JP2002105766A - Method for flame resisting - Google Patents
Method for flame resistingInfo
- Publication number
- JP2002105766A JP2002105766A JP2000298996A JP2000298996A JP2002105766A JP 2002105766 A JP2002105766 A JP 2002105766A JP 2000298996 A JP2000298996 A JP 2000298996A JP 2000298996 A JP2000298996 A JP 2000298996A JP 2002105766 A JP2002105766 A JP 2002105766A
- Authority
- JP
- Japan
- Prior art keywords
- hot air
- heat treatment
- fiber bundle
- nozzle
- blown
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 239000000835 fiber Substances 0.000 claims abstract description 53
- 229920002239 polyacrylonitrile Polymers 0.000 claims abstract description 13
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 11
- 239000004917 carbon fiber Substances 0.000 claims abstract description 11
- 239000002243 precursor Substances 0.000 claims abstract description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims description 46
- 239000007921 spray Substances 0.000 claims description 4
- 238000007664 blowing Methods 0.000 abstract description 19
- 238000007599 discharging Methods 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000005338 heat storage Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 102100036738 Guanine nucleotide-binding protein subunit alpha-11 Human genes 0.000 description 1
- 101100283445 Homo sapiens GNA11 gene Proteins 0.000 description 1
- 101001088883 Homo sapiens Lysine-specific demethylase 5B Proteins 0.000 description 1
- 101001057156 Homo sapiens Melanoma-associated antigen C2 Proteins 0.000 description 1
- 102100033247 Lysine-specific demethylase 5B Human genes 0.000 description 1
- 102100027252 Melanoma-associated antigen C2 Human genes 0.000 description 1
- 102100038968 WAP four-disulfide core domain protein 1 Human genes 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
Landscapes
- Treatments Of Macromolecular Shaped Articles (AREA)
- Inorganic Fibers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、安定で、生産性に
優れた炭素繊維の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a stable and highly productive carbon fiber.
【0002】[0002]
【従来の技術】ポリアクリロニトリル系前駆体繊維を耐
炎化する方法としては、特開平10−237723号公
報に示される方法が知られている。熱風吹き出し口と吸
い込み口を糸条の通路の上下に備えた構造を持ち、熱処
理室内に糸条の移送方向と平行な方向へ熱風を吹き出
し、熱処理室の前後に糸条通過口がスリット状構造のシ
ール室を設けることによって極めて均一な温度制御性を
備えた熱処理炉である。しかし、該方法で耐炎化を行う
場合、アクリル系前駆体繊維束内部および熱処理炉内で
発生する繊維束の単繊維の毛羽は吸い込み口に堆積し、
ひいては繊維束に絡み繊維束の形状すなわち繊維束の最
大厚みを変化させる問題があった。耐炎化反応は発熱反
応であるので、繊維束の最大厚みが大きくなると繊維束
内部に蓄熱し処理温度に対し繊維束内部の温度が極端に
高くなり暴走反応が発生し糸切れをおこす。このため熱
処理炉内の温度を下げて生産を行わなくてはならず、十
分に耐炎化の進行した耐炎化繊維を得るのに時間を要す
るという問題があった。また、堆積した毛羽が隣接する
多繊維束に絡み、一度に多繊維束が蓄熱による糸切れが
発生しやすくなる問題があり、長期連続運転が困難であ
る。2. Description of the Related Art As a method for making a polyacrylonitrile precursor fiber flame-resistant, a method disclosed in Japanese Patent Application Laid-Open No. Hei 10-237723 is known. It has a structure with a hot air outlet and a suction port above and below the yarn passage, and blows out hot air into the heat treatment chamber in a direction parallel to the yarn transfer direction. Is a heat treatment furnace having extremely uniform temperature controllability by providing the seal chamber. However, when performing flame resistance by the method, the fluff of the single fiber of the fiber bundle generated inside the acrylic precursor fiber bundle and in the heat treatment furnace is deposited at the suction port,
As a result, there is a problem that the shape of the fiber bundle, that is, the maximum thickness of the fiber bundle is changed by entanglement with the fiber bundle. Since the flame-resistant reaction is an exothermic reaction, when the maximum thickness of the fiber bundle is increased, heat is stored inside the fiber bundle, the temperature inside the fiber bundle becomes extremely high with respect to the processing temperature, and a runaway reaction occurs to cause yarn breakage. For this reason, there is a problem that production must be performed by lowering the temperature in the heat treatment furnace, and it takes time to obtain oxidized fibers having sufficiently advanced oxidization. Further, there is a problem that the accumulated fluff is entangled with the adjacent multi-fiber bundles, and the multi-fiber bundles are liable to be broken at a time due to heat storage, and it is difficult to perform long-term continuous operation.
【0003】かかる吸い込み口への堆積毛羽を減少させ
る方法としては、吸い込みノズルと繊維束との距離を広
く取り繊維束とノズル間の距離を遠ざけることが考えら
れるが、そのような方法を用いた場合熱処理をを大きく
する必要があり、熱処理炉の設備コストが高くなり、ひ
いては製造コストが高くなる。[0003] As a method of reducing the accumulated fluff to the suction port, it is conceivable to increase the distance between the suction nozzle and the fiber bundle and increase the distance between the fiber bundle and the nozzle. In such a case, it is necessary to increase the heat treatment, which increases the equipment cost of the heat treatment furnace and, consequently, the production cost.
【0004】[0004]
【発明が解決しようとする課題】本発明は、かかる従来
技術の問題点に鑑み、蓄熱による糸切れを減少させて、
安定で、生産性に優れた炭素繊維の製造方法を提供せん
とするものである。SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, the present invention reduces yarn breakage due to heat storage,
It is an object of the present invention to provide a method for producing a stable and highly productive carbon fiber.
【0005】[0005]
【課題を解決するための手段】本発明は、かかる課題を
解決するために、次のような手段を採用するものであ
る。すなわち、本発明の炭素繊維の製造方法は、総フィ
ラメント数が10000本以上で、実質的に無撚りであ
るポリアクリロニトリル系炭素繊維前駆体を耐炎化する
方法において、熱処理室内に被処理物を出し入れする開
口部を有し、かつ、被処理物通過経路に沿う方向へ熱風
を吹き出すノズルと該熱風を吸い込むノズルとを、該被
処理物通過経路の両側に、それぞれ複数個ずつ配設した
熱処理炉を用い、かつ、該熱風を吸い込むノズルの吸い
込み口と、該被処理物との間へ熱風を吹き付けて耐炎化
することを特徴とするものである。The present invention employs the following means in order to solve the above-mentioned problems. That is, in the method for producing a carbon fiber of the present invention, in the method for flame-proofing a polyacrylonitrile-based carbon fiber precursor having a total filament count of 10,000 or more and being substantially untwisted, an object to be treated is taken in and out of a heat treatment chamber. Heat treatment furnace having a plurality of nozzles, each having a plurality of nozzles for blowing hot air in a direction along the workpiece passage, and a plurality of nozzles for sucking the hot air on both sides of the workpiece passage. The hot air is blown between the suction port of a nozzle for sucking the hot air and the object to be treated to make it flame-resistant.
【0006】[0006]
【発明の実施の形態】本発明は、前記課題、つまり蓄熱
による糸切れを減少させて、安定で、生産性に優れた炭
素繊維の製造方法について、鋭意検討し、特定な熱処理
炉で、熱処理炉内循環風吸い込み口と繊維束との間に熱
風を吹き付けて、耐炎化してみたところ、かかる課題を
一挙に解決することを究明したものである。BEST MODE FOR CARRYING OUT THE INVENTION The present invention is directed to a method for producing a stable and highly productive carbon fiber by reducing the above problem, that is, yarn breakage due to heat storage, and conducting a heat treatment in a specific heat treatment furnace. Hot air was blown between the circulating air suction port in the furnace and the fiber bundle to make it flame-resistant, and it was found that such a problem could be solved at once.
【0007】すなわち、総フィラメント数10,000
本以上、好ましくは30,000〜100,000本の
ポリアクリロニトリル系前駆体繊維束を実質的に撚りの
ない状態で、温度200〜300℃の熱処理炉で、ガイ
ドロールで折り返しながら耐炎化し、ついで炭化する炭
素繊維の製造方法において、熱風を、熱処理炉内循環風
吸い込み口と繊維束との間に吹き付け、吸い込み口に堆
積する毛羽を0.2g/7トン耐炎化処理以下に減少さ
せることにより、毛羽の繊維束との絡みを減少させ、繊
維束の最大厚みを常に5,500〜11,000dtex/
mmに保つことができたものである。That is, the total number of filaments is 10,000.
More than 30,000 to 100,000 polyacrylonitrile-based precursor fiber bundles are made substantially non-twisted in a heat treatment furnace at a temperature of 200 to 300 ° C. while being turned by a guide roll to flame resistance. In the method for producing carbonized carbon fibers, hot air is blown between a circulating air suction port in a heat treatment furnace and a fiber bundle to reduce fluff deposited at the suction port to 0.2 g / 7 tons or less of a flameproofing treatment. , Reduce the entanglement of the fluff with the fiber bundle, and always keep the maximum thickness of the fiber bundle at 5,500 to 11,000 dtex /
mm.
【0008】本発明において耐炎化途中の繊維束は、実
質的に撚りのない状態に制御される。ここで実質的に撚
りのない状態とは、通常ガイドロール間で撚りが1mあ
たり0.1ターン以下であることを指す。また、断面形
状が略矩形に保たれており、前駆体繊維束の幅1mmあ
たりの見かけ平均繊度を5,500〜11,000dtex
に保たれている状態をいう。[0008] In the present invention, the fiber bundle in the process of flame resistance is controlled to a substantially twistless state. Here, the state of substantially no twist means that the twist is usually 0.1 turns or less per 1 m between the guide rolls. Further, the cross-sectional shape is kept substantially rectangular, and the apparent average fineness per 1 mm width of the precursor fiber bundle is from 5,500 to 11,000 dtex.
It is a state that is kept.
【0009】吸い込みノズルは一般的に熱処理炉内に位
置し、被処理物上下に配置される。従い吸い込みノズル
口の断面積は、熱処理炉吸い込み口側全断面積に対し小
さい。それに伴い吸い込み口付近の循環風速は実質的に
熱処理炉内平均風速より速く、単繊維束内の単糸毛羽の
堆積が多くなる。毛羽の堆積を減少させるためには、吸
い込み口の断面積は大きい方が好ましい。[0009] The suction nozzle is generally located in the heat treatment furnace, and is disposed above and below the workpiece. Accordingly, the cross-sectional area of the suction nozzle port is smaller than the total cross-sectional area of the heat treatment furnace on the suction port side. Accordingly, the circulating wind speed near the suction port is substantially higher than the average wind speed in the heat treatment furnace, and the accumulation of single yarn fluff in the single fiber bundle increases. In order to reduce the accumulation of fluff, it is preferable that the suction port has a large sectional area.
【0010】吸い込みノズル口形状は、単糸毛羽の引っ
かかりを抑制するために吸い込み口枠は丸若しくは楕円
形状であることが好ましい。また、表面は引っかかり抑
制のため、金属に鏡面メッキ若しくは梨地状のメッキを
施した物が好ましい。The shape of the suction nozzle opening is preferably a round or elliptical shape in order to prevent the single yarn fluff from being caught. Further, in order to prevent the surface from being caught, it is preferable that the metal is subjected to mirror plating or satin-like plating.
【0011】吸い込み口と繊維束の間の吹き付け熱風供
給は、加熱外気供給が好ましく、加熱外気の温度,流量
を自由に設定できる構造が好ましい。The hot air supplied between the suction port and the fiber bundle is preferably supplied with heated outside air, and preferably has a structure in which the temperature and flow rate of the heated outside air can be freely set.
【0012】吹き付け角度は、吸い込み口に対し90°
〜270°が好ましい。より好ましくは120°〜24
0°の範囲である。[0012] The spray angle is 90 ° with respect to the suction port.
~ 270 ° is preferred. More preferably 120 ° -24
The range is 0 °.
【0013】吹き付け熱風温度は、熱処理室内平均温度
以上になると、繊維束の一部が異常加熱され、繊維束内
部の温度が極端に高くなり暴走反応が発生し、糸切れを
おこすため、熱処理炉内平均温度以下が好ましい。ま
た、熱処理炉内平均温度より低すぎると、ポリアクリロ
ニトリルの分解物、油剤の分解物ガスが吸い込み口に凝
縮、付着する。したがって、吹き付け熱風は、熱処理室
内平均温度に対し−50℃〜0℃の範囲が好ましく、よ
り好ましくは−20℃〜0℃の範囲である。When the temperature of the blown hot air exceeds the average temperature in the heat treatment chamber, a part of the fiber bundle is abnormally heated, the temperature inside the fiber bundle becomes extremely high, a runaway reaction occurs, and the yarn breaks. The temperature is preferably lower than the internal average temperature. On the other hand, when the temperature is lower than the average temperature in the heat treatment furnace, decomposed products of polyacrylonitrile and decomposed products of oil agent are condensed and adhere to the suction port. Therefore, the temperature of the blown hot air is preferably in the range of −50 ° C. to 0 ° C., more preferably in the range of −20 ° C. to 0 ° C., with respect to the average temperature in the heat treatment room.
【0014】吹き付け熱風風速は、熱処理室内循環風速
と相対するため、循環風速以上の風速が必要となる。本
発明の目的は吸い込み口に接触する単糸毛羽を吸い込み
口表面から浮かせ単糸切れを起こさせないための熱風吹
き付けであることから、繊維束直近では熱処理室内循環
風速以上の風速が好ましい。吹き出しノズル直近では、
熱処理室内風速に対し1〜7倍の風速を吹き付けること
が好ましい。より好ましくは2〜5倍の範囲である。こ
こで、風速は、吹き付けノズルの吹き出し口から20m
mの位置で、汎用の風速計例えば日本カノマックス社製
ANEMOMASUTER、MODEL6162を使用
し、常温下で幅方向に5点測定し平均値を使用した。Since the blowing hot air speed is opposite to the circulating wind speed in the heat treatment room, a wind speed higher than the circulating wind speed is required. Since the object of the present invention is hot air blowing for floating the single yarn fluff in contact with the suction port from the surface of the suction port so as not to cause breakage of the single yarn, the wind speed is preferably higher than the circulation wind speed in the heat treatment chamber immediately near the fiber bundle. In the immediate vicinity of the blowing nozzle,
It is preferable to blow a wind speed 1 to 7 times the wind speed in the heat treatment room. More preferably, the range is 2 to 5 times. Here, the wind speed is 20 m from the outlet of the spray nozzle.
At the position of m, a general-purpose anemometer, for example, ANEMOMASTER, Model 6162 manufactured by Kanomax Japan, was used to measure five points in the width direction at room temperature, and the average value was used.
【0015】吹き付け熱風量は、特に限定はしないが、
熱処理室内に加熱外気を供給することは、熱処理室内の
風速斑および無風部分を形成することになるため供給熱
風量は、熱処理室内の総循環量に対し0.1〜5容量%
の少量であることが好ましい。ここで、吹き付け熱風量
は吹き付けノズル部からの風速を、ノズルの断面積に乗
じて算出した。The amount of hot air blown is not particularly limited,
Supplying the heated outside air into the heat treatment chamber results in formation of unevenness in wind speed and a non-wind portion in the heat treatment chamber. Therefore, the amount of hot air supplied is 0.1 to 5% by volume based on the total circulation amount in the heat treatment chamber.
Is preferably small. Here, the blowing hot air volume was calculated by multiplying the wind speed from the blowing nozzle by the cross-sectional area of the nozzle.
【0016】以下、図面により本発明を説明する。The present invention will be described below with reference to the drawings.
【0017】図1は、本発明に使用する熱処理炉の一例
を示す概略構成図であり、熱処理室2内に被処理物5を
出し入れする開口部7と、被処理物5を熱処理するため
の熱風を循環する装置が組み込まれている熱処理炉であ
る。この熱処理炉1は熱風を循環するためのファン9、
熱風を加熱するためのヒーター8、熱処理室2内へ熱風
を流すための吹き出しノズル3と、吸い込みノズル4、
それらを接続するダクトで構成されている。熱処理炉1
の両側にガイドロール6を配置し、前駆態繊維束5をジ
グザグ状に熱処理炉内に通し、熱風吹き出し口と吸気口
を糸条の通路の上下に備えた構造を持ち、熱処理室内に
糸条の移送方向と平行な方向へ熱風を吹き出し、図2の
ように、吸い込みノズル4に熱風吹きつけノズル10か
ら熱風吹き付け11を行って、耐炎化する方法である。FIG. 1 is a schematic structural view showing one example of a heat treatment furnace used in the present invention. The heat treatment chamber 2 has an opening 7 for taking in and out the object 5 and a heat treatment chamber 5 for heat treating the object 5. This is a heat treatment furnace incorporating a device for circulating hot air. This heat treatment furnace 1 has a fan 9 for circulating hot air,
A heater 8 for heating hot air, a blowing nozzle 3 for flowing hot air into the heat treatment chamber 2, a suction nozzle 4,
It consists of ducts connecting them. Heat treatment furnace 1
The guide rolls 6 are arranged on both sides of the yarn, and the precursor fiber bundle 5 is passed through the heat treatment furnace in a zigzag shape, and a hot air outlet and a suction hole are provided above and below the yarn passage. In this method, hot air is blown out in a direction parallel to the transfer direction, and hot air is blown from a hot air blowing nozzle 10 to the suction nozzle 4 as shown in FIG.
【0018】図2は、本発明の熱風吹きつけした吸い込
みノズル4周辺部を横から見た拡大断面図を示してい
る。FIG. 2 is an enlarged cross-sectional view of the periphery of the suction nozzle 4 of the present invention which has been blown with hot air, as viewed from the side.
【0019】[0019]
【実施例】以下、本発明を実施例により、さらに詳細に
説明する。 実施例1 単糸デニール1.5d、フィラメント数50,000、
総デニール75,000のポリアクリロニトリル系繊維
束を熱処理室内循環風速5m/秒、熱処理炉内総循環量
200m3/minの熱処理炉内で、吸い込み口と繊維
束間の距離20mmの間に、図2に示す吹き付けノズル
11から、温度210℃、吹き付けノズル直近風速13
m/秒、吹き出し流量0.5m3/min、吹き付け角
度210°で図2に示す12より熱風を吹き付け、耐炎
化温度225℃で20分耐炎化処理の後、さらに235
℃で20分、250℃で20分、連続的に7トンの耐炎
化処理を行ったところ、該吸い込み口に堆積した毛羽
は、0.2gとなり繊維束への毛羽絡みおよび最大厚み
が大きくなることによる蓄熱切れは全く発生しなかっ
た。 実施例2 実施例1と同様のポリアクリロニトリル系繊維束を吸い
込み口と繊維束の間に温度170℃、吹き出し直近風速
13m/s、吹き出し流量0.5m3/minの熱風を
吹き付け実施例1と同様の耐炎化処理を行ったところ、
該吸い込み口にポリアクリロニトリルの分解物、油剤の
分解物ガスが凝縮、付着し該吸い込み口に堆積した毛羽
は、5.2gとなり繊維束への毛羽絡みが発生し最大厚
みが大きくなることによる蓄熱切れは4繊維束と、比較
例1に比して略半減させることができた。 実施例3 実施例1と同様のポリアクリロニトリル系繊維を吸い込
み口と繊維束の間に温度210℃、吹き出し直近風速7
m/s、吹き出し流量0.3m3/minの熱風を吹き
付け実施例1と同様の耐炎化処理を行ったところ、該吸
い込み口堆積した毛羽は1.5gとなり繊維束への毛羽
絡みが発生し、最大厚みが大きくなることによる蓄熱切
れは1繊維束と、比較例1に比して1/7に減少させる
ことができた。 比較例1 実施例1と同様のポリアクリロニトリル系繊維束を吸い
込み口と繊維束の間に熱風を吹き付けなしで実施例1と
同様の耐炎化処理を行ったところ、該吸い込み口に堆積
した毛羽は7.0gとなり繊維束への毛羽絡みが発生
し、最大厚みが大きくなることによる蓄熱切れは7繊維
束も発生した。The present invention will be described below in more detail with reference to examples. Example 1 Single yarn denier 1.5d, number of filaments 50,000,
A polyacrylonitrile fiber bundle having a total denier of 75,000 was placed in a heat treatment furnace having a circulation air velocity of 5 m / sec and a total circulation amount of 200 m 3 / min in the heat treatment furnace at a distance of 20 mm between the suction port and the fiber bundle. From the spray nozzle 11 shown in FIG.
Hot air was blown from 12 shown in FIG. 2 at a blowing rate of 210 m / sec, a blowing flow rate of 0.5 m 3 / min, and a blowing angle of 210 °.
When a 7-ton oxidization treatment was continuously performed at 20 ° C. for 20 minutes and at 250 ° C. for 20 minutes, the fluff deposited on the suction port became 0.2 g, and the fluff entangled with the fiber bundle and the maximum thickness increased. As a result, no heat storage outage occurred at all. Example 2 The same polyacrylonitrile fiber bundle as in Example 1 was blown between the inlet and the fiber bundle with hot air having a temperature of 170 ° C., a blowing speed of 13 m / s, and a blowing flow rate of 0.5 m 3 / min. After performing the flame resistance treatment,
The decomposed product of polyacrylonitrile and the decomposed gas of the oil agent are condensed and adhered to the suction port, and the fuzz deposited at the suction port becomes 5.2 g. The number of cuts could be reduced to almost half as compared with the four fiber bundles and the comparative example 1. Example 3 The same polyacrylonitrile fiber as in Example 1 was introduced at a temperature of 210 ° C. between the inlet and the fiber bundle, and the wind speed immediately after the blowing was 7
When hot air was blown at a flow rate of 0.3 m 3 / min at a flow rate of 0.3 m 3 / min and the same flame resistance treatment was performed as in Example 1, the fluff deposited at the suction port became 1.5 g, and fluff entanglement in the fiber bundle occurred. The heat storage breakage due to the increase in the maximum thickness could be reduced to one fiber bundle and 1/7 of that in Comparative Example 1. Comparative Example 1 The same polyacrylonitrile-based fiber bundle as in Example 1 was subjected to the same flame-proof treatment as in Example 1 without blowing hot air between the suction port and the fiber bundle, and the fluff deposited at the suction port was 7. The fiber bundle became 0 g and fluff was entangled with the fiber bundle, and the heat storage cutoff due to the increase in the maximum thickness resulted in seven fiber bundles.
【0020】以上の実施例1、2、3および比較例1の
結果を表1にまとめた。The results of Examples 1, 2, 3 and Comparative Example 1 are summarized in Table 1.
【0021】[0021]
【表1】 [Table 1]
【0022】[0022]
【発明の効果】本発明によれば、とくに総フィラメント
数が30,000以上のポリアクリロニトリル系前駆体
繊維束を耐炎化するに際し、吸い込み口に堆積する毛羽
を減少させ、毛羽による繊維束の厚みを大きくする要因
を排除できたので、安定して繊維束の厚みを1mmあた
り5,500〜11,000dtexに保つことができ、耐
炎化工程での糸切れ、発火を抑制し安定に、かつ、円
滑、迅速に耐炎化処理できる。 熱処理炉内に堆積する
単繊維毛羽を減少させ、おいては熱処理炉における蓄熱
による糸切れを減少させることができ、安定にプロセス
を通過させて生産性を向上させた炭素繊維製造方法を提
供する。According to the present invention, particularly when the polyacrylonitrile precursor fiber bundle having a total filament number of 30,000 or more is made to be flame-resistant, the fuzz deposited on the suction port is reduced, and the thickness of the fiber bundle due to the fuzz is reduced. The factor of increasing the size of the fiber bundle can be eliminated, so that the thickness of the fiber bundle can be stably maintained at 5,500 to 11,000 dtex per 1 mm. Smooth and quick flameproofing treatment. Provided is a method for producing a carbon fiber in which single fiber fluff deposited in a heat treatment furnace is reduced, yarn breakage due to heat storage in the heat treatment furnace can be reduced, and productivity is improved through a stable process. .
【図1】本発明に使用される熱処理炉の一例を示す概略
構成図である。FIG. 1 is a schematic configuration diagram showing an example of a heat treatment furnace used in the present invention.
【図2】本発明のに使用される熱処理炉の熱風吹きつけ
した吸い込みノズル周辺部の一例を示す部分拡大断面図
である。FIG. 2 is a partially enlarged cross-sectional view showing one example of a suction nozzle peripheral portion of a heat treatment furnace used in the present invention which has been blown with hot air.
1:熱処理炉 2:熱処理室 3:吹き出しノズル 4:吸い込みノズル 5:被処理物(繊維束) 6:ガイドローラ 7:被処理物を出し入れする開口部 8:加熱用ヒータ 9:熱風循環用ファン 10:熱風吹き付けノズル 11:吹き付け熱風 1: Heat treatment furnace 2: Heat treatment chamber 3: Blow nozzle 4: Suction nozzle 5: Workpiece (fiber bundle) 6: Guide roller 7: Opening for taking in and out the work 8: Heater 9: Hot air circulation fan 10: Hot air blowing nozzle 11: Hot air blowing
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F073 AA12 BA18 BB01 DA01 GA01 GA11 HA11 4L037 CS02 CS03 CT10 CT11 CT12 CT31 FA01 FA03 PA53 PS02 PS10 PS20 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4F073 AA12 BA18 BB01 DA01 GA01 GA11 HA11 4L037 CS02 CS03 CT10 CT11 CT12 CT31 FA01 FA03 PA53 PS02 PS10 PS20
Claims (6)
で、実質的に無撚りであるポリアクリロニトリル系炭素
繊維前駆体を耐炎化する方法において、熱処理室内に被
処理物を出し入れする開口部を有し、かつ、被処理物通
過経路に沿う方向へ熱風を吹き出すノズルと該熱風を吸
い込むノズルとを、該被処理物通過経路の両側に、それ
ぞれ複数個ずつ配設した熱処理炉を用い、かつ、該熱風
を吸い込むノズルの吸い込み口と、該被処理物との間へ
熱風を吹き付けて耐炎化することを特徴とする耐炎化方
法。1. A method for making a substantially non-twisted polyacrylonitrile-based carbon fiber precursor having a total number of filaments of 10,000 or more and flame-resistant, comprising an opening through which an object to be treated is put in and out of a heat treatment chamber. And, a nozzle that blows out hot air in a direction along the workpiece passage and a nozzle that sucks the hot air, on both sides of the workpiece passage, using a heat treatment furnace provided with a plurality of each, and A flameproofing method, characterized in that hot air is blown between a suction port of a nozzle for sucking the hot air and the object to be treated to make it flameproof.
1,000dtex/mmに維持することを特徴とする請求
項1に記載の耐炎化方法。2. The maximum thickness of the fiber bundle is from 5,500 to 1,
2. The flameproofing method according to claim 1, wherein the method is maintained at 1,000 dtex / mm.
温度に対し−50〜0℃の範囲であることを特徴とする
請求項1または2に記載の耐炎化方法。3. The method as claimed in claim 1, wherein the temperature of the blown hot air is in the range of −50 to 0 ° C. with respect to the average temperature in the heat treatment room.
直近で、該熱処理室内循環風速に対し1〜7倍の範囲で
あることを特徴とする請求項1〜3のいずれかに記載の
耐炎化方法。4. The flame resistance according to claim 1, wherein the wind speed of the hot air blown is in the range of 1 to 7 times the circulating wind speed in the vicinity of the spray nozzle and the circulation wind speed of the heat treatment chamber. Method.
循環量に対し0.1〜5容量%の範囲であることを特徴
とする請求項1〜4のいずれかに記載の耐炎化方法。5. The flameproofing method according to claim 1, wherein an amount of the hot air blown is in a range of 0.1 to 5% by volume with respect to a total circulation amount of the heat treatment chamber. .
が、総フィラメント数が30,000〜10,000本
の範囲であることを特徴とする請求項1〜5のいずれか
に記載の耐炎化方法。6. The method according to claim 1, wherein the total number of filaments of the polyacrylonitrile-based carbon fiber precursor is in the range of 30,000 to 10,000. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000298996A JP2002105766A (en) | 2000-09-29 | 2000-09-29 | Method for flame resisting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000298996A JP2002105766A (en) | 2000-09-29 | 2000-09-29 | Method for flame resisting |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002105766A true JP2002105766A (en) | 2002-04-10 |
Family
ID=18780866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000298996A Pending JP2002105766A (en) | 2000-09-29 | 2000-09-29 | Method for flame resisting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002105766A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017524834A (en) * | 2014-06-20 | 2017-08-31 | アイゼンマン ソシエタス オイロペア | Oxidation furnace |
JP6680417B1 (en) * | 2018-11-26 | 2020-04-15 | 東レ株式会社 | Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle |
WO2020110632A1 (en) * | 2018-11-26 | 2020-06-04 | 東レ株式会社 | Method for producing flame-proof fiber bundle, and method for producing carbon fiber bundle |
-
2000
- 2000-09-29 JP JP2000298996A patent/JP2002105766A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017524834A (en) * | 2014-06-20 | 2017-08-31 | アイゼンマン ソシエタス オイロペア | Oxidation furnace |
US11092381B2 (en) | 2014-06-20 | 2021-08-17 | Eisenmann Se | Oxidation furnace |
JP7270329B2 (en) | 2014-06-20 | 2023-05-10 | ウォンチュン ゲゼルシャフト ミット ベシュレンクテル ハフツング | oxidation furnace |
JP6680417B1 (en) * | 2018-11-26 | 2020-04-15 | 東レ株式会社 | Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle |
WO2020110632A1 (en) * | 2018-11-26 | 2020-06-04 | 東レ株式会社 | Method for producing flame-proof fiber bundle, and method for producing carbon fiber bundle |
US12012671B2 (en) | 2018-11-26 | 2024-06-18 | Toray Industries, Inc. | Method for producing flame-proof fiber bundle, and method for producing carbon fiber bundle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0848090B1 (en) | A heat treatment furnace for fibers | |
CN105316799A (en) | Pre-oxidation heat treatment furnace and fabricating method of carbon fiber | |
JPH10237723A (en) | The treatment furnace and production of carbon fiber | |
JP2007247130A (en) | Heat-treating furnace and method for producing carbon fiber | |
JP5037978B2 (en) | Flameproof furnace and flameproofing method | |
JP5556994B2 (en) | Method for producing flame resistant fiber | |
JP2002105766A (en) | Method for flame resisting | |
JP4017772B2 (en) | Continuous heat treatment method for acrylic fiber bundles | |
WO2021193520A1 (en) | Production method for precarbonized fiber bundle, production method for carbon fiber bundle, and precarbonization furnace | |
JP4572460B2 (en) | Heat treatment furnace and method for producing carbon fiber using the same | |
CN115279958B (en) | Flame-retardant fiber bundle, method for producing carbon fiber bundle, and flame-retardant furnace | |
JPWO2020100714A1 (en) | Manufacturing method of flame-resistant fiber bundle and carbon fiber bundle, and flame-resistant furnace | |
JPH0681223A (en) | Production of carbon fiber | |
JPS6030762B2 (en) | Hot air heating furnace for carbon fiber production | |
US6007465A (en) | Yarn guide roller | |
JP2000088464A (en) | Heat treatment furnace and manufacture of carbon fiber using it | |
JP5812205B2 (en) | Gas supply blowout nozzle and method for producing flameproof fiber and carbon fiber using the same | |
JP2004124310A (en) | Flameproofing furnace | |
JP7272347B2 (en) | Flame-resistant heat treatment furnace, method for producing flame-resistant fiber bundle and carbon fiber bundle | |
JP3733688B2 (en) | Carbon fiber manufacturing method | |
JP2014221956A (en) | Heat treatment apparatus, and method for producing flame-resistant fiber by using the same | |
JPS5982414A (en) | Heat-treatment apparatus for manufacture of carbon fiber | |
JP4408323B2 (en) | Entangling device for carbon fiber precursor fiber bundle | |
JP5037977B2 (en) | Flameproofing furnace and method for producing flameproofed fiber | |
JP2009074183A (en) | Heat treatment furnace and method for producing carbon fiber using the same |