JP2002097930A - Exhaust emission control device for internal combustion engine - Google Patents
Exhaust emission control device for internal combustion engineInfo
- Publication number
- JP2002097930A JP2002097930A JP2000291472A JP2000291472A JP2002097930A JP 2002097930 A JP2002097930 A JP 2002097930A JP 2000291472 A JP2000291472 A JP 2000291472A JP 2000291472 A JP2000291472 A JP 2000291472A JP 2002097930 A JP2002097930 A JP 2002097930A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- amount
- internal combustion
- particulate
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/029—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/08—Exhaust gas treatment apparatus parameters
- F02D2200/0812—Particle filter loading
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
- Exhaust-Gas Circulating Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、特にディーゼル
機関において問題となる排気微粒子(パティキュレー
ト)を捕集して除去する内燃機関の排気浄化装置に関
し、より詳しくは、捕集された微粒子を機関の運転中に
連続的に燃焼除去するとともに、残存する微粒子捕集量
を逐次正確に把握するようにして、必要な場合には適切
な時期に強制的な再生を行うようにした排気浄化装置に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine which collects and removes exhaust particulates (particulates) which are particularly problematic in a diesel engine. The present invention relates to an exhaust gas purifying apparatus which continuously burns and removes during the operation of the apparatus, and sequentially and accurately grasps the amount of trapped fine particles, and performs forced regeneration at an appropriate time when necessary. .
【0002】[0002]
【従来の技術】近年、ディーゼル機関において、排気ガ
ス中に含まれる排気微粒子の処理が大きな問題となって
いる。この排気微粒子の大部分は、カーボンと可溶性有
機物質(SOF)の合成物であり、その大きさは、通
常、数μm〜数十μm程度のものである。この排気微粒
子の大気中への放出を防止するためには、排気通路に、
排気微粒子を捕集するフィルタ、いわゆるディーゼルパ
ティキュレートフィルタを設けることが有効であるが、
この種のフィルタは、排気微粒子の捕集に伴って、いわ
ゆる目詰まりを生じることから、何らかの手段で捕集さ
れた排気微粒子を除去してフィルタを再生する必要があ
り、この再生をいかに行うかが大きな技術課題となって
いる。2. Description of the Related Art In recent years, in diesel engines, treatment of exhaust fine particles contained in exhaust gas has become a major problem. Most of the exhaust particles are a composite of carbon and a soluble organic substance (SOF), and the size is usually about several μm to several tens μm. In order to prevent the emission of these exhaust particulates into the atmosphere,
It is effective to provide a filter that collects exhaust particulates, a so-called diesel particulate filter.
Since this type of filter causes so-called clogging with the collection of exhaust particulates, it is necessary to remove the exhaust particulates collected by some means and regenerate the filter. Is a major technical issue.
【0003】フィルタで捕集された微粒子は、酸素の存
在下で約600℃以上に加熱されると、酸素と反応して
容易に燃焼焼却できるが、排気ガスの熱のみでは一般に
温度が不十分であり、微粒子を完全に燃焼させることは
困難である。When the fine particles collected by the filter are heated to about 600 ° C. or more in the presence of oxygen, they react with oxygen and can be easily burned and incinerated, but the temperature of exhaust gas alone is generally insufficient. It is difficult to completely burn the fine particles.
【0004】そのため、強制的な加熱手段を用いてフィ
ルタを再生させる方法が多く提案されており、例えば、
実開平1−144427号公報には、フィルタを2つに
区画するとともに、それぞれの前面に電気ヒータを配
し、所定量の排気微粒子が捕集された段階で、各区画毎
に電気ヒータに通電して加熱するとともに、この再生中
の区画に流れる排気量を少量に制限するようにした構成
が開示されている。For this reason, many methods for regenerating a filter using a forced heating means have been proposed.
In Japanese Utility Model Laid-Open Publication No. 1-144427, a filter is divided into two sections, an electric heater is arranged on the front of each section, and when a predetermined amount of exhaust fine particles is collected, the electric heater is energized for each section. A configuration is disclosed in which the amount of exhaust gas flowing to the section being regenerated is limited to a small amount while heating.
【0005】また、特開平6−123216号公報に
は、ディーゼルパティキュレートフィルタの圧力損失を
圧力センサによって検出し、そのときの機関回転数と前
回の強制再生時からの通算運転時間とを考慮して、異常
な目詰まりやフィルタ素子の破損などを検出するように
した異常検出装置が開示されている。Japanese Patent Application Laid-Open No. Hei 6-123216 discloses a technique in which the pressure loss of a diesel particulate filter is detected by a pressure sensor, and the engine speed at that time and the total operating time since the previous forced regeneration were taken into consideration. Thus, there has been disclosed an abnormality detection device which detects abnormal clogging, breakage of a filter element, and the like.
【0006】また、特開平11−13455号公報に
は、エンジン運転状態に応じて微粒子発生量を高精度に
検出し、単位時間当たりの微粒子発生量を積算すること
によって、フィルタの捕集量を推定し、これが所定値に
達した段階で加熱手段を作動させてフィルタの再生を行
うようにしたディーゼルパティキュレートフィルタ装置
が開示されている。Japanese Patent Application Laid-Open No. 11-13455 discloses that the amount of generated particulates is detected with high accuracy in accordance with the operating state of the engine and the amount of generated particulates per unit time is integrated, so that the amount of the collected filter is reduced. There is disclosed a diesel particulate filter device in which the heating means is operated to regenerate the filter when the estimated value reaches a predetermined value.
【0007】一方、特許第3012249号公報には、
より低温の排気温度の下で、ディーゼルパティキュレー
トフィルタに捕集された微粒子の燃焼が行われるように
したフィルタ再生方法が開示されている。これは、排ガ
ス中のNOとO2とから触媒作用によって二酸化窒素N
O2を生成し、この酸化力の強いNO2をフィルタ上の
排気微粒子に作用させることで、微粒子を燃焼させるよ
うにしたものであって、これにより、例えば250℃〜
400℃程度の排気温度の下で燃焼が可能となる。従っ
て、運転中に、連続的に再生がなされることになる。On the other hand, Japanese Patent No. 3012249 discloses that
A filter regeneration method has been disclosed in which particulates trapped in a diesel particulate filter are burned at a lower exhaust gas temperature. This is because nitrogen dioxide N 2 is catalyzed by NO and O 2 in exhaust gas.
O2 is generated, and the strong oxidizing NO2 is caused to act on the exhaust particulates on the filter, thereby burning the particulates.
Combustion is possible at an exhaust temperature of about 400 ° C. Therefore, regeneration is performed continuously during operation.
【0008】[0008]
【発明が解決しようとする課題】ディーゼルパティキュ
レートフィルタを何らかの手段で強制的に再生するに際
しては、フィルタにおける微粒子の捕集量、つまりフィ
ルタに堆積している微粒子の量を精度良く検出すること
が重要である。一般に、微粒子捕集量が所定レベルに達
した時点で電気ヒータによる加熱等の再生促進を開始す
るのであるが、実際に所定レベルに達する前に、当該レ
ベルに達したと判断してしまうと、加熱手段によるフィ
ルタの加熱回数が不必要に増加し、加熱手段に必要な電
力等のエネルギの消費が増加するとともに、過度の加熱
の繰り返しによってフィルタの耐久性が低下する。ま
た、逆に、フィルタの微粒子捕集量が所定レベルに達し
た後に、遅れて当該レベルに達したと判断するようなこ
とがあると、フィルタが目詰まり状態となって排気圧力
損失が増加し、燃費が悪化する。When a diesel particulate filter is forcibly regenerated by some means, it is necessary to accurately detect the amount of collected fine particles in the filter, that is, the amount of fine particles deposited on the filter. is important. Generally, when the amount of collected fine particles reaches a predetermined level, regeneration promotion such as heating by an electric heater is started, but before it reaches the predetermined level before it actually reaches the predetermined level, The number of times of heating of the filter by the heating means is unnecessarily increased, the consumption of energy such as electric power required for the heating means is increased, and the durability of the filter is reduced due to excessive repetition of heating. Conversely, if it is determined that the level of collection of fine particles of the filter reaches the predetermined level after reaching the predetermined level, the filter may be clogged and exhaust pressure loss may increase. , Fuel economy deteriorates.
【0009】上記特開平6−123216号公報や特開
昭60−85214号公報に示された構成では、車両の
走行に伴って機関回転数や負荷が刻々と変動し、また、
排気ガス流量の変化によりフィルタに作用する圧力も変
動するため、微粒子捕集量の高精度な検出は到底不可能
である。In the configuration disclosed in Japanese Patent Application Laid-Open No. Hei 6-123216 and Japanese Patent Application Laid-Open No. 60-85214, the engine speed and load fluctuate with the running of the vehicle.
Since the pressure acting on the filter also fluctuates due to a change in the exhaust gas flow rate, highly accurate detection of the amount of trapped fine particles is almost impossible.
【0010】また上記特開平11−13455号公報の
ように、微粒子の排出量に着目した方法では、上記特許
第3012249号公報に開示されているように、フィ
ルタに捕集された微粒子が運転中に連続的に燃焼するよ
うにした、いわゆる連続燃焼方式のものにおいては、微
粒子の連続的な燃焼除去量が反映されず、微粒子捕集量
を精度よく把握することはできない。[0010] Further, in the method of paying attention to the discharge amount of the fine particles as disclosed in Japanese Patent Application Laid-Open No. 11-13455, as disclosed in the above-mentioned Japanese Patent No. 301,249, the fine particles collected by the filter are in operation. In the so-called continuous combustion system in which the particles are continuously burned, the amount of continuous removal of fine particles is not reflected, and the amount of collected fine particles cannot be accurately grasped.
【0011】この発明は、いわゆる連続燃焼方式のもの
においても、フィルタに残存する微粒子捕集量を正確に
把握し得るようにし、必要な場合には適切な時期に強制
的な再生を行うようにすることを目的とする。According to the present invention, even in a so-called continuous combustion system, the amount of trapped fine particles remaining in a filter can be accurately grasped, and if necessary, forced regeneration is performed at an appropriate time. The purpose is to do.
【0012】[0012]
【課題を解決するための手段】請求項1に係る内燃機関
の排気浄化装置は、機関の排気通路に配設され、流入す
る排気ガス中の微粒子を捕集するとともに、捕集された
微粒子が燃焼により除去される微粒子捕集手段と、上記
微粒子捕集手段に捕集された微粒子の燃焼特性を示す燃
焼モデルを有し、上記微粒子捕集手段に存在する微粒子
捕集量を上記燃焼モデルに基づいて推定する微粒子捕集
量推定手段と、を備えることを特徴としている。According to a first aspect of the present invention, there is provided an exhaust gas purifying apparatus for an internal combustion engine, which is disposed in an exhaust passage of the engine and collects fine particles in the exhaust gas flowing into the exhaust gas. The apparatus has a particulate collection unit removed by combustion, and a combustion model showing the combustion characteristics of the particulates collected by the particulate collection unit. The amount of particulate collection present in the particulate collection unit is determined by the combustion model. And a means for estimating the amount of trapped fine particles based on the estimated amount.
【0013】この請求項1の発明をより具体化した請求
項2の発明では、上記燃焼モデルは、上記微粒子捕集手
段に捕集された微粒子が燃焼する確率を示す燃焼速度定
数を含む関数であることを特徴としている。In the second aspect of the invention, which is a more specific version of the first aspect, the combustion model is a function including a burning rate constant indicating a probability that the fine particles collected by the fine particle collecting means will burn. It is characterized by having.
【0014】請求項3の発明では、上記燃焼モデルは、
上記微粒子捕集手段に捕集された微粒子が燃焼する間に
新たに捕集される微粒子の量を示す微粒子生成量を含む
関数であることことを特徴としている。According to a third aspect of the present invention, the combustion model is:
The method is characterized in that the function is a function including a fine particle generation amount indicating an amount of fine particles newly collected while the fine particles collected by the fine particle collecting means is burning.
【0015】請求項4の発明では、上記燃焼速度定数
は、上記微粒子捕集手段に流入する排気ガスの状態に応
じて設定されることを特徴としている。According to a fourth aspect of the present invention, the combustion rate constant is set in accordance with the state of the exhaust gas flowing into the particulate collection means.
【0016】請求項2に従属する請求項5の発明は、上
記微粒子捕集手段に流入する排気ガスの状態を制御して
微粒子捕集手段の再生を促進する複数種類の再生手段
と、この複数種類の再生手段の中から一つあるいは複数
組み合わせて再生を実行する再生制御手段と、を備え、
上記燃焼速度定数は、上記再生手段の一つあるいは組み
合わせからなる各再生条件毎に設定されていることを特
徴としている。According to a fifth aspect of the present invention, a plurality of types of regenerating means for controlling the state of the exhaust gas flowing into the fine particle collecting means to promote the regeneration of the fine particle collecting means, Playback control means for executing playback by combining one or a plurality of types of playback means,
The combustion rate constant is set for each regeneration condition comprising one or a combination of the regeneration means.
【0017】さらにこの請求項5の発明を具体化した請
求項6の発明では、上記微粒子捕集量推定手段は、各再
生条件に対応する複数の燃焼速度定数に基づいて、上記
微粒子捕集量を各再生条件毎に推定し、上記再生制御手
段は、この推定された複数の微粒子捕集量の中で最も小
さな値に対応する再生条件を選択して再生を実行するこ
とを特徴としている。In the invention of claim 6 which embodies the invention of claim 5, the means for estimating the amount of trapped fine particles is based on a plurality of combustion rate constants corresponding to each regeneration condition. Is estimated for each regenerating condition, and the regenerating control means selects the regenerating condition corresponding to the smallest value among the plurality of estimated particulate collection amounts and executes the regenerating.
【0018】請求項7の発明は、上記燃焼速度定数が、
機関回転数と負荷とに対応して設定されることを特徴と
している。According to a seventh aspect of the present invention, the combustion rate constant is:
It is characterized in that it is set in accordance with the engine speed and the load.
【0019】請求項8の発明は、上記燃焼速度定数が、
上記微粒子捕集手段に流入する排気ガスの温度の増加に
応じて大きくなることを特徴としている。According to the invention of claim 8, the combustion rate constant is:
It is characterized in that the temperature increases with an increase in the temperature of the exhaust gas flowing into the particulate collection means.
【0020】請求項9の発明は、上記燃焼速度定数が、
上記微粒子捕集手段に流入する排気ガス中のNO2量の
増加に応じて大きくなることを特徴としている。According to a ninth aspect of the present invention, the combustion rate constant is:
It is characterized in that it increases with an increase in the amount of NO2 in the exhaust gas flowing into the particulate collection means.
【0021】請求項10の発明は、上記燃焼速度定数
が、上記微粒子捕集手段に流入する排気ガス中のO2量
の増加に応じて大きくなることを特徴としている。According to a tenth aspect of the present invention, the combustion rate constant increases with an increase in the amount of O2 in the exhaust gas flowing into the particulate collection means.
【0022】請求項11の発明は、上記燃焼速度定数
が、上記微粒子捕集手段に流入する排気ガスの流量の増
加に応じて大きくなることを特徴としている。The invention of claim 11 is characterized in that the combustion rate constant increases as the flow rate of the exhaust gas flowing into the particulate collection means increases.
【0023】請求項5の発明を具体化した請求項12の
発明では、上記再生手段の一つは、上記微粒子捕集手段
の再生時に、上記微粒子捕集手段に流入する排気ガスを
加熱する手段である。According to a twelfth aspect of the invention, one of the regenerating means is a means for heating the exhaust gas flowing into the fine particle collecting means when the fine particle collecting means is regenerating. It is.
【0024】請求項13の発明では、上記再生手段の一
つは、上記微粒子捕集手段の再生時に、機関の吸入空気
量を減少させる手段である。According to a thirteenth aspect of the present invention, one of the regenerating means is a means for reducing the intake air amount of the engine when the particulate collecting means is regenerated.
【0025】請求項14の発明では、上記再生手段の一
つは、上記微粒子捕集手段の再生時に、燃料の主噴射の
後に一定量の燃料を噴射する手段である。In one embodiment of the present invention, one of the regenerating means is a means for injecting a fixed amount of fuel after the main injection of the fuel at the time of regenerating the particulate collecting means.
【0026】請求項15の発明では、上記再生手段の一
つは、排気ガスを排気通路から吸気通路に還流する手段
である。In one embodiment of the present invention, one of the regeneration means is a means for recirculating exhaust gas from an exhaust passage to an intake passage.
【0027】また請求項16の発明においては、上記微
粒子捕集手段の上流側に、流入する排気ガス中のNOを
酸化してNO2を生成する酸化触媒手段をさらに備えて
いる。In the invention according to claim 16, an oxidation catalyst means for oxidizing NO in the exhaust gas flowing into and generating NO2 is further provided upstream of the means for trapping fine particles.
【0028】本発明において最も注目すべき点は、微粒
子の燃焼除去量を、実験により予め設定される燃焼速度
定数を用いて把握する点である。The most remarkable point in the present invention is that the amount of burned-out particulates is grasped by using a burning rate constant set in advance by experiments.
【0029】図1は、予め実機内燃機関でカーボンCと
可溶性有機物質SOF微粒子を付着させたパティキュレ
ートフィルタを、モデルガス評価装置を用いて、雰囲気
温度300℃一定の条件で、一定混合ガス(NO2+N
2)雰囲気下に曝した場合の微粒子の燃焼特性を示して
いる。なお、本発明はNO2を用いた連続燃焼による再
生に限定されるものではなく、種々の再生方法を適用で
きることは言うまでもない。FIG. 1 shows a particulate filter in which carbon C and soluble organic substance SOF fine particles have been attached in advance in an actual internal combustion engine by using a model gas evaluation device at a constant atmosphere temperature of 300 ° C. and a constant mixed gas ( NO2 + N
2) This shows the combustion characteristics of fine particles when exposed to an atmosphere. Note that the present invention is not limited to regeneration by continuous combustion using NO2, and it goes without saying that various regeneration methods can be applied.
【0030】この図1は、縦軸がCOとCO2の生成量
であり、NO2を構成する酸素による微粒子の燃焼量
が、時間の経過に伴って減少する挙動を表している。In FIG. 1, the vertical axis represents the production amounts of CO and CO2, and shows the behavior in which the combustion amount of the fine particles by the oxygen constituting NO2 decreases with time.
【0031】ここで、微粒子燃焼量の減少は直線的な変
化とならず、燃焼開始直後における単位時間当たりの微
粒子燃焼量に比べ、時間が経過した後の単位時間当たり
の微粒子燃焼量の方が、少なくなる傾向がある。Here, the decrease in the amount of particulate burned does not become a linear change, but the amount of particulate burned per unit time after a lapse of time is greater than the amount of particulate burned per unit time immediately after the start of combustion. , Tend to be less.
【0032】これは、単位時間当たりの微粒子燃焼量
が、フィルタ上の微粒子量(微粒子捕集量)と比例関係
にあることに起因しており(後述する式1の右辺参
照)、燃焼に伴って微粒子捕集量が減少していくと、単
位時間当たりの微粒子燃焼量が減少するため、結果とし
て、単位時間当たりの微粒子燃焼量が徐々に変化するこ
とになる。This is because the amount of particulates burned per unit time is proportional to the amount of particulates on the filter (the amount of trapped particulates) (see the right side of Equation 1 described later). When the amount of trapped fine particles decreases, the amount of burning fine particles per unit time decreases, and as a result, the amount of burning fine particles per unit time gradually changes.
【0033】このことは、実機機関において、連続燃焼
による微粒子燃焼量が、同じ運転条件であっても、微粒
子捕集量によって異なることを示しており、この点が、
連続燃焼時に微粒子捕集量の把握を困難にする理由であ
る。This indicates that, in the actual engine, the amount of fine particles burned by continuous combustion differs depending on the amount of collected fine particles even under the same operating conditions.
This is because it is difficult to grasp the amount of collected fine particles during continuous combustion.
【0034】この問題を解決するために、フィルタに捕
集された微粒子の燃焼特性を示す燃焼モデルを立てたの
で、以下、これを説明する。In order to solve this problem, a combustion model showing the combustion characteristics of the fine particles trapped by the filter has been set up. This will be described below.
【0035】時刻tにおける微粒子捕集量をD(t)と
し、フィルタに捕集された微粒子が単位時間内に燃焼す
る確率をRとすると、単位時間当たりの微粒子燃焼量
は、これらを乗じて、R・D(t)となる。本実験の場
合、雰囲気条件が一定のため、上記の燃焼確率Rは一定
値である。Assuming that the amount of collected fine particles at time t is D (t) and the probability that the fine particles collected by the filter burn in a unit time is R, the amount of the burned fine particles per unit time is multiplied by these. , RD (t). In the case of this experiment, the above combustion probability R is a constant value because the atmospheric conditions are constant.
【0036】一方、フィルタに捕集された微粒子の単位
時間当たりの変化量、すなわち、微粒子捕集量D(t)
の変化速度は、dD(t)/dtと記述できる。On the other hand, the amount of change per unit time of the fine particles collected by the filter, that is, the amount of collected fine particles D (t)
Can be described as dD (t) / dt.
【0037】微粒子捕集量D(t)の変化は、燃焼によ
る減少であるため、上記の単位時間当たりの微粒子燃焼
量と、微粒子の単位時間当たりの変化量との関係は、次
の微分方程式で示される。Since the change in the amount of trapped fine particles D (t) is a decrease due to combustion, the relationship between the amount of burned fine particles per unit time and the amount of change in fine particles per unit time is expressed by the following differential equation. Indicated by
【0038】 dD(t)/dt=−R・D(t) …(1) この微分方程式を解くと、 D(t)=A・exp(−R・t) …(2) となる。この式2に、t=0を代入すると、 D(t=0)=D0=A・exp(0)=A …(3) となって、Aが、t=0の時の微粒子捕集量D、つまり
初期微粒子捕集量D0として得られる。従って、式2お
よび式3から、次のように燃焼モデルが導出される。DD (t) / dt = −R · D (t) (1) When this differential equation is solved, D (t) = A · exp (−R · t) (2) Substituting t = 0 into this equation 2, D (t = 0) = D0 = A.exp (0) = A (3) where A is the amount of collected fine particles when t = 0. D, that is, the initial fine particle collection amount D0. Therefore, from Equations 2 and 3, a combustion model is derived as follows.
【0039】 D(t)=D0・exp(−R・t) …(4) ここで、上記のRを、燃焼速度定数と呼ぶこととする。D (t) = D0 · exp (−R · t) (4) Here, the above R is referred to as a combustion rate constant.
【0040】以上の知見は、フィルタに捕集された微粒
子の燃焼特性は、雰囲気が一定の場合、初期微粒子捕集
量と燃焼速度定数とが判れば一義的に定まり、式4よ
り、任意の時間の微粒子捕集量を予測できることを示し
ている。From the above findings, the combustion characteristics of the fine particles trapped by the filter are uniquely determined if the initial amount of trapped fine particles and the burning rate constant are known when the atmosphere is constant. This shows that the amount of collected fine particles over time can be predicted.
【0041】次に、実際の実験結果から燃焼速度定数R
を求める。まず、実験で観察された曲線をG(t)とす
ると、これは燃焼した微粒子が気体になったときの濃度
であり、微粒子燃焼量はR・D(t)であるから、次の
式5が得られる。Next, from the actual experimental results, the burning rate constant R
Ask for. First, assuming that the curve observed in the experiment is G (t), this is the concentration when the burned fine particles turn into a gas, and the amount of burned fine particles is RD (t). Is obtained.
【0042】 G(t)=N・R・D(t)=N・R・D0・exp(−R・t)=G0 ・exp(−R・t) …(5) ここで、Nは、実験条件(ガス流量)毎に定まる、気体
濃度への変換係数である。G (t) = N · R · D (t) = N · R · D0 · exp (−R · t) = G0 · exp (−R · t) (5) where N is It is a conversion coefficient to gas concentration determined for each experimental condition (gas flow rate).
【0043】実際の実験で得られた曲線を、そのまま式
5の形に近似すると、 G(t)=408.5375・exp(−0.000137t) …(6 ) となり、R=0.000137、G0=408.537
5であった。When the curve obtained in the actual experiment is directly approximated to the form of Equation 5, G (t) = 408.5375 · exp (−0.000137t) (6), and R = 0.000137, G0 = 408.537
It was 5.
【0044】なお、相関係数は0.9985と高く、こ
のことは、モデルに対する誤差要因(例えば、微粒子捕
集量D(t)が変化するとRが変化する現象など)がほ
とんど存在しないことを示している。The correlation coefficient is as high as 0.9985, which means that there is almost no error factor for the model (for example, a phenomenon in which R changes when the amount of collected fine particles D (t) changes). Is shown.
【0045】ところで、上記の式4は、連続燃焼による
微粒子の減少のみを考慮したものであり、この式4によ
り、フィルタに微粒子が新たに流入しないものと仮定し
た場合の微粒子捕集量を算出することができる。しか
し、実機では、フィルタに捕集された微粒子の燃焼中も
フィルタに微粒子が継続して流入するので、これを考慮
する必要がある。単位時間当たりにフィルタに流入する
微粒子量、すなわち、内燃機関の微粒子生成量をBとす
ると、前述した式1は、次式7のようになる。The above equation (4) takes into account only the reduction of fine particles due to continuous combustion. This equation (4) calculates the amount of collected fine particles when it is assumed that no new particles will flow into the filter. can do. However, in an actual machine, it is necessary to take this into consideration because the particulates continuously flow into the filter even during the combustion of the particulates collected by the filter. Assuming that the amount of fine particles flowing into the filter per unit time, that is, the amount of generated fine particles of the internal combustion engine is B, the above-described Expression 1 is represented by the following Expression 7.
【0046】 dD(t)/dt=B−R・D(t) …(7) この式7の微分方程式を解くと、ある時刻tの微粒子捕
集量D(t)は次式8で表される。DD (t) / dt = BR-D (t) (7) By solving the differential equation of this equation 7, the particle collection amount D (t) at a certain time t is expressed by the following equation 8. Is done.
【0047】 D(t)=(D0−B/R)・exp(−R・t)+B/R …(8) 従って、この式8によって、新たな微粒子の流入をも考
慮したものとして、微粒子捕集量を高精度に推定するこ
とができる。D (t) = (D0−B / R) · exp (−R · t) + B / R (8) Therefore, according to this equation 8, it is assumed that the inflow of new fine particles is considered. The collection amount can be estimated with high accuracy.
【0048】また、他の方法として、燃焼中のフィルタ
に微粒子が継続的に流入する場合の微粒子捕集量を、近
似式を用いて算出することも可能である。As another method, the amount of trapped fine particles when the fine particles continuously flow into the burning filter can be calculated using an approximate expression.
【0049】すなわち、単位時間後の微粒子捕集量を算
出する場合、微粒子量を推定する際の時間軸における単
位時間は微少として扱うことができるため、その間に流
入する単位時間当たりの微粒子量Bを、予め初期微粒子
捕集量D0に加えておき、式4を次式9のような近似式
とすれば、次式により燃焼および流入の双方を考慮した
微粒子捕集量の推定が可能である。That is, when calculating the amount of trapped fine particles after a unit time, the unit time on the time axis when estimating the amount of fine particles can be treated as a very small amount. Is added to the initial particulate matter collection amount D0 in advance, and if Expression 4 is an approximate expression such as the following Expression 9, it is possible to estimate the particle collection amount in consideration of both combustion and inflow by the following expression. .
【0050】 D(t)=(D0+B)・exp(−R) …(9) なお、実際のエンジンコントロールユニットにおける推
定の際の計算間隔を例えば1秒程度とすると、式8と式
9による結果はほぼ等しくなる。また、一般に、式9の
方が計算量が少なく、エンジンコントロールユニットに
おける計算の負荷は小さなものとなる。D (t) = (D0 + B) · exp (−R) (9) If the calculation interval at the time of the estimation in the actual engine control unit is, for example, about 1 second, the results obtained by Expressions 8 and 9 are obtained. Are almost equal. In general, Equation 9 requires a smaller amount of calculation, and the calculation load on the engine control unit is smaller.
【0051】次に、燃焼速度定数Rと燃焼時の雰囲気と
の関係について説明する。Next, the relationship between the burning rate constant R and the atmosphere during burning will be described.
【0052】燃焼速度定数Rの物理的意味は、上述した
ように、微粒子の燃焼確率であるから、燃焼時の雰囲気
が変われば燃焼確率が変化し、燃焼速度定数Rも変化す
る。燃焼速度定数Rが大きくなるほど、同じ微粒子捕集
量で比較した場合の燃焼速度は速いと言える。As described above, the physical meaning of the burning rate constant R is the burning probability of fine particles. Therefore, if the atmosphere during burning changes, the burning probability changes, and the burning rate constant R also changes. It can be said that the larger the burning rate constant R, the faster the burning rate when compared with the same amount of collected fine particles.
【0053】図2〜5は、種々の雰囲気条件と燃焼速度
定数Rとの関係を示す。2 to 5 show the relationship between various atmospheric conditions and the burning rate constant R.
【0054】図2は、雰囲気温度との関係を示してお
り、燃焼速度定数Rは温度が高いほど大きくなる。な
お、この図から、NO2を構成する酸素による微粒子燃
焼は200℃付近から、O2による微粒子燃焼は400
℃付近から始まることが判る。また、O2による燃焼の
方が傾きが急な理由は、今回の実験では、O2濃度がN
O2濃度の500倍であることによる。FIG. 2 shows the relationship with the ambient temperature. The combustion rate constant R increases as the temperature increases. From this figure, it can be seen that the combustion of fine particles by oxygen constituting NO2 starts at around 200 ° C.
It can be seen that the temperature starts around ℃. Also, the reason that the combustion with O2 has a steeper slope is that in this experiment, the O2 concentration was N
This is because the O2 concentration is 500 times.
【0055】図3は、NO2濃度との関係を示してお
り、燃焼速度定数RはNO2濃度が高いほど大きくな
る。FIG. 3 shows the relationship with the NO2 concentration. The combustion rate constant R increases as the NO2 concentration increases.
【0056】図4は、O2濃度との関係を示しており、
燃焼速度定数RはO2濃度が高いほど大きくなる。FIG. 4 shows the relationship with the O2 concentration.
The combustion rate constant R increases as the O2 concentration increases.
【0057】図5は、フィルタの空間速度SVとの関係
を示しており、燃焼速度定数Rは空間速度SVが高いほ
ど大きくなる。FIG. 5 shows the relationship with the space velocity SV of the filter. The combustion velocity constant R increases as the space velocity SV increases.
【0058】実機においては、上述した雰囲気条件およ
び微粒子の質は、フィルタの強制的な再生促進のための
制御によって、種々組み合わさった形で変化するが、こ
れらの関係をまとめると以下のようになる。つまり、再
生制御に伴う右側のパラメータによって左側のパラメー
タが影響を受ける。そして、この左側のパラメータの変
化に対し、上述した傾向に従って燃焼速度定数Rが変化
する。In the actual machine, the above-mentioned atmospheric conditions and the quality of the fine particles change in various combinations due to the control for forcibly promoting the regeneration of the filter. These relationships are summarized as follows. Become. That is, the left parameter is affected by the right parameter associated with the playback control. Then, in response to the change of the left parameter, the combustion rate constant R changes according to the above-described tendency.
【0059】 温度 :ポスト噴射量、通電昇温、吸気絞り NO2量 :EGR量、温度(=) O2量 :EGR量 排気流量 :吸気絞りTemperature: Post injection amount, energization temperature rise, intake throttle NO2 amount: EGR amount, temperature (=) O2 amount: EGR amount Exhaust flow rate: intake throttle
【0060】[0060]
【発明の効果】本発明によれば、燃焼モデルから定まる
燃焼速度定数に基づいて微粒子捕集手段の微粒子捕集量
を逐次精度良く推定することができ、特に、内燃機関の
運転中に継続的に微粒子の燃焼が行われる連続燃焼方式
のものにおいても、確実に微粒子捕集量を推定すること
が可能となる。従って、微粒子捕集量が所定レベルに達
したときに何らかの再生制御を行う場合に、的確なタイ
ミングで再生制御を開始することができる。According to the present invention, it is possible to successively and accurately estimate the amount of collected fine particles by the fine particle collecting means based on the combustion rate constant determined from the combustion model. Even in a continuous combustion system in which the combustion of fine particles is performed, the amount of collected fine particles can be reliably estimated. Therefore, when some kind of regeneration control is performed when the amount of trapped fine particles reaches a predetermined level, the regeneration control can be started at an appropriate timing.
【0061】特に、請求項3の発明によれば、再生中に
新たに流入する微粒子流入量をも考慮した形で微粒子捕
集量を精度良く推定することができる。In particular, according to the third aspect of the present invention, the amount of trapped fine particles can be accurately estimated in consideration of the amount of newly introduced fine particles during regeneration.
【0062】さらに、請求項5〜請求項11の発明によ
れば、再生を促進する手段に応じて予め燃焼速度定数を
設定しておくことで、再生に伴う微粒子捕集量の変化を
一層正確に把握することが可能となる。Further, according to the invention of claims 5 to 11, by setting the combustion rate constant in advance according to the means for promoting regeneration, the change in the amount of collected fine particles due to regeneration can be more accurately determined. It becomes possible to grasp.
【0063】[0063]
【発明の実施の形態】次に、本発明の一実施例を説明す
る。Next, an embodiment of the present invention will be described.
【0064】図6は、この発明に係る排気浄化装置を備
えたディーゼル機関の一実施例を示す構成説明図であっ
て、機関本体1に接続された排気通路2に、カーボンC
と可溶性有機物質SOFを主成分とする排気微粒子を捕
集するパティキュレートフィルタ3が介装されていると
ともに、該フィルタ3の上流側に、酸化触媒4が配置さ
れている。この酸化触媒4は、排気中のNOをNO2に
変換する作用を果たし、このNO2がフィルタ3上に捕
集された微粒子に接触することで、より低温から微粒子
の連続的な燃焼が可能となっている。また、吸気通路5
には、吸気流量ひいては排気流量を抑制するために吸気
絞弁6が介装されている。そして、排気還流装置とし
て、排気通路2から吸気通路5へと排気還流通路7が設
けられ、かつ排気還流率を可変制御する排気還流制御弁
8が介装されている。FIG. 6 is a structural explanatory view showing one embodiment of a diesel engine provided with the exhaust gas purifying apparatus according to the present invention. In the exhaust gas passage 2 connected to the engine body 1, carbon
A particulate filter 3 for trapping exhaust particulates mainly composed of water and soluble organic substance SOF is interposed, and an oxidation catalyst 4 is disposed upstream of the filter 3. The oxidation catalyst 4 functions to convert NO in the exhaust gas to NO2, and the NO2 comes in contact with the fine particles collected on the filter 3, thereby enabling continuous combustion of the fine particles from a lower temperature. ing. In addition, the intake passage 5
Is provided with an intake throttle valve 6 for suppressing the intake flow rate and hence the exhaust flow rate. As an exhaust gas recirculation device, an exhaust gas recirculation passage 7 is provided from the exhaust gas passage 2 to the intake passage 5, and an exhaust gas recirculation control valve 8 for variably controlling the exhaust gas recirculation rate is provided.
【0065】また、このディーゼル機関は、いわゆるコ
モンレール式の燃料噴射装置9を備えている。すなわ
ち、燃料タンク10内の燃料が高圧に加圧された状態で
コモンレール11に蓄えられ、燃料噴射ノズル12から
噴射される。This diesel engine is provided with a so-called common rail type fuel injection device 9. That is, the fuel in the fuel tank 10 is stored in the common rail 11 in a state of being pressurized to a high pressure, and is injected from the fuel injection nozzle 12.
【0066】さらに、上記フィルタ3には、その温度を
高めるために、電気ヒータ18が適宜位置に設けられて
いる。Further, the filter 3 is provided with an electric heater 18 at an appropriate position in order to increase the temperature.
【0067】上記の燃料噴射ノズル12、排気還流制御
弁8、吸気絞弁6、添加剤制御弁14、電気ヒータ18
は、いずれも再生手段として、エンジンコントロールユ
ニット15によって適宜に制御される。このエンジンコ
ントロールユニット15には、機関運転条件を示す回転
数センサ16やアクセル開度センサ17等からの種々の
検出信号が入力されており、これに基づいて、後述する
ように、パティキュレートフィルタ3における微粒子捕
集量の推定ならびに再生制御が行われる。The fuel injection nozzle 12, the exhaust gas recirculation control valve 8, the intake throttle valve 6, the additive control valve 14, and the electric heater 18
Are appropriately controlled by the engine control unit 15 as a reproducing means. The engine control unit 15 receives various detection signals from the rotation speed sensor 16, the accelerator opening sensor 17, and the like, which indicate engine operating conditions. The estimation of the amount of collected fine particles and the regeneration control are performed.
【0068】図7は、機関運転条件、具体的には、機関
回転数と燃料流量とに対応する微粒子生成量(単位時間
当たりの生成量)Bを予め実験等により求めて割り付け
た数値グラフ、図8は、同じく、機関回転数と燃料流量
とに対応する燃焼速度定数Rを予め実験等により求めて
割り付けた数値グラフである。FIG. 7 is a numerical graph in which the particle generation amount (production amount per unit time) B corresponding to the engine operating conditions, specifically, the engine speed and the fuel flow rate is obtained in advance through experiments or the like and assigned. FIG. 8 is a numerical graph in which the combustion rate constant R corresponding to the engine speed and the fuel flow rate is obtained in advance through experiments or the like and assigned.
【0069】次に、この実施例の排気浄化装置における
連続再生制御について説明する。Next, the continuous regeneration control in the exhaust gas purifying apparatus of this embodiment will be described.
【0070】図9は、エンジンコントロールユニット1
5において、微粒子捕集量を推定するルーチンを示すフ
ローチャートである。なお、このルーチンは、エンジン
コントロールユニット15において、1秒間隔で繰り返
し実行される。FIG. 9 shows the engine control unit 1.
5 is a flowchart showing a routine for estimating the amount of trapped fine particles in FIG. This routine is repeatedly executed by the engine control unit 15 at one-second intervals.
【0071】先ず初めに、ステップ1において、各セン
サ信号の読み取りが行われる。なお、そのときの機関回
転数を添字aで、アクセル開度を添字bで示す。次に、
ステップ2で、現在の機関運転状態に対応した微粒子生
成量Babと燃焼速度定数Rabとを、図7および図8
の特性のマップから求める。First, in step 1, each sensor signal is read. The engine speed at that time is indicated by a suffix a, and the accelerator opening is indicated by a suffix b. next,
In step 2, the particulate generation amount Bab and the burning rate constant Rab corresponding to the current engine operating state are calculated by using FIGS. 7 and 8.
From the characteristic map.
【0072】そして、ステップ3で、これらの微粒子生
成量Babと燃焼速度定数Rabとを用い、前述した式
9に基づいて、微粒子捕集量D0を推定する。なお、ス
テップ3では、機関から排出される微粒子の全てがパテ
ィキュレートフィルタ3に捕集されるものとみなしてい
るが、実際に捕集される割合は、生成量の90%程度な
ので、より精度を高めるためには、マップから求めた生
成量Babの値に捕集率ηpmを乗じて捕集率修正後の
生成量Babを算出し、これから微粒子捕集量D0を演
算することが望ましい。あるいは、図7のマップに予め
設定される生成量Babの値を、捕集率を考慮した値と
しておくようにしてもよい。Then, in step 3, the trapped amount D0 of the fine particles is estimated based on the above-mentioned formula 9 using the generated amount Bab of the fine particles and the burning rate constant Rab. In step 3, it is assumed that all of the fine particles discharged from the engine are collected by the particulate filter 3. However, since the actual collection rate is about 90% of the generated amount, the accuracy is higher. In order to increase the value, it is desirable to calculate the generation amount Bab after correcting the collection ratio by multiplying the value of the generation amount Bab obtained from the map by the collection ratio ηpm, and calculate the particle collection amount D0 from this. Alternatively, the value of the generation amount Bab preset in the map of FIG. 7 may be set as a value in consideration of the collection rate.
【0073】ステップ4では、ステップ3で計算した微
粒子捕集量D0が、所定の上限値Dlmtよりも低いか
判断する。この上限値Dlmtは、フィルタ3の目詰ま
りによる機関運転への悪影響が顕著になるレベルに設定
される。ここで、Yesであれば、この微粒子捕集量推
定ルーチンが繰り返される。一方、上限値Dlmtを越
えている場合には、より微粒子が燃焼除去され易い制御
を選択する図20のルーチンに進む。In step 4, it is determined whether or not the amount of trapped particulate D0 calculated in step 3 is lower than a predetermined upper limit Dlmt. This upper limit value Dlmt is set to a level at which adverse effects on engine operation due to clogging of the filter 3 become significant. Here, if Yes, this routine for estimating the amount of trapped fine particles is repeated. On the other hand, if it exceeds the upper limit value Dlmt, the routine proceeds to the routine of FIG. 20 for selecting a control in which fine particles are more easily burned and removed.
【0074】図20のルーチンは、やはり、エンジンコ
ントロールユニット15において1秒毎に繰り返し実行
される。The routine of FIG. 20 is also repeatedly executed by the engine control unit 15 every second.
【0075】まず、ステップ11で各センサ信号を読み
取る。次に、ステップ12において、複数の再生条件毎
に設定される燃焼速度定数Rおよび微粒子生成量Bを用
いて、いくつかの再生手段を適用した場合の微粒子捕集
量Zxをそれぞれ算出する。すなわち、図10は、排気
還流を行った条件下での機関回転数と燃料流量とに対応
する微粒子生成量BEを予め実験等により求めて割り付
けた数値グラフ、図11は、同じく、排気還流を行った
条件下での機関回転数と燃料流量とに対応する燃焼速度
定数REを予め実験等により求めて割り付けた数値グラ
フである。同様に、図12および図13は、排気還流と
ポスト噴射(燃焼行程後期での付加的な燃料噴射)を行
った条件下での微粒子生成量BEPおよび燃焼速度定数
REPの数値グラフ、図14および図15は、排気還流
とポスト噴射と吸気絞りとを行った条件下での微粒子生
成量BEPIおよび燃焼速度定数REPIの数値グラ
フ、図16および図17は、排気還流と吸気絞りとを行
った条件下での微粒子生成量BEIおよび燃焼速度定数
REIの数値グラフ、図18および図19は、排気還流
を行うとともに電気ヒータ18への通電による昇温を行
った条件下での微粒子生成量BEKおよび燃焼速度定数
REKの数値グラフ、である。つまり、微粒子生成量B
および燃焼速度定数Rの添え字E,P,I,K,Lは、
それぞれ、E:EGR、P:ポスト噴射、I:吸気絞
り、K:通電昇温、を表している。First, in step 11, each sensor signal is read. Next, in step 12, using the combustion rate constant R and the particulate generation amount B set for each of the plurality of regeneration conditions, the particulate collection amount Zx when some regeneration means are applied is calculated. That is, FIG. 10 is a numerical graph in which the particulate matter generation amount BE corresponding to the engine speed and the fuel flow rate under the condition of the exhaust gas recirculation is obtained in advance by experiment or the like and assigned, and FIG. 9 is a numerical graph in which a combustion rate constant RE corresponding to the engine speed and the fuel flow rate under the conditions performed is obtained in advance through experiments and the like and assigned. Similarly, FIG. 12 and FIG. 13 are numerical graphs of the particulate generation amount BEP and the burning rate constant REP under the condition of performing exhaust gas recirculation and post-injection (additional fuel injection in the latter stage of the combustion stroke). FIG. 15 is a numerical graph of the particulate generation amount BEPI and the combustion rate constant REPI under the conditions of exhaust gas recirculation, post-injection, and intake throttling. FIGS. 16 and 17 show the conditions of exhaust gas recirculation and intake throttling. Numerical graphs of the particle generation amount BEI and the combustion rate constant REI below, and FIGS. 18 and 19 show the particle generation amount BEK and the combustion under the condition that the exhaust gas is recirculated and the temperature is increased by energizing the electric heater 18. It is a numerical graph of a speed constant REK. That is, the fine particle generation amount B
And the subscripts E, P, I, K and L of the combustion rate constant R are
E: EGR, P: post injection, I: intake throttle, K: energization temperature rise, respectively.
【0076】ステップ12では、これらの微粒子生成量
Bおよび燃焼速度定数Rを用いて、前述の式9に基づ
き、それぞれの再生条件での微粒子捕集量Zxを推定す
るのである。なお、上記の再生手段の組み合わせは例示
に過ぎず、これ以外の再生手段の組み合わせ、あるいは
各再生手段単独での利用も可能である。In step 12, the amount of collected fine particles Zx under the respective regeneration conditions is estimated on the basis of the aforementioned equation 9 using the generated amount of fine particles B and the burning rate constant R. It should be noted that the above-mentioned combination of the reproducing means is only an example, and other combinations of the reproducing means or each reproducing means can be used alone.
【0077】上記のようにステップ12で複数の微粒子
捕集量Zxを求めた後に、ステップ13で、最小のもの
を選択する。この微粒子捕集量Zxが最小となる再生条
件(再生手段の組み合わせ)が、そのときの運転条件に
おいては、最も高い効率でフィルタ3の再生を行える再
生条件となる。従って、図示せぬ他のルーチンによっ
て、選択された再生手段、例えば電気ヒータ18への通
電等が実行される。After obtaining a plurality of fine particle collection amounts Zx in step 12 as described above, in step 13 the smallest one is selected. The regeneration condition (combination of regeneration means) at which the amount of collected fine particles Zx is the minimum is the regeneration condition under which the filter 3 can be regenerated with the highest efficiency under the operating conditions at that time. Therefore, the energization of the selected reproducing unit, for example, the electric heater 18 is performed by another routine not shown.
【0078】図21のフローチャートは、この強制的な
再生手段の実行中に行われる微粒子捕集量Zxの推定ル
ーチンを示している。なお、このルーチンは、エンジン
コントロールユニット15において、1秒間隔で繰り返
し実行される。The flowchart of FIG. 21 shows a routine for estimating the amount of trapped fine particles Zx performed during the execution of the forced regeneration means. This routine is repeatedly executed by the engine control unit 15 at one-second intervals.
【0079】先ず初めに、ステップ21において、各セ
ンサ信号の読み取りが行われる。次に、ステップ22
で、現在の機関運転状態に対応した微粒子生成量BXa
bと燃焼速度定数RXabとを、図10〜図19の中の
対応するマップから求める。これは、勿論、上記ステッ
プ13で最適なものとして選択された再生条件、つま
り、実行されている再生手段に対応するマップの値であ
る。First, in step 21, each sensor signal is read. Next, step 22
And the amount of generated fine particles BXa corresponding to the current engine operating state.
b and the burning rate constant RXab are obtained from the corresponding maps in FIGS. This is, of course, the reproduction condition selected as the optimal one in step 13, that is, the value of the map corresponding to the reproducing means being executed.
【0080】そして、ステップ23で、これらの微粒子
生成量BXabと燃焼速度定数RXabとを用い、前述
した式9に基づいて、微粒子捕集量D0を推定する。フ
ィルタ3の捕集率ηpmを考慮した方が望ましいのは、
前述した場合と同様である。Then, in step 23, the trapped amount D0 of the fine particles is estimated based on the above-mentioned equation 9 using the generated amount BXab of the fine particles and the burning rate constant RXab. It is desirable to consider the collection rate ηpm of the filter 3,
This is the same as the case described above.
【0081】ステップ24では、ステップ23で計算し
た微粒子捕集量D0が、所定の上限値Dlmtの30%
の値よりも低くなったか判断する。この値は、フィルタ
3の再生が十分行われたとみなしうるレベルに相当す
る。ここで、NOであれば、電気ヒータ18の通電等の
再生手段を継続しつつ、この微粒子捕集量推定ルーチン
が繰り返される。一方、Dlmt・0.3の値よりも低
くなった場合には、図9に示した通常の連続燃焼におけ
る微粒子捕集量推定ルーチンに戻る。そして、この場
合、図示せぬ他のルーチンによって、実行中の再生手
段、例えば電気ヒータ18への通電等が停止される。In step 24, the particulate matter collection amount D0 calculated in step 23 is 30% of the predetermined upper limit Dlmt.
Is determined to be lower than the value of. This value corresponds to a level at which it can be considered that the regeneration of the filter 3 has been sufficiently performed. Here, if NO, this particulate collection amount estimation routine is repeated while continuing the regenerating means such as energizing the electric heater 18. On the other hand, when it becomes lower than the value of Dlmt · 0.3, the process returns to the routine for estimating the amount of trapped fine particles in the normal continuous combustion shown in FIG. Then, in this case, the energization of the reproducing means, for example, the electric heater 18, which is being executed, is stopped by another routine (not shown).
【図1】微粒子を付着させたパティキュレートフィルタ
における微粒子燃焼挙動を示す特性図。FIG. 1 is a characteristic diagram showing a particulate combustion behavior in a particulate filter to which fine particles are adhered.
【図2】雰囲気温度と燃焼速度定数Rとの関係を示す特
性図。FIG. 2 is a characteristic diagram showing a relationship between an ambient temperature and a burning rate constant R.
【図3】NO2濃度と燃焼速度定数Rとの関係を示す特
性図。FIG. 3 is a characteristic diagram showing a relationship between a NO2 concentration and a combustion rate constant R.
【図4】O2濃度と燃焼速度定数Rとの関係を示す特性
図。FIG. 4 is a characteristic diagram showing a relationship between an O2 concentration and a burning rate constant R.
【図5】対フィルタ容積SVと燃焼速度定数Rとの関係
との関係を示す特性図。FIG. 5 is a characteristic diagram showing a relationship between a relationship between a filter volume SV and a combustion rate constant R.
【図6】この発明に係る排気浄化装置を備えたディーゼ
ル機関の構成説明図。FIG. 6 is a configuration explanatory view of a diesel engine provided with the exhaust gas purification device according to the present invention.
【図7】機関回転数と燃料流量とに対応する微粒子生成
量Bの数値グラフ。FIG. 7 is a numerical graph of a particulate generation amount B corresponding to an engine speed and a fuel flow rate.
【図8】機関回転数と燃料流量とに対応する燃焼速度定
数Rの数値グラフ。FIG. 8 is a numerical graph of a combustion rate constant R corresponding to an engine speed and a fuel flow rate.
【図9】連続燃焼中に微粒子捕集量を推定するルーチン
を示すフローチャート。FIG. 9 is a flowchart showing a routine for estimating the amount of trapped fine particles during continuous combustion.
【図10】排気還流を行った条件下での機関回転数と燃
料流量とに対応する微粒子生成量BEの数値グラフ。FIG. 10 is a numerical graph of a particulate matter generation amount BE corresponding to an engine speed and a fuel flow rate under the condition of exhaust gas recirculation.
【図11】排気還流を行った条件下での機関回転数と燃
料流量とに対応する燃焼速度定数REの数値グラフ。FIG. 11 is a numerical graph of a combustion rate constant RE corresponding to an engine speed and a fuel flow rate under conditions of exhaust gas recirculation.
【図12】排気還流とポスト噴射を行った条件下での微
粒子生成量BEPの数値グラフ。FIG. 12 is a numerical graph of a particulate generation amount BEP under the conditions of exhaust gas recirculation and post-injection.
【図13】排気還流とポスト噴射を行った条件下での燃
焼速度定数REPの数値グラフ。FIG. 13 is a numerical graph of a combustion rate constant REP under the conditions of exhaust gas recirculation and post-injection.
【図14】排気還流とポスト噴射と吸気絞りとを行った
条件下での微粒子生成量BEPIの数値グラフ。FIG. 14 is a numerical graph of the fine particle generation amount BEPI under the conditions of exhaust gas recirculation, post injection, and intake throttle.
【図15】排気還流とポスト噴射と吸気絞りとを行った
条件下での燃焼速度定数REPIの数値グラフ。FIG. 15 is a numerical graph of a combustion rate constant REPI under the conditions of exhaust gas recirculation, post-injection, and intake throttle.
【図16】排気還流を行うとともに吸気絞りを行った条
件下での微粒子生成量BEIの数値グラフ。FIG. 16 is a numerical graph of a particulate generation amount BEI under a condition in which exhaust gas recirculation is performed and an intake throttle is performed.
【図17】排気還流を行うとともに吸気絞りを行った条
件下での燃焼速度定数REIの数値グラフ。FIG. 17 is a numerical graph of a combustion rate constant REI under the condition of performing exhaust gas recirculation and performing intake throttle.
【図18】排気還流を行うとともに電気ヒータ18への
通電による昇温を行った条件下での微粒子生成量BEK
の数値グラフ。FIG. 18 is a diagram illustrating the amount BEK of fine particles generated under the condition that the exhaust gas is recirculated and the temperature is increased by energizing the electric heater 18.
Numerical chart.
【図19】排気還流を行うとともに電気ヒータ18への
通電による昇温を行った条件下での燃焼速度定数REK
の数値グラフ。FIG. 19 shows a combustion rate constant REK under the condition that the exhaust gas is recirculated and the temperature is increased by energizing the electric heater 18.
Numerical chart.
【図20】再生条件を選択するためのルーチンを示すフ
ローチャート。FIG. 20 is a flowchart showing a routine for selecting a reproduction condition.
【図21】再生手段による再生中の微粒子捕集量推定ル
ーチンを示すフローチャート。FIG. 21 is a flowchart showing a routine for estimating the amount of trapped fine particles during regeneration by the regeneration unit.
【符号の説明】 3…パティキュレートフィルタ 4…酸化触媒 6…吸気絞弁 7…排気還流通路 9…燃料噴射装置 15…エンジンコントロールユニット 18…電気ヒータ[Description of Signs] 3 ... Particulate filter 4 ... Oxidation catalyst 6 ... Intake throttle valve 7 ... Exhaust recirculation passage 9 ... Fuel injection device 15 ... Engine control unit 18 ... Electric heater
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/02 341 F01N 3/02 341M B01D 46/42 B01D 46/42 B F01N 3/24 F01N 3/24 E F02M 25/07 570 F02M 25/07 570J 570D Fターム(参考) 3G062 AA01 BA00 BA04 BA06 FA04 GA04 GA06 GA11 GA15 3G090 BA01 BA04 CA01 CB00 DA18 DA20 EA02 EA06 EA07 3G091 AA11 AA18 AB02 AB13 BA00 DB04 DB05 DB06 DB07 DB08 DB09 DB10 DB13 DC01 DC07 EA01 EA07 EA20 EA21 HA15 HB05 4D058 MA41 MA42 MA51 MA54 SA08 TA06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F01N 3/02 341 F01N 3/02 341M B01D 46/42 B01D 46/42 B F01N 3/24 F01N 3/24 E F02M 25/07 570 F02M 25/07 570J 570D F term (reference) 3G062 AA01 BA00 BA04 BA06 FA04 GA04 GA06 GA11 GA15 3G090 BA01 BA04 CA01 CB00 DA18 DA20 EA02 EA06 EA07 3G091 AA11 DB04 DB02 DB13 DB13 DC01 DC07 EA01 EA07 EA20 EA21 HA15 HB05 4D058 MA41 MA42 MA51 MA54 SA08 TA06
Claims (16)
気ガス中の微粒子を捕集するとともに、捕集された微粒
子が燃焼により除去される微粒子捕集手段と、 上記微粒子捕集手段に捕集された微粒子の燃焼特性を示
す燃焼モデルを有し、上記微粒子捕集手段に存在する微
粒子捕集量を上記燃焼モデルに基づいて推定する微粒子
捕集量推定手段と、 を備えることを特徴とする内燃機関の排気浄化装置。A particulate collection means disposed in an exhaust passage of an engine for collecting particulates in exhaust gas flowing into the exhaust gas and removing the collected particulates by combustion; A combustion model indicating combustion characteristics of the collected fine particles, and a fine particle collection amount estimating means for estimating the fine particle collection amount present in the fine particle collecting means based on the combustion model. An exhaust gas purification device for an internal combustion engine.
に捕集された微粒子が燃焼する確率を示す燃焼速度定数
を含む関数であることを特徴とする請求項1に記載の内
燃機関の排気浄化装置。2. The exhaust of an internal combustion engine according to claim 1, wherein the combustion model is a function including a burning rate constant indicating a probability that the fine particles collected by the fine particle collecting means burn. Purification device.
に捕集された微粒子が燃焼する間に新たに捕集される微
粒子の量を示す微粒子生成量を含む関数であることを特
徴とする請求項1または請求項2に記載の内燃機関の排
気浄化装置。3. The combustion model is a function including a fine particle generation amount indicating an amount of fine particles newly collected while the fine particles collected by the fine particle collecting means are burning. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1 or 2.
段に流入する排気ガスの状態に応じて設定されることを
特徴とする請求項2に記載の内燃機関の排気浄化装置。4. The exhaust gas purifying apparatus for an internal combustion engine according to claim 2, wherein said combustion rate constant is set according to a state of exhaust gas flowing into said particulate collecting means.
の状態を制御して微粒子捕集手段の再生を促進する複数
種類の再生手段と、 この複数種類の再生手段の中から一つあるいは複数組み
合わせて再生を実行する再生制御手段と、を備え、 上記燃焼速度定数は、上記再生手段の一つあるいは組み
合わせからなる各再生条件毎に設定されていることを特
徴とする請求項2に記載の内燃機関の排気浄化装置。5. A plurality of types of regenerating means for controlling the state of exhaust gas flowing into the particulate collecting means to promote the regeneration of the particulate collecting means, and one or more of the plurality of types of regenerating means. 3. A regeneration control means for performing regeneration in combination, wherein the combustion rate constant is set for each regeneration condition consisting of one or a combination of the regeneration means. An exhaust gas purification device for an internal combustion engine.
件に対応する複数の燃焼速度定数に基づいて、上記微粒
子捕集量を各再生条件毎に推定し、 上記再生制御手段は、この推定された複数の微粒子捕集
量の中で最も小さな値に対応する再生条件を選択して再
生を実行することを特徴とする請求項5に記載の内燃機
関の排気浄化装置。6. The particulate collection amount estimating means estimates the particulate collection amount for each regeneration condition based on a plurality of combustion rate constants corresponding to each regeneration condition. The exhaust gas purifying apparatus for an internal combustion engine according to claim 5, wherein the regeneration is performed by selecting a regeneration condition corresponding to a smallest value among the plurality of estimated particulate collection amounts.
とに対応して設定されることを特徴とする請求項2〜6
のいずれかに記載の内燃機関の排気浄化装置。7. The combustion rate constant according to claim 2, wherein the combustion rate constant is set according to an engine speed and a load.
An exhaust gas purification device for an internal combustion engine according to any one of the above.
段に流入する排気ガスの温度の増加に応じて大きくなる
ことを特徴とする請求項4に記載の内燃機関の排気浄化
装置。8. The exhaust gas purifying apparatus for an internal combustion engine according to claim 4, wherein the combustion rate constant increases as the temperature of the exhaust gas flowing into the particulate collection means increases.
段に流入する排気ガス中のNO2量の増加に応じて大き
くなることを特徴とする請求項4に記載の内燃機関の排
気浄化装置。9. The exhaust gas purifying apparatus for an internal combustion engine according to claim 4, wherein the combustion rate constant increases as the amount of NO2 in the exhaust gas flowing into the particulate collection means increases.
手段に流入する排気ガス中のO2量の増加に応じて大き
くなることを特徴とする請求項4に記載の内燃機関の排
気浄化装置。10. The exhaust gas purifying apparatus for an internal combustion engine according to claim 4, wherein the combustion rate constant increases as the amount of O2 in the exhaust gas flowing into the particulate collection means increases.
手段に流入する排気ガスの流量の増加に応じて大きくな
ることを特徴とする請求項4に記載の内燃機関の排気浄
化装置。11. The exhaust gas purifying apparatus for an internal combustion engine according to claim 4, wherein said combustion rate constant increases as the flow rate of exhaust gas flowing into said particulate collection means increases.
集手段の再生時に、上記微粒子捕集手段に流入する排気
ガスを加熱する手段であることを特徴とする請求項5に
記載の内燃機関の排気浄化装置。12. The internal combustion engine according to claim 5, wherein one of the regenerating means is a means for heating exhaust gas flowing into the fine particle collecting means when the fine particle collecting means is regenerated. Engine exhaust purification device.
集手段の再生時に、機関の吸入空気量を減少させる手段
であることを特徴とする請求項5に記載の内燃機関の排
気浄化装置。13. The exhaust gas purifying apparatus for an internal combustion engine according to claim 5, wherein one of the regenerating means is a means for reducing an intake air amount of the engine when the particulate collecting means is regenerated. .
集手段の再生時に、燃料の主噴射の後に一定量の燃料を
噴射する手段であることを特徴とする請求項5に記載の
内燃機関の排気浄化装置。14. The internal combustion engine according to claim 5, wherein one of said regenerating means is means for injecting a fixed amount of fuel after main injection of fuel when regenerating said particulate trapping means. Engine exhaust purification device.
気通路から吸気通路に還流する手段であることを特徴と
する請求項5に記載の内燃機関の排気浄化装置。15. The exhaust gas purifying apparatus for an internal combustion engine according to claim 5, wherein one of the regenerating means is a means for recirculating exhaust gas from an exhaust passage to an intake passage.
する排気ガス中のNOを酸化してNO2を生成する酸化
触媒手段をさらに備えていることを特徴とする請求項1
〜15のいずれかに記載の内燃機関の排気浄化装置。16. An apparatus according to claim 1, further comprising an oxidation catalyst means for oxidizing NO in the inflowing exhaust gas to generate NO2, on an upstream side of said particulate collection means.
16. The exhaust gas purification device for an internal combustion engine according to any one of claims 15 to 15.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000291472A JP3598961B2 (en) | 2000-09-26 | 2000-09-26 | Exhaust gas purification device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000291472A JP3598961B2 (en) | 2000-09-26 | 2000-09-26 | Exhaust gas purification device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002097930A true JP2002097930A (en) | 2002-04-05 |
JP3598961B2 JP3598961B2 (en) | 2004-12-08 |
Family
ID=18774537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000291472A Expired - Fee Related JP3598961B2 (en) | 2000-09-26 | 2000-09-26 | Exhaust gas purification device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3598961B2 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004036002A1 (en) * | 2002-10-16 | 2004-04-29 | Mitsubishi Fuso Truck And Bus Corporation | Exhaust emission control device of internal combustion engine |
FR2864146A1 (en) * | 2003-12-23 | 2005-06-24 | Renault Sas | Real-time determination of the mass of particulates in an automobile exhaust gas filter comprises performing a cycle of operations in which the mass is calculated from the mass determined in the preceding cycle |
WO2006092946A1 (en) | 2005-02-28 | 2006-09-08 | Yanmar Co., Ltd. | Exhaust emission control device and internal combustion engine equipped with the exhaust emission control device and particulate filter regenerating method |
WO2007058047A1 (en) | 2005-11-11 | 2007-05-24 | Yanmar Co., Ltd. | Exhaust gas purification device |
JP2007170193A (en) * | 2005-12-19 | 2007-07-05 | Mitsubishi Motors Corp | Exhaust purification device |
JP2007182791A (en) * | 2006-01-05 | 2007-07-19 | Nissan Motor Co Ltd | Particulate burnt amount detector, detecting method and particulate accumulated amount detector for exhaust gas cleaning filter |
EP1832727A2 (en) | 2006-03-07 | 2007-09-12 | Nissan Motor Ltd. | An apparatus and a method for detection of particulate matter accumulation |
JP2008274896A (en) * | 2007-05-07 | 2008-11-13 | Nissan Motor Co Ltd | Exhaust emission control device for internal combustion engine |
JP2008544155A (en) * | 2005-06-21 | 2008-12-04 | ルノー・エス・アー・エス | Particle filter regeneration control method |
WO2009057366A1 (en) * | 2007-10-31 | 2009-05-07 | Nissan Diesel Motor Co., Ltd. | Exhaust air purifier equipment and method for purifying exhaust air |
JP2010190120A (en) * | 2009-02-18 | 2010-09-02 | Denso Corp | Exhaust emission control device for internal combustion engine |
JP2013044256A (en) * | 2011-08-23 | 2013-03-04 | Isuzu Motors Ltd | Method for regenerating dpf, and exhaust emission control system |
JP2013072328A (en) * | 2011-09-27 | 2013-04-22 | Isuzu Motors Ltd | Exhaust emission control system for internal combustion engine, internal combustion engine, and exhaust emission control method for internal combustion engine |
WO2013073326A1 (en) * | 2011-11-16 | 2013-05-23 | 三菱重工業株式会社 | Dpf pm accumulation quantity estimation device |
JP2013204438A (en) * | 2012-03-27 | 2013-10-07 | Isuzu Motors Ltd | Dpf regeneration method and exhaust emission control system |
WO2014020063A1 (en) * | 2012-07-31 | 2014-02-06 | Fpt Industrial S.P.A. | Exhaust gas treatment system (ats) based on a pm-cat filter |
WO2014141903A1 (en) | 2013-03-15 | 2014-09-18 | エヌ・イーケムキャット株式会社 | Oxidation catalyst and exhaust gas purification device using same |
-
2000
- 2000-09-26 JP JP2000291472A patent/JP3598961B2/en not_active Expired - Fee Related
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100721321B1 (en) * | 2002-10-16 | 2007-05-25 | 미츠비시 후소 트럭 앤드 버스 코포레이션 | Exhaust emission control device of internal combustion engine |
WO2004036002A1 (en) * | 2002-10-16 | 2004-04-29 | Mitsubishi Fuso Truck And Bus Corporation | Exhaust emission control device of internal combustion engine |
US7497078B2 (en) | 2002-10-16 | 2009-03-03 | Mitsubishi Fuso Truck And Bus Corporation | Exhaust emission control device of internal combustion engine |
CN100371563C (en) * | 2002-10-16 | 2008-02-27 | 三菱扶桑卡客车公司 | Waste gas cleaning system for internal combustion engine |
FR2864146A1 (en) * | 2003-12-23 | 2005-06-24 | Renault Sas | Real-time determination of the mass of particulates in an automobile exhaust gas filter comprises performing a cycle of operations in which the mass is calculated from the mass determined in the preceding cycle |
WO2005064143A1 (en) * | 2003-12-23 | 2005-07-14 | Renault S.A.S. | Method for real time determination of the mass of particles in a particle filter of a motor vehicle |
JP2007515595A (en) * | 2003-12-23 | 2007-06-14 | ルノー・エス・アー・エス | A method for real-time determination of the mass of particles present in an automobile particle filter. |
US7319928B2 (en) | 2003-12-23 | 2008-01-15 | Renault S.A.S. | Method for real time determination of the mass of particles in a particle filter of a motor vehicle |
WO2006092946A1 (en) | 2005-02-28 | 2006-09-08 | Yanmar Co., Ltd. | Exhaust emission control device and internal combustion engine equipped with the exhaust emission control device and particulate filter regenerating method |
JP2008544155A (en) * | 2005-06-21 | 2008-12-04 | ルノー・エス・アー・エス | Particle filter regeneration control method |
WO2007058047A1 (en) | 2005-11-11 | 2007-05-24 | Yanmar Co., Ltd. | Exhaust gas purification device |
US8122708B2 (en) | 2005-11-11 | 2012-02-28 | Yanmar Co., Ltd. | Exhaust gas purification device |
JP2007170193A (en) * | 2005-12-19 | 2007-07-05 | Mitsubishi Motors Corp | Exhaust purification device |
JP2007182791A (en) * | 2006-01-05 | 2007-07-19 | Nissan Motor Co Ltd | Particulate burnt amount detector, detecting method and particulate accumulated amount detector for exhaust gas cleaning filter |
EP1832727A2 (en) | 2006-03-07 | 2007-09-12 | Nissan Motor Ltd. | An apparatus and a method for detection of particulate matter accumulation |
US7749314B2 (en) | 2006-03-07 | 2010-07-06 | Nissan Motor Co., Ltd. | Particulate matter accumulation amount detection apparatus and method |
JP2008274896A (en) * | 2007-05-07 | 2008-11-13 | Nissan Motor Co Ltd | Exhaust emission control device for internal combustion engine |
WO2009057366A1 (en) * | 2007-10-31 | 2009-05-07 | Nissan Diesel Motor Co., Ltd. | Exhaust air purifier equipment and method for purifying exhaust air |
JP2009108809A (en) * | 2007-10-31 | 2009-05-21 | Nissan Diesel Motor Co Ltd | Exhaust purification device and exhaust purification method |
US8161737B2 (en) | 2007-10-31 | 2012-04-24 | Ud Trucks Corporation | Apparatus for and method of purifying exhaust gas |
JP2010190120A (en) * | 2009-02-18 | 2010-09-02 | Denso Corp | Exhaust emission control device for internal combustion engine |
JP2013044256A (en) * | 2011-08-23 | 2013-03-04 | Isuzu Motors Ltd | Method for regenerating dpf, and exhaust emission control system |
JP2013072328A (en) * | 2011-09-27 | 2013-04-22 | Isuzu Motors Ltd | Exhaust emission control system for internal combustion engine, internal combustion engine, and exhaust emission control method for internal combustion engine |
WO2013073326A1 (en) * | 2011-11-16 | 2013-05-23 | 三菱重工業株式会社 | Dpf pm accumulation quantity estimation device |
US9074505B2 (en) | 2011-11-16 | 2015-07-07 | Mitsubishi Heavy Industries, Ltd. | PM accumulation amount estimation device for DPF |
JP2013204438A (en) * | 2012-03-27 | 2013-10-07 | Isuzu Motors Ltd | Dpf regeneration method and exhaust emission control system |
WO2014020063A1 (en) * | 2012-07-31 | 2014-02-06 | Fpt Industrial S.P.A. | Exhaust gas treatment system (ats) based on a pm-cat filter |
WO2014020064A1 (en) * | 2012-07-31 | 2014-02-06 | Fpt Industrial S.P.A. | Exhaust gas treatment system (ats) based on a pm-cat filter |
WO2014141903A1 (en) | 2013-03-15 | 2014-09-18 | エヌ・イーケムキャット株式会社 | Oxidation catalyst and exhaust gas purification device using same |
Also Published As
Publication number | Publication date |
---|---|
JP3598961B2 (en) | 2004-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4709220B2 (en) | Particulate filter regeneration method | |
JP3598961B2 (en) | Exhaust gas purification device for internal combustion engine | |
US8720189B2 (en) | Apparatus and method for onboard performance monitoring of oxidation catalyst | |
US7484503B2 (en) | System and method for diesel particulate filter regeneration | |
JP6953892B2 (en) | Exhaust gas purification device and vehicles equipped with it | |
KR100772954B1 (en) | Exhaust purifying apparatus for internal combustion engine | |
US7162867B2 (en) | Exhaust gas purifying device for internal combustion engine | |
JP2008031854A (en) | Exhaust gas purification device for internal combustion engine | |
JP4986915B2 (en) | Exhaust purification device | |
WO2013014514A2 (en) | Exhaust gas control apparatus for internal combustion engine, and control method for exhaust gas control apparatus for internal combustion engine | |
JP4506060B2 (en) | Particulate filter regeneration control device | |
JP2011220158A (en) | Exhaust emission control device for engine | |
JP2010038034A (en) | Control method of exhaust emission control device | |
JP2010261331A (en) | Exhaust purification device | |
JP5720135B2 (en) | Exhaust gas purification system | |
WO2020066931A1 (en) | Estimation device and vehicle | |
JP2011236874A (en) | Emission control device | |
JP2011169235A (en) | Method for controlling dpf regeneration | |
JP2010249076A (en) | Exhaust gas purification device for internal combustion engine | |
JP4052268B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2019152138A (en) | Exhaust emission control device of internal combustion engine and vehicle | |
JP4070687B2 (en) | Exhaust purification device | |
JP2009002192A (en) | Exhaust emission control device for internal combustion engine | |
JP2005163652A (en) | Emission control device | |
JP4013813B2 (en) | Diesel engine exhaust purification system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040518 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040714 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040824 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040906 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3598961 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070924 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080924 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090924 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100924 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100924 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110924 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120924 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120924 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130924 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |