[go: up one dir, main page]

JP2002072087A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JP2002072087A
JP2002072087A JP2000256102A JP2000256102A JP2002072087A JP 2002072087 A JP2002072087 A JP 2002072087A JP 2000256102 A JP2000256102 A JP 2000256102A JP 2000256102 A JP2000256102 A JP 2000256102A JP 2002072087 A JP2002072087 A JP 2002072087A
Authority
JP
Japan
Prior art keywords
lens
lens group
positive
group
focal length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000256102A
Other languages
Japanese (ja)
Other versions
JP4770007B2 (en
Inventor
Masami Muratani
真美 村谷
Koichi Oshita
孝一 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2000256102A priority Critical patent/JP4770007B2/en
Publication of JP2002072087A publication Critical patent/JP2002072087A/en
Application granted granted Critical
Publication of JP4770007B2 publication Critical patent/JP4770007B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

(57)【要約】 【課題】固体撮像素子等を用いたビデオカメラ、電子ス
チルカメラ等に適し、小型で、ズーム比が3倍程度で、
広角端で60°の画角を有し、優れた結像性能を有する
ズームレンズ。 【解決手段】物体側より順に、少なくとも、正の第1レ
ンズ群G1、負の第2レンズ群G2、正の第3レンズ群
G3を有し、広角端から望遠端への変倍時に、前記第1
レンズ群G1が固定で、前記第2レンズ群G2と前記第
3レンズ群G3の間隔が縮小するズームレンズにおい
て、前記第1レンズ群G1は、1枚の正レンズから成
り、前記第2レンズ群G2は、少なくとも1枚の負レン
ズ及び少なくとも1枚の正レンズを含み、前記第3レン
ズ群G3は、絞りS及び少なくとも1枚の正レンズ及び
少なくとも1枚の負レンズを含む構成で、条件式(1)
(2)を満たす。
(57) [Summary] [PROBLEMS] To be suitable for a video camera, an electronic still camera, etc. using a solid-state imaging device, etc.
A zoom lens with an angle of view of 60 ° at the wide-angle end and excellent imaging performance. The zoom lens includes at least a first positive lens group, a second negative lens group, and a third positive lens group in order from the object side. First
In a zoom lens in which the lens group G1 is fixed and the distance between the second lens group G2 and the third lens group G3 is reduced, the first lens group G1 includes one positive lens, and the second lens group G2 includes at least one negative lens and at least one positive lens, and the third lens group G3 includes a stop S, at least one positive lens, and at least one negative lens. (1)
(2) is satisfied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はCCD等の固体撮像
素子を用いた小型カメラなどに適したズームレンズで、
特にズーム比が2.5倍以上で、広角端で60°以上の
画角を有するズームレンズに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens suitable for a small camera using a solid-state imaging device such as a CCD.
In particular, the present invention relates to a zoom lens having a zoom ratio of 2.5 times or more and an angle of view of 60 ° or more at a wide angle end.

【0002】[0002]

【従来の技術】従来より、固体撮像素子に適したズーム
レンズが特開平11−23967などで知られている
が、凹先行のタイプでは比較的単純な構成で良好な収差
補正が得られるものの、全長が長くなりやすく、広角端
における歪曲収差の補正が困難であった。一方凸先行の
タイプは、前玉径が比較的大きく全長が複雑になりがち
であるが、全長が比較的短く、広角端における歪曲収差
の補正に有利であるという利点がある。この凸先行タイ
プのレンズでは特開平6−27377号公報や特開平8
−278444号公報記載のレンズが知られている。
2. Description of the Related Art Conventionally, a zoom lens suitable for a solid-state image sensor has been known in Japanese Patent Application Laid-Open No. H11-23967. The overall length tends to be long, and it is difficult to correct distortion at the wide-angle end. On the other hand, the convex leading type has a relatively large front lens diameter and tends to be complicated in overall length, but has an advantage in that the overall length is relatively short and is advantageous in correcting distortion at the wide-angle end. Japanese Patent Application Laid-Open Nos. Hei 6-27377 and Hei 8
A lens described in JP-A-278444 is known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、特開平
6−27377号及び特開平8−278444号の実施
例では、まだ全長が長く、また各群の厚さが大きくなり
やすいため、小型化に不利であった。
However, in the embodiments of JP-A-6-27377 and JP-A-8-278444, the overall length is still long and the thickness of each group tends to be large, which is disadvantageous for miniaturization. Met.

【0004】そこで本発明においては、固体撮像素子等
を用いたビデオカメラ、電子スチルカメラ等に適し、小
型で、ズーム比が3倍程度で、広角端で60°の画角を
有し、優れた結像性能を有するズームレンズの提供を目
的としている。
Therefore, the present invention is suitable for a video camera, an electronic still camera, etc. using a solid-state imaging device, etc., and is compact, has a zoom ratio of about 3 times, has an angle of view of 60 ° at the wide angle end, and is excellent. It is intended to provide a zoom lens having improved imaging performance.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、物体側より順に、少なくとも、正の第1
レンズ群、負の第2レンズ群、正の第3レンズ群を有
し、広角端から望遠端への変倍時に、前記第1レンズ群
が固定で、前記第2レンズ群と前記第3レンズ群の間隔
が縮小するズームレンズにおいて、前記第1レンズ群
は、1枚の正レンズから成り、前記第2レンズ群は、少
なくとも1枚の負レンズ及び少なくとも1枚の正レンズ
を含み、前記第3レンズ群は、絞り及び少なくとも1枚
の正レンズ及び少なくとも1枚の負レンズを含む構成
で、さらに以下の条件式を満たすことを特徴とするズー
ムレンズを提供する。
In order to solve the above problems, the present invention provides at least a positive first order from the object side.
A first lens group fixed at zooming from the wide-angle end to the telephoto end; and a second lens group and a third lens group. In a zoom lens in which the distance between the groups is reduced, the first lens group includes one positive lens, the second lens group includes at least one negative lens and at least one positive lens, and The three-lens group includes a stop, at least one positive lens, and at least one negative lens, and further provides a zoom lens that satisfies the following conditional expression.

【0006】 3.9 < f1/f3 < 43 (1) 6.3 < TL/fw < 7.9 (2) 但し、 f1:前記第1レンズ群の焦点距離、 f3:前記第3レンズ群の焦点距離、 TL:全系の全長(第1面から像面までの距離)、 fw:広角端における全系の焦点距離。3.9 <f1 / f3 <43 (1) 6.3 <TL / fw <7.9 (2) where f1: focal length of the first lens group, f3: focal length of the third lens group, TL: all Overall length of system (distance from first surface to image plane), fw: focal length of whole system at wide-angle end.

【0007】[0007]

【発明の実施の形態】以下に,本発明の実施の形態につ
いて説明する。図1、図5、図9、図13、図17、図
21、図25、図29、図33、図37、図41、図4
5、図49に本発明のレンズ断面図を示す。図からわか
るように、本発明は、物体側から順に、正の屈折力を有
する第1レンズ群G1と、負の屈折力を有する第2レン
ズ群G2と、絞りSを含み正の屈折力を有する第3レン
ズ群G3とを有する構成である。
Embodiments of the present invention will be described below. 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 4
5 and FIG. 49 show a sectional view of the lens of the present invention. As can be seen from the figure, the present invention sequentially includes, from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refractive power including a stop S. And a third lens group G3.

【0008】最も物体側に配置された正屈折力の第1レ
ンズ群は、主に第2レンズ群で発生する負の歪曲収差を
補正する働きを持つとともに、正の収斂作用によって、
第2レンズ群以降に入射する光軸と平行に入射する光線
の高さを下げる働きがあり、この作用によって全系の小
型化が図れる。
The first lens unit having the positive refractive power disposed closest to the object has a function of mainly correcting negative distortion generated by the second lens unit, and has a positive convergence function.
It has the function of lowering the height of light rays incident parallel to the optical axis after the second lens group, and this action can reduce the size of the entire system.

【0009】負屈折力の第2レンズ群は、物体側から像
側に移動することによって焦点距離を変化させる作用
と、第3レンズ群に対して非線形に移動することによっ
て、広角端から望遠端へのズームに際し、焦点距離を一
定に保つ作用を担っている。
The second lens group having a negative refractive power changes the focal length by moving from the object side to the image side, and moves from the wide-angle end to the telephoto end by moving nonlinearly with respect to the third lens group. When zooming in to, it is responsible for keeping the focal length constant.

【0010】正屈折力の第3レンズ群は、広角端から望
遠端へのズームに際し、像側から物体側に移動すること
によって、全系の焦点距離を変化させる役割を担う。
The third lens group having a positive refractive power has a role of changing the focal length of the entire system by moving from the image side to the object side when zooming from the wide-angle end to the telephoto end.

【0011】本発明は、全系の小型化を図る上では、1
群の小型化が重要であるという認識のもとに正屈折力の
第1レンズ群を1枚の正レンズで構成した結果、広角の
正レンズ先行型ズームレンズで問題となる前玉径の増大
を最小に抑え、全系の小型化を図りながら、歪曲収差等
諸収差を良好に補正することができた。
According to the present invention, in order to reduce the size of the entire system,
Recognizing that miniaturization of the group is important, the first lens group having a positive refracting power is composed of one positive lens. As a result, an increase in the front lens diameter, which is a problem with a wide-angle positive-lens leading-type zoom lens, is caused. Was minimized, and various aberrations such as distortion were successfully corrected while miniaturizing the entire system.

【0012】ここで条件式(1)は、上記正の第1レン
ズ群を単レンズで構成するための条件であって、上記正
の第1レンズ群の焦点距離と正の第3レンズ群の焦点距
離の比を規定するものである。条件式(1)の上限を超
えると、正の第1レンズ群の屈折力が非常に弱いため、
広角端での負の歪曲収差の補正が困難であり、また構成
が負、正の2群ズームレンズに近づくため、全長の短縮
が困難である。逆に下限を超える場合は、正の第1レン
ズ群の焦点距離が短い場合と、正の第3レンズ群の焦点
距離が長い場合が考えられるが、正の第1レンズ群の焦
点距離が短い場合、この第1レンズ群が正の単レンズで
構成されているため、ここで発生する色収差の補正が困
難であり、第1レンズ群を単レンズで構成することがで
きなくなる。一方正の第3レンズ群の焦点距離が長い場
合は、全系の大型化を招くため好ましくない。
Here, the conditional expression (1) is a condition for forming the positive first lens unit by a single lens, and includes the focal length of the positive first lens unit and the positive third lens unit. This defines the ratio of the focal length. If the upper limit of conditional expression (1) is exceeded, the refractive power of the positive first lens group is extremely weak.
It is difficult to correct negative distortion at the wide-angle end, and it is difficult to reduce the overall length because the configuration approaches a negative / positive two-unit zoom lens. Conversely, if the lower limit is exceeded, the positive first lens group may have a short focal length and the positive third lens group may have a long focal length. However, the positive first lens group has a short focal length. In this case, since the first lens group is composed of a positive single lens, it is difficult to correct the chromatic aberration generated here, and the first lens group cannot be composed of a single lens. On the other hand, if the focal length of the positive third lens group is long, it is not preferable because the whole system becomes large.

【0013】条件式(2)は、小型化に関する条件で、
上記レンズ全系の広角端における焦点距離fwと、全長
との関係を規定している。この式の上限を超えると、全
長が大きくなり小型化が困難になるか、広角端における
画角が狭くなり、ズーム比が小さくなってしまう。逆に
この式の下限を超えると、全系の小型化には有利である
ものの、ズーム比を大きくした場合に収差補正が困難で
あるため好ましくない。
Conditional expression (2) is a condition for miniaturization,
The relationship between the focal length fw at the wide-angle end of the entire lens system and the overall length is defined. If the upper limit of this expression is exceeded, the overall length becomes large and it is difficult to reduce the size, or the angle of view at the wide-angle end becomes narrow and the zoom ratio becomes small. Conversely, when the value exceeds the lower limit of this equation, it is advantageous for miniaturization of the entire system, but it is not preferable because aberration correction is difficult when the zoom ratio is increased.

【0014】絞りは、諸収差をバランス良く補正するた
めに、第3レンズ群中に配設することが好ましく、更
に、第3レンズ群の最も物体側に配設するのがより好ま
しい。
The aperture is preferably disposed in the third lens group in order to correct various aberrations in a well-balanced manner, and more preferably, is disposed on the most object side of the third lens group.

【0015】以上のような構成をとることによって、諸
収差の補正が良好な小型のズームレンズを得ることが出
来るが、諸収差を良好に補正しつつ高いズーム比と小型
化を図るために本発明は条件式(3)を満足することが
望ましい。
By adopting the above configuration, a small zoom lens with good correction of various aberrations can be obtained. However, in order to achieve high zoom ratio and miniaturization while correcting various aberrations satisfactorily. It is desirable that the present invention satisfies the conditional expression (3).

【0016】条件式(3)の上限を超えても下限を超え
てもペッツバール和の補正が困難であり、また、この上
限を超えた場合は、第3レンズ群の焦点距離が長いた
め、ズーム比を高くするのは有利であるが、全長が長く
なってしまうため好ましくない。あるいは第2レンズ群
の屈折力が過大であるため、諸収差の補正が困難であ
る。逆に下限を超えた場合は、第2レンズの焦点距離が
長く第3レンズ群の焦点距離が短いため、諸収差の補正
には有利であるが、望遠側で第2レンズ群と第3レンズ
群の間隔が接近するために、高いズーム比を確保するこ
とが困難である。
It is difficult to correct the Petzval sum even if the upper limit or the lower limit of conditional expression (3) is exceeded. If the upper limit is exceeded, the focal length of the third lens unit is long, so that the zoom It is advantageous to increase the ratio, but it is not preferable because the overall length becomes long. Alternatively, since the refractive power of the second lens group is excessive, it is difficult to correct various aberrations. Conversely, if the lower limit is exceeded, the focal length of the second lens is long and the focal length of the third lens group is short, which is advantageous for correcting various aberrations. It is difficult to secure a high zoom ratio because the distance between groups is close.

【0017】また、諸収差を良好に補正しつつ小型化を
図るために、本発明は条件式(4)を満足することが望
ましい。この上限を超えた場合は、第3レンズ群の厚さ
が厚すぎて、小型化に反する。逆に下限を超えた場合に
は第3レンズ群の厚さが薄すぎるため、特にコマ収差の
補正が困難になる。
It is desirable that the present invention satisfies the conditional expression (4) in order to reduce the size while favorably correcting various aberrations. If the upper limit is exceeded, the thickness of the third lens group is too large, which is against miniaturization. Conversely, if the lower limit is exceeded, the thickness of the third lens group is too thin, and it is particularly difficult to correct coma.

【0018】また、小型化を図りつつ良好な収差補正を
得るために、本発明は条件式(5)を満足することが望
ましい。この上限を超えた場合は全系の小型化を図るこ
とが困難であり、逆に下限を超えた場合には、ズーミン
グにおける色収差の変動や球面収差の変動を良好に補正
することが困難になるため好ましくない。
In order to obtain good aberration correction while miniaturizing the zoom lens, it is desirable that the present invention satisfies the conditional expression (5). If the upper limit is exceeded, it is difficult to reduce the size of the entire system. Conversely, if the lower limit is exceeded, it becomes difficult to satisfactorily correct fluctuations in chromatic aberration and spherical aberration during zooming. Therefore, it is not preferable.

【0019】なお、本発明のレンズは、前記正の第3レ
ンズ群の像側にさらに正の第4レンズ群を有する構成が
望ましい。正の第4レンズ群は、全系の射出瞳をコント
ロールする作用を持ち、像面に配設されたCCD等の固
体撮像素子に対して効率よく光を導くことができる。ま
た、第4レンズ群は縮小光学系の働きもするため、全系
の収差を良好に補正するために有効である。また、第4
レンズ群は、前記固体撮像素子の限界解像以上の空間周
波数をカットするためのフィルタすなわちローパスフィ
ルタP1と、前記固体撮像素子を保護するカバー硝子P
2を含む。
It is preferable that the lens according to the present invention further has a positive fourth lens group on the image side of the positive third lens group. The positive fourth lens group has the function of controlling the exit pupil of the entire system, and can efficiently guide light to a solid-state imaging device such as a CCD disposed on the image plane. In addition, the fourth lens group also functions as a reduction optical system, and is effective in favorably correcting aberrations of the entire system. Also, the fourth
The lens group includes a filter for cutting a spatial frequency equal to or higher than the limit resolution of the solid-state imaging device, that is, a low-pass filter P1, and a cover glass P for protecting the solid-state imaging device.
2 inclusive.

【0020】第4レンズ群を有する場合、この第4レンズ
群は条件式(6)を満足することが望ましい。この上限
を超えても下限を超えても、全系の射出瞳位置が適切な
位置にならないため好ましくない。また、この上限を超
えた場合は、第4レンズ群の屈折力が過大であって、収
差補正上有利であるものの全系の大型化をまねくため好
ましくない。逆に下限を超えると第4レンズ群の屈折力
が小さすぎて、良好な収差補正の上では好ましくない。
When a fourth lens group is provided, it is desirable that the fourth lens group satisfies the conditional expression (6). Exceeding the upper limit or exceeding the lower limit is not preferable because the exit pupil position of the entire system does not become an appropriate position. If the upper limit is exceeded, the refracting power of the fourth lens group is excessively large, which is advantageous for aberration correction, but undesirably leads to an increase in the size of the entire system. Conversely, if the value exceeds the lower limit, the refractive power of the fourth lens group is too small, which is not preferable for good aberration correction.

【0021】ところで、銀塩のコンパクトカメラの分野
では、収納時に各レンズ群の間隔を可能な限り縮小し、
実際の使用時には所定のレンズ間隔に拡大するような鏡
筒機構を持つ沈胴タイプが主流となっている。この沈胴
機構を活かし、カメラの小型化を図るには、レンズの全
長を短縮するより、各レンズ群の厚さの総和を小さくす
ることが効果的である。ここで、「各レンズ群の厚さ」
とは、「各レンズ群の最も物体側の端面から各レンズ群
の最も像面側の端面までの光軸上の距離」を示す。ま
た、絞りがレンズ群の端面に配設された場合にはその絞
り面からの距離を示す。また第4レンズ群の場合は、レ
ンズと前記ローパスフィルタP1と前記カバー硝子P2
の内で最も物体側の端面から最も像側の端面迄の光軸上
の距離となる。そして、「各レンズ群の厚さの総和」と
は、前記「各レンズ群の厚さ」を全て加えたもので、
「各レンズ群」間の空気間隔は含まない。
By the way, in the field of silver halide compact cameras, the distance between the lens groups during storage is reduced as much as possible.
In actual use, a retractable type having a lens barrel mechanism that expands to a predetermined lens interval is mainly used. To reduce the size of the camera by utilizing this collapsible mechanism, it is more effective to reduce the total thickness of each lens group than to shorten the entire length of the lens. Here, "thickness of each lens group"
Means "the distance on the optical axis from the most object-side end face of each lens group to the most image-side end face of each lens group". When the stop is provided on the end face of the lens group, the distance from the stop surface is shown. In the case of the fourth lens group, a lens, the low-pass filter P1, and the cover glass P2
Is the distance on the optical axis from the end surface closest to the object side to the end surface closest to the image side. The “sum of the thickness of each lens group” is the sum of the “thickness of each lens group”.
It does not include the air spacing between each lens group.

【0022】条件式(7)は、このような沈胴式カメラ
でレンズの小型化を図る上で満足することが望ましい条
件である。この上限を超えると、沈胴時の小型化が達成
出来ないため好ましくなく、逆に下限を超えると各レン
ズ群の厚さが薄すぎて、ズーム時の収差変動の補正が困
難である。
Conditional expression (7) is a condition that should be satisfied in order to reduce the size of the lens in such a retractable camera. If the upper limit is exceeded, it is not preferable because miniaturization during collapsing cannot be achieved. Conversely, if the lower limit is exceeded, the thickness of each lens group is too thin, and it is difficult to correct aberration fluctuations during zooming.

【0023】本発明の構成であれば、下記の実施例1〜
実施例8及び実施例12に示すように、いわゆる非球面
を使用することなく、各面を平面又は球面のみで構成し
ても十分な光学性能を達成できる。この場合には、加工
も容易で安価に製造できる。
According to the constitution of the present invention, the following Examples 1 to
As shown in the eighth and twelfth embodiments, sufficient optical performance can be achieved even if each surface is made up of only a flat surface or a spherical surface without using a so-called aspherical surface. In this case, processing is easy and it can be manufactured at low cost.

【0024】また、下記の実施例9〜実施例11及び実
施例13に示すように、前記第3レンズ群は、最も物体
側に絞りが配設され、最も像側のレンズの少なくとも一
方の面が非球面であることが好ましい。非球面は、絞り
から離れる程コマ収差(外側のコマ収差)を良好に補正
でき更に加工精度も低くできるので好ましいが、一方
で、絞りに近い程、球面収差特に望遠端での球面収差を
良好に補正できるので、両者のバランス上前記のように
最も像側のレンズの少なくとも一方の面に配設するのが
好ましい。
As shown in the following Examples 9 to 11 and Example 13, the third lens group has a stop disposed closest to the object side and at least one surface of the lens closest to the image side. Is preferably an aspherical surface. An aspherical surface is preferable because the further away from the stop, the better the correction of coma (outer coma) and the lower the processing accuracy, the better. On the other hand, the closer to the stop, the better the spherical aberration, especially the spherical aberration at the telephoto end. Therefore, it is preferable to dispose it on at least one surface of the lens closest to the image as described above in view of the balance between the two.

【0025】[0025]

【実施例】以下、本発明の実施例1〜実施例13につい
て説明する。各実施例とも、広角端から望遠端へのズー
ミングに際して、第2レンズ群と第3レンズ群の間隔が
縮小し、第3レンズ群と像面との間隔が拡大するよう
に、第2レンズ群と第3レンズ群が移動し、第1レンズ
群と第4レンズ群が固定の構成である。
EXAMPLES Examples 1 to 13 of the present invention will be described below. In each embodiment, during zooming from the wide-angle end to the telephoto end, the distance between the second lens group and the third lens group is reduced, and the distance between the third lens group and the image plane is increased. And the third lens group move, and the first and fourth lens groups are fixed.

【0026】実施例1は、図1に示すように、第1レン
ズ群G1は両凸レンズ1枚から成り、第2レンズ群G2
は、全体として負の屈折力を有し、物体側に凸面を向け
た負メニスカスレンズと、両凹レンズと両凸レンズの接
合レンズの3枚から成り、第3レンズ群G3は、全体と
して正の屈折力を有し、両凸レンズと、両凸レンズと両
凹レンズの接合レンズと、両凸レンズの4枚から成り、
第4レンズ群G4は両凸レンズ1枚と、前記ローパスフ
ィルタP1と、前記カバー硝子P2とから構成される。
絞りは第3レンズ群中の物体側に配置され、一体に動
く。全ての面は平面又は球面で構成される。実施例1の
無限遠物点合焦時の広角端、中間焦点距離、望遠端の収
差図をそれぞれ図2〜4に示す。
In the first embodiment, as shown in FIG. 1, the first lens group G1 comprises one biconvex lens, and the second lens group G2
Has a negative refractive power as a whole, and includes a negative meniscus lens having a convex surface facing the object side and a cemented lens of a biconcave lens and a biconvex lens. The third lens group G3 has a positive refractive power as a whole. It has power and consists of a biconvex lens, a cemented lens of a biconvex lens and a biconcave lens, and four biconvex lenses.
The fourth lens group G4 includes one biconvex lens, the low-pass filter P1, and the cover glass P2.
The stop is arranged on the object side in the third lens group and moves together. All surfaces are comprised of flat or spherical surfaces. FIGS. 2 to 4 show aberration diagrams of the first embodiment at the wide-angle end, the intermediate focal length, and the telephoto end, respectively, when focusing on an object point at infinity.

【0027】実施例2は、図5に示すように、第1レン
ズ群G1は両凸レンズ1枚から成り、第2レンズ群G2
は、全体として負の屈折力を有し、物体側に凸面を向け
た負メニスカスレンズと、両凹レンズと両凸レンズの接
合レンズの3枚から成り、第3レンズ群G3は、全体と
して正の屈折力を有し、両凸レンズと、両凸レンズと両
凹レンズの接合レンズと、両凸レンズの4枚から成り、
第4レンズ群G4は両凸レンズ1枚と、前記ローパスフ
ィルタP1と、前記カバー硝子P2とから構成される。
絞りは第3レンズ群中の物体側に配置され、一体に動
く。全ての面は平面又は球面で構成される。実施例2の
収差は実施例1とほぼ同程度で良好に補正されている。
実施例2の無限遠物点合焦時の広角端、中間焦点距離、
望遠端の収差図をそれぞれ図6〜8に示す。
In the second embodiment, as shown in FIG. 5, the first lens group G1 comprises one biconvex lens, and the second lens group G2
Has a negative refractive power as a whole, and includes a negative meniscus lens having a convex surface facing the object side and a cemented lens of a biconcave lens and a biconvex lens. The third lens group G3 has a positive refractive power as a whole. It has power and consists of a biconvex lens, a cemented lens of a biconvex lens and a biconcave lens, and four biconvex lenses.
The fourth lens group G4 includes one biconvex lens, the low-pass filter P1, and the cover glass P2.
The stop is arranged on the object side in the third lens group and moves together. All surfaces are comprised of flat or spherical surfaces. The aberration of the second embodiment is substantially the same as that of the first embodiment and is well corrected.
The wide-angle end, the intermediate focal length, and the
6 to 8 show aberration diagrams at the telephoto end, respectively.

【0028】実施例3は、図9に示すように、第1レン
ズ群G1は両凸レンズ1枚から成り、第2レンズ群G2
は、全体として負の屈折力を有し、物体側に凸面を向け
た負メニスカスレンズと、両凹レンズと両凸レンズの接
合レンズの3枚から成り、第3レンズ群G3は、全体と
して正の屈折力を有し、両凸レンズと、両凸レンズと両
凹レンズの接合レンズと、両凸レンズの4枚から成り、
第4レンズ群G4は両凸レンズ1枚と、前記ローパスフ
ィルタP1と、前記カバー硝子P2とから構成される。
絞りは第3レンズ群中の物体側に配置され、一体に動
く。全ての面は平面又は球面で構成される。実施例3の
収差は実施例1とほぼ同程度で良好に補正されている。
実施例3の無限遠物点合焦時の広角端、中間焦点距離、
望遠端の収差図をそれぞれ図10〜12に示す。
In the third embodiment, as shown in FIG. 9, the first lens group G1 comprises one biconvex lens, and the second lens group G2
Has a negative refractive power as a whole, and includes a negative meniscus lens having a convex surface facing the object side and a cemented lens of a biconcave lens and a biconvex lens. The third lens group G3 has a positive refractive power as a whole. It has power and consists of a biconvex lens, a cemented lens of a biconvex lens and a biconcave lens, and four biconvex lenses.
The fourth lens group G4 includes one biconvex lens, the low-pass filter P1, and the cover glass P2.
The stop is arranged on the object side in the third lens group and moves together. All surfaces are comprised of flat or spherical surfaces. The aberration of the third embodiment is substantially the same as that of the first embodiment and is well corrected.
The wide-angle end, the intermediate focal length, and the
10 to 12 show aberration diagrams at the telephoto end.

【0029】実施例4は、図13に示すように、第1レ
ンズ群G1は両凸レンズ1枚から成り、第2レンズ群G
2は、全体として負の屈折力を有し、物体側に凸面を向
けた負メニスカスレンズと、両凹レンズと両凸レンズの
接合レンズの3枚から成り、第3レンズ群G3は、全体
として正の屈折力を有し、両凸レンズと、両凸レンズと
両凹レンズの接合レンズと、両凸レンズの4枚から成
り、第4レンズ群G4は両凸レンズ1枚と、前記ローパ
スフィルタP1と、前記カバー硝子P2とから構成され
る。絞りは第3レンズ群中の物体側に配置され、一体に
動く。全ての面は平面又は球面で構成される。実施例4
の収差は実施例1とほぼ同程度で良好に補正されてい
る。実施例4の無限遠物点合焦時の広角端、中間焦点距
離、望遠端の収差図をそれぞれ図14〜16に示す。
In the fourth embodiment, as shown in FIG. 13, the first lens group G1 is composed of one biconvex lens, and the second lens group G1.
2 has a negative meniscus lens having a negative refractive power as a whole and having a convex surface facing the object side, and a cemented lens of a biconcave lens and a biconvex lens, and the third lens group G3 has a positive The fourth lens group G4 has one biconvex lens, the low-pass filter P1, and the cover glass P2. The fourth lens group G4 has a biconvex lens, a biconvex lens, a cemented lens of the biconvex lens and the biconcave lens, and a biconvex lens. It is composed of The stop is arranged on the object side in the third lens group and moves together. All surfaces are comprised of flat or spherical surfaces. Example 4
Is substantially the same as that of the first embodiment and is well corrected. 14 to 16 show aberration diagrams at the wide-angle end, at an intermediate focal length, and at a telephoto end, respectively, in Example 4 upon focusing on an object point at infinity.

【0030】実施例5は、図17に示すように、第1レ
ンズ群G1は両凸レンズ1枚から成り、第2レンズ群G
2は、全体として負の屈折力を有し、物体側に凸面を向
けた負メニスカスレンズと、両凹レンズと両凸レンズの
接合レンズの3枚から成り、第3レンズ群G3は、全体
として正の屈折力を有し、両凸レンズと、両凸レンズと
両凹レンズの接合レンズと、両凸レンズの4枚から成
り、第4レンズ群G4は両凸レンズ1枚と、前記ローパ
スフィルタP1と、前記カバー硝子P2とから構成され
る。絞りは第3レンズ群中の物体側に配置され、一体に
動く。全ての面は平面又は球面で構成される。実施例5
の収差は実施例1とほぼ同程度で良好に補正されてい
る。実施例5の無限遠物点合焦時の広角端、中間焦点距
離、望遠端の収差図をそれぞれ図18〜20に示す。
In the fifth embodiment, as shown in FIG. 17, the first lens group G1 comprises one biconvex lens, and the second lens group G
2 has a negative meniscus lens having a negative refractive power as a whole and having a convex surface facing the object side, and a cemented lens of a biconcave lens and a biconvex lens, and the third lens group G3 has a positive The fourth lens group G4 has one biconvex lens, the low-pass filter P1, and the cover glass P2. The fourth lens group G4 has a biconvex lens, a biconvex lens, a cemented lens of the biconvex lens and the biconcave lens, and a biconvex lens. It is composed of The stop is arranged on the object side in the third lens group and moves together. All surfaces are comprised of flat or spherical surfaces. Example 5
Is substantially the same as that of the first embodiment and is well corrected. 18 to 20 show aberration diagrams at the wide-angle end, an intermediate focal length, and a telephoto end of the fifth embodiment when focused on an object point at infinity.

【0031】実施例6は、図21に示すように、第1レ
ンズ群G1は両凸レンズ1枚から成り、第2レンズ群G
2は、全体として負の屈折力を有し、物体側に凸面を向
けた負メニスカスレンズと、両凹レンズと両凸レンズの
接合レンズの3枚から成り、第3レンズ群G3は、全体
として正の屈折力を有し、両凸レンズと、両凸レンズと
両凹レンズの接合レンズと、物体側に凸面を向けた正メ
ニスカスレンズの4枚から成り、第4レンズ群G4は物
体側に凸面を向けた正メニスカスレンズ1枚と、前記ロ
ーパスフィルタP1と、前記カバー硝子P2とから構成
される。絞りは第3レンズ群中の物体側に配置され、一
体に動く。全ての面は平面又は球面で構成される。実施
例6の収差は実施例1とほぼ同程度で良好に補正されて
いる。実施例6の無限遠物点合焦時の広角端、中間焦点
距離、望遠端の収差図をそれぞれ図22〜24に示す。
In the sixth embodiment, as shown in FIG. 21, the first lens group G1 is composed of one biconvex lens, and the second lens group G1.
2 has a negative meniscus lens having a negative refractive power as a whole and having a convex surface facing the object side, and a cemented lens of a biconcave lens and a biconvex lens, and the third lens group G3 has a positive The fourth lens group G4 has a refractive power and includes a biconvex lens, a cemented lens of a biconvex lens and a biconcave lens, and a positive meniscus lens having a convex surface facing the object side. The fourth lens group G4 has a positive lens having a convex surface facing the object side. It comprises one meniscus lens, the low-pass filter P1, and the cover glass P2. The stop is arranged on the object side in the third lens group and moves together. All surfaces are comprised of flat or spherical surfaces. The aberration of the sixth embodiment is substantially the same as that of the first embodiment and is well corrected. FIGS. 22 to 24 show aberration diagrams at the wide-angle end, an intermediate focal length, and a telephoto end when focusing on an object point at infinity according to the sixth embodiment.

【0032】実施例7は、図25に示すように、第1レ
ンズ群G1は両凸レンズ1枚から成り、第2レンズ群G
2は、全体として負の屈折力を有し、物体側に凸面を向
けた負メニスカスレンズと、両凹レンズと両凸レンズの
接合レンズの3枚から成り、第3レンズ群G3は、全体
として正の屈折力を有し、両凸レンズと、両凸レンズと
両凹レンズの接合レンズと、物体側に凸面を向けた正メ
ニスカスレンズの4枚から成り、第4レンズ群G4は両
凸レンズ1枚と、前記ローパスフィルタP1と、前記カ
バー硝子P2とから構成される。絞りは第3レンズ群中
の物体側に配置され、一体に動く。全ての面は平面又は
球面で構成される。実施例7の収差は実施例1とほぼ同
程度で良好に補正されている。実施例7の無限遠物点合
焦時の広角端、中間焦点距離、望遠端の収差図をそれぞ
れ図26〜28に示す。
In the seventh embodiment, as shown in FIG. 25, the first lens group G1 is composed of one biconvex lens, and the second lens group G1.
2 has a negative meniscus lens having a negative refractive power as a whole and having a convex surface facing the object side, and a cemented lens of a biconcave lens and a biconvex lens, and the third lens group G3 has a positive The fourth lens group G4 includes one biconvex lens, one biconvex lens, and one low-pass lens. The fourth lens group G4 includes a biconvex lens, a cemented lens of a biconvex lens and a biconcave lens, and a positive meniscus lens having a convex surface facing the object side. It is composed of a filter P1 and the cover glass P2. The stop is arranged on the object side in the third lens group and moves together. All surfaces are comprised of flat or spherical surfaces. The aberration of the seventh embodiment is substantially the same as that of the first embodiment and is well corrected. 26 to 28 show aberration diagrams at the wide-angle end, an intermediate focal length, and a telephoto end of the seventh embodiment when focused on an object point at infinity, respectively.

【0033】実施例8は、図29に示すように、第1レ
ンズ群G1は物体側に凸面を向けた正メニスカスレンズ
1枚から成り、第2レンズ群G2は、全体として負の屈
折力を有し、物体側に凸面を向けた負メニスカスレンズ
と、両凹レンズと物体側に凸面を向けた正メニスカスレ
ンズの接合レンズの3枚から成り、第3レンズ群G3
は、全体として正の屈折力を有し、両凸レンズと、両凸
レンズと両凹レンズの接合レンズと、物体側に凸面を向
けた正メニスカスレンズの4枚から成り、第4レンズ群
G4は両凸レンズ1枚と、前記ローパスフィルタP1
と、前記カバー硝子P2とから構成される。絞りは第3
レンズ群中の物体側に配置され、一体に動く。全ての面
は平面又は球面で構成される。実施例8の収差は実施例
1とほぼ同程度で良好に補正されている。実施例8の無
限遠物点合焦時の広角端、中間焦点距離、望遠端の収差
図をそれぞれ図30〜32に示す。
In the eighth embodiment, as shown in FIG. 29, the first lens group G1 comprises one positive meniscus lens having a convex surface facing the object side, and the second lens group G2 has a negative refractive power as a whole. A third lens group G3 comprising: a negative meniscus lens having a convex surface facing the object side; and a cemented lens of a biconcave lens and a positive meniscus lens having a convex surface facing the object side.
Has a positive refractive power as a whole, and is composed of a biconvex lens, a cemented lens of a biconvex lens and a biconcave lens, and a positive meniscus lens having a convex surface facing the object side. The fourth lens group G4 is a biconvex lens. One sheet and the low-pass filter P1
And the cover glass P2. Aperture is 3rd
It is arranged on the object side in the lens group and moves together. All surfaces are comprised of flat or spherical surfaces. The aberration of the eighth embodiment is substantially the same as that of the first embodiment and is well corrected. FIGS. 30 to 32 show aberration diagrams at the wide-angle end, an intermediate focal length, and a telephoto end of the eighth embodiment when focused on an object point at infinity, respectively.

【0034】実施例9は、図33に示すように、第1レ
ンズ群G1は両凸レンズ1枚から成り、第2レンズ群G
2は、全体として負の屈折力を有し、両凹レンズと、両
凹レンズと両凸レンズの接合レンズの3枚から成り、第
3レンズ群G3は、全体として正の屈折力を有し、両凸
レンズと、両凸レンズと両凹レンズの接合レンズと、両
凸レンズの4枚から成り、最も像側のレンズの物体側の
面が非球面である。第4レンズ群G4は両凸レンズ1枚
と、前記ローパスフィルタP1と、前記カバー硝子P2
とから構成される。絞りは第3レンズ群中の物体側に配
置され、一体に動く。実施例9の収差は実施例1とほぼ
同程度で良好に補正されている。実施例9の無限遠物点
合焦時の広角端、中間焦点距離、望遠端の収差図をそれ
ぞれ図34〜36に示す。
In the ninth embodiment, as shown in FIG. 33, the first lens group G1 is composed of one biconvex lens, and the second lens group G1.
Numeral 2 has a negative refractive power as a whole, and includes three biconcave lenses and a cemented lens of a biconcave lens and a biconvex lens. The third lens group G3 has a positive refractive power as a whole and has a biconvex lens. , A cemented lens of a biconvex lens and a biconcave lens, and a biconvex lens, and the object-side surface of the lens closest to the image is aspheric. The fourth lens group G4 includes one biconvex lens, the low-pass filter P1, and the cover glass P2.
It is composed of The stop is arranged on the object side in the third lens group and moves together. The aberration of the ninth embodiment is substantially the same as that of the first embodiment and is well corrected. FIGS. 34 to 36 show aberration diagrams at the wide-angle end, an intermediate focal length, and a telephoto end of the ninth embodiment when focused on an object point at infinity, respectively.

【0035】実施例10は、図37に示すように、第1
レンズ群G1は両凸レンズ1枚から成り、第2レンズ群
G2は、全体として負の屈折力を有し、物体側に凸面を
向けた負メニスカスレンズと、両凹レンズと両凸レンズ
の接合レンズの3枚から成り、第3レンズ群G3は、全
体として正の屈折力を有し、両凸レンズと、両凸レンズ
と両凹レンズの接合レンズと、物体側に凸面を向けた正
メニスカスレンズの4枚から成り、最も像側のレンズの
物体側の面が非球面である。第4レンズ群G4は両凸レ
ンズ1枚と、前記ローパスフィルタP1と、前記カバー
硝子P2とから構成される。絞りは第3レンズ群中の物
体側に配置され、一体に動く。実施例10の収差は実施
例1とほぼ同程度で良好に補正されている。実施例10
の無限遠物点合焦時の広角端、中間焦点距離、望遠端の
収差図をそれぞれ図38〜40に示す。
In the tenth embodiment, as shown in FIG.
The second lens group G2 includes a negative meniscus lens having a negative refractive power as a whole and having a convex surface facing the object side, and a cemented lens of a biconcave lens and a biconvex lens. The third lens group G3 has four lenses: a biconvex lens, a cemented lens of a biconvex lens and a biconcave lens, and a positive meniscus lens having a convex surface facing the object side. The object-side surface of the lens closest to the image is an aspheric surface. The fourth lens group G4 includes one biconvex lens, the low-pass filter P1, and the cover glass P2. The stop is arranged on the object side in the third lens group and moves together. The aberration of the tenth embodiment is substantially the same as that of the first embodiment and is well corrected. Example 10
38 to 40 show aberration diagrams at the wide-angle end, at the intermediate focal length, and at the telephoto end, respectively, when focusing on an object point at infinity.

【0036】実施例11は、図41に示すように、第1
レンズ群G1は両凸レンズ1枚から成り、第2レンズ群
G2は、全体として負の屈折力を有し、物体側に凸面を
向けた負メニスカスレンズと、両凹レンズと両凸レンズ
の接合レンズの3枚から成り、第3レンズ群G3は、全
体として正の屈折力を有し、両凸レンズと、両凸レンズ
と両凹レンズの接合レンズと、物体側に凸面を向けた正
メニスカスレンズの4枚から成り、最も像側のレンズの
物体側の面が非球面である。第4レンズ群G4は両凸レ
ンズ1枚と、前記ローパスフィルタP1と、前記カバー
硝子P2とから構成される。絞りは第3レンズ群中の物
体側に配置され、一体に動く。実施例11の収差は実施
例1とほぼ同程度で良好に補正されている。実施例11
の無限遠物点合焦時の広角端、中間焦点距離、望遠端の
収差図をそれぞれ図42〜44に示す。
In the eleventh embodiment, as shown in FIG.
The second lens group G2 includes a negative meniscus lens having a negative refractive power as a whole and having a convex surface facing the object side, and a cemented lens of a biconcave lens and a biconvex lens. The third lens group G3 has four lenses: a biconvex lens, a cemented lens of a biconvex lens and a biconcave lens, and a positive meniscus lens having a convex surface facing the object side. The object-side surface of the lens closest to the image is an aspheric surface. The fourth lens group G4 includes one biconvex lens, the low-pass filter P1, and the cover glass P2. The stop is arranged on the object side in the third lens group and moves together. The aberration of the eleventh embodiment is substantially the same as that of the first embodiment and is well corrected. Example 11
42 to 44 show aberration diagrams at the wide-angle end, at the intermediate focal length, and at the telephoto end, respectively, when focusing on an object point at infinity.

【0037】実施例12は、図45に示すように、第1
レンズ群G1は両凸レンズ1枚から成り、第2レンズ群
G2は、全体として負の屈折力を有し、物体側に凸面を
向けた負メニスカスレンズと、両凹レンズと両凸レンズ
の接合レンズの3枚から成り、第3レンズ群G3は、全
体として正の屈折力を有し、両凸レンズと、両凸レンズ
と両凹レンズの接合レンズと、物体側に凸面を向けた正
メニスカスレンズと両凸レンズの接合レンズの5枚から
成り、第4レンズ群G4は両凸レンズ1枚と、前記ロー
パスフィルタP1と、前記カバー硝子P2とから構成さ
れる。絞りは第3レンズ群中の物体側に配置され、一体
に動く。全ての面は平面又は球面で構成される。実施例
12の収差は実施例1とほぼ同程度で良好に補正されて
いる。実施例12の無限遠物点合焦時の広角端、中間焦
点距離、望遠端の収差図をそれぞれ図46〜48に示
す。
In the twelfth embodiment, as shown in FIG.
The second lens group G2 includes a negative meniscus lens having a negative refractive power as a whole and having a convex surface facing the object side, and a cemented lens of a biconcave lens and a biconvex lens. The third lens group G3 has a positive refractive power as a whole, and has a biconvex lens, a cemented lens of a biconvex lens and a biconcave lens, and a cemented lens of a positive meniscus lens having a convex surface facing the object side and a biconvex lens The fourth lens group G4 includes one biconvex lens, the low-pass filter P1, and the cover glass P2. The stop is arranged on the object side in the third lens group and moves together. All surfaces are comprised of flat or spherical surfaces. The aberration of the twelfth embodiment is substantially the same as that of the first embodiment and is well corrected. 46 to 48 show aberration diagrams of the twelfth embodiment at the wide-angle end, an intermediate focal length, and a telephoto end when focused on an object point at infinity, respectively.

【0038】実施例13は、図49に示すように、第1
レンズ群G1は両凸レンズ1枚から成り、第2レンズ群
G2は、全体として負の屈折力を有し、物体側に凸面を
向けた負メニスカスレンズと、両凹レンズと両凸レンズ
の接合レンズの3枚から成り、第3レンズ群G3は、全
体として正の屈折力を有し、両凸レンズと、物体側に凸
面を向けた2枚のメニスカスレンズの接合レンズと、物
体側に凸面を向けた正メニスカスレンズの4枚から成
り、最も像側のレンズの物体側の面が非球面である。第
4レンズ群G4は両凸レンズ1枚と、前記ローパスフィ
ルタP1と、前記カバー硝子P2とから構成される。絞
りは第3レンズ群中の物体側に配置され、一体に動く。
実施例13の収差は実施例1とほぼ同程度で良好に補正
されている。実施例13の無限遠物点合焦時の広角端、
中間焦点距離、望遠端の収差図をそれぞれ図50〜52
に示す。
In the thirteenth embodiment, as shown in FIG.
The second lens group G2 includes a negative meniscus lens having a negative refractive power as a whole and having a convex surface facing the object side, and a cemented lens of a biconcave lens and a biconvex lens. The third lens group G3 has a positive refractive power as a whole, and has a biconvex lens, a cemented lens of two meniscus lenses having a convex surface facing the object side, and a positive lens having a convex surface facing the object side. It is composed of four meniscus lenses, and the object-side surface of the lens closest to the image is an aspheric surface. The fourth lens group G4 includes one biconvex lens, the low-pass filter P1, and the cover glass P2. The stop is arranged on the object side in the third lens group and moves together.
The aberration of the thirteenth embodiment is substantially the same as that of the first embodiment and is well corrected. The wide-angle end at the time of focusing on an object point at infinity in Example 13,
The aberration diagrams at the intermediate focal length and the telephoto end are shown in FIGS.
Shown in

【0039】以下の表1乃至表13に、それぞれ実施例
1乃至実施例13の諸元の値を掲げる。
Tables 1 to 13 below show values of specifications of the first to thirteenth embodiments, respectively.

【0040】[全体諸元]中のfは焦点距離、Bfはバ
ックフォーカス、FNOはFナンバー、2ωは画角(単
位:度(°))を表す。各々〜で区切った値は、左側か
ら順に、広角端、中間焦点距離、望遠端での値を示す。
In the [Overall Specifications], f represents the focal length, Bf represents the back focus, FNO represents the F number, and 2ω represents the angle of view (unit: degree (°)). The values separated by are shown at the wide-angle end, the intermediate focal length, and the telephoto end in order from the left.

【0041】[レンズ諸元]中、第1カラムは物体側か
らのレンズ面の番号、第2カラムrはレンズ面の曲率半
径、第3カラムdはレンズ面間隔、第4カラムνはアッ
ベ数、第5カラムnはd線(λ=587.6nm)に対する屈折
率を表し、空気の屈折率1.000000は省略してある。
In [lens specifications], the first column is the number of the lens surface from the object side, the second column r is the radius of curvature of the lens surface, the third column d is the lens surface interval, and the fourth column ν is the Abbe number. , The fifth column n represents the refractive index for the d-line (λ = 587.6 nm), and the refractive index of air, 1.000000, is omitted.

【0042】[非球面データー]について、非球面は、
光軸方向の座標をx、光軸と垂直方向の座標をy、基準の
曲率半径をr、円錐定数をK、n次の非球面係数をCnとし
て以下の式で表される。
[Aspherical surface data]
The coordinate in the optical axis direction is x, the coordinate in the direction perpendicular to the optical axis is y, the reference radius of curvature is r, the conic constant is K, and the nth order aspheric coefficient is Cn, and is represented by the following equation.

【0043】[0043]

【数1】x=(y2/r)/[1+[1-K(y2/r2)]1/2]+C2*y2+C4*y4+
C6*y6+C8*y8+C10*y10 式中、*は積を示す。表中の非球面係数の数値におい
て、「E−6」等は「×10-6」等を示す。
[Number 1] x = (y 2 / r) / [1+ [1-K (y 2 / r 2)] 1/2] + C2 * y 2 + C4 * y 4 +
C6 * y 6 + C8 * y 8 + C10 * y 10 In the formula, * indicates a product. In the numerical values of the aspheric coefficients in the table, “E-6” and the like indicate “× 10 −6 ” and the like.

【0044】[ズーミングデーター]には、広角端、中
間焦点距離、望遠端の各状態での焦点距離、可変間隔の
値を示す。
The [zooming data] shows the values of the focal length and the variable interval in each state of the wide-angle end, the intermediate focal length, and the telephoto end.

【0045】また、以下の全ての緒元値において掲載さ
れている焦点距離f、曲率半径r、面間隔dその他の長さ
の単位は、一般に「mm」が使われるが、光学系は比例拡
大又は比例縮小しても同等の光学性能が得られるので、
これに限られるものではない。
The unit of the focal length f, the radius of curvature r, the surface distance d and other lengths described in all of the following specification values are generally "mm", but the optical system is proportionally enlarged. Or, even if proportionally reduced, equivalent optical performance can be obtained,
However, it is not limited to this.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2】 [Table 2]

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【表4】 [Table 4]

【0050】[0050]

【表5】 [Table 5]

【0051】[0051]

【表6】 [Table 6]

【0052】[0052]

【表7】 [Table 7]

【0053】[0053]

【表8】 [Table 8]

【0054】[0054]

【表9】 [Table 9]

【0055】[0055]

【表10】 [Table 10]

【0056】[0056]

【表11】 [Table 11]

【0057】[0057]

【表12】 [Table 12]

【0058】[0058]

【表13】 以下に各実施例の条件対応数値を掲げる。[Table 13] The numerical values corresponding to the conditions of each embodiment are shown below.

【0059】[0059]

【表14】 [条件対応値] 実施例1 実施例2 実施例3 実施例4 実施例5 実施例6 (1)f1/f3 5.64 5.64 7.60 7.86 7.45 8.00 (2)f2/f3 -1.07 -1.07 -1.00 -1.03 -1.05 -1.07 (3)f3/f4 0.64 0.64 0.57 0.55 0.58 0.64 (4)S3/f3 0.60 0.60 0.89 0.88 0.86 0.72 (5)S2/fw 0.96 0.96 0.99 0.98 0.99 0.96 (6)TL/fw 6.48 6.48 7.28 6.70 7.26 6.41 (7)Σd/fw 3.00 3.00 3.60 3.54 3.59 3.12 実施例7 実施例8 実施例9 実施例10 実施例11 実施例12 実施例13 (1)f1/f3 7.04 8.09 5.99 4.93 4.93 5.33 4.93 (2)f2/f3 -1.07 -1.03 -1.07 -1.07 -1.07 -1.00 -1.07 (3)f3/f4 0.65 0.51 0.64 0.64 0.64 0.65 0.64 (4)S3/f3 0.65 0.97 0.62 0.56 0.55 0.71 0.56 (5)S2/fw 0.96 1.11 0.96 0.98 0.98 1.03 0.98 (6)TL/fw 6.39 6.52 6.37 6.71 6.53 7.17 6.66 (7)Σd/fw 3.05 4.05 3.03 3.04 2.93 3.43 3.03 なお、本発明の実施例の各レンズは、第2レンズ群もし
くは第4レンズ群の群全体又は群内の一部分の移動によ
ってフォーカスが可能である。もちろん第1レンズから
第4レンズまで全てのレンズを移動させて行う全体繰出
しでもよいことは言うまでもない。
[Table 14] [Conditional values] Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 (1) f1 / f3 5.64 5.64 7.60 7.86 7.45 8.00 (2) f2 / f3 -1.07 -1.07- 1.00 -1.03 -1.05 -1.07 (3) f3 / f4 0.64 0.64 0.57 0.55 0.58 0.64 (4) S3 / f3 0.60 0.60 0.89 0.88 0.86 0.72 (5) S2 / fw 0.96 0.96 0.99 0.98 0.99 0.96 (6) TL / fw 6.48 6.48 7.28 6.70 7.26 6.41 (7) Σd / fw 3.00 3.00 3.60 3.54 3.59 3.12 Example 7 Example 8 Example 9 Example 10 Example 11 Example 12 Example 13 (1) f1 / f3 7.04 8.09 5.99 4.93 4.93 5.33 4.93 (2) f2 / f3 -1.07 -1.03 -1.07 -1.07 -1.07 -1.00 -1.07 (3) f3 / f4 0.65 0.51 0.64 0.64 0.64 0.65 0.64 (4) S3 / f3 0.65 0.97 0.62 0.56 0.55 0.71 0.56 (5) S2 / fw 0.96 1.11 0.96 0.98 0.98 1.03 0.98 (6) TL / fw 6.39 6.52 6.37 6.71 6.53 7.17 6.66 (7) Σd / fw 3.05 4.05 3.03 3.04 2.93 3.43 3.03 Focusing is possible by moving the entire lens group or the fourth lens group or a part of the group. Of course, it is needless to say that the whole extension may be performed by moving all the lenses from the first lens to the fourth lens.

【0060】[0060]

【発明の効果】以上のように本発明によれば、固体撮像
素子等を用いたビデオカメラ、電子スチルカメラ等に適
し、小型で、ズーム比が3倍程度で、広角端で60°の
画角を有し、優れた結像性能を有するズームレンズを得
ることが出来る。
As described above, according to the present invention, it is suitable for a video camera, an electronic still camera or the like using a solid-state imaging device or the like, and is small in size, has a zoom ratio of about 3 times, and has an image of 60 ° at the wide-angle end. A zoom lens having an angle and having excellent image forming performance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1のレンズ断面図。FIG. 1 is a sectional view of a lens according to a first embodiment.

【図2】実施例1の広角端における収差図。FIG. 2 is an aberration diagram at a wide angle end according to the first embodiment.

【図3】実施例1の中間焦点距離における収差図。FIG. 3 is an aberration diagram of the first embodiment at an intermediate focal length.

【図4】実施例1の望遠端における収差図。FIG. 4 is an aberration diagram at a telephoto end according to the first embodiment.

【図5】実施例2のレンズ断面図。FIG. 5 is a sectional view of a lens according to a second embodiment.

【図6】実施例2の広角端における収差図。FIG. 6 is an aberration diagram at a wide-angle end according to a second embodiment.

【図7】実施例2の中間焦点距離における収差図。FIG. 7 is an aberration diagram of the second embodiment at an intermediate focal length.

【図8】実施例2の望遠端における収差図。FIG. 8 is an aberration diagram at a telephoto end in Example 2.

【図9】実施例3のレンズ断面図。FIG. 9 is a sectional view of a lens according to a third embodiment.

【図10】実施例3の広角端における収差図。FIG. 10 is an aberration diagram at a wide-angle end according to a third embodiment.

【図11】実施例3の中間焦点距離における収差図。FIG. 11 is an aberrational diagram of the third embodiment at an intermediate focal length.

【図12】実施例3の望遠端における収差図。FIG. 12 is an aberration diagram at a telephoto end in Example 3.

【図13】実施例4のレンズ断面図。FIG. 13 is a sectional view of a lens according to a fourth embodiment.

【図14】実施例4の広角端における収差図。FIG. 14 is an aberration diagram at a wide angle end according to the fourth embodiment.

【図15】実施例4の中間焦点距離における収差図。FIG. 15 is an aberration diagram at an intermediate focal length of the fourth embodiment.

【図16】実施例4の望遠端における収差図。FIG. 16 is an aberration diagram at a telephoto end in Example 4.

【図17】実施例5のレンズ断面図。FIG. 17 is a sectional view of a lens according to a fifth embodiment.

【図18】実施例5の広角端における収差図。FIG. 18 is an aberration diagram at a wide angle end according to the fifth embodiment.

【図19】実施例5の中間焦点距離における収差図。FIG. 19 is an aberration diagram of Example 5 at an intermediate focal length.

【図20】実施例5の望遠端における収差図。FIG. 20 is an aberration diagram at a telephoto end in Example 5.

【図21】実施例6のレンズ断面図。FIG. 21 is a sectional view of a lens according to a sixth embodiment.

【図22】実施例6の広角端における収差図。FIG. 22 is an aberration diagram at a wide-angle end in Example 6.

【図23】実施例6の中間焦点距離における収差図。FIG. 23 is an aberration diagram of Example 6 at an intermediate focal length.

【図24】実施例6の望遠端における収差図。FIG. 24 is an aberration diagram at a telephoto end in Example 6.

【図25】実施例7のレンズ断面図。FIG. 25 is a sectional view of a lens according to a seventh embodiment.

【図26】実施例7の広角端における収差図。FIG. 26 is an aberration diagram at a wide angle end according to the seventh embodiment.

【図27】実施例7の中間焦点距離における収差図。FIG. 27 is an aberrational diagram of the seventh embodiment at an intermediate focal length.

【図28】実施例7の望遠端における収差図。FIG. 28 is an aberration diagram at a telephoto end in Example 7.

【図29】実施例8のレンズ断面図。FIG. 29 is a sectional view of a lens according to an eighth embodiment.

【図30】実施例8の広角端における収差図。FIG. 30 is an aberration diagram at a wide-angle end in Example 8.

【図31】実施例8の中間焦点距離における収差図。FIG. 31 is an aberration diagram of Example 8 at an intermediate focal length.

【図32】実施例8の望遠端における収差図。FIG. 32 is an aberration diagram at a telephoto end in Example 8.

【図33】実施例9のレンズ断面図。FIG. 33 is a sectional view of a lens according to a ninth embodiment.

【図34】実施例9の広角端における収差図。FIG. 34 is an aberration diagram at a wide-angle end in Example 9.

【図35】実施例9の中間焦点距離における収差図。FIG. 35 is an aberrational diagram of the ninth embodiment at an intermediate focal length.

【図36】実施例9の望遠端における収差図。FIG. 36 is an aberration diagram at a telephoto end in Example 9.

【図37】実施例10のレンズ断面図。FIG. 37 is a sectional view of a lens according to a tenth embodiment.

【図38】実施例10の広角端における収差図。FIG. 38 is an aberration diagram at a wide-angle end in Example 10.

【図39】実施例10の中間焦点距離における収差図。FIG. 39 is an aberration diagram at an intermediate focal length of the tenth embodiment.

【図40】実施例10の望遠端における収差図。FIG. 40 is an aberration diagram at a telephoto end in Example 10.

【図41】実施例11のレンズ断面図。FIG. 41 is a sectional view of a lens according to an eleventh embodiment.

【図42】実施例11の広角端における収差図。FIG. 42 is an aberration diagram at a wide-angle end in Example 11.

【図43】実施例11の中間焦点距離における収差図。FIG. 43 is an aberration diagram at an intermediate focal length of the eleventh embodiment.

【図44】実施例11の望遠端における収差図。FIG. 44 is an aberration diagram at a telephoto end in Example 11.

【図45】実施例12のレンズ断面図。FIG. 45 is a sectional view of a lens according to a twelfth embodiment.

【図46】実施例12の広角端における収差図。FIG. 46 is an aberration diagram at a wide-angle end in Example 12.

【図47】実施例12の中間焦点距離における収差図。FIG. 47 is an aberration diagram at an intermediate focal length in Example 12.

【図48】実施例12の望遠端における収差図。FIG. 48 is an aberration diagram at a telephoto end of Example 12.

【図49】実施例13のレンズ断面図。FIG. 49 is a lens cross-sectional view of Example 13.

【図50】実施例13の広角端における収差図。FIG. 50 is an aberration diagram at a wide-angle end in Example 13.

【図51】実施例13の中間焦点距離における収差図。FIG. 51 is an aberration diagram of Example 13 at an intermediate focal length.

【図52】実施例13の望遠端における収差図FIG. 52 is an aberration diagram at a telephoto end in Example 13.

【符号の説明】[Explanation of symbols]

G1:第1レンズ群 G2:第2レンズ群 G3:第3レンズ群 G4:第4レンズ群 S :絞り P1:ローパスフィルター P2:カバー硝子 FNO:Fナンバー Y :像高 G1: First lens group G2: Second lens group G3: Third lens group G4: Fourth lens group S: Aperture P1: Low-pass filter P2: Cover glass FNO: F number Y: Image height

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H087 KA01 PA07 PA19 PA20 PB09 PB10 QA02 QA07 QA12 QA14 QA22 QA26 QA32 QA34 QA41 QA46 RA05 RA12 RA36 RA42 RA43 SA23 SA27 SA29 SA32 SA63 SA64 SA72 SA75 SB02 SB14 SB25 SB26 SB32  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2H087 KA01 PA07 PA19 PA20 PB09 PB10 QA02 QA07 QA12 QA14 QA22 QA26 QA32 QA34 QA41 QA46 RA05 RA12 RA36 RA42 RA43 SA23 SA27 SA29 SA32 SA63 SA64 SA72 SA75 SB02 SB14 SB25 SB26 SB32

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】物体側より順に、少なくとも、正の第1レ
ンズ群、負の第2レンズ群、正の第3レンズ群を有し、
広角端から望遠端への変倍時に、前記第1レンズ群が固
定で、前記第2レンズ群と前記第3レンズ群の間隔が縮
小するズームレンズにおいて、前記第1レンズ群は、1
枚の正レンズから成り、前記第2レンズ群は、少なくと
も1枚の負レンズ及び少なくとも1枚の正レンズを含
み、前記第3レンズ群は、絞り及び少なくとも1枚の正
レンズ及び少なくとも1枚の負レンズを含む構成で、さ
らに以下の条件式を満たすことを特徴とするズームレン
ズ。 3.9 < f1/f3 < 43 (1) 6.3 < TL/fw < 7.9 (2) 但し、 f1:前記第1レンズ群の焦点距離、 f3:前記第3レンズ群の焦点距離、 TL:全系の全長(第1面から像面までの距離)、 fw:広角端における全系の焦点距離。
A first lens unit, a second negative lens unit, and a third positive lens unit, in order from the object side;
In a zoom lens in which the first lens group is fixed and the distance between the second lens group and the third lens group is reduced at the time of zooming from the wide-angle end to the telephoto end, the first lens group includes
The second lens group includes at least one negative lens and at least one positive lens, and the third lens group includes an aperture, at least one positive lens, and at least one positive lens. A zoom lens comprising a negative lens and further satisfying the following conditional expression. 3.9 <f1 / f3 <43 (1) 6.3 <TL / fw <7.9 (2) where f1: focal length of the first lens group, f3: focal length of the third lens group, TL: total length of the entire system (Distance from the first surface to the image surface), fw: focal length of the entire system at the wide-angle end.
【請求項2】前記ズームレンズは、さらに以下の条件式
を満たすことを特徴とする請求項1に記載のズームレン
ズ。 -1.4 < f2/f3 < -0.98 (3) 但し、 f2:前記第2レンズ群の焦点距離。
2. The zoom lens according to claim 1, wherein said zoom lens further satisfies the following conditional expression. -1.4 <f2 / f3 <-0.98 (3) where f2 is the focal length of the second lens group.
【請求項3】前記ズームレンズは、さらに以下の条件式
を満たすことを特徴とする請求項1又は請求項2に記載
のズームレンズ。 0.52 < S3/f3 < 1.04 (4) 但し、 S3:前記第3レンズ群の厚さ。
3. The zoom lens according to claim 1, wherein the zoom lens further satisfies the following conditional expression. 0.52 <S3 / f3 <1.04 (4) where S3 is the thickness of the third lens group.
【請求項4】前記ズームレンズは、さらに以下の条件式
を満たすことを特徴とする請求項1乃至請求項3に記載
のズームレンズ。 0.96 < S2/fw < 1.13 (5) 但し、 S2:前記第2レンズ群の厚さ。
4. The zoom lens according to claim 1, wherein said zoom lens further satisfies the following conditional expression. 0.96 <S2 / fw <1.13 (5) where S2 is the thickness of the second lens group.
【請求項5】前記ズームレンズは、前記正の第3レンズ
の像側にさらに第4レンズ群を有し、さらに以下の条件
式を満たすことを特徴とする請求項1乃至請求項4に記
載のズームレンズ。 0.1 < f3/f4 < 0.8 (6) 但し、 f4:前記第4レンズ群の焦点距離。
5. The zoom lens according to claim 1, wherein the zoom lens further includes a fourth lens group on the image side of the positive third lens, and further satisfies the following conditional expression. Zoom lens. 0.1 <f3 / f4 <0.8 (6) where f4 is the focal length of the fourth lens group.
【請求項6】前記ズームレンズは、前記正の第3レンズ
の像側にさらに第4レンズ群を有し、さらに以下の条件
式を満たすことを特徴とする請求項1乃至請求項5に記
載のズームレンズ。 2.7 < Σd/S2 < 4.05 (7) 但し、 S2:前記第2レンズ群の厚さ、 Σd:前記第1レンズ群の厚さと前記第2レンズ群の前
記厚さと前記第3レンズ群の厚さと前記第4レンズ群の
厚さの総和。
6. The zoom lens according to claim 1, further comprising a fourth lens group on the image side of the positive third lens, and further satisfying the following conditional expression. Zoom lens. 2.7 <Σd / S2 <4.05 (7) where, S2: the thickness of the second lens group, Σd: the thickness of the first lens group, the thickness of the second lens group, and the thickness of the third lens group. The total thickness of the fourth lens group.
【請求項7】前記ズームレンズは、平面又は球面のみで
構成されていることを特徴とする請求項1乃至請求項6
に記載のズームレンズ。
7. The zoom lens according to claim 1, wherein the zoom lens comprises only a flat surface or a spherical surface.
A zoom lens according to claim 1.
【請求項8】前記第3レンズ群は、最も物体側に絞りが
配設され、最も像側のレンズの少なくとも一方の面が非
球面であることを特徴とする請求項1乃至請求項6に記
載のズームレンズ。
8. The lens system according to claim 1, wherein the third lens group has a stop disposed closest to the object, and at least one surface of the lens closest to the image is an aspheric surface. The zoom lens described.
JP2000256102A 2000-08-25 2000-08-25 Zoom lens Expired - Lifetime JP4770007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000256102A JP4770007B2 (en) 2000-08-25 2000-08-25 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000256102A JP4770007B2 (en) 2000-08-25 2000-08-25 Zoom lens

Publications (2)

Publication Number Publication Date
JP2002072087A true JP2002072087A (en) 2002-03-12
JP4770007B2 JP4770007B2 (en) 2011-09-07

Family

ID=18744767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000256102A Expired - Lifetime JP4770007B2 (en) 2000-08-25 2000-08-25 Zoom lens

Country Status (1)

Country Link
JP (1) JP4770007B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182109A (en) * 2000-12-14 2002-06-26 Canon Inc Zoom lens and optical equipment using the same
US7126762B2 (en) 2004-09-21 2006-10-24 Matsushita Electric Industrial Co., Ltd. Zoom lens system, imaging device, and camera
US7236307B2 (en) 2004-05-19 2007-06-26 Olympus Corporation Zoom optical system and imaging apparatus using the same
US7443605B2 (en) 2003-06-13 2008-10-28 Matsushita Electric Industrial Co., Ltd. Zoom lens, imaging device, and camera having imaging device
JP2010033087A (en) * 2009-11-12 2010-02-12 Canon Inc Zoom lens and imaging apparatus having the same
JP2012220847A (en) * 2011-04-12 2012-11-12 Nikon Corp Lens barrel and imaging device
JP2013061573A (en) * 2011-09-14 2013-04-04 Ricoh Co Ltd Zoom lens, and information device
JP2014002225A (en) * 2012-06-15 2014-01-09 Ricoh Co Ltd Zoom lens, camera, and mobile information terminal device
US8958162B2 (en) 2009-03-17 2015-02-17 Olympus Imaging Corp. Zoom lens system and image pickup apparatus using the same
US9213162B2 (en) 2011-04-12 2015-12-15 Nikon Corporation Lens barrel and image capturing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062687A (en) * 1996-08-23 1998-03-06 Olympus Optical Co Ltd Zoom lens
JPH11258507A (en) * 1998-01-09 1999-09-24 Olympus Optical Co Ltd Zoom lens
JP2002031756A (en) * 2000-07-19 2002-01-31 Canon Inc Zoom lens and optical equipment using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062687A (en) * 1996-08-23 1998-03-06 Olympus Optical Co Ltd Zoom lens
JPH11258507A (en) * 1998-01-09 1999-09-24 Olympus Optical Co Ltd Zoom lens
JP2002031756A (en) * 2000-07-19 2002-01-31 Canon Inc Zoom lens and optical equipment using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182109A (en) * 2000-12-14 2002-06-26 Canon Inc Zoom lens and optical equipment using the same
US7443605B2 (en) 2003-06-13 2008-10-28 Matsushita Electric Industrial Co., Ltd. Zoom lens, imaging device, and camera having imaging device
US7751125B2 (en) 2003-06-13 2010-07-06 Panasonic Corporation Zoom lens, imaging device, and camera having imaging device
US7236307B2 (en) 2004-05-19 2007-06-26 Olympus Corporation Zoom optical system and imaging apparatus using the same
US7457047B2 (en) 2004-05-19 2008-11-25 Olympus Corporation Zoom optical system and imaging apparatus using the same
US7126762B2 (en) 2004-09-21 2006-10-24 Matsushita Electric Industrial Co., Ltd. Zoom lens system, imaging device, and camera
US7236308B2 (en) 2004-09-21 2007-06-26 Matsushita Elecric Industrial Co., Ltd. Zoom lens system, imaging device, and camera
US8958162B2 (en) 2009-03-17 2015-02-17 Olympus Imaging Corp. Zoom lens system and image pickup apparatus using the same
JP2010033087A (en) * 2009-11-12 2010-02-12 Canon Inc Zoom lens and imaging apparatus having the same
JP2012220847A (en) * 2011-04-12 2012-11-12 Nikon Corp Lens barrel and imaging device
US9213162B2 (en) 2011-04-12 2015-12-15 Nikon Corporation Lens barrel and image capturing apparatus
JP2013061573A (en) * 2011-09-14 2013-04-04 Ricoh Co Ltd Zoom lens, and information device
JP2014002225A (en) * 2012-06-15 2014-01-09 Ricoh Co Ltd Zoom lens, camera, and mobile information terminal device

Also Published As

Publication number Publication date
JP4770007B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
JP5380811B2 (en) Wide-angle lens and imaging device
JP5217698B2 (en) Zoom lens, imaging device, zoom lens zooming method
EP1870760A1 (en) Retrofocus type of zoom lens having four lens groups
JP2000131610A (en) Zoom lens
JP5362757B2 (en) High zoom ratio zoom lens system
JP2009037092A (en) Zoom lens system
JP2008032924A (en) Zoom lens, image pickup device, zoom lens magnification change method, and zoom lens vibration-proofing method
JP2003270533A (en) Zoom lens having aspheric synthetic resin lens
JP2004199000A (en) Zoom lens
JP2005242014A (en) Zoom lens and photographic device using the same
JP4708734B2 (en) Zoom lens and imaging apparatus having the same
JP4773807B2 (en) Zoom lens and imaging apparatus having the same
JP2002196241A (en) Zoom lens system
JP2000089112A (en) Zoom lens and image pickup device using the same
JP5273172B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
JP2543780B2 (en) Zoom lenses
JP4624744B2 (en) Wide angle zoom lens
JP4770007B2 (en) Zoom lens
JP3810061B2 (en) Zoom lens
JP5670248B2 (en) Zoom lens system
JP3538354B2 (en) Zoom lens system
JP2009193052A (en) Wide-angle lens, optical apparatus, and method for focusing wide-angle lens
JP4972900B2 (en) Zoom lens
JP2004053993A (en) Zoom lens
JP2010072051A (en) Zoom lens and image pickup device including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4770007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term