[go: up one dir, main page]

JP2002115593A - Combustion control apparatus for internal combustion engine - Google Patents

Combustion control apparatus for internal combustion engine

Info

Publication number
JP2002115593A
JP2002115593A JP2000305348A JP2000305348A JP2002115593A JP 2002115593 A JP2002115593 A JP 2002115593A JP 2000305348 A JP2000305348 A JP 2000305348A JP 2000305348 A JP2000305348 A JP 2000305348A JP 2002115593 A JP2002115593 A JP 2002115593A
Authority
JP
Japan
Prior art keywords
injection
fuel
split
internal combustion
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000305348A
Other languages
Japanese (ja)
Other versions
JP3852277B2 (en
Inventor
Koichi Yamaguchi
浩一 山口
Akihiro Sakakida
明宏 榊田
Masaaki Kubo
賢明 久保
Tomonori Urushibara
友則 漆原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000305348A priority Critical patent/JP3852277B2/en
Publication of JP2002115593A publication Critical patent/JP2002115593A/en
Application granted granted Critical
Publication of JP3852277B2 publication Critical patent/JP3852277B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To distribute fuel to an appropriate position in an appropriate degree of concentration in a combustion chamber by properly carrying out split injection of fuel. SOLUTION: Required amount of fuel injection under the condition of injecting the fuel in a compression stroke, is injected by split injection in which the fuel is injected in plural fuel injection periods constituting an initial spray (small spray angle and high spray speed) and a main spray (large spray angle and low spray speed) in the compression stroke. The condition for the split injection is set depending on the operating condition(the number of split injections N (2 in the figure), the injection start period τ 12 and the proportion of fuel injection amount, or the like).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の燃焼制
御装置に関し、より詳細には、直噴火花点火式内燃機関
において成層燃焼運転時の圧縮行程燃料噴射を複数回に
分けることにより、所望の噴霧形態を得る技術に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion control system for an internal combustion engine, and more particularly to a combustion control system for a direct injection spark ignition type internal combustion engine which divides a compression stroke fuel injection during a stratified charge combustion operation into a plurality of injections. And a technique for obtaining a spray form.

【0002】[0002]

【従来の技術】直噴火花点火式内燃機関における従来の
分割燃料噴射技術として、機関低回転低負荷運転時の成
層燃焼運転時に燃焼噴射を少なくとも2回に分けて行
い、先に噴射された燃料によって燃焼室内に均一な混合
気を形成するとともに、後に噴射された燃料によって形
成される集中的な混合気が点火プラグの近傍を通過する
タイミングに合わせて点火することで、燃焼安定性を向
上しつつ、燃料と空気との混合不足による未燃炭化水素
(HC)の発生を防止しようとする技術が知られている
(特開平9−256936号公報参照)。
2. Description of the Related Art As a conventional split fuel injection technique in a direct injection spark ignition type internal combustion engine, at least two injections are performed during stratified charge combustion operation at low engine speed and low load operation, and the fuel injected earlier is used. A uniform air-fuel mixture is formed in the combustion chamber, and the intensive air-fuel mixture formed by the fuel injected later is ignited at the timing of passing near the spark plug, thereby improving combustion stability. On the other hand, a technique for preventing the generation of unburned hydrocarbons (HC) due to insufficient mixing of fuel and air is known (see Japanese Patent Application Laid-Open No. 9-256936).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな分割噴射では、一部の運転領域において燃焼安定性
の向上及びHC発生量の低減といった効果を得ることが
できるものの、次に述べる特定の運転領域において問題
がある。すなわち、従来は、先に噴射された燃料が燃焼
室全体に拡散して希薄な均一混合気を形成していたが、
燃料噴射量の少ない機関低負荷運転時では、この先に噴
射された燃料が過度に希薄な混合気を形成し、不完全燃
焼を生じることによってかえってHC発生量を増大させ
てしまう場合がある。
However, in such a split injection, although effects such as improvement of combustion stability and reduction of the amount of HC generated can be obtained in a part of the operation region, the following specific operation is performed. There is a problem in the area. That is, in the past, previously injected fuel diffused throughout the combustion chamber to form a lean homogeneous mixture.
During low engine load operation with a small amount of fuel injection, the fuel injected earlier may form an excessively lean air-fuel mixture, resulting in incomplete combustion, which may instead increase the amount of HC generated.

【0004】また、混合気を吸気のタンブル流動に乗せ
て点火プラグの近傍に輸送しようとする方式の直噴火花
点火式内燃機関において上記従来の分割噴射を実施する
場合には、次のような問題も生じる。すなわち、噴霧の
運動量に対して吸気の運動量が相対的に小さく吸気のタ
ンブル流動に乗せた混合気輸送がなされ難い機関低回転
運転時や、燃料噴射量が少なく混合気が希薄となり易い
機関低負荷運転時において、点火プラグの近傍に適正濃
度の混合気が存在する期間、すなわち点火可能期間が限
られしまうのである。そして、このような運転領域では
点火可能期間を拡大することは困難であるため、結果と
して点火可能期間が機関性能上不十分となり、燃焼安定
性が低下してしまうのである。
[0004] Further, in the case of performing the above-described conventional split injection in a direct injection spark ignition type internal combustion engine in which the air-fuel mixture is transported to the vicinity of a spark plug by carrying the air-fuel mixture on a tumble flow of the intake air, Problems arise. That is, when the engine is running at a low speed where the air-fuel mixture is hardly transported with the intake air momentum being relatively small with respect to the spray momentum and the air-fuel mixture is hardly transported, or when the fuel injection amount is small and the air-fuel mixture tends to be lean. During the operation, the period during which the mixture of the appropriate concentration exists near the spark plug, that is, the ignitable period is limited. In such an operation region, it is difficult to extend the ignitable period, and as a result, the ignitable period becomes insufficient in engine performance, and the combustion stability is reduced.

【0005】このような実状に鑑み、本発明は、燃料の
分割噴射をより的確に行うことによって燃料を適切な位
置にかつ適切な集中度で分布させ、点火可能期間を運転
領域全体に渡って充分に確保することができる内燃機関
の燃焼制御装置を提供することを目的とする。
In view of such circumstances, the present invention distributes fuel to appropriate positions and at appropriate concentrations by performing divided injection of fuel more accurately, and allows the ignition period to extend over the entire operating region. An object of the present invention is to provide a combustion control device for an internal combustion engine that can be sufficiently secured.

【0006】[0006]

【課題を解決するための手段】このため、本発明に係る
内燃機関Eの燃焼制御装置は、燃焼室内に燃料を直接噴
射する燃料噴射弁と、点火プラグとを備え、少なくとも
圧縮行程において燃料を噴射する運転条件を持つ内燃機
関の燃焼制御装置であって、図1に示すように、前記燃
料噴射弁に対して、圧縮行程に燃料を噴射する場合の要
求燃料噴射量を、圧縮行程において、前記燃料噴射弁の
噴射特性がほぼ等しくなる複数の噴射期間に分割して、
噴射させる分割噴射制御手段を備えることを特徴とする
(請求項1)。
Therefore, a combustion control apparatus for an internal combustion engine E according to the present invention includes a fuel injection valve for directly injecting fuel into a combustion chamber, and a spark plug, and supplies fuel at least in a compression stroke. A combustion control device for an internal combustion engine having operating conditions for injecting, as shown in FIG. 1, a fuel injection amount required for injecting fuel in a compression stroke with respect to the fuel injection valve, in a compression stroke, Divided into a plurality of injection periods in which the injection characteristics of the fuel injection valve are substantially equal,
It is characterized by comprising split injection control means for performing injection (claim 1).

【0007】前記分割噴射制御手段は、前記分割して噴
射された燃料のうち先に噴射されたものに対して、その
後に噴射された燃料が前記点火プラグの近傍において重
なるように、噴射させるのが好ましい(請求項2)。ま
た、本発明に係る内燃機関Eの燃焼制御装置は、前記点
火プラグに対して、前記先に噴射された燃料と後に噴射
された燃料とが点火プラグの近傍において重なり合って
いるときに点火させる点火時期制御手段を備えるのが好
ましい(請求項3)。
[0007] The divided injection control means injects the previously injected fuel among the divided and injected fuel such that the subsequently injected fuel overlaps near the spark plug. Is preferable (claim 2). Further, the combustion control device for the internal combustion engine E according to the present invention may be configured to ignite the spark plug when the previously injected fuel and the subsequently injected fuel overlap each other near the spark plug. It is preferable to provide timing control means (claim 3).

【0008】前記分割噴射制御手段は、運転条件に応じ
て、噴射開始間隔及び噴射量割合のうち少なくとも一方
を可変とするのが好ましい(請求項4)。この場合に
は、前記分割噴射制御手段は、機関回転速度の低下に応
じて噴射開始間隔を拡大するのが好ましく(請求項
5)、機関回転速度の低下に応じて全噴射量に対する最
終回の噴射量割合を増大させるのが好ましく(請求項
6)、機関負荷の低下に対して、噴射開始間隔をほぼ一
定に保ちながら1回当たりの噴射量を減少させるのが好
ましく(請求項7)、機関負荷の低下に応じて全噴射量
に対する最終回の噴射量割合を増大させるのが好ましい
(請求項8)。
It is preferable that the split injection control means makes at least one of an injection start interval and an injection amount ratio variable according to operating conditions. In this case, the split injection control means preferably extends the injection start interval in accordance with the decrease in the engine speed (Claim 5). It is preferable to increase the injection amount ratio (claim 6), and to reduce the engine load, it is preferable to reduce the injection amount per injection while keeping the injection start interval substantially constant (claim 7). It is preferable to increase the ratio of the final injection amount to the total injection amount according to the decrease in the engine load.

【0009】また、本発明に係る内燃機関Eの燃焼制御
装置は、前記分割噴射制御手段に対して、運転条件に応
じて分割回数を設定する分割回数設定手段を備えるのが
好ましい(請求項9)。前記分割噴射制御手段は、噴射
期間の間の噴射休止期間が前記燃料噴射弁の最短閉弁期
間より短くなる条件において、前記要求燃料噴射量を1
回の噴射によって噴射するのが好ましく(請求項1
0)、この条件を、前記内燃機関Eの高回転及び高負荷
運転条件として検出するのが好ましい(請求項11)。
Further, the combustion control apparatus for the internal combustion engine E according to the present invention preferably includes a division number setting means for setting the number of divisions in accordance with an operating condition with respect to the division injection control means. ). The split injection control means sets the required fuel injection amount to 1 under the condition that the injection suspension period between the injection periods is shorter than the shortest valve closing period of the fuel injection valve.
It is preferable that the fuel be injected by two injections.
0) It is preferable to detect this condition as a high-speed and high-load operation condition of the internal combustion engine E (claim 11).

【0010】前記分割噴射制御手段は、3回以上の分割
噴射を行う場合に、後の噴射ほど直前の噴射からの噴射
開始間隔を短縮して噴射させるのが好ましい(請求項1
2)。また、本発明に係る内燃機関Eの燃焼制御装置
は、機関温度検出手段と、該手段からの出力を受け、機
関冷間時に前記分割噴射制御手段による燃料の分割噴射
を禁止させる分割噴射禁止手段を備えるのが好ましい
(請求項13)。
In the case where three or more divided injections are performed, the divided injection control means preferably performs the injection with a shorter injection start interval from the immediately preceding injection as the later injection is performed.
2). Further, the combustion control device for the internal combustion engine E according to the present invention comprises an engine temperature detecting means and a split injection prohibiting means for receiving an output from the means and for prohibiting split fuel injection by the split injection control means when the engine is cold. (Claim 13).

【0011】[0011]

【発明の効果】請求項1に係る発明によれば、圧縮行程
に燃料を噴射する場合の要求燃料噴射量を、前記分割噴
射制御手段により、圧縮行程において複数の噴射期間に
等しい噴射特性で分割噴射することで、次の効果を得る
ことができる。分割噴射された燃料のうち、先に噴射さ
れた燃料は、燃料噴射弁の噴射特性、噴射方向及び燃焼
室内のガス流動の影響などによって定まる領域に、混合
気を形成する。そして、この噴射の後に等しい噴射特性
で噴射される燃料に対しては、先の噴射の影響で噴射方
向に沿った流れが生じているため、後に噴射された燃料
は、同様な形態の噴霧を形成しつつも、先に噴射された
燃料より高速で燃焼室内を進む。従って、後に噴射され
た燃料を先に噴射された燃料に追い付かせて重なり合わ
せることにより、その位置において適切な集中度の混合
気を形成することができる。
According to the first aspect of the present invention, the required fuel injection amount in the case of injecting fuel in the compression stroke is divided by the divided injection control means with injection characteristics equal to a plurality of injection periods in the compression stroke. The following effects can be obtained by jetting. Among the split fuels, the fuel injected first forms an air-fuel mixture in a region determined by the injection characteristics of the fuel injection valve, the injection direction, the influence of the gas flow in the combustion chamber, and the like. Then, for fuel injected with the same injection characteristics after this injection, a flow along the injection direction occurs due to the influence of the previous injection, so that the fuel injected later has a similar form of spray. While forming, it travels through the combustion chamber at a higher speed than the previously injected fuel. Therefore, by causing the fuel injected later to catch up with the fuel injected earlier and overlap, it is possible to form an air-fuel mixture having an appropriate concentration at that position.

【0012】請求項2に係る発明によれば、点火プラグ
の近傍に上記適切な集中度の混合気を形成することがで
きるので、点火プラグの近傍における適正濃度の混合気
の存在時間、すなわち点火可能期間を充分に確保し、燃
焼安定性を改善することができる。また、過度に希薄な
混合気の形成を防止し、燃焼安定性の改善とHC発生量
の低減との両立を図ることができる。
According to the second aspect of the present invention, the mixture having the appropriate concentration can be formed in the vicinity of the spark plug. The possible period can be sufficiently secured, and the combustion stability can be improved. Further, it is possible to prevent the formation of an excessively lean air-fuel mixture, and to achieve both improvement in combustion stability and reduction in the amount of generated HC.

【0013】請求項3に係る発明によれば、前記点火時
期制御手段により、点火時期が最適化される。請求項4
に係る発明によれば、分割噴射された燃料の重なり合い
が生じる位置や、その位置での燃料の集中度を、運転条
件によらず、常に良好に保つことができる。
According to the third aspect of the invention, the ignition timing is optimized by the ignition timing control means. Claim 4
According to the present invention, the position at which the divided fuels overlap and the degree of concentration of the fuel at that position can always be kept good regardless of the operating conditions.

【0014】請求項5に係る発明によれば、機関回転速
度の変動に対して、分割噴射された燃料の重なり合いが
生じる位置の変化を抑えることができる。特に、燃料を
吸気のタンブル流動に乗せて点火プラグに向けて輸送す
る場合に、このタンブル流動が弱くなり、燃料の輸送が
行われ難い傾向にある機関低回転運転時においても、分
割噴射された燃料の重なり合いが生じる位置を点火プラ
グの近傍に保ち、点火可能期間を確保することができ
る。
According to the fifth aspect of the present invention, it is possible to suppress a change in a position where overlapping of the divided fuels occurs with respect to a change in the engine speed. In particular, when the fuel is transported toward the ignition plug on the tumble flow of the intake air, the tumble flow is weakened, and even during the engine low-speed operation where the fuel is less likely to be transported, the divided injection is performed. The position where the fuel overlaps is maintained near the spark plug, and the ignitable period can be secured.

【0015】請求項6に係る発明によれば、次の効果を
得ることができる。後に噴射された燃料は、先に噴射さ
れた燃料に対して比較的分散しないまま重なることか
ら、後の噴射ほど噴射量割合を増大させれば、燃料の重
なり合いによって形成される噴霧の燃料集中度を高める
ことができる。従って、例えば燃料を吸気のタンブル流
動に乗せて点火プラグに向けて輸送する場合の機関低回
転運転時において、最終回の噴射量割合を増大させるこ
とにより、燃焼安定性が低下し易い条件で点火プラグの
近傍における燃料の集中度を高めることができ、燃焼安
定性の改善を図ることができる。
According to the invention of claim 6, the following effects can be obtained. Since the fuel injected later overlaps the fuel injected earlier without being dispersed relatively, if the injection amount ratio is increased as the fuel is injected later, the fuel concentration of the spray formed by the fuel overlap is increased. Can be increased. Therefore, for example, during low-speed engine operation when fuel is transported toward the ignition plug by being carried on the tumble flow of intake air, by increasing the final injection amount ratio, ignition is performed under conditions where combustion stability tends to decrease. The concentration of fuel near the plug can be increased, and the combustion stability can be improved.

【0016】請求項7に係る発明によれば、機関負荷の
低下に対して噴射開始間隔をほぼ一定に保つことで、分
割噴射された燃料の重なり合いが生じる位置を機関負荷
によらず狙い通りに保つことができ、その位置における
燃料の集中度の低下を防ぐことができる。そして、燃料
を吸気のタンブル流動に乗せて点火プラグに向けて輸送
する場合にあっては、要求燃料噴射量が少なく、混合気
が希薄となり易い機関低負荷運転時においても、点火プ
ラグの近傍における燃料の集中度を保ち、点火可能期間
を確保することができる。
According to the seventh aspect of the invention, the injection start interval is kept substantially constant with respect to the decrease in the engine load, so that the position where the overlapped fuels are overlapped can be targeted as desired regardless of the engine load. It is possible to keep the fuel concentration at that position, and to prevent a decrease in the concentration of fuel at that position. When the fuel is transported toward the spark plug by taking the tumble flow of the intake air, the required fuel injection amount is small, and even at the time of engine low load operation in which the air-fuel mixture tends to be lean, the fuel in the vicinity of the spark plug is It is possible to maintain the concentration of fuel and secure the ignitable period.

【0017】請求項8に係る発明によれば、次の効果を
得ることができる。先に述べた通り、後の噴射ほど噴射
量割合を増大させることで、燃料の重なり合いによって
形成される噴霧の燃料集中度を高めることができる。従
って、点火プラグの近傍に混合気を集中的に形成する場
合において、要求燃料噴射量が少なく、希薄な混合気が
形成され易い機関低負荷運転時であっても、最終回の噴
射量割合を増大させることにより、点火プラグの近傍に
おける燃料の集中度を良好なものとし、希薄な混合気の
形成を抑え、点火可能期間を確保することができる。
According to the invention of claim 8, the following effects can be obtained. As described above, by increasing the injection amount ratio in the later injection, the fuel concentration of the spray formed by overlapping of the fuel can be increased. Therefore, in the case where the air-fuel mixture is formed intensively in the vicinity of the spark plug, the required fuel injection amount is small, and even during the engine low-load operation in which a lean air-fuel mixture is easily formed, the final injection amount ratio is reduced. By increasing, the concentration of fuel in the vicinity of the spark plug can be made good, the formation of a lean mixture can be suppressed, and the ignitable period can be secured.

【0018】請求項9に係る発明によれば、分割回数設
定手段により、運転条件に応じて最適な回数に分けて燃
料を噴射することができる。請求項10に係る発明によ
れば、要求燃料噴射量を確実に噴射し、負荷変動を防止
することができる。請求項11に係る発明によれば、高
回転及び高負荷運転条件における負荷変動を未然に防ぐ
ことができる。
According to the ninth aspect of the present invention, the division number setting means can inject the fuel in an optimum number according to the operating conditions. According to the tenth aspect, it is possible to reliably inject the required fuel injection amount and prevent load fluctuation. According to the eleventh aspect, it is possible to prevent load fluctuations under high rotation and high load operation conditions.

【0019】請求項12に係る発明によれば、分割噴射
された燃料を適切な位置において重なり合わせるととも
に、この重なり合いよって形成される噴霧の燃料集中度
を、さらに高めることができる。すなわち、後に噴射さ
れた燃料ほど分散しないまま燃料の重なり合いが生じる
ことは先に述べた通りであるが、要求燃料噴射量を3回
に分けて噴射するとともに、後の噴射ほど直前の噴射か
らの噴射開始間隔を短縮して行うことで、後に噴射され
た燃料の分散がさらに抑えられ、重なり合いによる噴霧
の燃料集中度をさらに高めることができるのである。そ
して、燃焼安定性が低下し易い条件において燃料の分布
範囲及びその集中度をより良好なものとし、燃焼安定性
のさらなる向上を図ることができる。
According to the twelfth aspect of the present invention, it is possible to overlap fuels split and injected at appropriate positions and to further increase the fuel concentration of the spray formed by the overlap. That is, as described above, fuel overlap occurs without being dispersed as much as fuel injected later. However, the required fuel injection amount is divided into three injections, and the later injection is performed from the injection immediately before the injection. By shortening the injection start interval, the dispersion of the fuel injected later is further suppressed, and the fuel concentration of the spray due to the overlap can be further increased. Further, the distribution range of fuel and the degree of concentration thereof can be made more favorable under conditions where the combustion stability is likely to be reduced, and the combustion stability can be further improved.

【0020】請求項13に係る発明によれば、機関壁面
温度が高く、燃料の壁面付着が生じた場合においても燃
焼性能への悪影響が少ない機関温間時にのみ分割噴射を
行い、機関冷間時には分割噴射を禁止することができる
ので、燃料の壁面付着による燃焼性能の悪化を防ぐこと
ができる。
According to the thirteenth aspect of the present invention, even when the engine wall surface temperature is high and the fuel wall surface adheres, the split injection is performed only at the time of the engine temperature where the adverse effect on the combustion performance is small. Since the split injection can be prohibited, it is possible to prevent the deterioration of the combustion performance due to the adhesion of the fuel to the wall surface.

【0021】[0021]

【発明の実施の形態】以下に、本発明の実施の形態とし
て、本発明を直噴火花点火式内燃機関である4サイクル
型の自動車用ガソリンエンジン(以下、単に「エンジ
ン」という。)Eに適用した例について、図面を参照し
て説明する。図2は、エンジンEの側面断面図であり、
圧縮行程の状態を表している。同図において、1はシリ
ンダブロック、2はシリンダヘッドであり、シリンダブ
ロック1には、凹状の冠面を形成するピストン3が挿入
されている。そして、ピストン3の冠面とシリンダヘッ
ド2との間に燃焼室4が形成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, as an embodiment of the present invention, the present invention is applied to a four-cycle type automobile gasoline engine (hereinafter simply referred to as "engine") E which is a direct injection spark ignition type internal combustion engine. An example of application will be described with reference to the drawings. FIG. 2 is a side sectional view of the engine E,
This shows the state of the compression stroke. In the figure, 1 is a cylinder block, 2 is a cylinder head, and a piston 3 forming a concave crown surface is inserted into the cylinder block 1. Then, a combustion chamber 4 is formed between the crown surface of the piston 3 and the cylinder head 2.

【0022】燃焼室4には、一側に吸気ポート5が、他
側に排気ポート6が開口しており、各ポートは、それぞ
れに介装した吸気弁7又は排気弁8によって開閉され
る。なお、吸気ポート5と排気ポート6とは、それぞれ
2つずつ設けられている。また、シリンダヘッド2に
は、燃焼室4の上側のほぼ中心部に位置するように点火
プラグ9が取り付けられており、さらに2つの吸気ポー
ト5,5の間で下寄りに位置させて燃料噴射弁10が取
り付けられている。燃料噴射弁10は、燃焼室4内に燃
料を直接噴射可能であり、図の一点鎖線Aで示すよう
に、点火プラグ9の下方に向けて斜め下向きに燃料を噴
射する。
The combustion chamber 4 has an intake port 5 on one side and an exhaust port 6 on the other side, and each port is opened and closed by an intake valve 7 or an exhaust valve 8 interposed respectively. It should be noted that two intake ports 5 and two exhaust ports 6 are provided. An ignition plug 9 is attached to the cylinder head 2 so as to be located substantially at the center of the upper side of the combustion chamber 4, and is further positioned lower between the two intake ports 5 and 5 for fuel injection. A valve 10 is mounted. The fuel injection valve 10 is capable of directly injecting fuel into the combustion chamber 4 and injects fuel obliquely downward toward the lower side of the ignition plug 9 as shown by a dashed line A in the figure.

【0023】ここで、燃焼室4内では、吸気ポート5の
形状の作用によって吸気行程中に吸気のタンブル(縦
渦)流動が形成されており、成層燃焼を行わせる場合に
は、燃料噴射弁10は、圧縮行程において燃料を噴射す
る。噴射された燃料は、上記タンブル流動に乗って燃焼
室4内を点火プラグ9方向に輸送され、その結果、点火
プラグ9の近傍に可燃空燃比の混合気が形成され、燃焼
室4内の混合気が層状化される。
Here, in the combustion chamber 4, a tumble (longitudinal vortex) flow of intake air is formed during the intake stroke by the action of the shape of the intake port 5, and when performing stratified combustion, the fuel injection valve is used. 10 injects fuel in the compression stroke. The injected fuel is transported in the combustion chamber 4 in the direction of the ignition plug 9 along the tumble flow. As a result, a mixture having a combustible air-fuel ratio is formed near the ignition plug 9, and the mixture in the combustion chamber 4 is mixed. Qi is stratified.

【0024】次に、本実施形態に係るエンジンEにおけ
る混合気形成について、図3〜7を参照してさらに説明
する。まず、図3及び4を参照して、燃料噴射弁10に
よって噴射される燃料の噴霧形態について説明する。図
3は、その噴霧形態の一例を表しており、図4は、噴射
開始時刻t0からの経過時間に対する噴霧角α及び噴霧
速度vの変化を示したものである。
Next, the formation of an air-fuel mixture in the engine E according to the present embodiment will be further described with reference to FIGS. First, referring to FIGS. 3 and 4, a spray form of fuel injected by the fuel injection valve 10 will be described. FIG. 3 shows an example of the spray form, and FIG. 4 shows changes in the spray angle α and the spray speed v with respect to the elapsed time from the injection start time t0.

【0025】本実施形態では、燃料噴射弁10によって
圧縮行程において1回に噴射される燃料は、図3及び4
に示すように、噴射開始初期の初期噴霧(噴射角αが小
さく、噴霧速度vが高い)と、これに続く主噴霧(噴霧
角αが大きく、噴霧速度vが低い)とから形成される。
そして、これらが一体となって、噴霧長Lのほぼ球状の
噴霧を形成するのである。
In the present embodiment, the fuel injected once by the fuel injection valve 10 in the compression stroke is shown in FIGS.
As shown in (2), the spray is formed from an initial spray at the beginning of the injection start (the spray angle α is small and the spray speed v is high), and a subsequent main spray (the spray angle α is large and the spray speed v is low).
Together, these form a substantially spherical spray having a spray length L.

【0026】そして、燃料噴射弁10は、圧縮行程に燃
料を噴射する運転条件において、図5のタイムチャート
に示すように、その条件で噴射すべき要求燃料噴射量
を、それぞれの噴射特性が等しくなる長さの複数の噴射
期間に分けて、すなわち、それぞれの燃料の噴霧が初期
噴霧と主噴霧とを含むように(従って、各回の噴射期間
は、図4に示す初期噴霧期間t0〜t1より長い。)複
数の噴霧に分けて、噴射する。なお、ここでは、2回の
噴射期間τ1及びτ2に分割して噴射する例を示してい
る。
Under the operating condition of injecting fuel in the compression stroke, as shown in the time chart of FIG. 5, the fuel injection valve 10 determines the required fuel injection amount to be injected under the condition, and the injection characteristics of the fuel injection valve 10 are equal. The fuel injection is divided into a plurality of injection periods each having a predetermined length, that is, such that each fuel spray includes the initial spray and the main spray (accordingly, each injection period is based on the initial spray periods t0 to t1 shown in FIG. 4). Long.) Divide into multiple sprays and spray. Here, an example is shown in which the injection is divided into two injection periods τ1 and τ2.

【0027】ここで、図5についてさらに説明する。当
然のことながら、燃料を何回かに分割して噴射する場合
には、1回当たりの噴射量は、要求燃料噴射量を1回の
みの噴射によって噴射する場合のその1回の噴射量と比
べて、低下する。ここで、噴霧先端到達距離を噴射量毎
に示した図6を参照すると、分割噴射に係る第1回目の
噴射による燃料の噴霧の先端到達距離は、1回のみの噴
射による場合の噴霧先端到達距離より低下する。
Here, FIG. 5 will be further described. Naturally, when the fuel is divided into several injections, the injection amount per injection is equal to the single injection amount when the required fuel injection amount is injected by only one injection. In comparison, it decreases. Here, referring to FIG. 6, which shows the spray tip reaching distance for each injection amount, the tip reaching distance of the fuel spray by the first injection related to the split injection is the spray tip reaching distance in the case of only one injection. Lower than the distance.

【0028】一方、第1回目の噴射の終了時からわずか
な噴射休止期間をあけて行われる第2回目の噴射による
燃料の噴霧は、第1回目の噴射によって形成された噴射
方向のガス流動に乗って燃焼室4内を進行するので、第
1回目の噴射による燃料の噴霧より噴霧速度が高くな
る。このため、第1回目の噴射による燃料の噴霧に対し
て、第2回目の噴射による燃料の噴霧が追い付き(St
4)、ある特定のタイミングでちょうど重なり合う状態
となって、長さの短い複合的な噴霧を形成する(St
5)。そして、第2回目の噴霧の先端は、第1回目の噴
霧の先端を追い越し、第1回目の噴霧より遠くまで到達
する(St6)。
On the other hand, the fuel spray by the second injection, which is performed with a slight injection suspension period from the end of the first injection, is caused by the gas flow in the injection direction formed by the first injection. Since the vehicle rides and travels in the combustion chamber 4, the spray speed becomes higher than the fuel spray by the first injection. Therefore, the fuel spray from the second injection catches up with the fuel spray from the first injection (St).
4) At a specific timing, the sprays are exactly overlapped to form a composite spray having a short length (St).
5). Then, the tip of the second spray overtakes the tip of the first spray and reaches farther than the first spray (St6).

【0029】このようにして要求燃料噴射量を複数回に
分けて噴射することによって形成される複合的な噴霧
は、1回のみの噴射による噴霧に比べてよりコンパクト
であり、燃焼室4の一部に燃料をより集中させて分布さ
せることができる。さらに、燃料の噴射開始間隔τ12
や、1回当たりの噴射量の全噴射量に対する割合などの
噴射条件を、運転条件(例えば、機関回転速度及び機関
負荷)に応じて可変に設定することにより、複数の噴霧
が重なり合う位置や、燃料の集中度を常に最適に保つこ
とができる。
The composite spray formed by injecting the required fuel injection amount in a plurality of times in this manner is more compact than the spray by only one injection, and The fuel can be more concentrated and distributed in the section. Further, the fuel injection start interval τ12
By setting the injection conditions such as the ratio of the injection amount per injection to the total injection amount variably according to the operating conditions (for example, the engine speed and the engine load), the position where a plurality of sprays overlap, The fuel concentration can always be kept optimal.

【0030】そして、噴射された燃料は吸気のタンブル
流動に乗って点火プラグ9方向へ輸送されるため、点火
プラグ9の近傍において上記の重なり合いを生じさせる
こともできる。このようにして点火プラグ9の近傍に複
合的な噴霧を形成することにより、成層燃焼を行わせる
場合の混合気形成をより良好なものとし、燃焼安定性を
改善することができる。
Since the injected fuel is transported in the direction of the spark plug 9 on the tumble flow of the intake air, the above-mentioned overlap can be generated near the spark plug 9. By forming a composite spray in the vicinity of the ignition plug 9 in this manner, it is possible to improve the mixture formation in performing stratified combustion and improve the combustion stability.

【0031】図7は、点火プラグ9の近傍における空燃
比の変動を1回噴射の場合(点線で表示)と2回噴射の
場合(実線で表示)とで比較して示したものあるが、同
図を参照すれば、点火プラグ9の近傍の空燃比が適正な
範囲にある期間(点火可能期間)が、1回噴射の場合よ
りも長期化されていることが分かる。次に、以上に説明
した混合気形成のための制御内容について説明する。
FIG. 7 shows the variation of the air-fuel ratio in the vicinity of the spark plug 9 in the case of single injection (indicated by a dotted line) and in the case of double injection (indicated by a solid line). Referring to the figure, it can be seen that the period in which the air-fuel ratio in the vicinity of the ignition plug 9 is within an appropriate range (ignition possible period) is longer than in the case of single injection. Next, the control content for forming the air-fuel mixture described above will be described.

【0032】ここで、図2を参照して、制御系の構成に
ついて簡単に説明する。点火プラグ9、燃料噴射弁10
及びこれに燃料を高圧で供給する燃料ポンプ31は、エ
ンジン制御用コントロールユニット(以下「ECU」と
いう。)21によって制御され、これらの制御のため、
ECU21へは、周知のクランク角センサ41、気筒判
別センサ42、スロットルセンサ43、吸気量センサ4
4、燃料圧力センサ45、空燃比センサ46及び水温セ
ンサ47などからの信号が入力される。
Here, the configuration of the control system will be briefly described with reference to FIG. Spark plug 9, fuel injection valve 10
And a fuel pump 31 for supplying fuel thereto at a high pressure is controlled by an engine control unit (hereinafter referred to as “ECU”) 21.
The ECU 21 receives a well-known crank angle sensor 41, a cylinder discrimination sensor 42, a throttle sensor 43, and an intake air amount sensor 4.
4. Signals from the fuel pressure sensor 45, the air-fuel ratio sensor 46, the water temperature sensor 47, and the like are input.

【0033】ECU21は、これら各種センサからの信
号を基にして、燃料噴射及び点火を制御する。燃料噴射
は、機関回転速度と機関負荷とに応じた燃料噴射量を算
出し、燃料ポンプ31によって必要な燃圧を発生させ、
噴射パルス信号として噴射指令を発して燃料噴射弁10
を駆動させて行う。また、点火は、点火信号によって図
示しない点火コイルを駆動させ、点火プラグ9を放電さ
せて行う。
The ECU 21 controls fuel injection and ignition based on signals from these various sensors. The fuel injection calculates a fuel injection amount according to the engine speed and the engine load, and generates a required fuel pressure by the fuel pump 31.
The fuel injection valve 10 issues an injection command as an injection pulse signal.
Is performed. The ignition is performed by driving an ignition coil (not shown) by the ignition signal to discharge the ignition plug 9.

【0034】図8は、圧縮行程に燃料を噴射する成層燃
焼運転時における制御(主に、燃料噴射制御)のフロー
チャートである。以下、同図を参照して説明する。ステ
ップ(以下「S」と略す。)1では、運転状態を検出す
る。すなわち、前述のセンサからの信号に基づいて、機
関回転速度、機関負荷及び冷却水温などを検出する。
FIG. 8 is a flowchart of control (mainly fuel injection control) during stratified combustion operation in which fuel is injected during the compression stroke. Hereinafter, description will be made with reference to FIG. In step (hereinafter abbreviated as "S") 1, an operating state is detected. That is, the engine speed, the engine load, the cooling water temperature, and the like are detected based on the signal from the sensor.

【0035】S2では、検出された運転状態に最適な燃
料噴射量(要求燃料噴射量)を算出する。この計算は、
理論的な計算式を用いても、またマップを用いて行って
もよい。S3では、算出された要求燃料噴射量と、燃料
圧力センサ45によって検出された燃料圧力とに基づい
て、噴射パルス信号幅(全噴射期間であり、1回のみの
噴射による場合にはそのパルス幅に、分割噴射の場合に
は各パルスの合計幅に相当する。)τを算出する。
In S2, the optimum fuel injection amount (required fuel injection amount) for the detected operating state is calculated. This calculation is
The calculation may be performed using a theoretical calculation formula or a map. In S3, based on the calculated required fuel injection amount and the fuel pressure detected by the fuel pressure sensor 45, the injection pulse signal width (the entire injection period, and the pulse width in the case of only one injection, (In the case of split injection, this corresponds to the total width of each pulse.) Τ is calculated.

【0036】S4では、冷却水温(機関壁面温度)から
機関冷間時であるか否かを判定し、機関冷間時である場
合にはS8へ、それ以外の場合(機関温間時)にはS5
へ進む。S8における制御についてはさらに後述する
が、機関冷間時には、機関壁面温度が低く、燃料の壁面
付着による燃焼性能への悪影響が大きいため、分割噴射
を禁止して1回のみの単一噴射とし、S8で設定される
噴射開始時期より噴射するのである。従って、S4は、
分割噴射禁止手段を構成する。
In S4, it is determined from the cooling water temperature (engine wall temperature) whether or not the engine is in a cold state. If the engine is in a cold state, the process proceeds to S8, otherwise (in an engine warm state). Is S5
Proceed to. Although the control in S8 will be further described later, when the engine is cold, the engine wall temperature is low and the fuel wall adhesion has a large adverse effect on the combustion performance, so the split injection is prohibited and the single injection is performed only once. The injection is performed from the injection start timing set in S8. Therefore, S4 is
This constitutes split injection prohibition means.

【0037】S5では、図9に示すような傾向のマップ
を参照して、1回のみの噴射とするか、または分割噴射
とするかについての噴射モードを決定する。噴射モード
は、機関回転速度及び機関負荷に応じた領域毎に設定
し、成層燃焼運転を行う低回転低負荷運転条件(領域A
1及びA2)において圧縮行程噴射とし、このうち、特
に機関回転速度及び機関負荷が低い領域A1で分割噴射
モードを選択し、それ以外の領域A2で1回噴射モード
を選択する。一方、領域A1及びA2以外の領域Bで
は、単一の吸気行程噴射(すなわち、1回噴射モード)
を選択し、均質燃焼運転を行う。そして、分割噴射モー
ドが選択された場合にはS6へ進み、1回噴射モードが
選択された場合にはS8へ進む。
In S5, an injection mode for determining whether injection is performed only once or split injection is determined with reference to a tendency map as shown in FIG. The injection mode is set for each region corresponding to the engine speed and the engine load, and the low-speed low-load operation condition (region A) for performing the stratified combustion operation.
In 1 and A2), compression stroke injection is performed. Among them, the split injection mode is selected particularly in the region A1 where the engine speed and the engine load are low, and the single injection mode is selected in the other regions A2. On the other hand, in the region B other than the regions A1 and A2, a single intake stroke injection (that is, a single injection mode) is performed.
And perform a homogeneous combustion operation. When the split injection mode is selected, the process proceeds to S6, and when the single injection mode is selected, the process proceeds to S8.

【0038】S6では、噴射パルス信号幅(全噴射期
間)τ及び分割回数N(ここでは2)を用い、かつ図1
0に示すような傾向のマップを参照して、各回の噴射に
おける噴射パルス信号幅τ1,τ2を算出する。なお、
図10のマップは、要求燃料噴射量に対する最終回(2
回目)の噴射量割合rの最適値を、機関回転速度と機関
負荷とに応じて割り付けたものであり、低回転及び低負
荷ほど大きく設定してある。ここで、噴射パルス信号幅
τ1及びτ2は、τ1=τ−τ2、τ2=τ×rであ
る。
In step S6, the injection pulse signal width (full injection period) τ and the number of divisions N (here, 2) are used, and FIG.
The injection pulse signal widths τ1 and τ2 in each injection are calculated with reference to a map having a tendency as shown in FIG. In addition,
The map of FIG. 10 shows the final time (2
The optimum value of the injection amount ratio r of the second time is assigned according to the engine speed and the engine load, and is set to be larger as the rotation speed and the load become lower. Here, the ejection pulse signal widths τ1 and τ2 are τ1 = τ−τ2 and τ2 = τ × r.

【0039】このように最終回の噴射量を機関回転速度
及び機関負荷に応じて変化させるのは、次の理由によ
る。一般的に、燃焼室内に噴射された燃料は、時間の経
過とともに分散(拡散)し、成層化された混合気塊の周
囲に希薄な混合気が形成され、これがHC排出の主な原
因となる。分割噴射を行う場合には、前述の通り燃料の
集中化が可能であるが、同一の間隔で燃料を噴射すると
すれば、最終回に噴射される燃料の割合を大きくした方
が分散が抑えられ、希薄な混合気の発生を抑制すること
ができるのである。
The reason why the final injection amount is changed in accordance with the engine speed and the engine load is as follows. In general, fuel injected into a combustion chamber is dispersed (diffused) with the passage of time, and a lean mixture is formed around a stratified mixture, which is a main cause of HC emission. . In the case of performing the split injection, the fuel can be concentrated as described above.However, if the fuel is injected at the same interval, the dispersion can be suppressed by increasing the proportion of the fuel injected at the last time. Thus, the generation of a lean mixture can be suppressed.

【0040】従って、燃焼安定性が低下し易い機関低回
転運転時及び機関低負荷運転時ほど最終回の噴射量割合
を増すことにより、点火プラグ9の近傍における燃料の
集中度をより増大させ、点火プラグ9の近傍における適
正濃度の混合気の存在時間を延長し、燃焼安定性の低下
を防ぐことができる。S7では、図11に示すような傾
向のマップを参照して、噴射開始間隔τ12を設定す
る。噴射開始間隔τ12は、図示のように、機関回転速
度が低いほど拡大する。つまり、吸気のタンブル流動が
弱くなり、噴射された燃料の点火プラグ9方向への輸送
が行われ難くなるほど、噴射開始間隔τ12を拡大する
のである。
Therefore, by increasing the ratio of the final injection amount during the low engine speed operation and the low engine load operation in which the combustion stability is apt to decrease, the concentration of fuel near the ignition plug 9 is further increased. It is possible to extend the existence time of the air-fuel mixture having an appropriate concentration in the vicinity of the ignition plug 9 and prevent a decrease in combustion stability. In S7, the injection start interval τ12 is set with reference to the tendency map shown in FIG. As shown, the injection start interval τ12 increases as the engine speed decreases. In other words, the injection start interval τ12 is increased as the intake air tumble flow becomes weaker and the injected fuel is less likely to be transported toward the ignition plug 9.

【0041】また、各回の噴射量は、機関負荷の低下に
応じて減少されるが、その一方で噴射開始間隔τ12
は、図11のマップに示すように、機関回転速度が一定
であるならば、機関負荷が変化したとしてもほぼ一定に
保たれるようにすることにより、分割噴射された燃料の
重なり合いが生じる位置が、機関負荷によらず常に点火
プラグ9の近傍となるようにしている。これにより、機
関低負荷運転時においても燃料の集中度を良好なものと
し、点火可能期間を確保することができる。
The injection amount of each injection is reduced in accordance with the decrease of the engine load, while the injection start interval τ12
As shown in the map of FIG. 11, if the engine rotational speed is constant, the position where the overlapping of the fuels split and injected occurs by keeping the engine load substantially constant even if the engine load changes. However, it is always arranged near the spark plug 9 irrespective of the engine load. As a result, even during the low engine load operation, the concentration of the fuel can be made good, and the ignition possible period can be secured.

【0042】S8では、噴射開始間隔τ12及び噴射パ
ルス信号幅τ2を用い、かつ図12に示すような傾向の
噴射終了時期Ceのマップを参照して、各回の噴射開始
時期C1及びC2を設定する。図12のマップは、噴射
終了時期Ceの最適値を機関回転速度と機関負荷とに応
じて割り付けたものであり、機関低回転運転時ほど、ま
た機関高負荷運転時ほど遅角側としている。そして、各
噴射開始時期は、C1=Ce−C(τ12)−C(τ
2)、及びC2=Ce−C(τ2)の2つの式から算出
することができる。なお、C(τ2)は、噴射期間τ2
のクランク角換算値である(他の期間についても同
様)。
In step S8, the injection start timings C1 and C2 are set using the injection start interval τ12 and the injection pulse signal width τ2 and referring to a map of the injection end timing Ce having a tendency as shown in FIG. . In the map of FIG. 12, the optimum value of the injection end timing Ce is assigned in accordance with the engine speed and the engine load, and the more the engine is operated at a lower speed and the engine is operated at a higher load, the more retarded the engine is. And each injection start timing is C1 = Ce−C (τ12) −C (τ
2) and C2 = Ce−C (τ2). Note that C (τ2) is the injection period τ2
(The same applies to other periods).

【0043】S9では、図13に示すような傾向のマッ
プを参照して、点火時期ADVを設定する。図13のマ
ップは、点火時期ADVの最適値を機関回転速度と機関
負荷とに応じて割り付けたものであり、機関低回転運転
時ほど、また機関高負荷運転時ほど遅角側としている。
このマップを参照して点火時期ADVを設定した結果、
分割噴射された複数の噴霧が点火プラグ9の近傍におい
て重なり合う時期に点火プラグ9が作動する。従って、
S9は、点火時期制御手段を構成する。
In S9, the ignition timing ADV is set with reference to a tendency map as shown in FIG. In the map of FIG. 13, the optimum value of the ignition timing ADV is assigned in accordance with the engine speed and the engine load.
As a result of setting the ignition timing ADV with reference to this map,
The ignition plug 9 operates at a timing when the plurality of sprays split and injected overlap near the ignition plug 9. Therefore,
S9 constitutes ignition timing control means.

【0044】以上に説明したように、圧縮行程に燃料を
噴射する場合の要求燃料噴射量を、燃料噴射弁10の噴
射特性が等しい、すなわち、それぞれの燃料の噴霧がほ
ぼ同様な形態となる長さの複数の噴射期間τ1及びτ2
に分けて噴射するとともに、先に噴射された燃料の噴霧
に対して後に噴射された燃料の噴霧が点火プラグ9の近
傍において重なり合うように噴射することで、点火プラ
グ9の近傍に形成される混合気の燃料の集中度を高め、
可燃混合気周辺の過度に希薄な混合気の発生を防ぐとと
もに、点火プラグ9の近傍における適性濃度の混合気の
存在時間、すなわち点火可能期間を充分に確保し、燃焼
安定性を改善することができる。
As described above, the required fuel injection amount in the case of injecting fuel in the compression stroke is determined by determining the injection characteristic of the fuel injection valve 10, that is, the length of the fuel injection valve 10 in which the respective fuel sprays have substantially the same form. Multiple injection periods τ1 and τ2
And the fuel spray injected first is sprayed so that the fuel spray injected later overlaps the fuel spray injected earlier in the vicinity of the spark plug 9, so that the mixture formed near the spark plug 9 is formed. Raise the concentration of fuel
In addition to preventing the generation of an excessively lean air-fuel mixture around the combustible air-fuel mixture, it is necessary to sufficiently secure the existence time of the air-fuel mixture having an appropriate concentration in the vicinity of the ignition plug 9, that is, the ignition possible period, and to improve the combustion stability. it can.

【0045】なお、図8に示したフローチャートのステ
ップのうち、S1〜8の処理が分割噴射制御手段を構成
し、S9の処理が点火時期制御手段を構成する。図14
は、本発明の他の実施形態としての燃料噴射制御におけ
る噴射モード決定用のマップ(前述のS5において参照
された図9のマップに相当する。)を示している。
Note that, of the steps in the flowchart shown in FIG. 8, the processing of S1 to S8 constitutes the divided injection control means, and the processing of S9 constitutes the ignition timing control means. FIG.
9 shows an injection mode determination map (corresponding to the map in FIG. 9 referred to in S5 described above) in fuel injection control as another embodiment of the present invention.

【0046】ここでは、噴射モードは、前述同様に機関
回転速度及び機関負荷に応じた領域毎に設定され、成層
燃焼運転を行う低回転低負荷運転条件(領域A1−2,
A1−3及びA2)において圧縮行程噴射とし、それ以
外の条件(領域B)では単一の吸気行程噴射(すなわ
ち、1回噴射モード)を選択して均質燃焼運転を行う。
さらに、成層燃焼運転を行う場合において、特に機関回
転速度及び機関負荷が低い領域A1−2及びA1−3で
分割噴射モードを選択するが、このうち低回転及び中負
荷程度の運転条件となる領域A1−3において、要求燃
料噴射量を3回に分けて噴射する3回噴射モードを選択
する。それ以外の領域A1−2では、2回噴射モードを
選択する。
In this case, the injection mode is set for each region corresponding to the engine speed and the engine load as described above, and the low-speed low-load operation condition (region A1-2, A1-2) for performing the stratified combustion operation is performed.
In A1-3 and A2), compression stroke injection is performed, and in other conditions (region B), a single intake stroke injection (that is, single injection mode) is selected to perform homogeneous combustion operation.
Further, in the case of performing the stratified combustion operation, the split injection mode is selected particularly in the regions A1-2 and A1-3 where the engine speed and the engine load are low. In A1-3, a three-time injection mode in which the required fuel injection amount is divided into three times and injected is selected. In the other area A1-2, the two-time injection mode is selected.

【0047】なお、領域A2では、単一の圧縮行程噴射
(すなわち、1回噴射モード)を選択する。図15は、
3回噴射モードが選択された場合における噴射期間及び
点火時期、並びに分割噴射された燃料の噴霧の先端到達
距離を、時間の経過に対して示した図である。
In the area A2, a single compression stroke injection (ie, a single injection mode) is selected. FIG.
FIG. 5 is a diagram illustrating an injection period and an ignition timing when a three-time injection mode is selected, and a tip end reach distance of a spray of dividedly injected fuel with respect to a lapse of time.

【0048】3回噴射モードにおいても、燃料噴射弁1
0は、要求燃料噴射量(噴射パルス信号幅τ)を噴射特
性が等しい(各回の噴射パルス信号幅τ1〜τ3は、図
4に示す初期噴霧期間t0〜t1より長い。)複数の噴
霧に分けて噴射する。ここで、噴射開始間隔τ12及び
τ23は、後の噴射ほど直前の噴射から短い時間に設置
されるのがよい。すなわち、3回噴射モードを例にとれ
ば、τ23<τ12とする。
Even in the three-time injection mode, the fuel injection valve 1
0 indicates that the required fuel injection amount (injection pulse signal width τ) is divided into a plurality of sprays having the same injection characteristics (each injection pulse signal width τ1 to τ3 is longer than the initial spray period t0 to t1 shown in FIG. 4). To inject. Here, the injection start intervals τ12 and τ23 are preferably set such that the later the injection, the shorter the time from the immediately preceding injection. That is, in the case of the triple injection mode, τ23 <τ12.

【0049】そして、先に噴射された燃料の噴霧は後に
噴射された燃料の噴霧に追い付いて重なり合うため、第
1回目〜第3回目に噴射された燃料を点火プラグ9の近
傍において重なり合わせ、ここに2回噴射による場合よ
り長さが短く、集中度がより高い複合的な噴霧を形成す
ることができる。なお、このように形成された複合的な
噴霧に対して点火するのが好ましいことは、言うまでも
ない。
Since the previously injected fuel spray catches up with the subsequently injected fuel spray and overlaps, the first to third fuel injections overlap near the spark plug 9 and are overlapped. In this case, a complex spray having a shorter length and a higher degree of concentration can be formed as compared with the case where two injections are performed. It is needless to say that it is preferable to ignite the composite spray formed as described above.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の構成を示すブロック図FIG. 1 is a block diagram showing the configuration of the present invention.

【図2】本発明の一実施形態に係る直噴ガソリンエンジ
ンの断面側面図
FIG. 2 is a cross-sectional side view of a direct injection gasoline engine according to an embodiment of the present invention.

【図3】燃料噴射時における噴霧の拡大図FIG. 3 is an enlarged view of a spray during fuel injection.

【図4】同上噴霧の噴霧角及び速度の変化を示す図FIG. 4 is a diagram showing changes in the spray angle and the speed of the same spray.

【図5】分割噴射(2回噴射)を行う場合における噴射
期間及び点火時期、並びに分割して噴射された燃料噴霧
の先端到達距離を、時間の経過に対して示す図
FIG. 5 is a diagram illustrating an injection period and an ignition timing in the case of performing a split injection (double injection), and a reaching distance of a tip end of a fuel spray injected in a divided manner with respect to a lapse of time.

【図6】噴霧先端到達距離と噴射量との関係を示す図FIG. 6 is a diagram showing a relationship between a spray tip reaching distance and an injection amount.

【図7】1回噴射の場合と2回噴射の場合との点火可能
期間の違いを示す図
FIG. 7 is a diagram showing a difference in an ignition possible period between a single injection and a double injection;

【図8】本発明の一実施形態に係る燃料噴射制御のフロ
ーチャート
FIG. 8 is a flowchart of fuel injection control according to an embodiment of the present invention.

【図9】噴射モード決定用のマップの一例を示す図FIG. 9 is a diagram showing an example of a map for determining an injection mode.

【図10】全燃料噴射量に対する最終回の噴射量割合
の、機関運転条件に応じた変化傾向を示す図
FIG. 10 is a diagram showing a change tendency of the final injection amount ratio to the total fuel injection amount according to engine operating conditions.

【図11】噴射開始間隔の機関運転条件に応じた変化傾
向を示す図
FIG. 11 is a diagram showing a change tendency of an injection start interval according to engine operating conditions.

【図12】噴射終了時期の機関運転条件に応じた変化傾
向を示す図
FIG. 12 is a diagram showing a change tendency of an injection end timing according to engine operating conditions.

【図13】点火時期の機関運転条件に応じた変化傾向を
示す図
FIG. 13 is a diagram showing a change tendency of an ignition timing according to an engine operating condition.

【図14】噴射モード決定用のマップの他の例を示す図FIG. 14 is a view showing another example of a map for determining an injection mode.

【図15】分割噴射(3回噴射)を行う場合における噴
射期間及び点火時期、並びに分割して噴射された燃料噴
霧の先端到達距離を、時間の経過に対して示す図
FIG. 15 is a diagram showing an injection period and an ignition timing in the case of performing a divided injection (three-time injection), and a reaching distance of a tip end of a fuel spray injected in a divided manner with respect to a lapse of time.

【符号の説明】[Explanation of symbols]

E…エンジン 1…シリンダブロック 2…シリンダヘッド 3…ピストン 4…燃焼室 5…吸気ポート 6…排気ポート 9…点火プラグ 10…燃料噴射弁 21…エンジン制御用ユニット 31…燃料ポンプ E ... Engine 1 ... Cylinder block 2 ... Cylinder head 3 ... Piston 4 ... Combustion chamber 5 ... Intake port 6 ... Exhaust port 9 ... Spark plug 10 ... Fuel injection valve 21 ... Engine control unit 31 ... Fuel pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保 賢明 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 漆原 友則 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 3G022 AA07 EA00 GA05 GA06 GA08 GA09 3G023 AA00 AA01 AA04 AB03 AC05 AD01 AD06 AD29 AG01 3G301 HA01 HA04 HA16 JA26 KA09 KA25 LB04 MA11 MA18 MA26 PA01Z PA11Z PB08Z PD03Z PE01Z PE03Z PE05Z PE08Z ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor, Kenmei Kubo, 2 Takara-cho, Kanagawa-ku, Yokohama, Kanagawa Prefecture Inside Nissan Motor Co., Ltd. Term (reference) 3G022 AA07 EA00 GA05 GA06 GA08 GA09 3G023 AA00 AA01 AA04 AB03 AC05 AD01 AD06 AD29 AG01 3G301 HA01 HA04 HA16 JA26 KA09 KA25 LB04 MA11 MA18 MA26 PA01Z PA11Z PB08Z PD03Z PE01Z PE03Z PE05Z PE08

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】燃焼室内に燃料を直接噴射する燃料噴射弁
と、点火プラグとを備え、少なくとも圧縮行程において
燃料を噴射する運転条件を持つ内燃機関の燃焼制御装置
であって、 前記燃料噴射弁に対して、圧縮行程に燃料を噴射する場
合の要求燃料噴射量を、圧縮行程において、前記燃料噴
射弁の噴射特性がほぼ等しくなる複数の噴射期間に分割
して、噴射させる分割噴射制御手段を備えることを特徴
とする内燃機関の燃焼制御装置。
1. A combustion control device for an internal combustion engine, comprising: a fuel injection valve for directly injecting fuel into a combustion chamber; and a spark plug, and having an operating condition for injecting fuel at least in a compression stroke. In contrast, divided injection control means for dividing a required fuel injection amount in the case of injecting fuel in the compression stroke into a plurality of injection periods in which the injection characteristics of the fuel injection valve are substantially equal in the compression stroke, and injecting the divided injection periods. A combustion control device for an internal combustion engine, comprising:
【請求項2】前記分割噴射制御手段は、前記分割して噴
射された燃料のうち先に噴射されたものに対して、その
後に噴射された燃料が前記点火プラグの近傍において重
なるように、噴射させることを特徴とする請求項1に記
載の内燃機関の燃焼制御装置。
2. The split injection control means according to claim 1, wherein said divided fuel is injected in such a manner that fuel injected later is overlapped with fuel injected earlier in the vicinity of said spark plug. The combustion control apparatus for an internal combustion engine according to claim 1, wherein the control is performed.
【請求項3】前記点火プラグに対して、前記先に噴射さ
れた燃料と後に噴射された燃料とが点火プラグの近傍に
おいて重なり合っているときに点火させる点火時期制御
手段を設けたことを特徴とする請求項2に記載の内燃機
関の燃焼制御装置。
3. An ignition timing control means for igniting the spark plug when the previously injected fuel and the subsequently injected fuel overlap near the spark plug. The combustion control device for an internal combustion engine according to claim 2.
【請求項4】前記分割噴射制御手段は、運転条件に応じ
て、噴射開始間隔及び噴射量割合のうち少なくとも一方
を可変とすることを特徴とする請求項1〜3のいずれか
1つに記載の内燃機関の燃焼制御装置。
4. The apparatus according to claim 1, wherein said divided injection control means changes at least one of an injection start interval and an injection amount ratio according to operating conditions. Combustion control device for an internal combustion engine.
【請求項5】前記分割噴射制御手段は、機関回転速度の
低下に応じて噴射開始間隔を拡大することを特徴とする
請求項4に記載の内燃機関の燃焼制御装置。
5. The combustion control apparatus for an internal combustion engine according to claim 4, wherein said split injection control means extends an injection start interval in accordance with a decrease in engine speed.
【請求項6】前記分割噴射制御手段は、機関回転速度の
低下に応じて全噴射量に対する最終回の噴射量割合を増
大させることを特徴とする請求項4又は5に記載の内燃
機関の燃焼制御装置。
6. The combustion of an internal combustion engine according to claim 4, wherein said split injection control means increases the ratio of the final injection amount to the total injection amount in accordance with a decrease in the engine speed. Control device.
【請求項7】前記分割噴射制御手段は、機関負荷の低下
に対して、噴射開始間隔をほぼ一定に保ちながら1回当
たりの噴射量を減少させることを特徴とする請求項4〜
6のいずれか1つに記載の内燃機関の燃焼制御装置。
7. The fuel injection control device according to claim 4, wherein the split injection control means reduces the injection amount per injection while keeping the injection start interval substantially constant with respect to a decrease in engine load.
7. The combustion control device for an internal combustion engine according to any one of 6.
【請求項8】前記分割噴射制御手段は、機関負荷の低下
に応じて全噴射量に対する最終回の噴射量割合を増大さ
せることを特徴とする請求項4〜7のいずれか1つに記
載の内燃機関の燃焼制御装置。
8. The apparatus according to claim 4, wherein said split injection control means increases the ratio of the final injection amount to the total injection amount in response to a decrease in engine load. A combustion control device for an internal combustion engine.
【請求項9】前記分割噴射制御手段に対して、運転条件
に応じて分割回数を設定する分割回数設定手段を設けた
ことを特徴とする請求項1〜8のいずれか1つに記載の
内燃機関の燃焼制御装置。
9. The internal combustion engine according to claim 1, wherein said split injection control means is provided with a split count setting means for setting a split count according to an operating condition. Engine combustion control device.
【請求項10】前記分割噴射制御手段は、噴射期間の間
の噴射休止期間が前記燃料噴射弁の最短閉弁期間より短
くなる条件において、前記要求燃料噴射量を1回の噴射
によって噴射することを特徴とする請求項1〜9のいず
れか1つに記載の内燃機関の燃焼制御装置。
10. The split injection control means injects the required fuel injection amount by one injection under a condition that an injection suspension period between injection periods is shorter than a shortest valve closing period of the fuel injection valve. The combustion control device for an internal combustion engine according to any one of claims 1 to 9, wherein:
【請求項11】前記噴射休止期間が最短閉弁期間より短
くなる条件は、前記内燃機関の高回転及び高負荷運転条
件であることを特徴とする請求項10に記載の内燃機関
の燃焼制御装置。
11. A combustion control apparatus for an internal combustion engine according to claim 10, wherein the condition that the injection suspension period becomes shorter than the shortest valve closing period is a high rotation and high load operation condition of the internal combustion engine. .
【請求項12】前記分割噴射制御手段は、3回以上の分
割噴射を行う場合に、後の噴射ほど直前の噴射からの噴
射開始間隔を短縮して噴射させることを特徴とする請求
項1〜11のいずれか1つに記載の内燃機関の燃焼制御
装置。
12. The split injection control means according to claim 1, wherein when performing three or more split injections, a later injection is performed with a shorter injection start interval from the immediately preceding injection. 12. The combustion control device for an internal combustion engine according to any one of 11.
【請求項13】機関温度検出手段と、該手段からの出力
を受け、機関冷間時に前記分割噴射制御手段による燃料
の分割噴射を禁止させる分割噴射禁止手段を設けたこと
を特徴とする請求項1〜12のいずれか1つに記載の内
燃機関の燃焼制御装置。
13. An engine temperature detecting means and split injection prohibiting means for receiving an output from said means and prohibiting split fuel injection by said split injection control means when the engine is cold. 13. The combustion control device for an internal combustion engine according to any one of 1 to 12.
JP2000305348A 2000-10-04 2000-10-04 Combustion control device for internal combustion engine Expired - Lifetime JP3852277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000305348A JP3852277B2 (en) 2000-10-04 2000-10-04 Combustion control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000305348A JP3852277B2 (en) 2000-10-04 2000-10-04 Combustion control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002115593A true JP2002115593A (en) 2002-04-19
JP3852277B2 JP3852277B2 (en) 2006-11-29

Family

ID=18786234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000305348A Expired - Lifetime JP3852277B2 (en) 2000-10-04 2000-10-04 Combustion control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3852277B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004099598A1 (en) * 2003-05-09 2004-11-18 Daimlerchrysler Ag Method for operating an externally ignited internal combustion engine
US7314036B2 (en) 2002-09-12 2008-01-01 Daimlerchrysler Ag Methods for operating a spark-ignition internal combustion engine
US7360522B2 (en) 2006-07-25 2008-04-22 General Electric Company System and method for operating a turbo-charged engine
JP2008101528A (en) * 2006-10-18 2008-05-01 Toyota Motor Corp In-cylinder internal combustion engine
JP2009174344A (en) * 2008-01-22 2009-08-06 Suzuki Motor Corp Control device for cylinder injection type internal combustion engine
JP2010071250A (en) * 2008-09-22 2010-04-02 Nissan Motor Co Ltd Direct-injection spark-ignition internal combustion engine
JP2015140772A (en) * 2014-01-30 2015-08-03 マツダ株式会社 Direct injection gasoline engine controller
WO2017122328A1 (en) * 2016-01-14 2017-07-20 日産自動車株式会社 Control method and control device for in-cylinder direct injection type internal combustion engine
JP2021050642A (en) * 2019-09-24 2021-04-01 本田技研工業株式会社 Fuel injection control device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7314036B2 (en) 2002-09-12 2008-01-01 Daimlerchrysler Ag Methods for operating a spark-ignition internal combustion engine
WO2004099598A1 (en) * 2003-05-09 2004-11-18 Daimlerchrysler Ag Method for operating an externally ignited internal combustion engine
US7404390B2 (en) 2003-05-09 2008-07-29 Daimler Ag Method for operating an externally ignited internal combustion engine
US7360522B2 (en) 2006-07-25 2008-04-22 General Electric Company System and method for operating a turbo-charged engine
JP2008101528A (en) * 2006-10-18 2008-05-01 Toyota Motor Corp In-cylinder internal combustion engine
JP2009174344A (en) * 2008-01-22 2009-08-06 Suzuki Motor Corp Control device for cylinder injection type internal combustion engine
JP2010071250A (en) * 2008-09-22 2010-04-02 Nissan Motor Co Ltd Direct-injection spark-ignition internal combustion engine
JP2015140772A (en) * 2014-01-30 2015-08-03 マツダ株式会社 Direct injection gasoline engine controller
WO2017122328A1 (en) * 2016-01-14 2017-07-20 日産自動車株式会社 Control method and control device for in-cylinder direct injection type internal combustion engine
CN108474312A (en) * 2016-01-14 2018-08-31 日产自动车株式会社 The control method and control device of Incylinder direct injection internal combustion engine
JPWO2017122328A1 (en) * 2016-01-14 2018-10-11 日産自動車株式会社 Control method and control device for in-cylinder direct injection internal combustion engine
RU2675804C1 (en) * 2016-01-14 2018-12-25 Ниссан Мотор Ко., Лтд. Controlling method and control device for internal combustion engine with direct injection
CN108474312B (en) * 2016-01-14 2019-04-26 日产自动车株式会社 In-cylinder direct injection internal combustion engine control method and control device
US10570850B2 (en) 2016-01-14 2020-02-25 Nissan Motor Co., Ltd. Control method and control device of direct-injection internal combustion engine
JP2021050642A (en) * 2019-09-24 2021-04-01 本田技研工業株式会社 Fuel injection control device
JP7111674B2 (en) 2019-09-24 2022-08-02 本田技研工業株式会社 fuel injection controller

Also Published As

Publication number Publication date
JP3852277B2 (en) 2006-11-29

Similar Documents

Publication Publication Date Title
JP3692930B2 (en) Combustion control device for direct-injection spark-ignition internal combustion engine
EP0982489B1 (en) Control device for direct injection engine
US6067954A (en) Direct fuel injection engine
US7051701B2 (en) Direct fuel injection/spark ignition engine control device
US7096853B2 (en) Direct fuel injection/spark ignition engine control device
US7730871B2 (en) Fuel injection control method for a direct injection spark ignition internal combustion engine
US10436170B2 (en) Internal combustion engine control device and internal combustion engine control method
JP2003083124A (en) Control device for spark ignition type direct injection engine
JP6784214B2 (en) Internal combustion engine control device
US20050166891A1 (en) Controller for direct injection internal combustion engine
JP2002115593A (en) Combustion control apparatus for internal combustion engine
US7104249B2 (en) Direct fuel injection/spark ignition engine control device
US20180010548A1 (en) Control device for internal combustion engine
JP3265997B2 (en) Control device for internal combustion engine
JP4055292B2 (en) Direct injection spark ignition internal combustion engine fuel injection control device
JPH11173180A (en) Cylinder injection type spark ignition engine
JP4046055B2 (en) In-cylinder internal combustion engine
JP3528310B2 (en) Fuel injection control device for direct injection spark ignition engine
JP3196674B2 (en) In-cylinder injection spark ignition engine
JP2006336502A (en) Cylinder injection internal combustion engine
JP5195383B2 (en) In-cylinder direct injection spark ignition internal combustion engine
US11391236B2 (en) Control method of internal combustion engine and internal combustion engine
JP6747460B2 (en) Control device for internal combustion engine
JP2004316568A (en) Cylinder direct injection type internal combustion engine
KR100305822B1 (en) Fuel injection method for direct injection gasoline engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060828

R150 Certificate of patent or registration of utility model

Ref document number: 3852277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7