference in refrigerant temperature between the heat absorber and the suction of the compressor becomes a set value.

【0067】また、圧縮機吸入部の温度と圧力を検知す
る検知手段を設け、これらの検知値によって第1の膨張
機構部と第2の膨張機構部を制御するものであり、第2
の膨張機構部を閉じる方向に制御し、それに応じて第1
の膨張機構部を開けると、内部熱交換器に入る高圧冷媒
の温度が低下し低圧冷媒との冷媒温度差が小さくなり内
部熱交換器能力が減少する。このため圧縮機吸入温度が
低下する。逆に第2の膨張機構部を開ける方向に制御
し、それに応じて第1の膨張機構部を閉めると内部熱交
換器に入る高圧冷媒の温度が上昇し低圧冷媒との冷媒温
度差が大きくなり内部熱交換器能力が増加する。このた
め圧縮機吸入温度が上昇する。これにより圧縮機吸入温
度が圧縮機吸入圧力に対応した設定値となるように第1
膨張機構部と第2膨張機構部を制御するという作用を有
する。
Further, a detecting means for detecting the temperature and pressure of the compressor suction section is provided, and the first expansion mechanism section and the second expansion mechanism section are controlled by these detection values.
Of the inflation mechanism in the closing direction, and the first
When the expansion mechanism is opened, the temperature of the high-pressure refrigerant entering the internal heat exchanger decreases, the refrigerant temperature difference from the low-pressure refrigerant decreases, and the internal heat exchanger capacity decreases. For this reason, the compressor suction temperature decreases. Conversely, when the second expansion mechanism is controlled to open, and the first expansion mechanism is closed accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger rises and the refrigerant temperature difference with the low-pressure refrigerant increases. Internal heat exchanger capacity is increased. As a result, the compressor suction temperature increases. Thereby, the first pressure is set so that the compressor suction temperature becomes a set value corresponding to the compressor suction pressure.
This has the effect of controlling the expansion mechanism and the second expansion mechanism.

【0068】また、圧縮機の回転数を検知する検知手段
を設け、この検知値によって第1の膨張機構部と第2の
膨張機構部を制御するものであり、第2の膨張機構部を
閉じる方向に制御し、それに応じて第1の膨張機構部を
開けると、内部熱交換器に入る高圧冷媒の温度が低下し
低圧冷媒との冷媒温度差が小さくなり内部熱交換器能力
が減少する。このため圧縮機吸入での過熱度が減少する
ため吐出温度が減少する。逆に第2の膨張機構部を開け
る方向に制御し、それに応じて第1の膨張機構部を閉め
ると内部熱交換器に入る高圧冷媒の温度が上昇し低圧冷
媒との冷媒温度差が大きくなり内部熱交換器能力が増加
する。このような作用を有するサイクルにおいて、圧縮
機回転数の変化に応じて冷媒循環量が変化し、冷媒循環
量が少ない方が熱交換効率が良いため内部熱交換能力を
抑制する必要がある。このため圧縮機回転数に応じて第
1の膨張機構部と第2の膨張機構部を制御量を調整する
という作用を有する。
Further, a detecting means for detecting the number of revolutions of the compressor is provided, and the first expansion mechanism and the second expansion mechanism are controlled by the detected value, and the second expansion mechanism is closed. When the direction is controlled in the direction and the first expansion mechanism is opened accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger decreases, the refrigerant temperature difference from the low-pressure refrigerant decreases, and the internal heat exchanger capacity decreases. For this reason, the degree of superheat at the suction of the compressor is reduced, so that the discharge temperature is reduced. Conversely, when the second expansion mechanism is controlled to open, and the first expansion mechanism is closed accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger rises and the refrigerant temperature difference with the low-pressure refrigerant increases. Internal heat exchanger capacity is increased. In a cycle having such an action, the amount of circulating refrigerant changes in accordance with a change in the number of revolutions of the compressor. The smaller the amount of circulating refrigerant, the better the heat exchange efficiency, and therefore, it is necessary to suppress the internal heat exchange capacity. For this reason, it has the effect of adjusting the control amounts of the first expansion mechanism and the second expansion mechanism in accordance with the rotation speed of the compressor.

【0069】また、冷凍サイクルの冷媒循環量を検知す
る検知手段を設け、この検知値によって第1の膨張機構
部と第2の膨張機構部を制御するものであり、第2の膨
張機構部を閉じる方向に制御し、それに応じて第1の膨
張機構部を開けると、内部熱交換器に入る高圧冷媒の温
度が低下し低圧冷媒との冷媒温度差が小さくなり内部熱
交換器能力が減少する。このため圧縮機吸入での過熱度
が減少するため吐出温度が減少する。逆に第2の膨張機
構部を開ける方向に制御し、それに応じて第1の膨張機
構部を閉めると内部熱交換器に入る高圧冷媒の温度が上
昇し低圧冷媒との冷媒温度差が大きくなり内部熱交換器
能力が増加する。このような作用を有するサイクルにお
いて、冷媒循環量が少ない方が熱交換効率が良いため内
部熱交換能力を抑制する必要がある。このため冷媒循環
量に応じて第1の膨張機構部と第2の膨張機構部を制御
量を調整するという作用を有する。
Further, a detecting means for detecting the amount of refrigerant circulating in the refrigeration cycle is provided, and the first expansion mechanism and the second expansion mechanism are controlled based on the detected value. When the control is performed in the closing direction and the first expansion mechanism is opened accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger decreases, the refrigerant temperature difference with the low-pressure refrigerant decreases, and the internal heat exchanger capacity decreases. . For this reason, the degree of superheat at the suction of the compressor is reduced, so that the discharge temperature is reduced. Conversely, when the second expansion mechanism is controlled to open, and the first expansion mechanism is closed accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger rises and the refrigerant temperature difference with the low-pressure refrigerant increases. Internal heat exchanger capacity is increased. In a cycle having such an operation, the smaller the amount of circulating refrigerant is, the better the heat exchange efficiency is. Therefore, it is necessary to suppress the internal heat exchange capacity. For this reason, the first expansion mechanism and the second expansion mechanism have an effect of adjusting the control amount in accordance with the refrigerant circulation amount.

【0070】また、内部熱交換器の冷媒回路を複数と
し、それぞれの回路に開閉弁を設けたものであり、高圧
側の開閉弁の動作個数で段階的に内部熱交換器能力を変
化させる。さらに、低圧側開閉弁を閉めた回路に相当す
る高圧側の開閉弁のみを開け、その他の高圧側開閉弁を
閉じることで内部熱交換能力を最小とすることができる
という作用を有する。
Further, the internal heat exchanger has a plurality of refrigerant circuits, each of which is provided with an on-off valve, and the internal heat exchanger capacity is changed stepwise by the number of operating high-pressure-side on-off valves. Further, by opening only the high pressure side on / off valve corresponding to the circuit in which the low pressure side on / off valve is closed and closing the other high pressure side on / off valves, the internal heat exchange capacity can be minimized.

【0071】また、利用側熱交換器と膨張機構部を接続
する配管と、室外熱交換器と膨張機構部を接続する配管
に冷凍サイクルの逆転に対し膨張機構部の冷媒流れ方向
を変えないようにする流路切替四方弁を設け、膨張機構
部にて減圧される前の高圧冷媒と圧縮機吸入前の低圧冷
媒とを熱交換させる内部熱交換器を設け、内部熱交換器
の冷媒回路を複数とし、それぞれの回路に開閉弁を設け
たものであり、高圧側の開閉弁の動作個数で段階的に内
部熱交換器能力を変化させる。そして、低圧側開閉弁を
閉めた回路に相当する高圧側の開閉弁のみを開け、その
他の高圧側開閉弁を閉じることで内部熱交換能力を最小
とすることができる。さらに、冷暖の冷凍サイクル切替
えに同期して流路切替四方弁を切り替えることで、冷暖
どちらの冷凍サイクルでも内部熱交換器に減圧前の高圧
冷媒を入れられることによって内部熱交換器が機能する
ことができるという作用を有する。
The piping connecting the use side heat exchanger and the expansion mechanism and the piping connecting the outdoor heat exchanger and the expansion mechanism should not change the flow direction of the refrigerant in the expansion mechanism when the refrigeration cycle is reversed. Provide an internal heat exchanger that exchanges heat between the high-pressure refrigerant before the pressure is reduced by the expansion mechanism and the low-pressure refrigerant before the suction of the compressor, and the refrigerant circuit of the internal heat exchanger is provided. A plurality of valves are provided with on-off valves in each circuit, and the internal heat exchanger capacity is changed stepwise by the number of operating on-off valves on the high pressure side. The internal heat exchange capacity can be minimized by opening only the high pressure side on / off valve corresponding to the circuit in which the low pressure side on / off valve is closed, and closing the other high pressure side on / off valves. Furthermore, by switching the four-way switching valve in synchronization with the switching of the cooling / heating refrigeration cycle, the internal heat exchanger functions by allowing the high-pressure refrigerant before pressure reduction to enter the internal heat exchanger in both the cooling and heating refrigeration cycles. It has the effect of being able to.

【0072】また、利用側熱交換器で冷媒と熱交換する
媒体の温度検知手段を設け、この検知値によって設定さ
れた温度となるように開閉弁を制御するものであり、高
圧側開閉弁の開ける個数を減らす方向に制御すると、内
部熱交換器能力が減少するため、吸熱器では加熱域が増
加し吸熱能力が減少し、放熱器では圧縮機吸入温度の低
下から吐出温度が低下し放熱能力が減少する。そして、
高圧側開閉弁の開ける個数を増やす方向に制御すると、
内部熱交換器能力が増加するため、吸熱器では加熱域が
減少し吸熱能力が増加し、放熱器では圧縮機吸入温度の
上昇から吐出温度が上昇し放熱能力が増加するという作
用を有する。
Further, a means for detecting the temperature of the medium which exchanges heat with the refrigerant in the use side heat exchanger is provided, and the on-off valve is controlled so as to reach a temperature set by the detected value. If the number of open units is reduced, the internal heat exchanger capacity will decrease, so the heat absorber will increase the heating area and decrease the heat absorption capacity. Decrease. And
When controlling the direction to increase the number of open high pressure side on-off valves,
Since the internal heat exchanger capacity is increased, the heat absorber has the effect of decreasing the heating area and increasing the heat absorption capacity, and the radiator has the effect that the discharge temperature rises due to the rise in the compressor suction temperature and the heat dissipation capacity increases.

【0073】また、内部熱交換器の低圧冷媒出入口温度
を検知する温度検知手段を設け、これらの検知値によっ
て開閉弁を制御するものであり、高圧側開閉弁の開ける
個数を減らす方向に制御すると、内部熱交換器能力が減
少するため、圧縮機吸入温度が低下する。逆に、高圧側
開閉弁の開ける個数を増やす方向に制御すると、内部熱
交換器能力が増加するため、圧縮機吸入温度が上昇す
る。これにより内部熱交換器の低圧冷媒入口温度に応じ
た低圧冷媒出口温度となるように制御するという作用を
有する。
Further, a temperature detecting means for detecting the low pressure refrigerant inlet / outlet temperature of the internal heat exchanger is provided, and the on / off valve is controlled by these detected values. As a result, the internal heat exchanger capacity is reduced, so that the compressor suction temperature is reduced. Conversely, if control is performed in a direction to increase the number of open high-pressure side on-off valves, the internal heat exchanger capacity increases, so that the compressor suction temperature increases. This has the effect of controlling the temperature of the low-pressure refrigerant outlet to correspond to the low-pressure refrigerant inlet temperature of the internal heat exchanger.

【0074】また、内部熱交換器の高圧冷媒入口温度と
低圧冷媒入口温度を検知する温度検知手段を設け、これ
らの検知値によって開閉弁を制御するものであり、高圧
側開閉弁の開ける個数を減らす方向に制御すると、内部
熱交換器能力が減少するため、圧縮機吸入温度が低下す
る。逆に、高圧側開閉弁の開ける個数を増やす方向に制
御すると、内部熱交換器能力が増加するため、圧縮機吸
入温度が上昇する。これにより内部熱交換器の高圧冷媒
入口温度と低圧冷媒入口温度より開閉弁の動作を決定
し、圧縮機吸入温度を制御するという作用を有する。
Further, a temperature detecting means for detecting the high-pressure refrigerant inlet temperature and the low-pressure refrigerant inlet temperature of the internal heat exchanger is provided, and the on-off valves are controlled by these detected values. If the control is performed in the decreasing direction, the capacity of the internal heat exchanger is reduced, so that the compressor suction temperature is reduced. Conversely, if control is performed in a direction to increase the number of open high-pressure side on-off valves, the internal heat exchanger capacity increases, so that the compressor suction temperature increases. This has the effect of determining the operation of the on-off valve from the high-pressure refrigerant inlet temperature and the low-pressure refrigerant inlet temperature of the internal heat exchanger, and controlling the compressor suction temperature.

【0075】また、吸熱器と圧縮機吸入の冷媒温度を検
知する温度検知手段を設け、これらの検知値によって開
閉弁を制御するものであり、高圧側開閉弁の開ける個数
を減らす方向に制御すると、内部熱交換器能力が減少す
るため、圧縮機吸入温度が低下する。逆に、高圧側開閉
弁の開ける個数を増やす方向に制御すると、内部熱交換
器能力が増加するため、圧縮機吸入温度が上昇する。こ
れにより吸熱器温度に応じた圧縮機吸入温度に制御する
という作用を有する。
Further, a temperature detecting means for detecting the temperature of the refrigerant at the heat sink and the suction of the compressor is provided, and the on-off valve is controlled based on the detected values. As a result, the internal heat exchanger capacity is reduced, so that the compressor suction temperature is reduced. Conversely, if control is performed in a direction to increase the number of open high-pressure side on-off valves, the internal heat exchanger capacity increases, so that the compressor suction temperature increases. This has the effect of controlling the compressor suction temperature according to the heat absorber temperature.

【0076】また、圧縮機吸入部の温度と圧力を検知す
る温度検知手段を設け、これらの検知値によって開閉弁
を制御するものであり、高圧側開閉弁の開ける個数を減
らす方向に制御すると、内部熱交換器能力が減少するた
め、圧縮機吸入温度が低下する。逆に、高圧側開閉弁の
開ける個数を増やす方向に制御すると、内部熱交換器能
力が増加するため、圧縮機吸入温度が上昇する。これに
より圧縮機吸入圧力に応じた圧縮機吸入温度に制御する
という作用を有する。
Further, a temperature detecting means for detecting the temperature and the pressure of the compressor suction section is provided, and the on-off valve is controlled based on these detected values. As the internal heat exchanger capacity decreases, the compressor suction temperature decreases. Conversely, if control is performed in a direction to increase the number of open high-pressure side on-off valves, the internal heat exchanger capacity increases, so that the compressor suction temperature increases. This has the effect of controlling the compressor suction temperature according to the compressor suction pressure.

【0077】また、圧縮機の回転数を検知する温度検知
手段を設け、これらの検知値によって開閉弁を制御する
ものであり、高圧側開閉弁の開ける個数を減らす方向に
制御すると、内部熱交換器能力が減少するため、圧縮機
吸入温度が低下し、吐出温度が低下する。逆に、高圧側
開閉弁の開ける個数を増やす方向に制御すると、内部熱
交換器能力が増加するため、圧縮機吸入温度が上昇し、
吐出温度が上昇する。このような作用を有するサイクル
において、圧縮機回転数の変化に応じて冷媒循環量が変
化し、冷媒循環量が少ない方が熱交換効率が良いため内
部熱交換能力を抑制する必要がある。このため圧縮機回
転数に応じて各開閉弁を制御するという作用を有する。
Further, a temperature detecting means for detecting the number of revolutions of the compressor is provided, and the on-off valve is controlled based on the detected value. Since the capacity of the compressor decreases, the compressor suction temperature decreases and the discharge temperature decreases. Conversely, if control is performed to increase the number of open high-pressure side on-off valves, the internal heat exchanger capacity increases, so the compressor suction temperature increases,
The discharge temperature rises. In a cycle having such an action, the amount of circulating refrigerant changes in accordance with a change in the number of revolutions of the compressor. The smaller the amount of circulating refrigerant, the better the heat exchange efficiency, and therefore, it is necessary to suppress the internal heat exchange capacity. For this reason, it has the effect of controlling each on-off valve according to the compressor speed.

【0078】また、冷凍サイクルの冷媒循環量を検知す
る温度検知手段を設け、これらの検知値によって開閉弁
を制御するものであり、高圧側開閉弁の開ける個数を減
らす方向に制御すると、内部熱交換器能力が減少するた
め、圧縮機吸入温度が低下し、吐出温度が低下する。逆
に、高圧側開閉弁の開ける個数を増やす方向に制御する
と、内部熱交換器能力が増加するため、圧縮機吸入温度
が上昇し、吐出温度が上昇する。このような作用を有す
るサイクルにおいて、冷媒循環量が少ない方が熱交換効
率が良いため内部熱交換能力を抑制する必要がある。こ
のため冷媒循環量に応じて各開閉弁を制御するという作
用を有する。
Further, a temperature detecting means for detecting the amount of circulating refrigerant in the refrigeration cycle is provided, and the on-off valves are controlled based on these detected values. Since the exchanger capacity decreases, the compressor suction temperature decreases, and the discharge temperature decreases. Conversely, if control is performed to increase the number of open high-pressure side on-off valves, the internal heat exchanger capacity increases, so that the compressor suction temperature increases and the discharge temperature increases. In a cycle having such an operation, the smaller the amount of circulating refrigerant is, the better the heat exchange efficiency is. Therefore, it is necessary to suppress the internal heat exchange capacity. Therefore, there is an effect that each open / close valve is controlled according to the amount of circulating refrigerant.

【0079】以下、本発明の実施例について図面を参照
しながら説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0080】[0080]

【実施例】(実施例1)図1は本発明の冷暖房給湯装置
のサイクル構成図を示す。圧縮機101と、室外熱交換
器1と、膨張弁A2と、利用側熱交換器3と、内部熱交
換器105と、冷暖切替四方弁4と、前記内部熱交換器
105を挟んで前記膨張弁A2の反対側に設けた膨張弁
B5と、前記利用側熱交換器3で熱交換される熱交換媒
体温度センサー6と、この熱交換媒体温度センサー6の
検知値を入力に前記膨張弁A2と前記膨張弁B5の開度
を制御するコントローラー7を備えることにより冷凍サ
イクル装置を構成する。
(Embodiment 1) FIG. 1 shows a cycle configuration diagram of a cooling and heating water heater according to the present invention. The compressor 101, the outdoor heat exchanger 1, the expansion valve A2, the use side heat exchanger 3, the internal heat exchanger 105, the cooling / heating switching four-way valve 4, and the expansion with the internal heat exchanger 105 interposed therebetween. An expansion valve B5 provided on the opposite side of the valve A2, a heat exchange medium temperature sensor 6 for exchanging heat in the use side heat exchanger 3, and an input of a detection value of the heat exchange medium temperature sensor 6; And a controller 7 for controlling the opening degree of the expansion valve B5 to constitute a refrigeration cycle apparatus.

【0081】上記構成により、二酸化炭素などの放熱器
で超臨界状態となりうる冷媒を封入し、前記利用側熱交
換器3を吸熱器として動作させる場合は、前記圧縮機1
01で圧縮された高圧高温冷媒ガスが前記冷暖切替四方
弁4にて前記室外熱交換器1を通り常温に近い温かい高
圧冷媒ガスとなり、前記膨張弁B5にて減圧量を制御す
ることで温度を調整し、前記内部熱交換器105にて低
温の高圧冷媒ガスとなる。そして、前記膨張弁A2で減
圧し低温低圧の二相冷媒となり、前記利用側熱交換器3
にて吸熱して低圧冷媒ガスとなり、前記冷暖切替四方弁
4にて前記内部熱交換器105を通り加熱され、前記圧
縮機101へと戻る。
According to the above configuration, when the refrigerant which can be brought into a supercritical state with a radiator such as carbon dioxide is sealed and the use side heat exchanger 3 is operated as a heat absorber, the compressor 1
The high-pressure high-temperature refrigerant gas compressed in 01 passes through the outdoor heat exchanger 1 at the cooling / heating switching four-way valve 4 to become a high-pressure high-temperature refrigerant gas near normal temperature, and the expansion valve B5 controls the pressure reduction amount to control the temperature. After being adjusted, the internal heat exchanger 105 becomes a low-temperature high-pressure refrigerant gas. The pressure is reduced by the expansion valve A2 to become a low-temperature low-pressure two-phase refrigerant.
Then, the heat is absorbed by the cooling-heat switching four-way valve 4 to be heated through the internal heat exchanger 105 and returned to the compressor 101.

【0082】逆に、前記利用側熱交換器3を放熱器とし
て動作させる場合は、前記圧縮機101で圧縮された高
圧高温冷媒ガスが前記冷暖切替四方弁4にて前記利用側
熱交換器3を通り常温に近い温かい高圧冷媒ガスとな
り、前記膨張弁A2にて減圧量を制御することで温度を
調整し、前記内部熱交換器105にて低温の高圧冷媒ガ
スとなる。そして、前記膨張弁B5で減圧し低温低圧の
二相冷媒となり、前記室外熱交換器1にて吸熱して低圧
冷媒ガスとなり、前記冷暖切替四方弁4にて前記内部熱
交換器105を通り加熱され、前記圧縮機101へと戻
る。このとき前記内部熱交換器105において、高圧冷
媒と低圧冷媒の流れが対向流となるため熱交換効率の良
い熱交換ができる。
On the contrary, when the use side heat exchanger 3 is operated as a radiator, the high pressure and high temperature refrigerant gas compressed by the compressor 101 is supplied to the use side heat exchanger 3 by the cooling / heating switching four-way valve 4. And the temperature is adjusted by controlling the amount of pressure reduction by the expansion valve A2, and becomes a low-temperature high-pressure refrigerant gas by the internal heat exchanger 105. Then, the pressure is reduced by the expansion valve B5 to become a low-temperature and low-pressure two-phase refrigerant, the heat is absorbed by the outdoor heat exchanger 1 to become a low-pressure refrigerant gas, and the cooling / heating switching four-way valve 4 heats through the internal heat exchanger 105. Then, the process returns to the compressor 101. At this time, in the internal heat exchanger 105, the flow of the high-pressure refrigerant and the flow of the low-pressure refrigerant become countercurrent, so that heat exchange with good heat exchange efficiency can be performed.

【0083】このように、前記利用側熱交換器3を放熱
器または吸熱器として動作させるどちらの場合の冷凍サ
イクルにおいても前記内部熱交換器を機能させることが
でき効率の良い運転を可能としている。
As described above, the internal heat exchanger can function in the refrigeration cycle in which the use side heat exchanger 3 is operated as a radiator or a heat absorber, thereby enabling efficient operation. .

【0084】また、前記膨張弁A2と前記膨張弁B5の
制御を冷媒流れの上流側となる膨張弁を前記内部熱交換
器105の能力制御用として制御し、下流側となる膨張
弁を冷凍サイクル制御用として制御することとし、前記
能力制御用膨張弁を閉じる方向に制御し、それに応じて
前記冷凍サイクル制御用膨張弁を開けると、前記内部熱
交換器105に入る高圧冷媒の温度が低下し低圧冷媒と
の冷媒温度差が小さくなり内部熱交換器能力が減少す
る。このため吸熱器では加熱域が増加し吸熱能力が減少
する。そして放熱器では、圧縮機吸入での過熱度が減少
するため吐出温度が減少し、放熱器の冷媒温度が低下す
ることで能力が減少する。この時、高圧冷媒と低圧冷媒
の温度差がなくなるまで前記能力制御用膨張弁を閉める
と前記内部熱交換器105の熱交換量はゼロとすること
ができ、能力制御範囲が改善される。
The expansion valves A2 and B5 are controlled so that the expansion valve on the upstream side of the refrigerant flow is used for controlling the capacity of the internal heat exchanger 105, and the expansion valve on the downstream side is controlled by the refrigeration cycle. When controlling the expansion valve for controlling the capacity in the closing direction, and opening the expansion valve for controlling the refrigeration cycle accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger 105 decreases. The temperature difference between the refrigerant and the low-pressure refrigerant is reduced, and the capacity of the internal heat exchanger is reduced. For this reason, in the heat absorber, the heating area increases and the heat absorbing ability decreases. In the radiator, the degree of superheat at the suction of the compressor is reduced, so that the discharge temperature is reduced, and the capacity of the radiator is reduced by lowering the refrigerant temperature. At this time, if the capacity control expansion valve is closed until the temperature difference between the high-pressure refrigerant and the low-pressure refrigerant disappears, the heat exchange amount of the internal heat exchanger 105 can be made zero, and the capacity control range is improved.

【0085】逆に前記能力制御用膨張弁を開ける方向に
制御し、それに応じて前記冷凍サイクル制御用膨張弁を
閉めると前記内部熱交換器105に入る高圧冷媒の温度
が上昇し低圧冷媒との冷媒温度差が大きくなり内部熱交
換器能力が増加する。このため吸熱器では加熱域が減少
し吸熱能力が増加する。そして放熱器では、圧縮機吸入
での過熱度が上昇するため吐出温度が上昇し、放熱器の
冷媒温度が上昇することで能力が増加する。
Conversely, when the expansion valve for controlling the capacity is controlled to open, and the expansion valve for controlling the refrigeration cycle is closed accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger 105 rises, and The refrigerant temperature difference increases and the internal heat exchanger capacity increases. For this reason, in the heat absorber, the heating area decreases, and the heat absorbing ability increases. In the radiator, the degree of superheat at the suction of the compressor increases, so that the discharge temperature increases, and the capacity of the radiator increases by increasing the refrigerant temperature.

【0086】このような冷凍サイクル動作を利用し、前
記熱交換媒体温度センサー6の検知値を設定値となるよ
うに前記膨張弁A2と前記膨張弁B5の開度を前記コン
トローラー7によって制御することで、前記利用側熱交
換器3の能力を調整することができる。
The opening degree of the expansion valve A2 and the expansion valve B5 is controlled by the controller 7 by utilizing such a refrigeration cycle operation so that the detection value of the heat exchange medium temperature sensor 6 becomes a set value. Thus, the capacity of the use side heat exchanger 3 can be adjusted.

【0087】(実施例2)図2は本発明の冷暖房給湯装
置のサイクル構成図を示す。なお実施例1と同一のもの
については同一番号を付し詳細な説明は省く。内部熱交
換器105を挟んで膨張弁A2の反対側に設けた膨張弁
B5と、内部熱交換器低圧側入口温度センサー8と、内
部熱交換器低圧側出口温度センサー9と、これらのセン
サーの検知値を入力に前記膨張弁A2と前記膨張弁B5
の開度を制御するコントローラー7を備えることにより
冷凍サイクル装置を構成する。
(Embodiment 2) FIG. 2 shows a cycle configuration diagram of a cooling and heating water heater according to the present invention. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted. An expansion valve B5 provided on the opposite side of the expansion valve A2 across the internal heat exchanger 105, an internal heat exchanger low-pressure side inlet temperature sensor 8, an internal heat exchanger low-pressure side outlet temperature sensor 9, and these sensors The detected value is input to the expansion valve A2 and the expansion valve B5.
The refrigeration cycle apparatus is configured by including the controller 7 for controlling the opening degree of the refrigeration cycle.

【0088】上記構成により、二酸化炭素などの放熱器
で超臨界状態となりうる冷媒を封入し、利用側熱交換器
3を吸熱器として動作させる場合は、圧縮機101で圧
縮された高圧高温冷媒ガスが冷暖切替四方弁4にて室外
熱交換器1を通り常温に近い温かい高圧冷媒ガスとな
り、前記膨張弁B5にて減圧量を制御することで温度を
調整し、前記内部熱交換器105にて低温の高圧冷媒ガ
スとなる。そして、前記膨張弁A2で減圧し低温低圧の
二相冷媒となり、前記利用側熱交換器3にて吸熱して低
圧冷媒ガスとなり、前記冷暖切替四方弁4にて前記内部
熱交換器105を通り加熱され、前記圧縮機101へと
戻る。このとき前記内部熱交換器105において、高圧
冷媒と低圧冷媒の流れが対向流となるため熱交換効率の
良い熱交換ができる。
According to the above configuration, when a refrigerant that can be brought into a supercritical state by a radiator such as carbon dioxide is sealed and the use side heat exchanger 3 is operated as a heat absorber, the high pressure high temperature refrigerant gas compressed by the compressor 101 is used. Is passed through the outdoor heat exchanger 1 at the cooling / heating switching four-way valve 4 to become a warm high-pressure refrigerant gas near normal temperature. The temperature is adjusted by controlling the amount of decompression by the expansion valve B5, and the internal heat exchanger 105 It becomes a low-temperature high-pressure refrigerant gas. Then, the pressure is reduced by the expansion valve A2 to become a low-temperature and low-pressure two-phase refrigerant, the heat is absorbed by the use-side heat exchanger 3 to become a low-pressure refrigerant gas, and the cooling and heating switching four-way valve 4 passes through the internal heat exchanger 105. It is heated and returns to the compressor 101. At this time, in the internal heat exchanger 105, the flow of the high-pressure refrigerant and the flow of the low-pressure refrigerant become countercurrent, so that heat exchange with good heat exchange efficiency can be performed.

【0089】逆に、前記利用側熱交換器3を放熱器とし
て動作させる場合は、前記圧縮機101で圧縮された高
圧高温冷媒ガスが前記冷暖切替四方弁4にて前記利用側
熱交換器3を通り常温に近い温かい高圧冷媒ガスとな
り、前記膨張弁A2にて減圧量を制御することで温度を
調整し、前記内部熱交換器105にて低温の高圧冷媒ガ
スとなる。そして、前記膨張弁B5で減圧し低温低圧の
二相冷媒となり、前記室外熱交換器1にて吸熱して低圧
冷媒ガスとなり、前記冷暖切替四方弁4にて前記内部熱
交換器105を通り加熱され、前記圧縮機101へと戻
る。
Conversely, when the use side heat exchanger 3 is operated as a radiator, the high pressure and high temperature refrigerant gas compressed by the compressor 101 is supplied to the use side heat exchanger 3 by the cooling / heating switching four-way valve 4. And the temperature is adjusted by controlling the amount of pressure reduction by the expansion valve A2, and becomes a low-temperature high-pressure refrigerant gas by the internal heat exchanger 105. Then, the pressure is reduced by the expansion valve B5 to become a low-temperature and low-pressure two-phase refrigerant, the heat is absorbed by the outdoor heat exchanger 1 to become a low-pressure refrigerant gas, and the cooling / heating switching four-way valve 4 heats through the internal heat exchanger 105. Then, the process returns to the compressor 101.

【0090】このように、前記利用側熱交換器3を放熱
器または吸熱器として動作させるどちらの場合の冷凍サ
イクルにおいても前記内部熱交換器を機能させることが
でき効率の良い運転を可能としている。
As described above, the internal heat exchanger can function in the refrigeration cycle in which the use side heat exchanger 3 is operated as a radiator or a heat absorber, thereby enabling efficient operation. .

【0091】また、前記膨張弁A2と前記膨張弁B5の
制御を冷媒流れの上流側となる膨張弁を前記内部熱交換
器105の能力制御用として制御し、下流側となる膨張
弁を冷凍サイクル制御用として制御することとし、前記
能力制御用膨張弁を閉じる方向に制御し、それに応じて
前記冷凍サイクル制御用膨張弁を開けると、前記内部熱
交換器105に入る高圧冷媒の温度が低下し低圧冷媒と
の冷媒温度差が小さくなり内部熱交換器能力が減少す
る。このため吸熱器では加熱域が増加し吸熱能力が減少
する。そして放熱器では、圧縮機吸入での過熱度が減少
するため吐出温度が減少し、放熱器の冷媒温度が低下す
ることで能力が減少する。この時、高圧冷媒と低圧冷媒
の温度差がなくなるまで前記能力制御用膨張弁を閉める
と前記内部熱交換器105の熱交換量はゼロとすること
ができ、能力制御範囲が改善される。
The expansion valves A2 and B5 are controlled to control the expansion valve on the upstream side of the refrigerant flow for controlling the capacity of the internal heat exchanger 105, and the downstream expansion valve is controlled by the refrigerating cycle. When controlling the expansion valve for controlling the capacity in the closing direction, and opening the expansion valve for controlling the refrigeration cycle accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger 105 decreases. The temperature difference between the refrigerant and the low-pressure refrigerant is reduced, and the capacity of the internal heat exchanger is reduced. For this reason, in the heat absorber, the heating area increases and the heat absorbing ability decreases. In the radiator, the degree of superheat at the suction of the compressor is reduced, so that the discharge temperature is reduced, and the capacity of the radiator is reduced by lowering the refrigerant temperature. At this time, if the capacity control expansion valve is closed until the temperature difference between the high-pressure refrigerant and the low-pressure refrigerant disappears, the heat exchange amount of the internal heat exchanger 105 can be made zero, and the capacity control range is improved.

【0092】逆に前記能力制御用膨張弁を開ける方向に
制御し、それに応じて前記冷凍サイクル制御用膨張弁を
閉めると前記内部熱交換器105に入る高圧冷媒の温度
が上昇し低圧冷媒との冷媒温度差が大きくなり内部熱交
換器能力が増加する。このため吸熱器では加熱域が減少
し吸熱能力が増加する。そして放熱器では、圧縮機吸入
での過熱度が上昇するため吐出温度が上昇し、放熱器の
冷媒温度が上昇することで能力が増加する。
Conversely, when the capacity control expansion valve is controlled to open and the refrigeration cycle control expansion valve is closed accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger 105 rises, and The refrigerant temperature difference increases and the internal heat exchanger capacity increases. For this reason, in the heat absorber, the heating area decreases, and the heat absorbing ability increases. In the radiator, the degree of superheat at the suction of the compressor increases, so that the discharge temperature increases, and the capacity of the radiator increases by increasing the refrigerant temperature.

【0093】このような冷凍サイクル動作を利用し、前
記内部熱交換器低圧側入口温度センサー8の検知値に応
じ低圧冷媒出口温度を設定して、前記内部熱交換器低圧
側出口温度センサー9の検知値が前記設定値この値とな
るように前記膨張弁A2と前記膨張弁B5の開度を前記
コントローラー7によって制御することで、冷凍サイク
ルを効率の良い状態に調整することができる。
Using such a refrigeration cycle operation, the low-pressure refrigerant outlet temperature is set according to the detection value of the internal heat exchanger low-pressure side inlet temperature sensor 8, and the internal heat exchanger low-pressure side outlet temperature sensor 9 is set. The refrigeration cycle can be adjusted to an efficient state by controlling the degree of opening of the expansion valve A2 and the expansion valve B5 by the controller 7 so that the detected value is equal to the set value.

【0094】(実施例3)図3は本発明の冷暖房給湯装
置のサイクル構成図を示す。なお実施例1と同一のもの
については同一番号を付し詳細な説明は省く。内部熱交
換器105と膨張弁A2および膨張弁B5を介する流路
切替四方弁10と、内部熱交換器低圧側入口温度センサ
ー8と、内部熱交換器高圧側入口温度センサー11と、
圧縮機101の回転数検知装置12と、これらのセンサ
ーの検知値を入力に前記膨張弁A2と前記膨張弁B5の
開度を制御するコントローラー7を備えることにより冷
凍サイクル装置を構成する。
(Embodiment 3) FIG. 3 shows a cycle configuration diagram of a cooling and heating water heater according to the present invention. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted. A flow switching four-way valve 10 via the internal heat exchanger 105, the expansion valve A2 and the expansion valve B5, an internal heat exchanger low pressure side inlet temperature sensor 8, an internal heat exchanger high pressure side inlet temperature sensor 11,
A refrigeration cycle device is configured by including a rotation speed detection device 12 of the compressor 101 and a controller 7 that controls the degree of opening of the expansion valve A2 and the expansion valve B5 using the detection values of these sensors as inputs.

【0095】上記構成により、二酸化炭素などの放熱器
で超臨界状態となりうる冷媒を封入し、前記利用側熱交
換器3を吸熱器として動作させる場合は、前記圧縮機1
01で圧縮された高圧高温冷媒ガスが冷暖切替四方弁4
にて室外熱交換器1を通り常温に近い温かい高圧冷媒ガ
スとなり、前記膨張弁B5にて減圧量を制御することで
温度を調整し、前記流路切替四方弁10を介して前記内
部熱交換器105にて低温の高圧冷媒ガスとなる。そし
て、前記流路切替四方弁10を介して前記膨張弁A2で
減圧し低温低圧の二相冷媒となり、利用側熱交換器3に
て吸熱して低圧冷媒ガスとなり、前記冷暖切替四方弁4
にて前記内部熱交換器105を通り加熱され、前記圧縮
機101へと戻る。
With the above configuration, when a refrigerant that can be brought into a supercritical state with a radiator such as carbon dioxide is sealed and the use side heat exchanger 3 is operated as a heat absorber, the compressor 1
01 is a cooling / heating switching four-way valve
The gas passes through the outdoor heat exchanger 1 to become a warm high-pressure refrigerant gas close to room temperature. The temperature is adjusted by controlling the amount of decompression by the expansion valve B5, and the internal heat exchange is performed via the flow path switching four-way valve 10. It becomes a low-temperature high-pressure refrigerant gas in the vessel 105. The pressure is reduced by the expansion valve A2 through the flow path switching four-way valve 10 to become a low-temperature and low-pressure two-phase refrigerant, and the heat is absorbed by the use side heat exchanger 3 to become a low-pressure refrigerant gas.
Then, the heat is passed through the internal heat exchanger 105 and returns to the compressor 101.

【0096】逆に、前記利用側熱交換器3を放熱器とし
て動作させる場合は、前記圧縮機101で圧縮された高
圧高温冷媒ガスが前記冷暖切替四方弁4にて前記利用側
熱交換器3を通り常温に近い温かい高圧冷媒ガスとな
り、前記膨張弁A2にて減圧量を制御することで温度を
調整し、前記流路切替四方弁10を介して前記内部熱交
換器105にて低温の高圧冷媒ガスとなる。そして、前
記流路切替四方弁10を介して前記膨張弁B5で減圧し
低温低圧の二相冷媒となり、前記室外熱交換器1にて吸
熱して低圧冷媒ガスとなり、前記冷暖切替四方弁4にて
前記内部熱交換器105を通り加熱され、前記圧縮機1
01へと戻る。
Conversely, when the use side heat exchanger 3 is operated as a radiator, the high pressure and high temperature refrigerant gas compressed by the compressor 101 is supplied to the use side heat exchanger 3 by the cooling / heating switching four-way valve 4. Through the flow path switching four-way valve 10 to adjust the temperature by controlling the pressure reduction amount by the expansion valve A2. It becomes refrigerant gas. Then, the pressure is reduced by the expansion valve B5 through the flow path switching four-way valve 10 to become a low-temperature and low-pressure two-phase refrigerant, and the heat is absorbed by the outdoor heat exchanger 1 to become a low-pressure refrigerant gas. Is heated through the internal heat exchanger 105 and
Return to 01.

【0097】このように、前記利用側熱交換器3を放熱
器または吸熱器として動作させるどちらの場合の冷凍サ
イクルにおいても前記内部熱交換器を機能させることが
でき、しかも前記流路切替四方弁10を介することによ
り前記内部熱交換器105において、高圧冷媒と低圧冷
媒の流れが対向流となるため熱交換効率の良い熱交換が
できる。
As described above, the internal heat exchanger can function even in the refrigeration cycle in which the use side heat exchanger 3 is operated as a radiator or a heat absorber, and the flow path switching four-way valve is provided. By passing through 10, in the internal heat exchanger 105, the flows of the high-pressure refrigerant and the low-pressure refrigerant are opposed to each other, so that heat exchange with good heat exchange efficiency can be performed.

【0098】また、前記膨張弁A2と前記膨張弁B5の
制御を冷媒流れの上流側となる膨張弁を前記内部熱交換
器105の能力制御用として制御し、下流側となる膨張
弁を冷凍サイクル制御用として制御することとし、前記
能力制御用膨張弁を閉じる方向に制御し、それに応じて
前記冷凍サイクル制御用膨張弁を開けると、前記内部熱
交換器105に入る高圧冷媒の温度が低下し低圧冷媒と
の冷媒温度差が小さくなり内部熱交換器能力が減少す
る。このため吸熱器では加熱域が増加し吸熱能力が減少
する。そして放熱器では、圧縮機吸入での過熱度が減少
するため吐出温度が減少し、放熱器の冷媒温度が低下す
ることで能力が減少する。この時、高圧冷媒と低圧冷媒
の温度差がなくなるまで前記能力制御用膨張弁を閉める
と前記内部熱交換器105の熱交換量はゼロとすること
ができ、能力制御範囲が改善される。
The expansion valves A2 and B5 are controlled so that the expansion valve on the upstream side of the refrigerant flow is used for controlling the capacity of the internal heat exchanger 105, and the expansion valve on the downstream side is controlled by the refrigeration cycle. When controlling the expansion valve for controlling the capacity in the closing direction, and opening the expansion valve for controlling the refrigeration cycle accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger 105 decreases. The temperature difference between the refrigerant and the low-pressure refrigerant is reduced, and the capacity of the internal heat exchanger is reduced. For this reason, in the heat absorber, the heating area increases and the heat absorbing ability decreases. In the radiator, the degree of superheat at the suction of the compressor is reduced, so that the discharge temperature is reduced, and the capacity of the radiator is reduced by lowering the refrigerant temperature. At this time, if the capacity control expansion valve is closed until the temperature difference between the high-pressure refrigerant and the low-pressure refrigerant disappears, the heat exchange amount of the internal heat exchanger 105 can be made zero, and the capacity control range is improved.

【0099】逆に前記能力制御用膨張弁を開ける方向に
制御し、それに応じて前記冷凍サイクル制御用膨張弁を
閉めると前記内部熱交換器105に入る高圧冷媒の温度
が上昇し低圧冷媒との冷媒温度差が大きくなり内部熱交
換器能力が増加する。このため吸熱器では加熱域が減少
し吸熱能力が増加する。そして放熱器では、圧縮機吸入
での過熱度が上昇するため吐出温度が上昇し、放熱器の
冷媒温度が上昇することで能力が増加する。
Conversely, when the capacity control expansion valve is controlled to open and the refrigeration cycle control expansion valve is closed accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger 105 rises, and the temperature of the low-pressure refrigerant increases. The refrigerant temperature difference increases and the internal heat exchanger capacity increases. For this reason, in the heat absorber, the heating area decreases, and the heat absorbing ability increases. In the radiator, the degree of superheat at the suction of the compressor increases, so that the discharge temperature increases, and the capacity of the radiator increases by increasing the refrigerant temperature.

【0100】このとき、圧縮機の回転数が少ないと、こ
れに応じて冷媒循環量が少なくなり、冷媒流速が低下す
るため熱交換時間が増加し、前記内部熱交換器105の
熱交換効率が良化するため能力を抑制する必要がある。
At this time, if the number of rotations of the compressor is small, the amount of circulating refrigerant decreases accordingly, and the flow rate of refrigerant decreases, so that the heat exchange time increases and the heat exchange efficiency of the internal heat exchanger 105 increases. It is necessary to suppress the ability to improve.

【0101】このような冷凍サイクル動作を利用し、前
記内部熱交換器低圧側入口温度センサー8の検知値に応
じ高圧冷媒入口温度を設定して、さらに圧縮機の回転数
に応じて高圧冷媒入口温度の前記設定値を修正して、前
記内部熱交換器高圧側入口温度センサー11の検知値が
前記設定値この値となるように前記膨張弁A2と前記膨
張弁B5の開度を前記コントローラー7によって制御す
ることで、冷凍サイクルを効率の良い状態に調整するこ
とができる。
Utilizing such a refrigeration cycle operation, the high-pressure refrigerant inlet temperature is set according to the detection value of the internal heat exchanger low-pressure side inlet temperature sensor 8, and the high-pressure refrigerant inlet temperature is further set according to the rotation speed of the compressor. The controller 7 corrects the set value of the temperature and adjusts the opening degree of the expansion valve A2 and the expansion valve B5 so that the detection value of the internal heat exchanger high pressure side inlet temperature sensor 11 becomes the set value. , The refrigeration cycle can be adjusted to an efficient state.

【0102】なお、本実施例では圧縮機の回転数を回転
数検知装置を用いて検知したが、インバータなどの出力
や設定値を用いても良い。
In this embodiment, the number of revolutions of the compressor is detected by using the number-of-rotations detector, but the output of an inverter or the like or a set value may be used.

【0103】(実施例4)図4は本発明の冷暖房給湯装
置のサイクル構成図を示す。なお実施例3と同一のもの
については同一番号を付し詳細な説明は省く。利用側熱
交換器冷媒温度センサー13と、室外熱交換器冷媒温度
センサー14と、圧縮機吸入温度センサー15と、これ
らのセンサーの検知値を入力に膨張弁A2と膨張弁B5
の開度を制御するコントローラー7を備えることにより
冷凍サイクル装置を構成する。
(Embodiment 4) FIG. 4 shows a cycle configuration diagram of a cooling and heating water heater according to the present invention. The same components as those in the third embodiment are denoted by the same reference numerals, and detailed description is omitted. The utilization side heat exchanger refrigerant temperature sensor 13, the outdoor heat exchanger refrigerant temperature sensor 14, the compressor suction temperature sensor 15, and the expansion valves A2 and B5
The refrigeration cycle apparatus is configured by including the controller 7 for controlling the opening degree of the refrigeration cycle.

【0104】上記構成により、二酸化炭素などの放熱器
で超臨界状態となりうる冷媒を封入し、前記利用側熱交
換器3を吸熱器として動作させる場合は、圧縮機101
で圧縮された高圧高温冷媒ガスが冷暖切替四方弁4にて
室外熱交換器1を通り常温に近い温かい高圧冷媒ガスと
なり、前記膨張弁B5にて減圧量を制御することで温度
を調整し、流路切替四方弁10を介して内部熱交換器1
05にて低温の高圧冷媒ガスとなる。そして、前記流路
切替四方弁10を介して前記膨張弁A2で減圧し低温低
圧の二相冷媒となり、利用側熱交換器3にて吸熱して低
圧冷媒ガスとなり、前記冷暖切替四方弁4にて前記内部
熱交換器105を通り加熱され、前記圧縮機101へと
戻る。
With the above configuration, when a refrigerant that can be brought into a supercritical state with a radiator such as carbon dioxide is sealed and the use side heat exchanger 3 is operated as a heat absorber, the compressor 101
The high-pressure high-temperature refrigerant gas compressed at the cooling / heating switching four-way valve 4 passes through the outdoor heat exchanger 1 to become a high-pressure high-temperature refrigerant gas near normal temperature, and the expansion valve B5 controls the pressure reduction amount to adjust the temperature, Internal heat exchanger 1 via flow switching four-way valve 10
At 05, it becomes a low-temperature high-pressure refrigerant gas. Then, the pressure is reduced by the expansion valve A2 through the flow path switching four-way valve 10 to become a low-temperature and low-pressure two-phase refrigerant, and the heat is absorbed by the use-side heat exchanger 3 to become a low-pressure refrigerant gas. Then, it is heated through the internal heat exchanger 105 and returns to the compressor 101.

【0105】逆に、前記利用側熱交換器3を放熱器とし
て動作させる場合は、前記圧縮機101で圧縮された高
圧高温冷媒ガスが前記冷暖切替四方弁4にて前記利用側
熱交換器3を通り常温に近い温かい高圧冷媒ガスとな
り、前記膨張弁A2にて減圧量を制御することで温度を
調整し、前記流路切替四方弁10を介して前記内部熱交
換器105にて低温の高圧冷媒ガスとなる。そして、前
記流路切替四方弁10を介して前記膨張弁B5で減圧し
低温低圧の二相冷媒となり、前記室外熱交換器1にて吸
熱して低圧冷媒ガスとなり、前記冷暖切替四方弁4にて
前記内部熱交換器105を通り加熱され、前記圧縮機1
01へと戻る。
Conversely, when the use side heat exchanger 3 is operated as a radiator, the high pressure and high temperature refrigerant gas compressed by the compressor 101 is supplied to the use side heat exchanger 3 by the cooling / heating switching four-way valve 4. Through the flow path switching four-way valve 10 to adjust the temperature by controlling the pressure reduction amount by the expansion valve A2. It becomes refrigerant gas. Then, the pressure is reduced by the expansion valve B5 through the flow path switching four-way valve 10 to become a low-temperature and low-pressure two-phase refrigerant, and the heat is absorbed by the outdoor heat exchanger 1 to become a low-pressure refrigerant gas. Is heated through the internal heat exchanger 105 and
Return to 01.

【0106】このように、前記利用側熱交換器3を放熱
器または吸熱器として動作させるどちらの場合の冷凍サ
イクルにおいても前記内部熱交換器を機能させることが
でき、しかも前記流路切替四方弁10を介することによ
り前記内部熱交換器105において、高圧冷媒と低圧冷
媒の流れが対向流となるため熱交換効率の良い熱交換が
できる。
As described above, the internal heat exchanger can function in the refrigeration cycle in which the use-side heat exchanger 3 is operated as a radiator or a heat absorber, and the flow path switching four-way valve is provided. By passing through 10, in the internal heat exchanger 105, the flows of the high-pressure refrigerant and the low-pressure refrigerant are opposed to each other, so that heat exchange with good heat exchange efficiency can be performed.

【0107】また、前記膨張弁A2と前記膨張弁B5の
制御を冷媒流れの上流側となる膨張弁を前記内部熱交換
器105の能力制御用として制御し、下流側となる膨張
弁を冷凍サイクル制御用として制御することとし、前記
能力制御用膨張弁を閉じる方向に制御し、それに応じて
前記冷凍サイクル制御用膨張弁を開けると、前記内部熱
交換器105に入る高圧冷媒の温度が低下し低圧冷媒と
の冷媒温度差が小さくなり内部熱交換器能力が減少す
る。このため吸熱器では加熱域が増加し吸熱能力が減少
する。そして放熱器では、圧縮機吸入での過熱度が減少
するため吐出温度が減少し、放熱器の冷媒温度が低下す
ることで能力が減少する。この時、高圧冷媒と低圧冷媒
の温度差がなくなるまで前記能力制御用膨張弁を閉める
と前記内部熱交換器105の熱交換量はゼロとすること
ができ、能力制御範囲が改善される。
The expansion valves A2 and B5 are controlled such that the upstream expansion valve of the refrigerant flow is used for controlling the capacity of the internal heat exchanger 105, and the downstream expansion valve is controlled to the refrigerating cycle. When controlling the expansion valve for controlling the capacity in the closing direction, and opening the expansion valve for controlling the refrigeration cycle accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger 105 decreases. The temperature difference between the refrigerant and the low-pressure refrigerant is reduced, and the capacity of the internal heat exchanger is reduced. For this reason, in the heat absorber, the heating area increases and the heat absorbing ability decreases. In the radiator, the degree of superheat at the suction of the compressor is reduced, so that the discharge temperature is reduced, and the capacity of the radiator is reduced by lowering the refrigerant temperature. At this time, if the capacity control expansion valve is closed until the temperature difference between the high-pressure refrigerant and the low-pressure refrigerant disappears, the heat exchange amount of the internal heat exchanger 105 can be made zero, and the capacity control range is improved.

【0108】逆に前記能力制御用膨張弁を開ける方向に
制御し、それに応じて前記冷凍サイクル制御用膨張弁を
閉めると前記内部熱交換器105に入る高圧冷媒の温度
が上昇し低圧冷媒との冷媒温度差が大きくなり内部熱交
換器能力が増加する。このため吸熱器では加熱域が減少
し吸熱能力が増加する。そして放熱器では、圧縮機吸入
での過熱度が上昇するため吐出温度が上昇し、放熱器の
冷媒温度が上昇することで能力が増加する。
Conversely, when the capacity control expansion valve is controlled to open and the refrigeration cycle control expansion valve is closed accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger 105 rises, and The refrigerant temperature difference increases and the internal heat exchanger capacity increases. For this reason, in the heat absorber, the heating area decreases, and the heat absorbing ability increases. In the radiator, the degree of superheat at the suction of the compressor increases, so that the discharge temperature increases, and the capacity of the radiator increases by increasing the refrigerant temperature.

【0109】このような冷凍サイクル動作を利用し、前
記利用側熱交換器冷媒温度センサー13または前記室外
熱交換器冷媒温度センサー14の吸熱器として作用して
いる検知値に応じ圧縮機吸入温度を設定して、前記圧縮
機吸入温度センサー15の検知値が前記設定値この値と
なるように前記膨張弁A2と前記膨張弁B5の開度を前
記コントローラー7によって制御することで、冷凍サイ
クルを効率の良い状態に調整することができる。
By utilizing such a refrigeration cycle operation, the compressor suction temperature is determined in accordance with a detection value acting as a heat absorber of the use side heat exchanger refrigerant temperature sensor 13 or the outdoor heat exchanger refrigerant temperature sensor 14. The controller 7 controls the degree of opening of the expansion valve A2 and the expansion valve B5 so that the detection value of the compressor suction temperature sensor 15 is equal to the set value. Can be adjusted to a good condition.

【0110】(実施例5)図5は本発明の冷暖房給湯装
置のサイクル構成図を示す。なお実施例1と同一のもの
については同一番号を付し詳細な説明は省く。室外熱交
換器1と利用側熱交換器3の間に冷凍サイクルの逆転に
対し膨張弁A2と内部熱交換器105の冷媒流れ方向を
変えないようにする流路切替四方弁10を備えることに
より冷凍サイクル装置を構成する。
(Embodiment 5) FIG. 5 shows a cycle configuration diagram of a cooling and heating water heater according to the present invention. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted. By providing a flow path switching four-way valve 10 between the outdoor heat exchanger 1 and the use-side heat exchanger 3 for preventing the refrigerant flow direction of the expansion valve A2 and the internal heat exchanger 105 from changing in response to reversal of the refrigeration cycle. Construct a refrigeration cycle device.

【0111】上記構成により、二酸化炭素などの放熱器
で超臨界状態となりうる冷媒を封入し、前記利用側熱交
換器3を吸熱器として動作させる場合は、圧縮機101
で圧縮された高圧高温冷媒ガスが冷暖切替四方弁4にて
前記室外熱交換器1を通り常温に近い温かい高圧冷媒ガ
スとなり、前記流路切替四方弁10を介して前記内部熱
交換器105にて低温の高圧冷媒ガスとなる。そして、
前記膨張弁A2で減圧し低温低圧の二相冷媒となり、前
記流路切替四方弁10を介して前記利用側熱交換器3に
て吸熱して低圧冷媒ガスとなり、前記冷暖切替四方弁4
にて前記内部熱交換器105を通り加熱され、前記圧縮
機101へと戻る。
With the above-described configuration, when a refrigerant that can be brought into a supercritical state by a radiator such as carbon dioxide is sealed and the use-side heat exchanger 3 is operated as a heat absorber, the compressor 101
The high-pressure high-temperature refrigerant gas compressed at the cooling / heating switching four-way valve 4 passes through the outdoor heat exchanger 1 to become a high-pressure high-temperature refrigerant gas near normal temperature, and passes through the flow path switching four-way valve 10 to the internal heat exchanger 105. And becomes a low-temperature, high-pressure refrigerant gas. And
The pressure is reduced by the expansion valve A2 to become a low-temperature and low-pressure two-phase refrigerant, and the heat is absorbed by the use-side heat exchanger 3 through the flow path switching four-way valve 10 to become a low-pressure refrigerant gas.
Then, the heat is passed through the internal heat exchanger 105 and returns to the compressor 101.

【0112】逆に、前記利用側熱交換器3を放熱器とし
て動作させる場合は、前記圧縮機101で圧縮された高
圧高温冷媒ガスが前記冷暖切替四方弁4にて前記利用側
熱交換器3を通り常温に近い温かい高圧冷媒ガスとな
り、前記流路切替四方弁10を介して前記内部熱交換器
105にて低温の高圧冷媒ガスとなる。そして、前記膨
張弁A2で減圧し低温低圧の二相冷媒となり、前記流路
切替四方弁10を介して前記室外熱交換器1にて吸熱し
て低圧冷媒ガスとなり、前記冷暖切替四方弁4にて前記
内部熱交換器105を通り加熱され、前記圧縮機101
へと戻る。
Conversely, when the use side heat exchanger 3 is operated as a radiator, the high pressure and high temperature refrigerant gas compressed by the compressor 101 is supplied to the use side heat exchanger 3 by the cooling / heating switching four-way valve 4. Through the flow path switching four-way valve 10 and becomes a low-temperature high-pressure refrigerant gas in the internal heat exchanger 105. Then, the pressure is reduced by the expansion valve A2 to become a low-temperature and low-pressure two-phase refrigerant, and heat is absorbed by the outdoor heat exchanger 1 through the flow path switching four-way valve 10 to become a low-pressure refrigerant gas. The heat is passed through the internal heat exchanger 105 and the compressor 101
Return to.

【0113】このように、前記利用側熱交換器3を放熱
器または吸熱器として動作させるどちらの場合の冷凍サ
イクルにおいても前記内部熱交換器を機能させることが
できる。
As described above, the internal heat exchanger can function in the refrigeration cycle in which the use side heat exchanger 3 is operated as a radiator or a heat sink.

【0114】また、前記膨張弁A2への流入方向が冷凍
サイクルの切替えで逆転しないので逆方向流れに対する
動作負荷がなくなり膨張弁の小型化が可能となる。さら
に、膨張部分での動力利用も冷媒流れ方向が変らないの
で容易になる。
Further, since the inflow direction to the expansion valve A2 does not reverse due to the switching of the refrigeration cycle, there is no operation load for the reverse flow, and the expansion valve can be downsized. Further, the use of power in the expansion portion is facilitated because the direction of flow of the refrigerant does not change.

【0115】(実施例6)図6は本発明の冷暖房給湯装
置のサイクル構成図を示す。なお実施例1と同一のもの
については同一番号を付し詳細な説明は省く。室外熱交
換器1と利用側熱交換器3の間に冷凍サイクルの逆転に
対し膨張弁A2と内部熱交換器105と膨張弁B5の冷
媒流れ方向を変えないようにする流路切替四方弁10
と、圧縮機吸入温度センサー15と、圧縮機吸入圧力セ
ンサー16と、冷媒循環量計17と、これらのセンサー
の検知値を入力に前記膨張弁A2と前記膨張弁B5の開
度を制御するコントローラー7を備えることにより冷凍
サイクル装置を構成する。
(Embodiment 6) FIG. 6 is a cycle configuration diagram of a cooling and heating water heater according to the present invention. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted. A flow switching four-way valve 10 between the outdoor heat exchanger 1 and the use side heat exchanger 3 for preventing the refrigerant flow direction of the expansion valve A2, the internal heat exchanger 105, and the expansion valve B5 from being changed due to reversal of the refrigeration cycle.
A compressor suction temperature sensor 15, a compressor suction pressure sensor 16, a refrigerant circulation meter 17, and a controller that controls the opening of the expansion valve A2 and the expansion valve B5 based on the detection values of these sensors. The refrigeration cycle device is constituted by including the refrigeration cycle 7.

【0116】上記構成により、二酸化炭素などの放熱器
で超臨界状態となりうる冷媒を封入し、前記利用側熱交
換器3を吸熱器として動作させる場合は、圧縮機101
で圧縮された高圧高温冷媒ガスが冷暖切替四方弁4にて
前記室外熱交換器1を通り常温に近い温かい高圧冷媒ガ
スとなり、前記流路切替四方弁10を介して前記膨張弁
B5にて減圧量を制御することで温度を調整し、前記内
部熱交換器105にて低温の高圧冷媒ガスとなる。そし
て、前記膨張弁A2で減圧し低温低圧の二相冷媒とな
り、前記流路切替四方弁10を介して前記利用側熱交換
器3にて吸熱して低圧冷媒ガスとなり、前記冷暖切替四
方弁4にて前記内部熱交換器105を通り加熱され、前
記圧縮機101へと戻る。
According to the above configuration, when a refrigerant that can be brought into a supercritical state with a radiator such as carbon dioxide is sealed and the use side heat exchanger 3 is operated as a heat absorber, the compressor 101
The high-pressure and high-temperature refrigerant gas compressed in the above-described manner passes through the outdoor heat exchanger 1 at the cooling / heating switching four-way valve 4 to become a warm high-pressure refrigerant gas near normal temperature, and is depressurized at the expansion valve B5 via the flow path switching four-way valve 10. The temperature is adjusted by controlling the amount, and the internal heat exchanger 105 turns into a low-temperature high-pressure refrigerant gas. Then, the pressure is reduced by the expansion valve A2 to become a low-temperature and low-pressure two-phase refrigerant, and the heat is absorbed by the use-side heat exchanger 3 through the flow path switching four-way valve 10 to become a low-pressure refrigerant gas. Then, the heat is passed through the internal heat exchanger 105 and returns to the compressor 101.

【0117】逆に、前記利用側熱交換器3を放熱器とし
て動作させる場合は、前記圧縮機101で圧縮された高
圧高温冷媒ガスが前記冷暖切替四方弁4にて前記利用側
熱交換器3を通り常温に近い温かい高圧冷媒ガスとな
り、前記流路切替四方弁10を介して前記膨張弁A2に
て減圧量を制御することで温度を調整し、前記内部熱交
換器105にて低温の高圧冷媒ガスとなる。そして、前
記膨張弁B5で減圧し低温低圧の二相冷媒となり、前記
流路切替四方弁10を介して前記室外熱交換器1にて吸
熱して低圧冷媒ガスとなり、前記冷暖切替四方弁4にて
前記内部熱交換器105を通り加熱され、前記圧縮機1
01へと戻る。
Conversely, when the use side heat exchanger 3 is operated as a radiator, the high pressure and high temperature refrigerant gas compressed by the compressor 101 is supplied to the use side heat exchanger 3 by the cooling / heating switching four-way valve 4. Through the flow path switching four-way valve 10 to control the amount of pressure reduction by the expansion valve A2 to adjust the temperature. The internal heat exchanger 105 controls the low-temperature high-pressure refrigerant gas. It becomes refrigerant gas. Then, the pressure is reduced by the expansion valve B5 to become a low-temperature and low-pressure two-phase refrigerant, and the heat is absorbed by the outdoor heat exchanger 1 through the flow path switching four-way valve 10 to become a low-pressure refrigerant gas. Is heated through the internal heat exchanger 105 and
Return to 01.

【0118】このように、前記利用側熱交換器3を放熱
器または吸熱器として動作させるどちらの場合の冷凍サ
イクルにおいても前記内部熱交換器を機能させることが
でき、しかも前記流路切替四方弁10を介することによ
り前記内部熱交換器105において、高圧冷媒と低圧冷
媒の流れが対向流となるため熱交換効率の良い熱交換が
できる。
As described above, the internal heat exchanger can function in the refrigeration cycle in which the use side heat exchanger 3 is operated as a radiator or a heat absorber, and the flow path switching four-way valve is provided. By passing through 10, in the internal heat exchanger 105, the flows of the high-pressure refrigerant and the low-pressure refrigerant are opposed to each other, so that heat exchange with good heat exchange efficiency can be performed.

【0119】また、前記膨張弁A2と前記膨張弁B5へ
の流入方向が冷凍サイクルの切替えで逆転しないので逆
方向流れに対する動作負荷がなくなり膨張弁の小型化が
可能となる。さらに、膨張部分での動力利用も冷媒流れ
方向が変らないので容易になる。
Further, since the inflow directions to the expansion valve A2 and the expansion valve B5 do not reverse due to the switching of the refrigerating cycle, there is no operation load for the reverse flow, and the expansion valve can be downsized. Further, the use of power in the expansion portion is facilitated because the direction of flow of the refrigerant does not change.

【0120】また、前記膨張弁A2は冷凍サイクル制御
用となり、前記膨張弁B5は前記内部熱交換器105の
能力制御用と用途が固定されることから使用方法や条件
に応じた仕様にすることができ、前記膨張弁B5のノズ
ル径を大きくするなどして全開時の減圧量を極力小さく
することで前記内部熱交換器105の高圧側入口温度の
低下を抑制し、熱交換効率を改善することができる。
The expansion valve A2 is used for controlling the refrigeration cycle, and the expansion valve B5 is used for controlling the capacity of the internal heat exchanger 105 and the application is fixed. By reducing the amount of pressure reduction at the time of full opening as much as possible, for example, by increasing the nozzle diameter of the expansion valve B5, it is possible to suppress a decrease in the inlet temperature of the internal heat exchanger 105 on the high pressure side and improve the heat exchange efficiency. be able to.

【0121】また、前記膨張弁B5を閉じる方向に制御
し、それに応じて前記膨張弁A2を開けると、前記内部
熱交換器105に入る高圧冷媒の温度が低下し低圧冷媒
との冷媒温度差が小さくなり内部熱交換器能力が減少す
る。このため吸熱器では加熱域が増加し吸熱能力が減少
する。そして放熱器では、圧縮機吸入での過熱度が減少
するため吐出温度が減少し、放熱器の冷媒温度が低下す
ることで能力が減少する。この時、高圧冷媒と低圧冷媒
の温度差がなくなるまで前記膨張弁B5を閉めると前記
内部熱交換器105の熱交換量はゼロとすることがで
き、能力制御範囲が改善される。
When the expansion valve B5 is controlled to close and the expansion valve A2 is opened accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger 105 decreases, and the difference in refrigerant temperature between the low-pressure refrigerant and the low-pressure refrigerant decreases. Smaller and the internal heat exchanger capacity is reduced. For this reason, in the heat absorber, the heating area increases and the heat absorbing ability decreases. In the radiator, the degree of superheat at the suction of the compressor is reduced, so that the discharge temperature is reduced, and the capacity of the radiator is reduced by lowering the refrigerant temperature. At this time, if the expansion valve B5 is closed until the temperature difference between the high-pressure refrigerant and the low-pressure refrigerant disappears, the heat exchange amount of the internal heat exchanger 105 can be made zero, and the capacity control range is improved.

【0122】逆に前記膨張弁B5を開ける方向に制御
し、それに応じて前記膨張弁A2を閉めると前記内部熱
交換器105に入る高圧冷媒の温度が上昇し低圧冷媒と
の冷媒温度差が大きくなり内部熱交換器能力が増加す
る。このため吸熱器では加熱域が減少し吸熱能力が増加
する。そして放熱器では、圧縮機吸入での過熱度が上昇
するため吐出温度が上昇し、放熱器の冷媒温度が上昇す
ることで能力が増加する。
Conversely, when the expansion valve B5 is controlled to open and the expansion valve A2 is closed accordingly, the temperature of the high-pressure refrigerant entering the internal heat exchanger 105 rises and the refrigerant temperature difference from the low-pressure refrigerant increases. The internal heat exchanger capacity increases. For this reason, in the heat absorber, the heating area decreases, and the heat absorbing ability increases. In the radiator, the degree of superheat at the suction of the compressor increases, so that the discharge temperature increases, and the capacity of the radiator increases by increasing the refrigerant temperature.

【0123】このとき、冷媒循環量が少ないと、冷媒流
速が低下するため熱交換時間が増加し、前記内部熱交換
器105の熱交換効率が良化するため能力を抑制する必
要がある。
At this time, if the amount of circulating refrigerant is small, the heat exchange time is increased because the flow velocity of the refrigerant is reduced, and the heat exchange efficiency of the internal heat exchanger 105 is improved, so that the capacity must be suppressed.

【0124】このような冷凍サイクル動作を利用し、前
記圧縮機吸入圧力センサー16の検知値に応じ圧縮機吸
入温度を設定して、さらに冷媒循環量に応じて圧縮機吸
入温度の前記設定値を修正して、前記圧縮機吸入温度セ
ンサー15の検知値が前記設定値この値となるように前
記膨張弁A2と前記膨張弁B5の開度を前記コントロー
ラー7によって制御することで、冷凍サイクルを効率の
良い状態に調整することができる。
Using such a refrigeration cycle operation, the compressor suction temperature is set according to the detection value of the compressor suction pressure sensor 16, and the set value of the compressor suction temperature is further set according to the refrigerant circulation amount. By correcting the opening degree of the expansion valve A2 and the expansion valve B5 by the controller 7 so that the detection value of the compressor suction temperature sensor 15 is equal to the set value, the efficiency of the refrigeration cycle is improved. Can be adjusted to a good condition.

【0125】(実施例7)図7は本発明の冷暖房給湯装
置のサイクル構成図を示す。圧縮機101と、放熱器1
02と、膨張機構部103と、吸熱器104と、複数回
路を有する内部熱交換器18と、この内部熱交換器18
の低圧側回路の一つに設けた低圧電磁弁19と、この低
圧電磁弁19を設けた回路と熱交換する高圧側回路以外
の高圧側回路にそれぞれ設けた高圧電磁弁A20高圧電
磁弁B21高圧電磁弁C22と、圧縮機吸入温度センサ
ー15と、吸熱器冷媒温度センサー23と、これらのセ
ンサーの検知値を入力に前記低圧電磁弁19と高圧電磁
弁A20と高圧電磁弁B21と高圧電磁弁C22の開閉
を制御するコントローラー24を備えることにより冷凍
サイクル装置を構成する。
(Embodiment 7) FIG. 7 shows a cycle configuration diagram of a cooling and heating water heater according to the present invention. Compressor 101 and radiator 1
02, the expansion mechanism 103, the heat sink 104, the internal heat exchanger 18 having a plurality of circuits, and the internal heat exchanger 18
And a high-pressure solenoid valve A20 and a high-pressure solenoid valve B21 provided in a high-pressure side circuit other than the high-pressure side circuit for exchanging heat with the circuit in which the low-pressure solenoid valve 19 is provided. The solenoid valve C22, the compressor suction temperature sensor 15, the heat absorber refrigerant temperature sensor 23, and the low pressure solenoid valve 19, the high pressure solenoid valve A20, the high pressure solenoid valve B21, and the high pressure solenoid valve C22 A refrigeration cycle apparatus is configured by including a controller 24 for controlling the opening and closing of the refrigeration cycle.

【0126】上記構成により、二酸化炭素などの放熱器
で超臨界状態となりうる冷媒を封入し、前記圧縮機10
1で圧縮された高圧高温冷媒ガスが前記放熱器102を
通り常温に近い温かい高圧冷媒ガスとなり、前記内部熱
交換器18にて低温の高圧冷媒ガスとなる。そして、前
記膨張機構部103で減圧し低温低圧の二相冷媒とな
り、前記吸熱器104にて吸熱して低圧冷媒ガスとな
り、前記内部熱交換器18を通り加熱され、前記圧縮機
101へと戻る。このとき、前記内部熱交換器18の能
力は前記各電磁弁の開閉で制御される。具体的には、前
記各電磁弁を全て開けたときに最大能力となり、前記高
圧電磁弁ABCを閉める個数で段階的に能力を変化させ
る。また、前記高圧電磁弁ABCを全て閉じ、前記低圧
電磁弁19を閉めるとほぼ熱交換できなくなるため最低
能力となる。
According to the above configuration, a refrigerant which can be brought into a supercritical state by a radiator such as carbon dioxide is sealed, and the compressor 10
The high-pressure high-temperature refrigerant gas compressed in step 1 passes through the radiator 102 to become a high-temperature high-pressure refrigerant gas near normal temperature, and becomes a low-temperature high-pressure refrigerant gas in the internal heat exchanger 18. Then, the pressure is reduced by the expansion mechanism 103 to become a low-temperature and low-pressure two-phase refrigerant, the heat is absorbed by the heat absorber 104 to become a low-pressure refrigerant gas, heated through the internal heat exchanger 18, and returned to the compressor 101. . At this time, the capacity of the internal heat exchanger 18 is controlled by opening and closing the respective solenoid valves. Specifically, the maximum capacity is obtained when all the solenoid valves are opened, and the capacity is changed stepwise by the number of closing the high pressure solenoid valves ABC. Further, when all the high-pressure solenoid valves ABC are closed and the low-pressure solenoid valve 19 is closed, heat exchange becomes almost impossible, so that the minimum capacity is obtained.

【0127】このように、前記内部熱交換器18の能力
をほぼ熱交換しない低能力から最大能力まで変化させる
ことができる。
As described above, the capacity of the internal heat exchanger 18 can be changed from a low capacity that hardly exchanges heat to a maximum capacity.

【0128】また、前記内部熱交換器18の能力を制御
し、内部熱交換器能力を減少させると、吸熱器では加熱
域が増加し吸熱能力が減少する。そして放熱器では、圧
縮機吸入での過熱度が減少するため吐出温度が減少し、
放熱器の冷媒温度が低下することで能力が減少する。
When the capacity of the internal heat exchanger 18 is controlled to reduce the capacity of the internal heat exchanger, the heat absorber increases the heating area and decreases the heat absorbing capacity. And in the radiator, the superheat degree at the compressor suction decreases, so the discharge temperature decreases,
As the coolant temperature of the radiator decreases, the capacity decreases.

【0129】内部熱交換器能力を増加させると、吸熱器
では加熱域が減少し吸熱能力が増加する。そして放熱器
では、圧縮機吸入での過熱度が上昇するため吐出温度が
上昇し、放熱器の冷媒温度が上昇することで能力が増加
する。
When the capacity of the internal heat exchanger is increased, the heating area of the heat absorber decreases and the heat absorbing capacity increases. In the radiator, the degree of superheat at the suction of the compressor increases, so that the discharge temperature increases, and the capacity of the radiator increases by increasing the refrigerant temperature.

【0130】このような冷凍サイクル動作を利用し、前
記吸熱器冷媒温度センサー23の検知値に応じ圧縮機吸
入温度を設定して、前記圧縮機吸入温度センサー15の
検知値が前記設定値この値となるように前記各電磁弁の
開閉を前記コントローラー24によって制御すること
で、冷凍サイクルを効率の良い状態に調整することがで
きる。
By utilizing such a refrigeration cycle operation, the compressor suction temperature is set in accordance with the detection value of the heat absorber refrigerant temperature sensor 23, and the detection value of the compressor suction temperature sensor 15 is set to the set value. By controlling the opening and closing of each of the electromagnetic valves by the controller 24 so as to satisfy the above condition, the refrigeration cycle can be adjusted to an efficient state.

【0131】(実施例8)図8は本発明の冷暖房給湯装
置のサイクル構成図を示す。なお実施例7と同一のもの
については同一番号を付し詳細な説明は省く。室外熱交
換器1と、膨張弁A2と、利用側熱交換器3と、冷暖切
替四方弁4と、前記室外熱交換器1と前記利用側熱交換
器3の間に冷凍サイクルの逆転に対し前記膨張弁A2と
前記内部熱交換器18の冷媒流れ方向を変えないように
する流路切替四方弁10と、前記利用側熱交換器3で熱
交換される熱交換媒体温度センサー6と、この熱交換媒
体温度センサー6の検知値を入力に各電磁弁の開閉を制
御するコントローラー24を備えることにより冷凍サイ
クル装置を構成する。
(Eighth Embodiment) FIG. 8 shows a cycle configuration diagram of a cooling and heating water heater according to the present invention. The same components as those in the seventh embodiment are denoted by the same reference numerals, and detailed description is omitted. The outdoor heat exchanger 1, the expansion valve A2, the use side heat exchanger 3, the cooling / heating switching four-way valve 4, and the reversal of the refrigeration cycle between the outdoor heat exchanger 1 and the use side heat exchanger 3. A flow path switching four-way valve 10 that does not change the flow direction of the refrigerant in the expansion valve A2 and the internal heat exchanger 18; a heat exchange medium temperature sensor 6 that exchanges heat with the use side heat exchanger 3; A refrigeration cycle apparatus is configured by including a controller 24 that controls the opening and closing of each electromagnetic valve using the detection value of the heat exchange medium temperature sensor 6 as an input.

【0132】上記構成により、二酸化炭素などの放熱器
で超臨界状態となりうる冷媒を封入し、前記利用側熱交
換器3を吸熱器として動作させる場合は、圧縮機101
で圧縮された高圧高温冷媒ガスが前記冷暖切替四方弁4
にて前記室外熱交換器1を通り常温に近い温かい高圧冷
媒ガスとなり、前記流路切替四方弁10を介して前記内
部熱交換器18にて低温の高圧冷媒ガスとなる。そし
て、前記膨張弁A2で減圧し低温低圧の二相冷媒とな
り、前記流路切替四方弁10を介して前記利用側熱交換
器3にて吸熱して低圧冷媒ガスとなり、前記冷暖切替四
方弁4にて前記内部熱交換器18を通り加熱され、前記
圧縮機101へと戻る。
According to the above configuration, when a refrigerant that can be brought into a supercritical state by a radiator such as carbon dioxide is sealed and the use side heat exchanger 3 is operated as a heat absorber, the compressor 101
The high-pressure and high-temperature refrigerant gas compressed by the cooling / heating switching four-way valve 4
At this time, the gas passes through the outdoor heat exchanger 1 to become a warm high-pressure refrigerant gas close to room temperature, and passes through the flow path switching four-way valve 10 to become a low-temperature high-pressure refrigerant gas at the internal heat exchanger 18. Then, the pressure is reduced by the expansion valve A2 to become a low-temperature and low-pressure two-phase refrigerant, and the heat is absorbed by the use-side heat exchanger 3 through the flow path switching four-way valve 10 to become a low-pressure refrigerant gas. Then, the heat is passed through the internal heat exchanger 18 and returns to the compressor 101.

【0133】逆に、前記利用側熱交換器3を放熱器とし
て動作させる場合は、前記圧縮機101で圧縮された高
圧高温冷媒ガスが前記冷暖切替四方弁4にて前記利用側
熱交換器3を通り常温に近い温かい高圧冷媒ガスとな
り、前記流路切替四方弁10を介して前記内部熱交換器
18にて低温の高圧冷媒ガスとなる。そして、前記膨張
弁A2で減圧し低温低圧の二相冷媒となり、前記流路切
替四方弁10を介して前記室外熱交換器1にて吸熱して
低圧冷媒ガスとなり、前記冷暖切替四方弁4にて前記内
部熱交換器18を通り加熱され、前記圧縮機101へと
戻る。
Conversely, when the use side heat exchanger 3 is operated as a radiator, the high pressure and high temperature refrigerant gas compressed by the compressor 101 is supplied to the use side heat exchanger 3 by the cooling / heating switching four-way valve 4. Through the flow path switching four-way valve 10 to become a low-temperature high-pressure refrigerant gas through the internal heat exchanger 18. Then, the pressure is reduced by the expansion valve A2 to become a low-temperature and low-pressure two-phase refrigerant, and heat is absorbed by the outdoor heat exchanger 1 through the flow path switching four-way valve 10 to become a low-pressure refrigerant gas. Then, it is heated through the internal heat exchanger 18 and returns to the compressor 101.

【0134】このように、前記利用側熱交換器3を放熱
器または吸熱器として動作させるどちらの場合の冷凍サ
イクルにおいても前記内部熱交換器を機能させることが
でき、しかも前記流路切替四方弁10を介することによ
り前記内部熱交換器18において、高圧冷媒と低圧冷媒
の流れが対向流となるため熱交換効率の良い熱交換がで
きる。
As described above, the internal heat exchanger can function in the refrigeration cycle in which the use side heat exchanger 3 is operated as a radiator or a heat sink, and the flow path switching four-way valve is provided. By passing through 10, in the internal heat exchanger 18, the flows of the high-pressure refrigerant and the low-pressure refrigerant are opposed to each other, so that heat exchange with good heat exchange efficiency can be performed.

【0135】そして、前記内部熱交換器18の能力は前
記各電磁弁の開閉で制御される。具体的には、前記各電
磁弁を全て開けたときに最大能力となり、前記高圧電磁
弁ABCを閉める個数で段階的に能力を変化させる。ま
た、前記高圧電磁弁ABCを全て閉じ、前記低圧電磁弁
19を閉めるとほぼ熱交換できなくなるため最低能力と
なる。
The capacity of the internal heat exchanger 18 is controlled by opening and closing the solenoid valves. Specifically, the maximum capacity is obtained when all the solenoid valves are opened, and the capacity is changed stepwise by the number of closing the high pressure solenoid valves ABC. Further, when all the high-pressure solenoid valves ABC are closed and the low-pressure solenoid valve 19 is closed, heat exchange becomes almost impossible, so that the minimum capacity is obtained.

【0136】このように、前記内部熱交換器18の能力
をほぼ熱交換しない低能力から最大能力まで変化させる
ことができる。
As described above, the capacity of the internal heat exchanger 18 can be changed from a low capacity that hardly exchanges heat to a maximum capacity.

【0137】また、前記内部熱交換器18の能力を制御
し、内部熱交換器能力を減少させると、吸熱器では加熱
域が増加し吸熱能力が減少する。そして放熱器では、圧
縮機吸入での過熱度が減少するため吐出温度が減少し、
放熱器の冷媒温度が低下することで能力が減少する。
When the capacity of the internal heat exchanger 18 is controlled to reduce the capacity of the internal heat exchanger, the heat absorption area of the heat absorber increases and the heat absorption capacity decreases. And in the radiator, the superheat degree at the compressor suction decreases, so the discharge temperature decreases,
As the coolant temperature of the radiator decreases, the capacity decreases.

【0138】内部熱交換器能力を増加させると、吸熱器
では加熱域が減少し吸熱能力が増加する。そして放熱器
では、圧縮機吸入での過熱度が上昇するため吐出温度が
上昇し、放熱器の冷媒温度が上昇することで能力が増加
する。
When the capacity of the internal heat exchanger is increased, the heating area of the heat absorber decreases and the heat absorbing capacity increases. In the radiator, the degree of superheat at the suction of the compressor increases, so that the discharge temperature increases, and the capacity of the radiator increases by increasing the refrigerant temperature.

【0139】このような冷凍サイクル動作を利用し、前
記熱交換媒体温度センサー6の検知値を設定値となるよ
うに前記各電磁弁の開閉を前記コントローラー24によ
って制御することで、前記利用側熱交換器3の能力を調
整することができる。
By using such a refrigeration cycle operation, the controller 24 controls the opening and closing of each of the solenoid valves so that the detection value of the heat exchange medium temperature sensor 6 becomes a set value. The capacity of the exchanger 3 can be adjusted.

【0140】(実施例9)図9は本発明の冷暖房給湯装
置のサイクル構成図を示す。なお実施例8と同一のもの
については同一番号を付し詳細な説明は省く。内部熱交
換器低圧側入口温度センサー8と、内部熱交換器低圧側
出口温度センサー9と、これらのセンサーの検知値を入
力に前記各電磁弁の開閉を制御するコントローラー24
を備えることにより冷凍サイクル装置を構成する。
(Embodiment 9) FIG. 9 is a cycle configuration diagram of a cooling and heating water heater according to the present invention. The same components as those in the eighth embodiment are denoted by the same reference numerals, and detailed description is omitted. The internal heat exchanger low-pressure side inlet temperature sensor 8, the internal heat exchanger low-pressure side outlet temperature sensor 9, and a controller 24 for controlling the opening and closing of each of the solenoid valves by inputting the detection values of these sensors.
To constitute a refrigeration cycle apparatus.

【0141】上記構成により、二酸化炭素などの放熱器
で超臨界状態となりうる冷媒を封入し、前記利用側熱交
換器3を吸熱器として動作させる場合は、圧縮機101
で圧縮された高圧高温冷媒ガスが冷暖切替四方弁4にて
室外熱交換器1を通り常温に近い温かい高圧冷媒ガスと
なり、流路切替四方弁10を介して内部熱交換器18に
て低温の高圧冷媒ガスとなる。そして、膨張弁A2で減
圧し低温低圧の二相冷媒となり、前記流路切替四方弁1
0を介して利用側熱交換器3にて吸熱して低圧冷媒ガス
となり、前記冷暖切替四方弁4にて前記内部熱交換器1
8を通り加熱され、前記圧縮機101へと戻る。
With the above configuration, when a refrigerant that can be brought into a supercritical state with a radiator such as carbon dioxide is sealed and the use side heat exchanger 3 is operated as a heat absorber, the compressor 101
The high-pressure and high-temperature refrigerant gas compressed in the above-mentioned manner passes through the outdoor heat exchanger 1 at the cooling / heating switching four-way valve 4 to become a high-temperature high-pressure refrigerant gas near normal temperature, and becomes low-temperature at the internal heat exchanger 18 via the flow path switching four-way valve 10. It becomes high-pressure refrigerant gas. The pressure is reduced by the expansion valve A2 to become a low-temperature and low-pressure two-phase refrigerant.
0, the heat is absorbed by the use-side heat exchanger 3 to become a low-pressure refrigerant gas.
8 and return to the compressor 101.

【0142】逆に、前記利用側熱交換器3を放熱器とし
て動作させる場合は、前記圧縮機101で圧縮された高
圧高温冷媒ガスが前記冷暖切替四方弁4にて前記利用側
熱交換器3を通り常温に近い温かい高圧冷媒ガスとな
り、前記流路切替四方弁10を介して前記内部熱交換器
18にて低温の高圧冷媒ガスとなる。そして、前記膨張
弁A2で減圧し低温低圧の二相冷媒となり、前記流路切
替四方弁10を介して前記室外熱交換器1にて吸熱して
低圧冷媒ガスとなり、前記冷暖切替四方弁4にて前記内
部熱交換器18を通り加熱され、前記圧縮機101へと
戻る。
Conversely, when the use side heat exchanger 3 is operated as a radiator, the high pressure and high temperature refrigerant gas compressed by the compressor 101 is supplied to the use side heat exchanger 3 by the cooling / heating switching four-way valve 4. Through the flow path switching four-way valve 10 to become a low-temperature high-pressure refrigerant gas through the internal heat exchanger 18. Then, the pressure is reduced by the expansion valve A2 to become a low-temperature and low-pressure two-phase refrigerant, and heat is absorbed by the outdoor heat exchanger 1 through the flow path switching four-way valve 10 to become a low-pressure refrigerant gas. Then, it is heated through the internal heat exchanger 18 and returns to the compressor 101.

【0143】このように、前記利用側熱交換器3を放熱
器または吸熱器として動作させるどちらの場合の冷凍サ
イクルにおいても前記内部熱交換器を機能させることが
でき、しかも前記流路切替四方弁10を介することによ
り前記内部熱交換器18において、高圧冷媒と低圧冷媒
の流れが対向流となるため熱交換効率の良い熱交換がで
きる。
As described above, the internal heat exchanger can function in the refrigeration cycle in which the use side heat exchanger 3 is operated as a radiator or a heat absorber, and the flow path switching four-way valve is provided. By passing through 10, in the internal heat exchanger 18, the flows of the high-pressure refrigerant and the low-pressure refrigerant are opposed to each other, so that heat exchange with good heat exchange efficiency can be performed.

【0144】そして、前記内部熱交換器18の能力は前
記各電磁弁の開閉で制御される。具体的には、前記各電
磁弁を全て開けたときに最大能力となり、前記高圧電磁
弁ABCを閉める個数で段階的に能力を変化させる。ま
た、前記高圧電磁弁ABCを全て閉じ、前記低圧電磁弁
19を閉めるとほぼ熱交換できなくなるため最低能力と
なる。
The capacity of the internal heat exchanger 18 is controlled by opening and closing the respective solenoid valves. Specifically, the maximum capacity is obtained when all the solenoid valves are opened, and the capacity is changed stepwise by the number of closing the high pressure solenoid valves ABC. Further, when all the high-pressure solenoid valves ABC are closed and the low-pressure solenoid valve 19 is closed, heat exchange becomes almost impossible, so that the minimum capacity is obtained.

【0145】このように、前記内部熱交換器18の能力
をほぼ熱交換しない低能力から最大能力まで変化させる
ことができる。
As described above, the capacity of the internal heat exchanger 18 can be changed from a low capacity that hardly exchanges heat to a maximum capacity.

【0146】また、前記内部熱交換器18の能力を制御
し、内部熱交換器能力を減少させると、吸熱器では加熱
域が増加し吸熱能力が減少する。そして放熱器では、圧
縮機吸入での過熱度が減少するため吐出温度が減少し、
放熱器の冷媒温度が低下することで能力が減少する。
When the capacity of the internal heat exchanger 18 is controlled to reduce the capacity of the internal heat exchanger, the heat absorber increases the heating area and decreases the heat absorbing capacity. And in the radiator, the superheat degree at the compressor suction decreases, so the discharge temperature decreases,
As the coolant temperature of the radiator decreases, the capacity decreases.

【0147】内部熱交換器能力を増加させると、吸熱器
では加熱域が減少し吸熱能力が増加する。そして放熱器
では、圧縮機吸入での過熱度が上昇するため吐出温度が
上昇し、放熱器の冷媒温度が上昇することで能力が増加
する。
When the capacity of the internal heat exchanger is increased, the heating area of the heat absorber decreases and the heat absorbing capacity increases. In the radiator, the degree of superheat at the suction of the compressor increases, so that the discharge temperature increases, and the capacity of the radiator increases by increasing the refrigerant temperature.

【0148】このような冷凍サイクル動作を利用し、前
記内部熱交換器低圧側入口温度センサー8の検知値に応
じ低圧冷媒出口温度を設定して、前記内部熱交換器低圧
側出口温度センサー9の検知値が前記設定値この値とな
るように前記各電磁弁の開閉を前記コントローラー24
によって制御することで、冷凍サイクルを効率の良い状
態に調整することができる。
Utilizing such a refrigeration cycle operation, the low-pressure refrigerant outlet temperature is set according to the detection value of the internal heat exchanger low-pressure side inlet temperature sensor 8, and the internal heat exchanger low-pressure side outlet temperature sensor 9 is set. The controller 24 opens and closes the solenoid valves so that the detection value is equal to the set value.
, The refrigeration cycle can be adjusted to an efficient state.

【0149】(実施例10)図10は本発明の冷暖房給
湯装置のサイクル構成図を示す。なお実施例8と同一の
ものについては同一番号を付し詳細な説明は省く。内部
熱交換器低圧側入口温度センサー8と、内部熱交換器高
圧側入口温度センサー11と、圧縮機の回転数検知装置
12と、これらのセンサーの検知値を入力に前記各電磁
弁の開閉を制御するコントローラー24を備えることに
より冷凍サイクル装置を構成する。
(Embodiment 10) FIG. 10 shows a cycle configuration diagram of a cooling and heating water heater according to the present invention. The same components as those in the eighth embodiment are denoted by the same reference numerals, and detailed description is omitted. The internal heat exchanger low-pressure side inlet temperature sensor 8, the internal heat exchanger high-pressure side inlet temperature sensor 11, the compressor rotation speed detecting device 12, and the detection values of these sensors are input to open and close the solenoid valves. A refrigeration cycle device is configured by including the controller 24 for controlling.

【0150】上記構成により、二酸化炭素などの放熱器
で超臨界状態となりうる冷媒を封入し、前記利用側熱交
換器3を吸熱器として動作させる場合は、圧縮機101
で圧縮された高圧高温冷媒ガスが冷暖切替四方弁4にて
室外熱交換器1を通り常温に近い温かい高圧冷媒ガスと
なり、流路切替四方弁10を介して内部熱交換器18に
て低温の高圧冷媒ガスとなる。そして、膨張弁A2で減
圧し低温低圧の二相冷媒となり、前記流路切替四方弁1
0を介して利用側熱交換器3にて吸熱して低圧冷媒ガス
となり、前記冷暖切替四方弁4にて前記内部熱交換器1
8を通り加熱され、前記圧縮機101へと戻る。
According to the above configuration, when a refrigerant that can be brought into a supercritical state by a radiator such as carbon dioxide is sealed and the use side heat exchanger 3 is operated as a heat absorber, the compressor 101
The high-pressure and high-temperature refrigerant gas compressed in the above-mentioned manner passes through the outdoor heat exchanger 1 at the cooling / heating switching four-way valve 4 to become a high-temperature high-pressure refrigerant gas near normal temperature, and becomes low-temperature at the internal heat exchanger 18 via the flow path switching four-way valve 10. It becomes high-pressure refrigerant gas. The pressure is reduced by the expansion valve A2 to become a low-temperature and low-pressure two-phase refrigerant.
0, the heat is absorbed by the use-side heat exchanger 3 to become a low-pressure refrigerant gas.
8 and return to the compressor 101.

【0151】逆に、前記利用側熱交換器3を放熱器とし
て動作させる場合は、前記圧縮機101で圧縮された高
圧高温冷媒ガスが前記冷暖切替四方弁4にて前記利用側
熱交換器3を通り常温に近い温かい高圧冷媒ガスとな
り、前記流路切替四方弁10を介して前記内部熱交換器
18にて低温の高圧冷媒ガスとなる。そして、前記膨張
弁A2で減圧し低温低圧の二相冷媒となり、前記流路切
替四方弁10を介して前記室外熱交換器1にて吸熱して
低圧冷媒ガスとなり、前記冷暖切替四方弁4にて前記内
部熱交換器18を通り加熱され、前記圧縮機101へと
戻る。
Conversely, when the use side heat exchanger 3 is operated as a radiator, the high pressure and high temperature refrigerant gas compressed by the compressor 101 is supplied to the use side heat exchanger 3 by the cooling / heating switching four-way valve 4. Through the flow path switching four-way valve 10 to become a low-temperature high-pressure refrigerant gas through the internal heat exchanger 18. Then, the pressure is reduced by the expansion valve A2 to become a low-temperature and low-pressure two-phase refrigerant, and heat is absorbed by the outdoor heat exchanger 1 through the flow path switching four-way valve 10 to become a low-pressure refrigerant gas. Then, it is heated through the internal heat exchanger 18 and returns to the compressor 101.

【0152】このように、前記利用側熱交換器3を放熱
器または吸熱器として動作させるどちらの場合の冷凍サ
イクルにおいても前記内部熱交換器を機能させることが
でき、しかも前記流路切替四方弁10を介することによ
り前記内部熱交換器18において、高圧冷媒と低圧冷媒
の流れが対向流となるため熱交換効率の良い熱交換がで
きる。
As described above, the internal heat exchanger can function in the refrigeration cycle in which the use side heat exchanger 3 is operated as a radiator or a heat absorber, and the flow path switching four-way valve is provided. By passing through 10, in the internal heat exchanger 18, the flows of the high-pressure refrigerant and the low-pressure refrigerant are opposed to each other, so that heat exchange with good heat exchange efficiency can be performed.

【0153】そして、前記内部熱交換器18の能力は前
記各電磁弁の開閉で制御される。具体的には、前記各電
磁弁を全て開けたときに最大能力となり、前記高圧電磁
弁ABCを閉める個数で段階的に能力を変化させる。ま
た、前記高圧電磁弁ABCを全て閉じ、前記低圧電磁弁
19を閉めるとほぼ熱交換できなくなるため最低能力と
なる。
The capacity of the internal heat exchanger 18 is controlled by opening and closing the respective solenoid valves. Specifically, the maximum capacity is obtained when all the solenoid valves are opened, and the capacity is changed stepwise by the number of closing the high pressure solenoid valves ABC. Further, when all the high-pressure solenoid valves ABC are closed and the low-pressure solenoid valve 19 is closed, heat exchange becomes almost impossible, so that the minimum capacity is obtained.

【0154】このように、前記内部熱交換器18の能力
をほぼ熱交換しない低能力から最大能力まで変化させる
ことができる。
As described above, the capacity of the internal heat exchanger 18 can be changed from a low capacity that hardly exchanges heat to a maximum capacity.

【0155】また、前記内部熱交換器18の能力を制御
し、内部熱交換器能力を減少させると、吸熱器では加熱
域が増加し吸熱能力が減少する。そして放熱器では、圧
縮機吸入での過熱度が減少するため吐出温度が減少し、
放熱器の冷媒温度が低下することで能力が減少する。
When the capacity of the internal heat exchanger 18 is controlled to reduce the capacity of the internal heat exchanger, the heating area of the heat absorber increases and the heat absorbing capacity decreases. And in the radiator, the superheat degree at the compressor suction decreases, so the discharge temperature decreases,
As the coolant temperature of the radiator decreases, the capacity decreases.

【0156】内部熱交換器能力を増加させると、吸熱器
では加熱域が減少し吸熱能力が増加する。そして放熱器
では、圧縮機吸入での過熱度が上昇するため吐出温度が
上昇し、放熱器の冷媒温度が上昇することで能力が増加
する。
When the capacity of the internal heat exchanger is increased, the heat absorption area of the heat absorber decreases and the heat absorption capacity increases. In the radiator, the degree of superheat at the suction of the compressor increases, so that the discharge temperature increases, and the capacity of the radiator increases by increasing the refrigerant temperature.

【0157】このとき、圧縮機の回転数が少ないと、こ
れに応じて冷媒循環量が少なくなり、冷媒流速が低下す
るため熱交換時間が増加し、前記内部熱交換器105の
熱交換効率が良化するため能力を抑制する必要がある。
At this time, if the number of rotations of the compressor is small, the amount of circulating refrigerant decreases accordingly, and the flow rate of refrigerant decreases, so that the heat exchange time increases, and the heat exchange efficiency of the internal heat exchanger 105 increases. It is necessary to suppress the ability to improve.

【0158】このような冷凍サイクル動作を利用し、前
記内部熱交換器低圧側入口温度センサー8の検知値に応
じ高圧冷媒入口温度を設定して、さらに圧縮機の回転数
に応じて高圧冷媒入口温度の前記設定値を修正して、前
記内部熱交換器高圧側入口温度センサー11の検知値が
前記設定値この値となるように前記各電磁弁の開閉を前
記コントローラー24によって制御することで、冷凍サ
イクルを効率の良い状態に調整することができる。
Using such a refrigeration cycle operation, the high-pressure refrigerant inlet temperature is set according to the detection value of the internal heat exchanger low-pressure side inlet temperature sensor 8, and the high-pressure refrigerant inlet temperature is further set according to the rotation speed of the compressor. By correcting the set value of the temperature, by controlling the opening and closing of each solenoid valve by the controller 24 so that the detection value of the internal heat exchanger high pressure side inlet temperature sensor 11 becomes the set value this value, The refrigeration cycle can be adjusted to an efficient state.

【0159】なお、本実施例では圧縮機の回転数を回転
数検知装置を用いて検知したが、インバータなどの出力
や設定値を用いても良い。
In this embodiment, the number of revolutions of the compressor is detected by using the number-of-rotations detector, but the output of an inverter or the like or the set value may be used.

【0160】(実施例11)図11は本発明の冷暖房給
湯装置のサイクル構成図を示す。なお実施例8と同一の
ものについては同一番号を付し詳細な説明は省く。圧縮
機吸入温度センサー15と、圧縮機吸入圧力センサー1
6と、冷媒循環量計17と、これらのセンサーの検知値
を入力に前記各電磁弁の開閉を制御するコントローラー
24を備えることにより冷凍サイクル装置を構成する。
(Embodiment 11) FIG. 11 shows a cycle configuration diagram of a cooling and heating water heater according to the present invention. The same components as those in the eighth embodiment are denoted by the same reference numerals, and detailed description is omitted. Compressor suction temperature sensor 15 and compressor suction pressure sensor 1
6, a refrigerant circulating meter 17, and a controller 24 that controls the opening and closing of each of the electromagnetic valves based on the detection values of these sensors as inputs.

【0161】上記構成により、二酸化炭素などの放熱器
で超臨界状態となりうる冷媒を封入し、前記利用側熱交
換器3を吸熱器として動作させる場合は、圧縮機101
で圧縮された高圧高温冷媒ガスが冷暖切替四方弁4にて
室外熱交換器1を通り常温に近い温かい高圧冷媒ガスと
なり、流路切替四方弁10を介して内部熱交換器18に
て低温の高圧冷媒ガスとなる。そして、膨張弁A2で減
圧し低温低圧の二相冷媒となり、前記流路切替四方弁1
0を介して利用側熱交換器3にて吸熱して低圧冷媒ガス
となり、前記冷暖切替四方弁4にて前記内部熱交換器1
8を通り加熱され、前記圧縮機101へと戻る。
According to the above configuration, when a refrigerant that can be brought into a supercritical state by a radiator such as carbon dioxide is sealed and the use side heat exchanger 3 is operated as a heat absorber, the compressor 101
The high-pressure and high-temperature refrigerant gas compressed in the above-mentioned manner passes through the outdoor heat exchanger 1 at the cooling / heating switching four-way valve 4 to become a high-temperature high-pressure refrigerant gas near normal temperature, and becomes low-temperature at the internal heat exchanger 18 via the flow path switching four-way valve 10. It becomes high-pressure refrigerant gas. The pressure is reduced by the expansion valve A2 to become a low-temperature and low-pressure two-phase refrigerant.
0, the heat is absorbed by the use-side heat exchanger 3 to become a low-pressure refrigerant gas, and the internal heat exchanger 1 is cooled by the cooling / heating switching four-way valve 4.
8 and return to the compressor 101.

【0162】逆に、前記利用側熱交換器3を放熱器とし
て動作させる場合は、前記圧縮機101で圧縮された高
圧高温冷媒ガスが前記冷暖切替四方弁4にて前記利用側
熱交換器3を通り常温に近い温かい高圧冷媒ガスとな
り、前記流路切替四方弁10を介して前記内部熱交換器
18にて低温の高圧冷媒ガスとなる。そして、前記膨張
弁A2で減圧し低温低圧の二相冷媒となり、前記流路切
替四方弁10を介して前記室外熱交換器1にて吸熱して
低圧冷媒ガスとなり、前記冷暖切替四方弁4にて前記内
部熱交換器18を通り加熱され、前記圧縮機101へと
戻る。
Conversely, when the use side heat exchanger 3 is operated as a radiator, the high pressure and high temperature refrigerant gas compressed by the compressor 101 is supplied to the use side heat exchanger 3 by the cooling / heating switching four-way valve 4. Through the flow path switching four-way valve 10 to become a low-temperature high-pressure refrigerant gas through the internal heat exchanger 18. Then, the pressure is reduced by the expansion valve A2 to become a low-temperature and low-pressure two-phase refrigerant, and heat is absorbed by the outdoor heat exchanger 1 through the flow path switching four-way valve 10 to become a low-pressure refrigerant gas. Then, it is heated through the internal heat exchanger 18 and returns to the compressor 101.

【0163】このように、前記利用側熱交換器3を放熱
器または吸熱器として動作させるどちらの場合の冷凍サ
イクルにおいても前記内部熱交換器を機能させることが
でき、しかも前記流路切替四方弁10を介することによ
り前記内部熱交換器18において、高圧冷媒と低圧冷媒
の流れが対向流となるため熱交換効率の良い熱交換がで
きる。
As described above, the internal heat exchanger can function in the refrigeration cycle in which the use side heat exchanger 3 is operated as a radiator or a heat sink, and the flow path switching four-way valve is provided. By passing through 10, in the internal heat exchanger 18, the flows of the high-pressure refrigerant and the low-pressure refrigerant are opposed to each other, so that heat exchange with good heat exchange efficiency can be performed.

【0164】そして、前記内部熱交換器18の能力は前
記各電磁弁の開閉で制御される。具体的には、前記各電
磁弁を全て開けたときに最大能力となり、前記高圧電磁
弁ABCを閉める個数で段階的に能力を変化させる。ま
た、前記高圧電磁弁ABCを全て閉じ、前記低圧電磁弁
19を閉めるとほぼ熱交換できなくなるため最低能力と
なる。
The capacity of the internal heat exchanger 18 is controlled by opening and closing the respective solenoid valves. Specifically, the maximum capacity is obtained when all the solenoid valves are opened, and the capacity is changed stepwise by the number of closing the high pressure solenoid valves ABC. Further, when all the high-pressure solenoid valves ABC are closed and the low-pressure solenoid valve 19 is closed, heat exchange becomes almost impossible, so that the minimum capacity is obtained.

【0165】このように、前記内部熱交換器18の能力
をほぼ熱交換しない低能力から最大能力まで変化させる
ことができる。
As described above, the capacity of the internal heat exchanger 18 can be changed from a low capacity that hardly exchanges heat to a maximum capacity.

【0166】また、前記内部熱交換器18の能力を制御
し、内部熱交換器能力を減少させると、吸熱器では加熱
域が増加し吸熱能力が減少する。そして放熱器では、圧
縮機吸入での過熱度が減少するため吐出温度が減少し、
放熱器の冷媒温度が低下することで能力が減少する。
When the capacity of the internal heat exchanger 18 is controlled to reduce the capacity of the internal heat exchanger, the heat absorber increases the heating area and decreases the heat absorbing capacity. And in the radiator, the superheat degree at the compressor suction decreases, so the discharge temperature decreases,
As the coolant temperature of the radiator decreases, the capacity decreases.

【0167】内部熱交換器能力を増加させると、吸熱器
では加熱域が減少し吸熱能力が増加する。そして放熱器
では、圧縮機吸入での過熱度が上昇するため吐出温度が
上昇し、放熱器の冷媒温度が上昇することで能力が増加
する。
When the capacity of the internal heat exchanger is increased, the heating area of the heat absorber decreases and the heat absorbing capacity increases. In the radiator, the degree of superheat at the suction of the compressor increases, so that the discharge temperature increases, and the capacity of the radiator increases by increasing the refrigerant temperature.

【0168】このとき、冷媒循環量が少ないと、冷媒流
速が低下するため熱交換時間が増加し、前記内部熱交換
器105の熱交換効率が良化するため能力を抑制する必
要がある。
At this time, if the amount of circulating refrigerant is small, the heat exchange time is increased because the flow velocity of the refrigerant is reduced, and the heat exchange efficiency of the internal heat exchanger 105 is improved, so that it is necessary to suppress the capacity.

【0169】このような冷凍サイクル動作を利用し、前
記圧縮機吸入圧力センサー16の検知値に応じ圧縮機吸
入温度を設定して、さらに冷媒循環量に応じて圧縮機吸
入温度の前記設定値を修正して、前記圧縮機吸入温度セ
ンサー15の検知値が前記設定値この値となるように前
記各電磁弁の開閉を前記コントローラー24によって制
御することで、冷凍サイクルを効率の良い状態に調整す
ることができる。
Using such a refrigeration cycle operation, the compressor suction temperature is set according to the detection value of the compressor suction pressure sensor 16, and the set value of the compressor suction temperature is further set according to the refrigerant circulation amount. The refrigeration cycle is adjusted to an efficient state by controlling the opening and closing of each solenoid valve by the controller 24 so that the detection value of the compressor suction temperature sensor 15 becomes the set value and this value after correction. be able to.

【0170】[0170]

【発明の効果】以上の実施例から明らかなように、本発
明によれば、内部熱交換器の能力制御範囲を拡大するこ
とができ、冷凍サイクルの可逆サイクルとした時におい
ても内部熱交換器が機能することができ、この冷凍サイ
クル装置の内部熱交換器を有効に機能させる制御方法を
有する冷凍サイクル装置を提供できる。
As is clear from the above embodiments, according to the present invention, the capacity control range of the internal heat exchanger can be expanded, and even when the refrigerating cycle is set to the reversible cycle, the internal heat exchanger can be used. Can be provided, and a refrigeration cycle apparatus having a control method for effectively operating the internal heat exchanger of the refrigeration cycle apparatus can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の冷凍サイクル装置のサイク
ル構成図
FIG. 1 is a cycle configuration diagram of a refrigeration cycle apparatus according to a first embodiment of the present invention.

【図2】本発明の実施例2の冷凍サイクル装置のサイク
ル構成図
FIG. 2 is a cycle configuration diagram of a refrigeration cycle apparatus according to Embodiment 2 of the present invention.

【図3】本発明の実施例3の冷凍サイクル装置のサイク
ル構成図
FIG. 3 is a cycle configuration diagram of a refrigeration cycle apparatus according to Embodiment 3 of the present invention.

【図4】本発明の実施例4の冷凍サイクル装置のサイク
ル構成図
FIG. 4 is a cycle configuration diagram of a refrigeration cycle apparatus according to Embodiment 4 of the present invention.

【図5】本発明の実施例5の冷凍サイクル装置のサイク
ル構成図
FIG. 5 is a cycle configuration diagram of a refrigeration cycle apparatus according to Embodiment 5 of the present invention.

【図6】本発明の実施例6の冷凍サイクル装置のサイク
ル構成図
FIG. 6 is a cycle configuration diagram of a refrigeration cycle apparatus according to Embodiment 6 of the present invention.

【図7】本発明の実施例7の冷凍サイクル装置のサイク
ル構成図
FIG. 7 is a cycle configuration diagram of a refrigeration cycle apparatus according to Embodiment 7 of the present invention.

【図8】本発明の実施例8の冷凍サイクル装置のサイク
ル構成図
FIG. 8 is a cycle configuration diagram of a refrigeration cycle apparatus according to Embodiment 8 of the present invention.

【図9】本発明の実施例9の冷凍サイクル装置のサイク
ル構成図
FIG. 9 is a cycle configuration diagram of a refrigeration cycle apparatus according to Embodiment 9 of the present invention.

【図10】本発明の実施例10の冷凍サイクル装置のサ
イクル構成図
FIG. 10 is a cycle configuration diagram of a refrigeration cycle apparatus according to Embodiment 10 of the present invention.

【図11】本発明の実施例11の冷凍サイクル装置のサ
イクル構成図
FIG. 11 is a cycle configuration diagram of a refrigeration cycle apparatus according to Embodiment 11 of the present invention.

【図12】従来の冷凍サイクル装置のサイクル構成図FIG. 12 is a cycle configuration diagram of a conventional refrigeration cycle device.

【符号の説明】[Explanation of symbols]

1 室外熱交換器 2 膨張弁A 3 利用側熱交換器 4 冷暖切替四方弁 5 膨張弁B 6 熱交換媒体温度 7 コントローラー 8 内部熱交換器低圧側入口温度センサー 9 内部熱交換器低圧側出口温度センサー 10 流路切替四方弁 11 内部熱交換器高圧側入口温度センサー 12 回転数検知装置 13 利用側熱交換器冷媒温度センサー 14 室外熱交換器冷媒温度センサー 15 圧縮機吸入温度センサー 16 圧縮機吸入圧力センサー 17 冷媒循環量計 18 内部熱交換器 19 低圧電磁弁 20 高圧電磁弁A 21 高圧電磁弁B 22 高圧電磁弁C 23 吸熱器冷媒温度センサー 24 コントローラー Reference Signs List 1 outdoor heat exchanger 2 expansion valve A 3 use side heat exchanger 4 cooling / heating switching four-way valve 5 expansion valve B 6 heat exchange medium temperature 7 controller 8 internal heat exchanger low pressure side inlet temperature sensor 9 internal heat exchanger low pressure side outlet temperature Sensor 10 Flow path switching four-way valve 11 Internal heat exchanger high-pressure side inlet temperature sensor 12 Revolution detecting device 13 User side heat exchanger refrigerant temperature sensor 14 Outdoor heat exchanger refrigerant temperature sensor 15 Compressor suction temperature sensor 16 Compressor suction pressure Sensor 17 Refrigerant circulation meter 18 Internal heat exchanger 19 Low-pressure solenoid valve 20 High-pressure solenoid valve A 21 High-pressure solenoid valve B 22 High-pressure solenoid valve C 23 Heat sink refrigerant temperature sensor 24 Controller

Claims (23)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と室外熱交換器と膨張機構部と利
用側熱交換器と内部熱交換器からなる冷凍サイクル装置
において、放熱時に超臨界状態となりうる冷媒が封入さ
れ、前記膨張機構部を第1の膨張機構部と第2の膨張機
構部に分けて前記内部熱交換器の高圧冷媒側出入口にそ
れぞれ設けたことを特徴とする冷凍サイクル装置。
In a refrigeration cycle apparatus comprising a compressor, an outdoor heat exchanger, an expansion mechanism, a use side heat exchanger, and an internal heat exchanger, a refrigerant that can be brought into a supercritical state during heat release is filled therein. Is divided into a first expansion mechanism section and a second expansion mechanism section and provided at the high-pressure refrigerant side entrance and exit of the internal heat exchanger, respectively.
【請求項2】 利用側熱交換器が放熱器として作用する
場合に、冷媒の流れが対向流となるように内部熱交換器
を接続する請求項1記載の冷凍サイクル装置。
2. The refrigeration cycle apparatus according to claim 1, wherein when the use-side heat exchanger acts as a radiator, the internal heat exchanger is connected so that the flow of the refrigerant is countercurrent.
【請求項3】 利用側熱交換器が吸熱器として作用する
場合に、冷媒の流れが対向流となるように内部熱交換器
を接続する請求項1記載の冷凍サイクル装置。
3. The refrigeration cycle apparatus according to claim 1, wherein, when the use side heat exchanger acts as a heat absorber, the internal heat exchanger is connected so that the flow of the refrigerant becomes countercurrent.
【請求項4】 利用側熱交換器と圧縮機吸入部を接続す
る配管と、室外熱交換器と圧縮機吐出部を接続する配管
に冷凍サイクルを逆転させる冷暖切替四方弁を設け、内
部熱交換器の高圧冷媒出入口に冷凍サイクルの逆転に対
し前記内部熱交換器の冷媒流れ方向を変えないようにす
る流路切替四方弁を設けた請求項1記載の冷凍サイクル
装置。
4. A cooling / heating switching four-way valve for reversing a refrigeration cycle is provided in a pipe connecting the use side heat exchanger and the compressor suction part, and a pipe connecting the outdoor heat exchanger and the compressor discharge part, for internal heat exchange. 2. The refrigeration cycle apparatus according to claim 1, further comprising a flow path switching four-way valve for preventing the refrigerant flow direction of the internal heat exchanger from changing in the reversal of the refrigeration cycle at the inlet and outlet of the high-pressure refrigerant.
【請求項5】 圧縮機と室外熱交換器と第1の膨張機構
部と利用側熱交換器と内部熱交換器からなる冷凍サイク
ル装置において、放熱時に超臨界状態となりうる冷媒が
封入され、前記利用側熱交換器と前記圧縮機吸入部を接
続する配管と、前記室外熱交換器と前記圧縮機吐出部を
接続する配管に冷凍サイクルを逆転させる冷暖切替四方
弁を設け、前記内部熱交換器の高圧冷媒出入口に冷凍サ
イクルの逆転に対し前記内部熱交換器の冷媒流れ方向を
変えないようにする流路切替四方弁を設け、前記内部熱
交換器の高圧冷媒出口と前記流路切替四方弁の間に前記
第1の膨張機構部を設けたことを特徴とする冷凍サイク
ル装置。
5. A refrigeration cycle apparatus comprising a compressor, an outdoor heat exchanger, a first expansion mechanism, a use-side heat exchanger, and an internal heat exchanger, wherein a refrigerant that can be in a supercritical state during heat release is filled therein. A pipe connecting the use side heat exchanger and the compressor suction section, and a pipe connecting the outdoor heat exchanger and the compressor discharge section are provided with a cooling / heating switching four-way valve for reversing a refrigeration cycle, and the internal heat exchanger is provided. A high-pressure refrigerant outlet and a high-pressure refrigerant outlet of the internal heat exchanger and the flow path switching four-way valve for preventing the refrigerant flow direction of the internal heat exchanger from changing in the reversal of the refrigeration cycle. A refrigeration cycle apparatus provided with the first expansion mechanism section between the first and second expansion mechanisms.
【請求項6】 内部熱交換器の高圧冷媒入口に第2の膨
張機構部を設けた請求項5記載の冷凍サイクル装置。
6. The refrigeration cycle apparatus according to claim 5, wherein a second expansion mechanism is provided at a high-pressure refrigerant inlet of the internal heat exchanger.
【請求項7】 第2の膨張機構部の全開時減圧量が、膨
張機構部の全開時の減圧量より小さいことを特徴とする
請求項6記載の冷凍サイクル装置。
7. The refrigeration cycle apparatus according to claim 6, wherein the pressure reduction amount when the second expansion mechanism is fully opened is smaller than the pressure reduction amount when the expansion mechanism is fully opened.
【請求項8】 請求項1、2、3、4、6または7記載
の冷凍サイクル装置において、利用側熱交換器で冷媒と
熱交換する媒体の温度検知手段を設け、この検知値によ
って設定された温度となるように第1の膨張機構部と第
2の膨張機構部を制御し、内部熱交換器能力を調整する
ことを特徴とした冷凍サイクル装置の制御方法。
8. The refrigeration cycle apparatus according to claim 1, further comprising temperature detecting means for a medium that exchanges heat with the refrigerant in the use-side heat exchanger, wherein the temperature is set according to the detected value. A method for controlling a refrigeration cycle apparatus, comprising: controlling a first expansion mechanism and a second expansion mechanism so that the temperature of the refrigeration cycle is adjusted to a predetermined temperature, and adjusting an internal heat exchanger capacity.
【請求項9】 請求項1、2、3、4、6、7または8
記載の冷凍サイクル装置において、内部熱交換器の低圧
冷媒出入口温度を検知する温度検知手段を設け、これら
の検知値によって第1の膨張機構部と第2の膨張機構部
を制御し、内部熱交換器能力を調整することを特徴とし
た冷凍サイクル装置の制御方法。
9. The method of claim 1, 2, 3, 4, 6, 7, or 8.
In the refrigeration cycle apparatus described above, a temperature detecting means for detecting a low-pressure refrigerant inlet / outlet temperature of the internal heat exchanger is provided, and the first expansion mechanism and the second expansion mechanism are controlled based on the detected values, and the internal heat exchange is performed. A method for controlling a refrigeration cycle apparatus, which comprises adjusting a capacity.
【請求項10】 請求項1、2、3、4、6、7または
8記載の冷凍サイクル装置において、内部熱交換器の高
圧冷媒入口温度と低圧冷媒入口温度を検知する温度検知
手段を設け、これらの検知値によって第1の膨張機構部
と第2膨張機構部を制御し、内部熱交換器能力を調整す
ることを特徴とした冷凍サイクル装置の制御方法。
10. The refrigeration cycle apparatus according to claim 1, further comprising a temperature detecting means for detecting a high-pressure refrigerant inlet temperature and a low-pressure refrigerant inlet temperature of the internal heat exchanger, A control method for a refrigeration cycle apparatus, comprising: controlling a first expansion mechanism and a second expansion mechanism based on the detected values to adjust an internal heat exchanger capacity.
【請求項11】 請求項1、2、3、4、6、7または
8記載の冷凍サイクル装置において、吸熱交換部分と圧
縮機吸入の冷媒温度を検知する温度検知手段を設け、こ
れらの検知値によって第1の膨張機構部と第2膨張機構
部を制御し、内部熱交換器能力を調整することを特徴と
した冷凍サイクル装置の制御方法。
11. The refrigeration cycle apparatus according to claim 1, further comprising a temperature detecting means for detecting a refrigerant temperature at an endothermic exchange portion and at a suction of the compressor. A method for controlling a refrigeration cycle apparatus, comprising: controlling a first expansion mechanism and a second expansion mechanism by means of a control unit to adjust an internal heat exchanger capacity.
【請求項12】 請求項1、2、3、4、6、7または
8記載の冷凍サイクル装置において、圧縮機吸入部の温
度と圧力を検知する検知手段を設け、これらの検知値に
よって第1の膨張機構部と第2の膨張機構部を制御し、
内部熱交換器能力を調整することを特徴とした冷凍サイ
クル装置の制御方法。
12. The refrigeration cycle apparatus according to claim 1, further comprising detection means for detecting a temperature and a pressure of a suction part of the compressor, and a first detection means for detecting the temperature and pressure of the suction part. Controlling the expansion mechanism and the second expansion mechanism,
A method for controlling a refrigeration cycle apparatus, comprising adjusting an internal heat exchanger capacity.
【請求項13】 請求項1、2、3、4、6、7、8、
9、10、11または12記載の冷凍サイクル装置にお
いて、圧縮機の回転数を検知する検知手段を設け、この
検知値によって第1の膨張機構部と第2の膨張機構部を
制御し、内部熱交換器能力を調整することを特徴とした
冷凍サイクル装置の制御方法。
13. The method of claim 1, 2, 3, 4, 6, 7, 8,
In the refrigeration cycle apparatus described in 9, 10, 11 or 12, a detecting means for detecting the number of revolutions of the compressor is provided, and the first expansion mechanism and the second expansion mechanism are controlled based on the detected value, and the internal heat is controlled. A method for controlling a refrigeration cycle device, comprising adjusting an exchanger capacity.
【請求項14】 請求項1、2、3、4、6、7、8、
9、10、11または12記載の冷凍サイクル装置にお
いて、冷凍サイクルの冷媒循環量を検知する検知手段を
設け、この検知値によって第1の膨張機構部と第2の膨
張機構部を制御し、内部熱交換器能力を調整することを
特徴とした冷凍サイクル装置の制御方法。
14. The method of claim 1, 2, 3, 4, 6, 7, 8,
In the refrigeration cycle apparatus described in 9, 10, 11 or 12, a detection means for detecting a refrigerant circulation amount of the refrigeration cycle is provided, and the first expansion mechanism and the second expansion mechanism are controlled based on the detected value. A method for controlling a refrigeration cycle apparatus, comprising adjusting a heat exchanger capacity.
【請求項15】 圧縮機と室外熱交換器と膨張機構部と
利用側熱交換器からなる冷凍サイクル装置において、放
熱時に超臨界状態となりうる冷媒が封入され、前記膨張
機構部にて減圧される前の高圧冷媒と前記圧縮機吸入前
の低圧冷媒とを熱交換させる内部熱交換器を設け、この
内部熱交換器は複数の冷媒回路で構成され、前記複数の
冷媒回路毎に開閉弁を設けたことを特徴とする冷凍サイ
クル装置。
15. A refrigeration cycle apparatus comprising a compressor, an outdoor heat exchanger, an expansion mechanism, and a use-side heat exchanger, in which a refrigerant that can be brought into a supercritical state during heat release is sealed and decompressed by the expansion mechanism. An internal heat exchanger for exchanging heat between the high-pressure refrigerant before and the low-pressure refrigerant before suction of the compressor is provided.The internal heat exchanger includes a plurality of refrigerant circuits, and an on-off valve is provided for each of the plurality of refrigerant circuits. Refrigeration cycle device characterized by the above-mentioned.
【請求項16】 利用側熱交換器と圧縮機吸入部を接続
する配管と、室外熱交換器と前記圧縮機吐出部を接続す
る配管に冷凍サイクルを逆転させる冷暖切替四方弁を設
け、前記利用側熱交換器と膨張機構部を接続する配管
と、前記室外熱交換器と前記膨張機構部を接続する配管
に冷凍サイクルの逆転に対し前記膨張機構部の冷媒流れ
方向を変えないようにする流路切替四方弁を設け、前記
膨張機構部にて減圧される前の高圧冷媒と前記圧縮機吸
入前の低圧冷媒とを熱交換させる内部熱交換器を設けた
請求項15記載の冷凍サイクル装置。
16. A cooling / heating switching four-way valve for reversing a refrigerating cycle is provided in a pipe connecting a use side heat exchanger and a compressor suction section, and a pipe connecting an outdoor heat exchanger and the compressor discharge section. A flow connecting the side heat exchanger and the expansion mechanism and a pipe connecting the outdoor heat exchanger and the expansion mechanism so as not to change the refrigerant flow direction of the expansion mechanism when the refrigeration cycle is reversed. The refrigeration cycle apparatus according to claim 15, further comprising a four-way switching valve, and an internal heat exchanger for exchanging heat between the high-pressure refrigerant before being depressurized by the expansion mechanism and the low-pressure refrigerant before suctioning the compressor.
【請求項17】 請求項15または16記載の冷凍サイ
クル装置において、利用側熱交換器で冷媒と熱交換する
媒体の温度検知手段を設け、この検知値によって設定さ
れた温度となるように開閉弁を制御し、複数の冷媒回路
を有する内部熱交換器能力を調整することを特徴とした
冷凍サイクル装置の制御方法。
17. The refrigeration cycle apparatus according to claim 15, further comprising means for detecting a temperature of a medium that exchanges heat with the refrigerant in the use-side heat exchanger, wherein the on-off valve is set to a temperature set by the detected value. And controlling a capacity of an internal heat exchanger having a plurality of refrigerant circuits.
【請求項18】 請求項15、16または17記載の冷
凍サイクル装置において、複数の冷媒回路を有する内部
熱交換器の低圧冷媒出入口温度を検知する温度検知手段
を設け、これらの検知値によって開閉弁を制御し、内部
熱交換器能力を調整することを特徴とした冷凍サイクル
装置の制御方法。
18. The refrigeration cycle apparatus according to claim 15, further comprising temperature detection means for detecting a low-pressure refrigerant inlet / outlet temperature of an internal heat exchanger having a plurality of refrigerant circuits, and an on-off valve based on the detected values. And controlling the internal heat exchanger capacity by controlling the refrigeration cycle apparatus.
【請求項19】 請求項15、16または17記載の冷
凍サイクル装置において、複数の冷媒回路を有する内部
熱交換器の高圧冷媒入口温度と低圧冷媒入口温度を検知
する温度検知手段を設け、これらの検知値によって開閉
弁を制御し、内部熱交換器能力を調整することを特徴と
した冷凍サイクル装置の制御方法。
19. The refrigeration cycle apparatus according to claim 15, further comprising a temperature detecting means for detecting a high-pressure refrigerant inlet temperature and a low-pressure refrigerant inlet temperature of an internal heat exchanger having a plurality of refrigerant circuits. A method for controlling a refrigeration cycle apparatus, comprising controlling an on-off valve according to a detected value to adjust an internal heat exchanger capacity.
【請求項20】 請求項15、16または17記載の冷
凍サイクル装置において、吸熱交換部分と圧縮機吸入の
冷媒温度を検知する温度検知手段を設け、これらの検知
値によって開閉弁を制御し、内部熱交換器能力を調整す
ることを特徴とした冷凍サイクル装置の制御方法。
20. The refrigeration cycle apparatus according to claim 15, further comprising a temperature detecting means for detecting a temperature of the refrigerant at the endothermic exchange portion and a refrigerant at the compressor, and controlling the on-off valve based on the detected values. A method for controlling a refrigeration cycle apparatus, comprising adjusting a heat exchanger capacity.
【請求項21】 請求項15、16または17記載の冷
凍サイクル装置において、圧縮機吸入部の温度と圧力を
検知する検知手段を設け、これらの検知値によって開閉
弁を制御し、内部熱交換器能力を調整することを特徴と
した冷凍サイクル装置の制御方法。
21. The refrigeration cycle apparatus according to claim 15, further comprising detecting means for detecting a temperature and a pressure of a suction part of the compressor, wherein the on-off valve is controlled by the detected values, and an internal heat exchanger is provided. A method for controlling a refrigeration cycle device, comprising adjusting a capacity.
【請求項22】 請求項15、16、17、18、1
9、20または21記載の冷凍サイクル装置において、
圧縮機の回転数を検知する検知手段を設け、この検知値
によって開閉弁を制御し、内部熱交換器能力を調整する
ことを特徴とした冷凍サイクル装置の制御方法。
22. The method of claim 15, 16, 17, 18, or 1.
The refrigeration cycle apparatus according to 9, 20, or 21,
A method for controlling a refrigeration cycle apparatus, comprising: detecting means for detecting the number of revolutions of a compressor; controlling an on-off valve based on the detected value to adjust an internal heat exchanger capacity.
【請求項23】 請求項15、16、17、18、1
9、20または21記載の冷凍サイクル装置において、
冷凍サイクルの冷媒循環量を検知する検知手段を設け、
この検知値によって開閉弁を制御し、内部熱交換器能力
を調整することを特徴とした冷凍サイクル装置の制御方
法。
23. The method of claim 15, 16, 17, 18, or 1.
The refrigeration cycle apparatus according to 9, 20, or 21,
Detecting means for detecting the refrigerant circulation amount of the refrigeration cycle is provided,
A control method for a refrigeration cycle apparatus, wherein an on-off valve is controlled based on the detected value to adjust an internal heat exchanger capacity.
JP2000322313A 2000-10-23 2000-10-23 Refrigeration cycle apparatus and refrigeration cycle control method Expired - Fee Related JP3693562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000322313A JP3693562B2 (en) 2000-10-23 2000-10-23 Refrigeration cycle apparatus and refrigeration cycle control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000322313A JP3693562B2 (en) 2000-10-23 2000-10-23 Refrigeration cycle apparatus and refrigeration cycle control method

Publications (2)

Publication Number Publication Date
JP2002130856A true JP2002130856A (en) 2002-05-09
JP3693562B2 JP3693562B2 (en) 2005-09-07

Family

ID=18800216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000322313A Expired - Fee Related JP3693562B2 (en) 2000-10-23 2000-10-23 Refrigeration cycle apparatus and refrigeration cycle control method

Country Status (1)

Country Link
JP (1) JP3693562B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7178362B2 (en) 2005-01-24 2007-02-20 Tecumseh Products Cormpany Expansion device arrangement for vapor compression system
JP2007278655A (en) * 2006-04-11 2007-10-25 Matsushita Electric Ind Co Ltd Regenerative water heater
JP2008501927A (en) * 2004-06-02 2008-01-24 アドバンスト・サーマル・サイエンシーズ・コーポレイション Thermal control method and system
JP2009162388A (en) * 2007-12-28 2009-07-23 Mitsubishi Electric Corp Refrigerating/air-conditioning device, outdoor unit of refrigerating/air-conditioning device, and control device of refrigerating/air-conditioning device
JP2011501092A (en) * 2007-10-09 2011-01-06 アドバンスト・サーマル・サイエンシーズ・コーポレイション Thermal control system and method
JP2011208882A (en) * 2010-03-30 2011-10-20 Topre Corp Gas-liquid heat exchange-type refrigerating device
CN102997527A (en) * 2011-09-09 2013-03-27 东普雷股份有限公司 Gas-liquid heat exchange type refrigeration device
JP2016065656A (en) * 2014-09-24 2016-04-28 東芝キヤリア株式会社 Heat pump system
CN109959182A (en) * 2019-04-15 2019-07-02 广东美的制冷设备有限公司 Refrigeration system and air conditioner
CN115540402A (en) * 2021-06-29 2022-12-30 佛山市顺德区美的电子科技有限公司 Air conditioner, control method thereof and storage medium
WO2024070872A1 (en) * 2022-09-27 2024-04-04 三菱重工サーマルシステムズ株式会社 Air conditioner
WO2024079852A1 (en) * 2022-10-13 2024-04-18 三菱電機株式会社 Refrigeration cycle device
WO2024189697A1 (en) * 2023-03-10 2024-09-19 ダイキン工業株式会社 Refrigeration cycle device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008501927A (en) * 2004-06-02 2008-01-24 アドバンスト・サーマル・サイエンシーズ・コーポレイション Thermal control method and system
US7178362B2 (en) 2005-01-24 2007-02-20 Tecumseh Products Cormpany Expansion device arrangement for vapor compression system
JP2007278655A (en) * 2006-04-11 2007-10-25 Matsushita Electric Ind Co Ltd Regenerative water heater
KR101460222B1 (en) * 2007-10-09 2014-11-10 비/이 에어로스페이스 인코포레이티드 Thermal control system and method
JP2011501092A (en) * 2007-10-09 2011-01-06 アドバンスト・サーマル・サイエンシーズ・コーポレイション Thermal control system and method
US8689575B2 (en) 2007-10-09 2014-04-08 B/E Aerospace, Inc. Thermal control system and method
JP2009162388A (en) * 2007-12-28 2009-07-23 Mitsubishi Electric Corp Refrigerating/air-conditioning device, outdoor unit of refrigerating/air-conditioning device, and control device of refrigerating/air-conditioning device
JP2011208882A (en) * 2010-03-30 2011-10-20 Topre Corp Gas-liquid heat exchange-type refrigerating device
CN102997527A (en) * 2011-09-09 2013-03-27 东普雷股份有限公司 Gas-liquid heat exchange type refrigeration device
CN102997527B (en) * 2011-09-09 2016-03-23 东普雷股份有限公司 Gas-liquid heat exchange type refrigeration device
JP2016065656A (en) * 2014-09-24 2016-04-28 東芝キヤリア株式会社 Heat pump system
CN109959182A (en) * 2019-04-15 2019-07-02 广东美的制冷设备有限公司 Refrigeration system and air conditioner
CN115540402A (en) * 2021-06-29 2022-12-30 佛山市顺德区美的电子科技有限公司 Air conditioner, control method thereof and storage medium
WO2024070872A1 (en) * 2022-09-27 2024-04-04 三菱重工サーマルシステムズ株式会社 Air conditioner
WO2024079852A1 (en) * 2022-10-13 2024-04-18 三菱電機株式会社 Refrigeration cycle device
WO2024189697A1 (en) * 2023-03-10 2024-09-19 ダイキン工業株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JP3693562B2 (en) 2005-09-07

Similar Documents

Publication Publication Date Title
EP1467158B1 (en) Refrigeration cycle apparatus
JP6545375B2 (en) Heat pump type air conditioner water heater
JP4403193B2 (en) System and method for controlling an economizer circuit
EP2565555B1 (en) Refrigeration cycle apparatus
EP2631562B1 (en) Heat pump-type air-warming device
JP4797727B2 (en) Refrigeration equipment
JP4375171B2 (en) Refrigeration equipment
JP3693562B2 (en) Refrigeration cycle apparatus and refrigeration cycle control method
WO2006075592A1 (en) Refrigerating device
JP2009052752A (en) Refrigeration cycle equipment
JPWO2006025354A1 (en) heat pump
WO2006046394A1 (en) Refrigeration system
JP3884591B2 (en) Air conditioner
JP4096544B2 (en) Refrigeration equipment
JP2005164104A (en) Heat pump equipment
JPH10185342A (en) Heat pump type air conditioner
JP2009281631A (en) Heat pump unit
JP7407920B2 (en) Refrigeration cycle equipment
JPH10148409A (en) Air conditioner
KR20030043038A (en) Refrigerating cycle and control method
JP2010190537A (en) Air conditioner
JP3708245B2 (en) Motorized valve controller for multi-function heat pump system
JPH09138024A (en) Air conditioner
EP4477971A1 (en) Refrigeration cycle apparatus
JP4082389B2 (en) Heat pump water heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees