[go: up one dir, main page]

JP2002120011A - Descaling apparatus and method - Google Patents

Descaling apparatus and method

Info

Publication number
JP2002120011A
JP2002120011A JP2000316135A JP2000316135A JP2002120011A JP 2002120011 A JP2002120011 A JP 2002120011A JP 2000316135 A JP2000316135 A JP 2000316135A JP 2000316135 A JP2000316135 A JP 2000316135A JP 2002120011 A JP2002120011 A JP 2002120011A
Authority
JP
Japan
Prior art keywords
nozzle
water
steel plate
descaling
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000316135A
Other languages
Japanese (ja)
Other versions
JP3844279B2 (en
Inventor
Hideki Murakami
英樹 村上
Yasuo Igarashi
泰生 五十嵐
Yoshihiro Serizawa
良洋 芹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000316135A priority Critical patent/JP3844279B2/en
Publication of JP2002120011A publication Critical patent/JP2002120011A/en
Application granted granted Critical
Publication of JP3844279B2 publication Critical patent/JP3844279B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Nozzles (AREA)

Abstract

(57)【要約】 【課題】 高圧水デスケーリングの衝撃破壊力を向上
し、鋼を熱間圧延する際の圧延材表面のスケールを充分
除去して良好な品質の熱延鋼板を製造することのできる
デスケーリング装置及び方法を提供する。 【解決手段】 吐出流の吐出方向がノズル軸心に垂直な
面内の幅方向の広がりを有するノズルを鋼材搬送方向に
複数列に並べて、水を吐出流速230m/s 以上に加速し
てノズルから噴出させてデスケーリング行う際の、隣り
合うノズル列からの吐出液滴流群が鋼板に衝突した場所
での水膜間距離が20mm以上100mm以下で、前段ノズ
ルからの噴流水膜の鋼板に対する入射角が0°から4°
の間にあり、後段ノズルからの噴流水膜の鋼板に対する
入射角が0°から−4°の範囲にあるように噴射ノズル
を設置したデスケーリング装置。
PROBLEM TO BE SOLVED: To produce a hot-rolled steel sheet of good quality by improving the impact fracture force of high-pressure water descaling and sufficiently removing scale on the surface of a rolled material when hot rolling steel. And an apparatus and method for descaling. SOLUTION: A plurality of nozzles are arranged in a plurality of rows in a steel material conveying direction in which a discharge direction of a discharge flow is wide in a plane perpendicular to a nozzle axis, and water is accelerated to a discharge flow rate of 230 m / s or more. When ejecting and performing descaling, the distance between water films at the place where the droplet streams from adjacent nozzle rows collide with the steel plate is 20 mm or more and 100 mm or less, and the water film jet from the front nozzle enters the steel plate Angle from 0 ° to 4 °
A de-scaling apparatus in which the jet nozzle is installed such that the angle of incidence of the jet water film from the post-stage nozzle on the steel plate is in the range of 0 ° to −4 °.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋼を熱間圧延する
際の圧延材表面のスケールを除去するためのデスケーリ
ング装置及び該デスケーリング装置を用いたスケール除
去方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a descaling apparatus for removing scale from the surface of a rolled material when hot rolling steel, and to a scale removing method using the descaling apparatus.

【0002】[0002]

【従来の技術】鋼の熱間圧延に際しては、圧延に先立っ
て鋼片を加熱炉に装入して、1100〜1400℃の高
温に加熱する。加熱炉内は、一般に酸化雰囲気であり、
加熱中に鋼片表面は、酸化され、スケールが生成する。
スケールは、酸化鉄を主体とし、加熱炉から抽出された
時点での鋼片表面のスケール厚みは、1〜2mmに達す
る。このスケールが鋼片表面に付着したままで圧延を行
うと、圧延材の表面にスケールが食い込み、スケール疵
と呼ばれる表面欠陥を生じるため、一般には、圧延前の
鋼板表面に10〜15MPa の圧力で、鋼板から100〜
300mmの距離から、入射角10〜45°にて高圧水を
噴射して除去してこのスケール疵発生を防止する方法が
行われている。
2. Description of the Related Art During hot rolling of steel, a slab is charged into a heating furnace prior to rolling and heated to a high temperature of 1100 to 1400 ° C. The inside of the heating furnace is generally an oxidizing atmosphere,
During heating, the billet surface is oxidized and scale is formed.
The scale is mainly composed of iron oxide, and the scale thickness of the surface of the billet when extracted from the heating furnace reaches 1 to 2 mm. If rolling is performed with this scale attached to the billet surface, the scale bites into the surface of the rolled material and causes surface defects called scale flaws. Therefore, in general, a pressure of 10 to 15 MPa is applied to the steel sheet surface before rolling. , 100 ~
A method of preventing the occurrence of scale flaws by spraying and removing high-pressure water at an incident angle of 10 to 45 ° from a distance of 300 mm has been performed.

【0003】しかしながら、スケールの剥離のしやすさ
は、鋼の成分によっても異なり、特にSi含有量が多い鋼
(Si>0.15mass%)は、ファイアライト(Fe2
SiO4 )を多く含んだ剥離しにくいスケールが生成し
ており、上記圧延前の鋼板表面に10〜15MPa の圧力
で水を噴射して除去する方法では、充分にスケール疵を
防止できなかった。ノズルからの噴射角は、設備上の取
り合いと除去した飛散スケール防止の観点から鋼板の搬
送方向上流に向かって10°〜45°を採用している設
備が一般的である。
[0003] However, the ease of peeling of the scale varies depending on the composition of the steel. In particular, steel having a large Si content (Si> 0.15 mass%) is made of firelite (Fe 2
A scale which contains a large amount of SiO 4 ) is formed which is difficult to peel off, and the method of removing water by spraying water at a pressure of 10 to 15 MPa on the steel sheet surface before rolling cannot sufficiently prevent scale flaws. In general, equipment that adopts an angle of 10 ° to 45 ° toward the upstream in the transport direction of the steel sheet from the viewpoint of the angle of injection from the nozzle and the prevention of the scattered scale removed from the equipment.

【0004】Si含有鋼の上記問題を解決するため、特
開平6−114432号公報では、加熱炉から抽出した
後、表層スケールの上部層を除去した鋼片に、粗圧延の
前あるいは少なくとも1パスの粗圧延後に、吐出圧力3
00〜700kg/cm2 の高圧水を衝突エネルギーが0.
05J/mm2 以上となる条件で吹き付ける高Si鋼の熱延
鋼板の製造方法が開示されている。ここで衝突エネルギ
ーは、(ノズル吐出圧力×1ノズル当たり流量)/(1
ノズル当たりの噴射幅×鋼片の走行速度)で表される。
[0004] In order to solve the above-mentioned problem of the Si-containing steel, Japanese Patent Application Laid-Open No. 6-114432 discloses that a steel slab from which the upper layer of the surface scale has been removed after extraction from a heating furnace is subjected to at least one pass before rough rolling. After the rough rolling of
A collision energy of 0 to 700 kg / cm 2 of high-pressure water is used.
A method for producing a hot-rolled steel sheet of high Si steel which is sprayed under a condition of not less than 05 J / mm 2 is disclosed. Here, the collision energy is (nozzle discharge pressure × flow rate per nozzle) / (1
(Injection width per nozzle x running speed of steel slab).

【0005】また、従来のデスケーリング方法では、図
5に示すように個々のノズル3の境目で水噴流膜5が重
なり合ってできる部位6での干渉により、衝突力が弱ま
ってデスケーリング能力が低下するため、図6に示すよ
うにノズル3にねじれ角を持たすことで水噴流膜の重な
り部を回避したり、あるいは、図7に示すようにヘッダ
ー2を2系列に分離したり、あるいは、図8に示すよう
に隣り合うノズル3の向きを変えて噴射しすることで水
噴流膜の重なり部を回避してきた。
Further, in the conventional descaling method, as shown in FIG. 5, the collision force is weakened due to the interference at the site 6 where the water jet films 5 overlap each other at the boundary between the individual nozzles 3, and the descaling ability is reduced. In order to avoid this, the nozzle 3 has a twist angle as shown in FIG. 6 to avoid the overlapping portion of the water jet film, or the header 2 is separated into two lines as shown in FIG. As shown in FIG. 8, the overlapping portion of the water jet film has been avoided by changing the direction of the adjacent nozzle 3 and jetting.

【0006】[0006]

【発明が解決しようとする課題】特開平6−11443
2号公報のような高圧水を用いるスケール除去方法によ
り、従来の10〜15MPa の圧力で水を噴射して除去す
る方法に比較すると、高Si含有鋼においてもスケール
除去能力が向上し、製品の表面欠陥率が若干減少した
が、鋼板全面での充分なスケール除去には至らなかっ
た。
Problems to be Solved by the Invention
Compared with the conventional method of removing water by spraying water at a pressure of 10 to 15 MPa by the descaling method using high-pressure water as disclosed in Japanese Patent Publication No. 2 (1999), the descaling ability is improved even with high Si content steel, and Although the surface defect rate was slightly reduced, the scale was not sufficiently removed on the entire surface of the steel sheet.

【0007】特に、ノズルの境目で水噴流膜が、鋼板上
時間差で重なり合ってできるラップ部6は、Si含有鋼
等の難デスケーリング材料では、上記従来方法によるノ
ズル配置を採用しても多くのスケールが除去されずに残
存したため、ノズル間距離を100mm以上拡大したり、
ノズルの近接化等の対策を試みたが、逆にスケール残存
率が増加し、結果として酸洗工程を経たあとの製品の表
面欠陥をもたらして歩留まりの低下の原因となった。
[0007] In particular, the lap portion 6 formed by overlapping the water jet film at the boundary of the nozzle with a time difference on the steel plate is difficult to use for the descaling material such as Si-containing steel, even if the nozzle arrangement according to the conventional method described above is adopted. Because the scale remained without being removed, the distance between nozzles could be increased by 100 mm or more,
Although countermeasures such as approaching the nozzle were attempted, the residual ratio of the scale increased, resulting in surface defects of the product after the pickling process, resulting in a decrease in yield.

【0008】また、図6に示すようにノズル3にねじれ
角を持たした場合は、直接水噴流膜が重なることはない
ものの、鋼板衝突後の干渉の影響が大きくデスケーリン
グ不良を起こしやすい。図7に示すようにヘッダー2を
2系列に分離する方法は設備コストが大きくなる上、前
後ノズルのデスケーリングの時間差からスケール斑が生
じる場合があり、望ましくない。デスケーリングは圧延
直前に行う事が有効であり、図8に示すように隣り合う
ノズル3の向きを変えて噴射する場合には、デスケ後方
の圧延ロールにスケールを噛み込ませてスケール疵を発
生させるため望ましくない。
When the nozzle 3 has a twist angle as shown in FIG. 6, the water jet films do not directly overlap with each other, but the influence of the interference after the collision of the steel sheet is large, and the descaling failure is likely to occur. As shown in FIG. 7, the method of separating the header 2 into two series increases the equipment cost and may cause scale unevenness due to the time difference between the descaling of the front and rear nozzles, which is not desirable. It is effective to perform descaling immediately before rolling, and when changing the direction of the adjacent nozzles 3 as shown in FIG. 8, the scale is bitten by the rolling roll behind the deske to generate scale flaws. Is not desirable.

【0009】本発明は、高圧水デスケーリングの衝撃破
壊力を向上し、上記従来技術の問題を解決し、高Si含
有鋼材の熱間圧延において、Siスケールを充分除去し
て良好な品質の熱延鋼板を製造することができるデスケ
ーリング装置及び方法を提供することを目的とする。
The present invention improves the impact fracture force of high-pressure water descaling, solves the above-mentioned problems of the prior art, and sufficiently removes the Si scale in hot rolling of a steel material having a high Si content to obtain high-quality heat. An object of the present invention is to provide a descaling apparatus and a method capable of manufacturing a rolled steel sheet.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために、広範囲にわたる圧力水準で、ノズル
からの噴流水の鋼板への入射角とスケールの残存率・残
存形態を詳細に調査した結果、高速に加速された液滴で
は衝突入射角が衝突時の液滴変形挙動と鋼板との接触端
に生じる衝撃波に与える影響が非常に大きく、特に、吐
出される液滴の流速が、230m/s を越えた辺りから、
衝突入射角を4°以下にすることで、Siスケールの破
壊・除去性が著しく向上することを新たに発見した。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have investigated the angle of incidence of water jet from a nozzle onto a steel plate and the residual ratio and residual form of scale at a wide range of pressure levels. In the case of a droplet accelerated at a high speed, the impact angle has a very large effect on the droplet deformation behavior at the time of collision and the shock wave generated at the contact edge with the steel plate. However, from around 230m / s,
It has been newly discovered that by setting the collision incident angle to 4 ° or less, the destruction / removability of the Si scale is significantly improved.

【0011】さらに、吐出流の吐出方向がノズル軸心に
垂直な面内の幅方向広がりを有するノズルを鋼材搬送方
向に複数列に並べて、水を吐出流速230m/s 以上に加
速してノズルから噴出させるデスケーリングを行う際に
は、隣り合うノズル列からの吐出液滴流群が鋼板に衝突
した場所での水膜間での互いの干渉影響が入射角に大き
く依存し、その干渉による影響を無害化するためには、
隣接する噴流水膜間距離が20mm以上100mm以下で、
前段ノズルからの噴流水膜の鋼板に対する入射角が0°
から4°の間にあり、かつ、後段ノズルからの噴流水膜
の鋼板に対する入射角が0°から−4°の範囲にあるよ
うに噴射ノズルを設置することが最も有効であることを
見出した。なお、前段ノズルとは図1に示すように鋼板
1に先に水噴流を当てるノズル3aを、後段ノズルとは
前段ノズル3aの後に水噴流を当てるノズル3bを指
す。また、入射角の符号は鋼板の搬送方向に傾く方を正
とする。
Further, a plurality of nozzles are arranged in a plurality of rows in the conveying direction of the steel material in which the discharge direction of the discharge flow is wide in the plane perpendicular to the nozzle axis, and water is accelerated to a discharge flow rate of 230 m / s or more. When performing de-scaling for jetting, the mutual influence between the water films at the place where the droplet streams ejected from the adjacent nozzle rows collide with the steel plate greatly depends on the incident angle, and the influence of the interference To make harmless,
When the distance between adjacent jet water films is 20 mm or more and 100 mm or less,
The angle of incidence of the water jet from the front nozzle on the steel plate is 0 °
It is found that it is most effective to set the injection nozzle so that the angle of incidence of the water jet from the subsequent nozzle on the steel plate is in the range of 0 ° to -4 °. . In addition, as shown in FIG. 1, the front-stage nozzle refers to the nozzle 3a for applying a water jet to the steel plate 1 first, and the rear-stage nozzle refers to the nozzle 3b for applying a water jet after the front-stage nozzle 3a. The sign of the incident angle is positive when the sheet is inclined in the transport direction of the steel sheet.

【0012】さらに、隣り合うノズル列からの衝突水膜
間距離が100mm以下で、噴流水の入射角度が上記発明
範囲外にある場合、前段ノズルからの水噴流の流量密度
を、後段ノズルからの水噴流の流量密度の1.3倍以上
大きくすることも、隣接する噴流水膜間での互いの干渉
影響を低減するために有効であることを見出した。
Further, when the distance between the impinging water films from adjacent nozzle rows is 100 mm or less and the angle of incidence of the jet water is out of the range of the invention, the flow density of the water jet from the former nozzle is determined by It has been found that increasing the flow density of the water jet by at least 1.3 times is also effective for reducing the influence of mutual interference between adjacent jet water films.

【0013】そして、上記に示すようなデスケーリング
装置を用いて0.15mass%以上のSi含有鋼を117
0℃以下に加熱後、噴射吐出孔から鋼板までの距離を1
00mm〜200mmになるように設置し、鋼板の表面をデ
スケーリングを行うことで熱間圧延後、スケールによる
表面欠陥のない鋼板が得られることが判明した。
Using a descaling apparatus as described above, 117% or more of Si-containing steel
After heating to 0 ° C or less, the distance from the injection orifice to the steel plate is 1
It was found that the steel sheet was installed so as to have a thickness of 00 mm to 200 mm, and the surface of the steel sheet was descaled to obtain a steel sheet free from surface defects due to scale after hot rolling.

【0014】[0014]

【発明の実施の形態】本発明者らは、鋼材サンプルを燃
焼加熱炉にて1170℃まで加熱し、抽出直後の表面に
加速した水滴を衝突させて、鋼材表面上に生成したスケ
ールの剥離状況を調査した。その場合にノズル吐出孔か
ら鋼材表面までの水滴飛行距離は一定(100mm、15
0mm、200mm)にし、同一水量密度で吐出流速と入射
角度のみを変動因子として比較調査した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors heated a steel sample to 1170 ° C. in a combustion heating furnace and caused accelerated water droplets to collide with the surface immediately after extraction to remove scale generated on the steel surface. investigated. In this case, the flight distance of the water droplet from the nozzle discharge hole to the steel surface is constant (100 mm, 15 mm).
0 mm, 200 mm), and the same water volume density was compared and investigated using only the discharge flow rate and the incident angle as variables.

【0015】図2は、[C]=0.05−0.1mass
%,[Si]=0.01−1.0mass%,[Mn]=
0.2−1.3mass%,[S]≦0.01mass%,[N
i]≦0.05mass%の鋼のサンプルを調整に対して行
ったスケール除去実験の結果を示している。スケール除
去性の評価は、5mm角の領域にランダムに300個の液
滴を衝突させたあと、スケールの残存する面積を測定し
た。図2の縦軸は、平均スケール残存率を示しており、
入射角は、絶対値で示している。液滴速度が180m/s
以下の領域では、入射角の影響は明確ではなかったが、
230m/s 以上の場合、入射角が本発明範囲の−4°か
ら4°の条件では、衝突液滴の破壊力を有効に使うこと
ができ、ほぼ完全にスケールを除去することが可能とな
った。流速の上限は大きい程好ましいが現実的には、装
置や設備能力より決定されるため、ここでは特に設定し
ない。
FIG. 2 shows that [C] = 0.05-0.1 mass
%, [Si] = 0.01-1.0 mass%, [Mn] =
0.2-1.3 mass%, [S] ≦ 0.01 mass%, [N
i] shows the results of scale removal experiments performed on steel samples with ≦ 0.05 mass% for adjustment. The evaluation of the scale removability was performed by randomly colliding 300 droplets with an area of 5 mm square, and then measuring the remaining area of the scale. The vertical axis in FIG. 2 indicates the average scale remaining rate,
The angle of incidence is shown as an absolute value. Drop velocity 180m / s
In the following areas, the effect of the incident angle was not clear,
In the case of 230 m / s or more, when the incident angle is in the range of -4 ° to 4 ° in the range of the present invention, the destructive force of the impinging droplet can be used effectively, and scale can be almost completely removed. Was. Although the upper limit of the flow velocity is preferably as large as possible, it is practically determined by the apparatus and the equipment capacity, and thus is not particularly set here.

【0016】次に、同時に複数の高速液滴を衝突させ、
鋼材表面のスケール除去を行った。上記成分系にある鋼
材を1000℃〜1170℃まで加熱し、吐出平均流速
230〜360m/s に加速された噴流水を、ノズルの広
角20〜60°、噴流水膜間距離0〜500mm、噴流水
膜の鋼板に対する入射角−4〜4°の範囲で変えてデス
ケーリングを行い、熱間圧延後スケールの残存率を調査
した。特に、鋼板に衝突する噴流水膜が鋼板搬送方向で
重なる領域について調査した結果、噴流水膜間距離10
0mm以下の場合には、隣り合うノズルからの噴流水膜の
鋼板に対する入射角の影響が非常に大きいことが判明し
た。すなわち、隣り合うノズルからの吐出液滴流群が鋼
板に衝突した場所での水膜間距離が20mm以上100mm
以下では、前段ノズルからの噴流水膜の鋼板に対する入
射角が0°から4°の間にあり、かつ、後段ノズルから
の噴流水膜の鋼板に対する入射角が0°から−4°の範
囲にある場合にのみ表面品位合格点であるスケール残存
率5%未満を達成した(図3)。
Next, a plurality of high-speed droplets collide simultaneously,
The scale of the steel surface was removed. The steel material in the above-mentioned component system is heated to 1000 ° C. to 1170 ° C., and jet water accelerated to an average discharge velocity of 230 to 360 m / s is jetted at a wide angle of nozzle of 20 to 60 °, a jet water film distance of 0 to 500 mm, Descaling was performed by changing the angle of incidence of the water film on the steel sheet in the range of -4 to 4 [deg.], And the residual ratio of the scale after hot rolling was investigated. In particular, as a result of investigating the region where the jet water film colliding with the steel sheet overlaps in the steel sheet transport direction, the distance between the jet water films was 10
In the case of 0 mm or less, it was found that the effect of the angle of incidence on the steel sheet of the jet water film from the adjacent nozzle was very large. That is, the distance between the water films at a place where the droplet streams discharged from the adjacent nozzles collide with the steel plate is 20 mm or more and 100 mm or more.
In the following, the angle of incidence of the jet water film from the front nozzle on the steel plate is between 0 ° and 4 °, and the angle of incidence of the jet water film on the steel plate from the rear nozzle is from 0 ° to -4 °. Only in certain cases, a scale residual ratio of less than 5%, which is a passing grade of surface quality, was achieved (FIG. 3).

【0017】そして上記に示すような発明において、隣
り合うノズル列からの衝突水膜間距離が20mm以下で
は、衝突入射角度に依らず相互の干渉からスケール除去
能力が低下すること、隣り合うノズル列からの衝突水膜
間距離を大きく離した場合では、除去される時点でのス
ケール状態(温度、密着状態)が若干異なってくるた
め、入射角に拘わらず高いスケール残存率となった。ま
た、水膜間距離を大きく離せば噴流水膜間の干渉による
影響は小さくなると考えるが、水膜間距離を確保するた
めに入射角を4°以上にすることもノズル高さを大きく
取ることも逆に単一ノズルでのデスケ−リング能力を低
下させる上、ノズルヘッダーの大型化や分割は、設備費
用が大きく増大するため、水膜間距離は100mm以下が
望ましい。デスケーリングのタイミングが大きくずれる
場合は、前段ノズルと後段ノズルでのデスケ効果も異な
る結果が得られた。
In the invention as described above, if the distance between the impinging water films from the adjacent nozzle rows is 20 mm or less, the scale removing ability is reduced due to mutual interference regardless of the collision incident angle. When the distance between the impinging water films was large, the scale state (temperature, adhesion state) at the time of removal slightly changed, and a high scale retention rate was obtained regardless of the incident angle. It is thought that if the distance between the water films is large, the effect of interference between the jet water films will be small. However, in order to secure the distance between the water films, the angle of incidence must be set to 4 ° or more. On the contrary, since the descaling ability with a single nozzle is reduced, and the size and division of the nozzle header greatly increases the equipment cost, the distance between water films is desirably 100 mm or less. When the timing of the descaling is largely shifted, the results obtained also differ in the deskew effect between the front nozzle and the rear nozzle.

【0018】噴流水膜間の干渉は、隣り合う前後のノズ
ルから吐出される吐出流量比を適正化することによって
も無害化することができる。通常市販されているデスケ
ーリング用ノズルにて吐出流速が230m/s 以上となる
吐出圧力40MPa 以上の高圧力で、ノズルから水を噴出
させ、デスケーリング行う際には、前段ノズルからの水
噴流の流量密度を、後段ノズルからの水噴流の流量密度
に比べて大きくしていくと、図4に示すように、その比
が1.3倍以上の場合には、前後のノズル重なり部での
スケール残存率が、重なりの無い部位と同等(スケール
残存率差異0%)となった。
Interference between the jet water films can also be rendered harmless by optimizing the ratio of the discharge flow rates discharged from adjacent nozzles before and after. Water is jetted from the nozzle at a high pressure of 40 MPa or more at a discharge pressure of at least 230 m / s with a commercially available descaling nozzle, and when descaling is performed, the water jet from the former nozzle is When the flow density is made larger than the flow density of the water jet from the subsequent nozzle, as shown in FIG. 4, when the ratio is 1.3 times or more, the scale at the overlapping portion of the front and rear nozzles is increased. The residual ratio was equivalent to a site without overlap (scale residual ratio difference 0%).

【0019】工場における実設備の場合ノズルから吐出
される水量が多く、吐出孔から鋼板の距離が100mm未
満の近距離では液滴化が不十分であり本発明の効果が現
れなかった。また、230m/s 以上の高速に加速された
液滴は短時間に霧散化するため鋼板までの距離が長すぎ
ても効果が充分に得られないため、ノズル吐出孔と鋼板
間の距離は100mm〜200mmが望ましい。
In the case of an actual facility in a factory, the amount of water discharged from the nozzle is large, and when the distance between the discharge hole and the steel plate is less than 100 mm, the droplet formation is insufficient and the effect of the present invention does not appear. In addition, droplets accelerated at a high speed of 230 m / s or more are atomized in a short time, so that the effect is not sufficiently obtained even if the distance to the steel plate is too long. Therefore, the distance between the nozzle discharge hole and the steel plate is 100 mm. ~ 200 mm is desirable.

【0020】また本発明者らは、工場における実設備に
おいて、加熱温度を1100〜1250℃まで広げて本
発明の効果を調査したところ、Siの含有量が0.15
mass%以上に高い鋼材では、1170℃を越えて加熱を
することでFeOとFe2 SiO4 の低融点共晶物が生
成し、デスケーリング効果が著しく低下することが判明
した。従って、0.15mass%以上のSi含有鋼は11
70℃以下に加熱して本発明の装置を用いてデスケーリ
ングを行うことで、特に大きなスケール除去効果を得ら
れることが可能であることを見出した。
The present inventors have investigated the effect of the present invention by increasing the heating temperature to 1100 ° C. to 1250 ° C. in actual equipment in a factory.
It has been found that when the steel material is higher than 1 mass%, heating above 1170 ° C. generates a low melting point eutectic of FeO and Fe 2 SiO 4 , and the descaling effect is significantly reduced. Therefore, steel containing 0.15 mass% or more of Si is 11%.
It has been found that a particularly large scale removing effect can be obtained by performing descaling using the apparatus of the present invention by heating to 70 ° C. or lower.

【0021】[0021]

【実施例】0.15mass%以上のSiを含有する鋼の熱
間圧延について本発明を適用した。圧延に用いた鋼片サ
イズは長さ8000mm前後、幅は600〜1500mm、
厚みは約240mmである。加熱温度は、1100℃〜1
170℃、仕上げ圧延前、吐出孔から鋼板までの距離を
100mm〜200mmで鋼板の表面をデスケーリングを行
った。吐出孔からの噴流の幅方向広がり角は、10°〜
40°である。
EXAMPLE The present invention was applied to hot rolling of steel containing 0.15 mass% or more of Si. The billet size used for rolling is about 8000 mm in length, 600 to 1500 mm in width,
The thickness is about 240 mm. Heating temperature is 1100 ° C ~ 1
Before finishing rolling at 170 ° C., the surface of the steel sheet was descaled at a distance from the discharge hole to the steel sheet of 100 mm to 200 mm. Spread angle of the jet from the discharge hole in the width direction is 10 ° ~
40 °.

【0022】表1にその他の実験条件及び実施結果を示
す。
Table 1 shows other experimental conditions and execution results.

【表1】 [Table 1]

【0023】表1のNo.1〜19が本発明例である。
加熱温度、吐出孔からの幅方向噴流の広がり角に拘わら
ず、隣り合うノズルからの入射角が本発明の範囲にある
場合は、噴流水膜の重なり部におけるスケール残存率が
5%以下の良好な結果を得た。これに対し比較例の20
〜31は隣り合うノズルからの入射角がいずれも本発明
の範囲外にあるため5%以下のスケール残存率を達成で
きなかった。
No. 1 in Table 1. 1 to 19 are examples of the present invention.
Regardless of the heating temperature and the spread angle of the jet in the width direction from the discharge hole, when the incident angle from the adjacent nozzle is within the range of the present invention, the residual ratio of the scale in the overlapping portion of the jet water film is preferably 5% or less. Results were obtained. In contrast, the comparative example 20
No. 31 could not achieve a residual ratio of 5% or less because the incidence angles from adjacent nozzles were all outside the range of the present invention.

【0024】[0024]

【発明の効果】上記発明により、噴流水膜間の干渉によ
るデスケーリング不良も防止し、充分に良好な品質の圧
延鋼板を製造することが可能となった。
According to the above-mentioned invention, it is possible to prevent poor descaling due to interference between the jet water films, and to manufacture a rolled steel sheet of sufficiently good quality.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ノズルから鋼板への液滴の入射角の定義と本発
明の模式図。
FIG. 1 is a schematic diagram of the definition of the angle of incidence of a droplet from a nozzle to a steel plate and the present invention.

【図2】単一ノズルでの液滴流速と水噴流(液滴)入射
角がスケール残存率に及ぼす影響を示す図。
FIG. 2 is a view showing the influence of the droplet flow velocity and the angle of incidence of a water jet (droplet) on a single nozzle on the scale survival rate.

【図3】2段ノズル配置での隣り合う水噴流(液滴)入
射角がスケール残存率に及ぼす影響を示す図。
FIG. 3 is a diagram showing the effect of the incident angle of adjacent water jets (droplets) on the scale remaining rate in a two-stage nozzle arrangement.

【図4】2段ノズル配置での隣り合うノズルからの流量
密度比がスケール残存率に及ぼす影響を示す図。
FIG. 4 is a diagram showing the influence of the flow density ratio from adjacent nozzles on the scale remaining rate in a two-stage nozzle arrangement.

【図5】デスケーリングノズル配置の従来例の模式図
で、(a)は斜視図、(b)は鋼板の側面からみた図。
5A and 5B are schematic views of a conventional example of a descaling nozzle arrangement, in which FIG. 5A is a perspective view, and FIG.

【図6】デスケーリングノズル配置の他の従来例を示す
模式図。
FIG. 6 is a schematic diagram showing another conventional example of a descaling nozzle arrangement.

【図7】デスケーリングノズル配置のさらに他の従来例
を示す模式図。
FIG. 7 is a schematic diagram showing still another conventional example of a descaling nozzle arrangement.

【図8】デスケーリングノズル配置のさらに他の従来例
を示す模式図で、(a)は斜視図、(b)は鋼板の側面
からみた図。
FIGS. 8A and 8B are schematic views showing still another conventional example of the arrangement of the descaling nozzle, wherein FIG. 8A is a perspective view and FIG.

【符号の説明】[Explanation of symbols]

1 鋼板 2 ヘッダー 3 デスケーリングノズル 3a 前段ノズル 3b 後段ノズル 4 吐出液滴流群または噴流水域 5 吐出液滴流群が鋼板に衝突した場所での水膜 6 噴流水膜が重なり合う部位 7 鋼板搬送(移送)方向 DESCRIPTION OF SYMBOLS 1 Steel plate 2 Header 3 Descaling nozzle 3a Front stage nozzle 3b Rear stage nozzle 4 Discharged droplet flow group or jet water area 5 Water film at the place where discharged droplet flow group collided with steel plate 6 Site where jetted water film overlaps 7 Steel plate transport ( Transfer) direction

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 吐出流速230m/s 以上の速度で、水滴
を鋼板に衝突させて鋼板表面のスケールの破壊・除去を
行う機能を有し、水滴の鋼板に対する入射角が4°から
−4°の範囲にあるように噴射ノズルを設置したことを
特徴とするデスケーリング装置。
The present invention has a function of causing water droplets to collide with a steel plate at a discharge flow velocity of 230 m / s or more to break and remove scale on the steel plate surface. The angle of incidence of the water droplets on the steel plate is from 4 ° to -4 °. A descaling device, wherein the injection nozzle is installed so as to fall within the range of (1).
【請求項2】 吐出流の吐出方向がノズル軸心に垂直な
面内の幅方向の広がりを有するノズルを鋼材搬送方向に
複数列に並べて、水を吐出流速230m/s 以上に加速し
てノズルから噴出させてデスケーリングを行う際の、隣
り合うノズル列からの吐出液滴流群が鋼板に衝突した場
所での水膜間距離が20mm以上100mm以下で、前段ノ
ズルからの噴流水膜の鋼板に対する入射角が0°から4
°の間にあり、かつ、後段ノズルからの噴流水膜の鋼板
に対する入射角が0°から−4°の範囲にあるように噴
射ノズルを設置したことを特徴とするデスケーリング装
置。
2. A nozzle in which a discharge direction of a discharge flow is widened in a width direction in a plane perpendicular to a nozzle axis and arranged in a plurality of rows in a steel material conveying direction, and water is accelerated to a discharge flow rate of 230 m / s or more. When performing descaling by ejecting from the nozzle, the distance between the water films at the place where the group of droplets discharged from the adjacent nozzle row collided with the steel plate is 20 mm or more and 100 mm or less, and the steel plate of the water film jet from the front nozzle Angle of incidence from 0 ° to 4
A de-scaling device, characterized in that the injection nozzle is installed so as to be between 0 ° and the angle of incidence of the water jet film from the latter nozzle on the steel plate in the range of 0 ° to -4 °.
【請求項3】 吐出流の吐出方向が幅方向に広がりを有
するノズルを鋼材搬送方向に複数列に並べて、吐出圧力
40MPa 以上の圧力で、同一ヘッダーからノズルを通し
てから水を噴出させ、デスケーリングを行う際の、隣り
合うノズル列からの吐出液滴流群が鋼板に衝突した場所
での衝突水膜間距離が20mm以上100mm以下で、前段
ノズルからの水噴流の流量密度が、後段ノズルからの水
噴流の流量密度の1.3倍以上大きくなるように吐出口
径を設定したことを特徴とするデスケーリング装置。
3. A plurality of nozzles, each having a discharge flow extending in the width direction, are arranged in a plurality of rows in the steel material conveyance direction, and water is jetted from the same header through the nozzles at a discharge pressure of 40 MPa or more to perform descaling. When performing, the distance between the impinging water films at the place where the droplet streams from the adjacent nozzle rows collided with the steel plate is 20 mm or more and 100 mm or less, and the flow density of the water jet from the former nozzle is lower than that from the latter nozzle. A descaling device characterized in that the discharge port diameter is set to be 1.3 times or more the flow density of the water jet.
【請求項4】 吐出流の吐出方向が幅方向に広がりを有
するノズルを鋼材搬送方向に複数列に並べたデスケーリ
ングを行う装置を用いて、吐出圧力40MPa以上の圧力
で、ノズルから水を噴出させ、隣り合うノズル列からの
吐出液滴流群が鋼板に衝突した場所での衝突水膜間距離
が20mm以上100mm以下で、前段ノズルからの水噴流
の流量密度が、後段ノズルからの水噴流の流量密度の
1.3倍以上大きくすることを特徴とするデスケーリン
グ方法。
Water is ejected from the nozzle at a discharge pressure of 40 MPa or more by using a descaling apparatus in which nozzles having a discharge direction of a discharge flow extending in a width direction are arranged in a plurality of rows in a steel material conveying direction. The distance between the impinging water films at the place where the droplet streams from adjacent nozzle rows collide with the steel plate is 20 mm or more and 100 mm or less, and the flow density of the water jet from the front nozzle is the water jet from the rear nozzle. A descaling method characterized by increasing the flow density by at least 1.3 times.
【請求項5】 0.15mass%以上のSi含有鋼を11
70℃以下に加熱して圧延する熱間圧延において、請求
項1〜3いずれか1項に記載のデスケーリング装置を用
いて、噴射吐出孔から鋼板までの距離を100mm〜20
0mmになるように設置し鋼板の表面のデスケーリングを
行うことを特徴とするデスケーリング方法。
5. A steel containing 0.15 mass% or more of Si
In the hot rolling in which the steel sheet is rolled by heating to 70 ° C. or less, the distance from the injection discharge hole to the steel sheet is set to 100 mm to 20 using the descaling device according to claim 1.
A descaling method characterized in that the surface of the steel plate is descaled by being set to be 0 mm.
JP2000316135A 2000-10-17 2000-10-17 Descaling apparatus and method Expired - Fee Related JP3844279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000316135A JP3844279B2 (en) 2000-10-17 2000-10-17 Descaling apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000316135A JP3844279B2 (en) 2000-10-17 2000-10-17 Descaling apparatus and method

Publications (2)

Publication Number Publication Date
JP2002120011A true JP2002120011A (en) 2002-04-23
JP3844279B2 JP3844279B2 (en) 2006-11-08

Family

ID=18795125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000316135A Expired - Fee Related JP3844279B2 (en) 2000-10-17 2000-10-17 Descaling apparatus and method

Country Status (1)

Country Link
JP (1) JP3844279B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101618406B (en) * 2008-06-30 2012-02-01 鞍钢股份有限公司 Surface color difference control method for hot-rolled pickled plate
JP5549786B2 (en) * 2012-06-08 2014-07-16 新日鐵住金株式会社 Drainage device and method for cooling water for hot-rolled steel sheet
JP2019203181A (en) * 2018-05-25 2019-11-28 Jfeスチール株式会社 Method for producing chemically plated steel sheet
KR102215510B1 (en) * 2020-05-29 2021-02-15 주식회사 디케이씨 Cooling Device for Thick Plate
CN112743456A (en) * 2020-11-27 2021-05-04 北京电子科技职业学院 Acid-free descaling device for strip steel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5663846B2 (en) * 2009-05-28 2015-02-04 Jfeスチール株式会社 Steel plate descaling apparatus and descaling method
KR101631029B1 (en) * 2015-06-17 2016-06-16 주식회사 포스코 Descaler

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101618406B (en) * 2008-06-30 2012-02-01 鞍钢股份有限公司 Surface color difference control method for hot-rolled pickled plate
JP5549786B2 (en) * 2012-06-08 2014-07-16 新日鐵住金株式会社 Drainage device and method for cooling water for hot-rolled steel sheet
US9649679B2 (en) 2012-06-08 2017-05-16 Nippon Steel Sumitomo Metal Corporation Water-blocking apparatus and water-blocking method for cooling water for hot-rolled steel sheet
JP2019203181A (en) * 2018-05-25 2019-11-28 Jfeスチール株式会社 Method for producing chemically plated steel sheet
KR102215510B1 (en) * 2020-05-29 2021-02-15 주식회사 디케이씨 Cooling Device for Thick Plate
CN112743456A (en) * 2020-11-27 2021-05-04 北京电子科技职业学院 Acid-free descaling device for strip steel
CN112743456B (en) * 2020-11-27 2022-04-08 北京电子科技职业学院 Acid-free descaling device for strip steel

Also Published As

Publication number Publication date
JP3844279B2 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
KR100234565B1 (en) Cleaning Method and Cleaner of Steel Plate Surface
CN101253010B (en) Steel plate cooling equipment and manufacturing method
JP2010264498A (en) Steel plate descaling method and apparatus
JPH06269839A (en) Descaling and rolling methods for billets
JP2002120011A (en) Descaling apparatus and method
JP2001286925A (en) Water cooling system for steel sheet and its water cooling method
JP3802830B2 (en) Steel sheet descaling method and equipment
JPH09174137A (en) Descaling device and descaling method
JP3872609B2 (en) Hot rolling method for high Si steel
JP3811380B2 (en) Manufacturing method of thick steel plate by hot rolling
JP3422671B2 (en) Method and apparatus for suppressing scale flaw generation during hot finish rolling
JP3331860B2 (en) Hot rolling material descaling equipment
JP4765344B2 (en) Method and apparatus for descaling hot rolled material
JP2014083578A (en) Descaling nozzle of hot rolled steel material
JP2003181522A (en) Method and apparatus for producing steel sheet having excellent surface properties
JP3307874B2 (en) Descaling device
CN100444981C (en) Manufacturing method and manufacturing equipment of hot-rolled steel strip
JP3189732B2 (en) Cooling method for hot steel sheet and cooling device for hot steel sheet
JP2010274297A (en) Steel plate descaling apparatus and descaling method
JP2000246324A (en) Push-in flaw prevention method for hot rolling steel band
JPS5950903A (en) Continuous hot rolling device for steel plate
JPH06262243A (en) Scale formation prevention method in hot rolling of steel sheet
JP3129967B2 (en) How to remove scale from hot rolled steel sheet
JP2001276923A (en) Steel descaling method
JP3802848B2 (en) Hot rolling method for Si-containing steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060811

R151 Written notification of patent or utility model registration

Ref document number: 3844279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees