JP2002068804A - Concrete composition - Google Patents
Concrete compositionInfo
- Publication number
- JP2002068804A JP2002068804A JP2000250919A JP2000250919A JP2002068804A JP 2002068804 A JP2002068804 A JP 2002068804A JP 2000250919 A JP2000250919 A JP 2000250919A JP 2000250919 A JP2000250919 A JP 2000250919A JP 2002068804 A JP2002068804 A JP 2002068804A
- Authority
- JP
- Japan
- Prior art keywords
- coal ash
- ash
- concrete composition
- concrete
- cement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004567 concrete Substances 0.000 title claims abstract description 54
- 239000000203 mixture Substances 0.000 title claims abstract description 53
- 239000010883 coal ash Substances 0.000 claims abstract description 53
- 239000004568 cement Substances 0.000 claims abstract description 36
- 239000002956 ash Substances 0.000 claims abstract description 25
- 239000002994 raw material Substances 0.000 claims abstract description 12
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000011575 calcium Substances 0.000 claims abstract description 11
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 11
- 239000010440 gypsum Substances 0.000 claims abstract description 9
- 229910052602 gypsum Inorganic materials 0.000 claims abstract description 9
- 239000010801 sewage sludge Substances 0.000 claims abstract description 9
- 239000000378 calcium silicate Substances 0.000 claims abstract description 6
- 229910052918 calcium silicate Inorganic materials 0.000 claims abstract description 6
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000002156 mixing Methods 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 239000002245 particle Substances 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 6
- 238000004056 waste incineration Methods 0.000 claims description 6
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- PGZIKUPSQINGKT-UHFFFAOYSA-N dialuminum;dioxido(oxo)silane Chemical compound [Al+3].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O PGZIKUPSQINGKT-UHFFFAOYSA-N 0.000 claims 1
- 238000006386 neutralization reaction Methods 0.000 abstract description 9
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 abstract description 5
- 239000010881 fly ash Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 238000012360 testing method Methods 0.000 description 9
- 239000002699 waste material Substances 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 7
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 235000019738 Limestone Nutrition 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000006028 limestone Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910004261 CaF 2 Inorganic materials 0.000 description 3
- 239000000292 calcium oxide Substances 0.000 description 3
- 235000012255 calcium oxide Nutrition 0.000 description 3
- 239000004927 clay Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000036571 hydration Effects 0.000 description 3
- 238000006703 hydration reaction Methods 0.000 description 3
- 239000002440 industrial waste Substances 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 235000010755 mineral Nutrition 0.000 description 3
- 230000001603 reducing effect Effects 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical group [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229920005646 polycarboxylate Polymers 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- -1 C 11 A 7 CaCl 2 Chemical compound 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229910000863 Ferronickel Inorganic materials 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000003818 cinder Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、エコセメントをセ
メントに使用し、骨材の一部に石炭灰を用いることによ
り、初期強度および長期強度を高めると共に廃棄物の再
利用を図ったコンクリート組成物に関する。TECHNICAL FIELD The present invention relates to a concrete composition in which eco-cement is used for cement and coal ash is used as a part of aggregate to increase initial strength and long-term strength and to reuse waste. About things.
【0002】[0002]
【従来技術】都市ゴミや下水汚泥などの一般廃棄物、あ
るいは産業廃棄物が近年著しく増加しており、その対策
としてこれらを再資源化して有効利用する試みが各分野
においてなされている。その一例として、都市ゴミ焼却
灰や下水汚泥焼却灰を主原料としたセメント(エコセメ
ント)が開発されており、コンクリート材料として使用
され始めている。2. Description of the Related Art In recent years, general waste such as municipal waste and sewage sludge, or industrial waste has increased remarkably, and as a countermeasure, attempts have been made in various fields to recycle and effectively utilize them. As one example, cement (eco-cement) using municipal garbage incineration ash or sewage sludge incineration ash as a main raw material has been developed, and has begun to be used as a concrete material.
【0003】一方、石炭火力発電所から燃焼灰として大
量に排出される石炭灰は、一部がフライアッシュとして
セメント混和材に利用されているものの、大部分は埋め
立て処分されており、処分場が逼迫している折から有効
な再利用が求められている。因みに、セメント混和材と
して用いられるフライアッシュは粒子が平滑でかつ球状
であるために適量をコンクリートに配合することによ
り、ワーカビリティーの向上、コンクリート組織の緻密
化による長期強度の増大、水密性および化学薬品に対す
る抵抗性等の向上等の効果が得られ、また、セメントの
水和発熱を緩和して温度ひび割れを抑制し、さらにはア
ルカリ骨材反応に対する抑制効果も発揮するなど多様な
効果が得られる。On the other hand, coal ash discharged from coal-fired power plants in large quantities as combustion ash is partially used as fly ash in cement admixtures, but most of it is landfilled. Effective reuse is demanded because of tight times. By the way, fly ash used as a cement admixture has smooth and spherical particles, so by adding an appropriate amount to concrete, it improves workability, increases long-term strength by densifying the concrete structure, increases water tightness and chemicals. Various effects can be obtained, such as an improvement in resistance to water, etc., as well as a reduction in the heat of hydration of the cement to suppress cracks in the temperature and also to an effect of suppressing the alkali-aggregate reaction.
【0004】しかし、フライアッシュの配合量が多過ぎ
ると凝結の遅延、初期強度の低下、低温環境下における
強度発現の遅れ等の問題を生じ、従ってその配合量には
限界がある。JIS規格ではフライアッシュセメントに
ついて、セメントに対するフライアッシュの置換割合を
最大で3割に制限している。このように、火力発電所か
ら排出されるフライアッシュについて、これを大量に利
用する用途が殆どないのが現状である。[0004] However, if the amount of fly ash is too large, problems such as a delay in setting, a decrease in initial strength, and a delay in strength development in a low-temperature environment are caused, and thus the amount of fly ash is limited. According to the JIS standard, the replacement ratio of fly ash to cement for fly ash cement is limited to a maximum of 30%. As described above, at present, fly ash discharged from thermal power plants is rarely used in large quantities.
【0005】[0005]
【発明が解決しようとする課題】本発明は、エコセメン
トを用いたコンクリート組成物について、骨材の一部に
石炭灰を用いることによって石炭灰の有効利用を図り、
また、石炭灰を配合することによってフレッシュコンク
リートの流動性を改善し、さらに組織を緻密化して圧縮
強度を高めると共に大気中の炭酸ガスの侵入を抑制して
コンクリートの中性化を防止したコンクリート組成物を
提供するものである。本発明によれば、このようなエコ
セメントと石炭灰の組合せにより、エコセメントを用い
たコンクリート組成物の圧縮強度や耐久性が高められ、
施工性が向上する。DISCLOSURE OF THE INVENTION The present invention provides a concrete composition using eco-cement, in which coal ash is used as a part of the aggregate to effectively utilize the coal ash.
In addition, a concrete composition that improves the fluidity of fresh concrete by blending coal ash, further densifies the structure to increase compressive strength, and suppresses the intrusion of carbon dioxide gas in the atmosphere to prevent neutralization of concrete. It provides things. According to the present invention, such a combination of eco-cement and coal ash enhances the compressive strength and durability of a concrete composition using eco-cement,
Workability is improved.
【0006】[0006]
【課題を解決するための手段】本発明は以下の構成から
なるコンクリート組成物に関する。なお、本発明はモル
タルを含めてコンクリート組成物と云う。 (1) セメントと骨材に水を配合してなるコンクリー
ト組成物であって、都市ゴミ焼却灰および下水汚泥焼却
灰の一種以上を原料とし、カルシウムクロロアルミネー
ト、カルシウムフルオロアルミネート、カルシウムアル
ミネートの一種以上を10〜40wt%およびカルシウム
シリケートを含む焼成物と石膏を主成分とする水硬性組
成物をセメントとして用い、骨材の一部に石炭灰を用い
たことを特徴とするコンクリート組成物。 (2) 石炭灰の混入率が、細骨材と石炭灰の合計量に
対して5〜60vol%である上記(1)のコンクリート組成
物。 (3) 石炭灰の粒度が比表面積1000cm2/g以上、
かつ45μm篩残分が85wt%以下である上記(1)または
(2)のコンクリート組成物。 (4) 石炭灰のSiO2含有量が35wt%以上、強熱
減量が9.0%以下である上記(1)、(2)または(3)のコン
クリート組成物。 (5) 石炭灰が石炭火力発電所から排出されたもので
ある上記(1)〜(4)の何れかのコンクリート組成物。Means for Solving the Problems The present invention relates to a concrete composition having the following constitution. Note that the present invention refers to a concrete composition including mortar. (1) A concrete composition obtained by mixing cement and aggregate with water, wherein at least one of municipal waste incineration ash and sewage sludge incineration ash is used as a raw material, and calcium chloroaluminate, calcium fluoroaluminate, and calcium aluminate are used. A concrete composition characterized by using a calcined product containing 10 to 40 wt% of at least one of calcium silicate and a hydraulic composition mainly composed of gypsum as cement, and using coal ash as a part of aggregate. . (2) The concrete composition according to the above (1), wherein the mixing ratio of coal ash is 5 to 60 vol% with respect to the total amount of fine aggregate and coal ash. (3) The particle size of the coal ash is at least 1,000 cm 2 / g,
(1) or wherein the 45 μm sieve residue is 85% by weight or less.
(2) The concrete composition. (4) The concrete composition according to the above (1), (2) or (3), wherein the SiO 2 content of the coal ash is 35% by weight or more and the ignition loss is 9.0% or less. (5) The concrete composition according to any one of (1) to (4), wherein the coal ash is discharged from a coal-fired power plant.
【0007】[0007]
【発明の実施の形態】以下、本発明を実施形態に基づい
て詳細に説明する。本発明のコンクリート組成物は、都
市ゴミ焼却灰および下水汚泥焼却灰の一種以上を原料と
し、カルシウムクロロアルミネート、カルシウムフルオ
ロアルミネート、カルシウムアルミネートの一種以上を
10〜40wt%およびカルシウムシリケートを含む焼成
物と石膏を主成分とする水硬性組成物(この水硬性組成
物をエコセメントと云う)をセメントとして用い、骨材
の一部に石炭灰を用いたことを特徴とするものである。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments. The concrete composition of the present invention comprises, as a raw material, at least one of municipal waste incineration ash and sewage sludge incineration ash, and contains 10 to 40% by weight of at least one of calcium chloroaluminate, calcium fluoroaluminate, and calcium aluminate and calcium silicate. The present invention is characterized in that a hydraulic composition mainly composed of a calcined product and gypsum (this hydraulic composition is called ecocement) is used as cement, and coal ash is used as a part of the aggregate.
【0008】エコセメントに含まれる鉱物成分、例え
ば、カルシウムクロロアルミネートは11CaO・7A
l2O3・CaCl2(C11A7CaCl2と略記)、カルシウム
フルオロアルミネートは11CaO・7Al2O3・Ca
F2(C11A7CaF2と略記)、カルシウムアルミネートは3
CaO・Al2O3(C2Aと略記)などである。また、カ
ルシウムシリケートは2CaO・SiO2(C2Sと略記)、
3CaO・SiO2(C3Sと略記)などである。好ましく
は、C11A7CaCl2、C11A7CaF2、C2Aなどの
カルシウムアルミネートを10〜40wt%含有し、C2
SやC3Sのカルシウムシリケートの一種以上を10〜
40wt%含有する。なお、塩化物イオン含有量は普通形
エコセメントでは0.1wt%以下、速硬形エコセメント
では0.5〜1.5wt%である。A mineral component contained in ecocement, for example, calcium chloroaluminate is 11CaO · 7A.
l 2 O 3 .CaCl 2 (abbreviated as C 11 A 7 CaCl 2 ), and calcium fluoroaluminate is 11 CaO.7 Al 2 O 3 .Ca
F 2 (abbreviated as C 11 A 7 CaF 2 ), calcium aluminate is 3
CaO.Al 2 O 3 (abbreviated as C 2 A). Calcium silicate is 2CaO.SiO 2 (abbreviated as C 2 S),
3CaO.SiO2 (abbreviated as C 3 S). Preferably, calcium aluminate, such as C 11 A 7 CaCl 2, C 11 A 7 CaF 2, C 2 A containing 10 to 40 wt%, C 2
More than one kind of calcium silicate of S or C 3 S
Contains 40 wt%. The chloride ion content is 0.1% by weight or less for ordinary type eco-cement and 0.5 to 1.5% by weight for quick-setting type eco-cement.
【0009】エコセメントは、貝殻や下水汚泥に生石灰
を混合した下水汚泥乾粉、その他の一般廃棄物や産業廃
棄物などの焼成灰を原料として製造される。また。普通
のセメント原料である石灰石、粘土、珪石、アルミ灰、
ボーキサイト、鉄粉を混合して成分調整した原料を用い
てもよい。これらの原料を1200〜1500℃で焼成
して得たクリンカーを粉砕し、必要に応じて、粉砕時ま
たは粉砕後に石膏を添加して、エコセメントを製造す
る。Ecocement is manufactured using calcined ash such as sewage sludge dry powder obtained by mixing quicklime with shells and sewage sludge, and other general waste and industrial waste. Also. Limestone, clay, silica, aluminum ash, which is a common cement raw material,
A raw material whose components are adjusted by mixing bauxite and iron powder may be used. Clinker obtained by calcining these raw materials at 1200 to 1500 ° C. is pulverized, and if necessary, gypsum is added at the time of pulverization or after pulverization to produce ecocement.
【0010】クリンカーのアルミニウム源は主に原料の
焼却灰から由来する。従って、C11A7CaCl2、C11
A7CaF2、C3A等のアルミニウム化合物の含有量が
10wt%未満では焼却灰の使用量が少なくなるので、廃
棄物の有効利用および再資源化の観点から好ましくな
い。一方、この量が40wt%を上回るとその水和の進行
によってセメント硬化体が過大に膨張する場合があるの
で適当ではない。[0010] The clinker aluminum source is mainly derived from the raw incineration ash. Therefore, C 11 A 7 CaCl 2 , C 11
If the content of aluminum compounds such as A 7 CaF 2 and C 3 A is less than 10% by weight, the amount of incinerated ash used is reduced, which is not preferable from the viewpoint of effective use of waste and recycling. On the other hand, if the amount exceeds 40% by weight, the hardened cement body may be excessively expanded due to the progress of hydration, which is not appropriate.
【0011】クリンカーに添加する石膏は、無水石膏、
二水石膏、半水石膏のいずれでもよい。強度発現性から
石膏の添加量はクリンカー100重量部に対して1〜3
0重量部が好ましい。Gypsum to be added to clinker is anhydrous gypsum,
Both gypsum and hemihydrate gypsum may be used. From the strength development, the addition amount of gypsum is 1 to 3 per 100 parts by weight of clinker.
0 parts by weight is preferred.
【0012】以上のようにして得られるエコセメントの
使用量は、コンクリート組成物100重量部のうち、エ
コセメント含有量が1〜80重量部であることが望まし
い。ここで、コンクリート組成物重量とは、エコセメン
トおよび水を基本成分とし、さらにその他の水硬性組成
物、鉱物質微粉末、混和材料、細骨材あるいは粗骨材を
含有した合計量である。エコセメント含有量はこのコン
クリート組成物の全重量におけるエコセメントの量であ
る。エコセメントの量が1重量部より少ないと所定の強
度が得られない。一方、エコセメントの量が80重量部
よりも多いと、所定の流動性が得られず施工性が著しく
低下し、施工不良を起こすことがあるので好ましくな
い。The amount of the ecocement obtained as described above is desirably 1 to 80 parts by weight of the ecocement based on 100 parts by weight of the concrete composition. Here, the concrete composition weight refers to the total amount of the basic components of eco-cement and water and further containing other hydraulic composition, mineral fine powder, admixture material, fine aggregate or coarse aggregate. Ecocement content is the amount of ecocement based on the total weight of the concrete composition. If the amount of ecocement is less than 1 part by weight, a predetermined strength cannot be obtained. On the other hand, if the amount of the ecocement is more than 80 parts by weight, the desired fluidity cannot be obtained, and the workability is remarkably reduced, which may result in poor construction.
【0013】本発明のコンクリート組成物は骨材の一部
に石炭灰を用いたものである。石炭灰としては石炭火力
発電所から排出されるものが主に用いられる。石炭灰は
規格(JIS)で規定されるフライアッシュに限らず、原粉
と称されるフライアッシュ、およびシンダーアッシュを
も含めた広い範囲の石炭灰を使用することができる。細
骨材の一部に石炭灰を用いることによって、細骨材の間
を微細な石炭灰が充填して組織の緻密性が増し、強度を
高めることができる。また、そのベアリング効果によっ
てフレッシュコンクリートの流動性が向上する。The concrete composition of the present invention uses coal ash as a part of the aggregate. As coal ash, those discharged from coal-fired power plants are mainly used. Coal ash is not limited to fly ash specified by the standard (JIS), and a wide range of coal ash including fly ash called raw powder and cinder ash can be used. By using coal ash for a part of the fine aggregate, fine coal ash is filled between the fine aggregates, the denseness of the structure is increased, and the strength can be increased. In addition, the fluidity of the fresh concrete is improved by the bearing effect.
【0014】石炭灰は密度1.8以上、ブレーン比表面
積1000cm2/g以上、かつ45μm篩残分が85%以下
のものが好ましい。比表面積および篩残分がこの範囲を
外れるものは粒径が大きいためコンクリート組成物に配
合したときに組成物の緻密度が低下し、初期強度や耐久
性に悪影響を及ぼすので好ましくない。また、石炭灰は
SiO2含有量35wt%以上および強熱減量9.0%以下
のものが好ましい。強熱減量がこれより大きいと目標と
する空気量を得るのが難い。因みに、空気量は3.0〜
6.0vol%が適当である。The coal ash preferably has a density of 1.8 or more, a specific surface area of the brane of 1,000 cm 2 / g or more, and a 45 μm sieve residue of 85% or less. Those having a specific surface area and a sieve residue outside these ranges are not preferred because the particle size is large and the compactness of the composition is reduced when blended into a concrete composition, which adversely affects the initial strength and durability. The coal ash preferably has a SiO 2 content of 35% by weight or more and a loss on ignition of 9.0% or less. If the ignition loss is larger than this, it is difficult to obtain a target air amount. By the way, the amount of air is 3.0-
6.0 vol% is appropriate.
【0015】石炭灰はその粒度が細骨材の範囲であるの
で細骨材に置換して用いられる。石炭灰の混入量は、細
骨材と石炭灰の合計量の容積に対して5〜60vol%が
適当であり、20〜50vol%が好ましい。石炭灰の量
が5vol%未満ではその効果が認められず、一方、60v
ol%より多いとコンクリート組成物の初期強度が低下
し、目標とする強度を得るのに必要な材齢が長くなる。
また初期強度の低下が耐久性の低下を招く原因にもな
る。Since coal ash has a particle size in the range of fine aggregate, it is used in place of fine aggregate. The mixing amount of coal ash is appropriately 5 to 60 vol%, preferably 20 to 50 vol%, based on the total volume of fine aggregate and coal ash. If the amount of coal ash is less than 5 vol%, the effect is not recognized, while
When the content is more than ol%, the initial strength of the concrete composition decreases, and the age required for obtaining the target strength increases.
Also, a decrease in the initial strength causes a decrease in durability.
【0016】細骨材の種類は制限されない。通常のコン
クリートに使用されている砂、砕砂等の普通骨材を広く
用いることができる。特に細骨材の粒度分布において微
粒部分が欠如するため通常のコンクリート用骨材として
は適切でないとされるものについても、本発明では骨材
の一部に石炭灰を用いるので、石炭灰が細骨材の微細部
分を補うことができ、このような細骨材でも使用するこ
とができる。なお、細骨材の量は石炭灰との合計量で7
00〜1000kg/m3が適当である。The type of fine aggregate is not limited. Common aggregates such as sand and crushed sand used in ordinary concrete can be widely used. In particular, in the present invention, coal ash is used as a part of the aggregate because fine aggregates are not suitable as ordinary concrete aggregate due to lack of fine particles in the particle size distribution of the fine aggregate. The fine parts of the aggregate can be supplemented, and such fine aggregate can be used. The amount of fine aggregate is 7 in total with coal ash.
100 to 1000 kg / m 3 is appropriate.
【0017】粗骨材は通常のコンクリートに使用されて
いる砂利、砕石等の普通骨材をはじめとして、鉄、抗火
石、膨張頁岩等を主原料とする人工骨材等の各種骨材を
使用することができる。さらに粗骨材として非発泡性フ
ライアッシュ造粒焼結体からなる人工軽量骨材を用いる
ことができ、このような人工軽量骨材と併用することに
より廃棄物の再利用をさらに促進することができる。因
みに、平均粒径5mm以上、密度1.8以上、吸水率3.0
%以下、圧縮強度40N/mm2以上の非発泡性フライアッ
シュ造粒焼結体からなる人工軽量骨材(太平洋セメント社製
品:E-SPHERESなど)が知られている。Coarse aggregates include various types of aggregates such as ordinary aggregates such as gravel and crushed stone used in ordinary concrete, as well as artificial aggregates mainly composed of iron, anti-firestone, expanded shale and the like. can do. Furthermore, an artificial lightweight aggregate made of a non-expandable fly ash granulated sintered body can be used as a coarse aggregate, and the reuse of waste can be further promoted by using such an artificial lightweight aggregate together. it can. Incidentally, the average particle size is 5 mm or more, the density is 1.8 or more, and the water absorption is 3.0.
%, An artificial lightweight aggregate made of a non-foamable fly ash granulated sintered body having a compressive strength of 40 N / mm 2 or more (product of Taiheiyo Cement Corporation: E-SPHERES, etc.) is known.
【0018】粗骨材の量(単位粗骨材量)はコンクリート
1m3あたり550リットル以下、好ましくは400リットル以
下が適当である。粗骨材の量がこれより多いと骨材の噛
み合いが著しくなり、良好なセメントペーストを調製し
てもスランプ上部が崩れ落ちてしまう。The amount of coarse aggregate (unit coarse aggregate amount) is suitably 550 liters or less, preferably 400 liters or less per m 3 of concrete. If the amount of the coarse aggregate is larger than this, the engagement of the aggregate becomes remarkable, and even when a good cement paste is prepared, the upper part of the slump collapses.
【0019】本発明のコンクリート組成物には高性能減
水剤を使用することができる。高性能減水剤としては、
従来用いられている、アルキルアリル系、ナフタリン
系、メラミン系、ポリカルボン酸塩系の混和剤をいずれ
も使用することができる。好ましくはポリカルボン酸塩
系の混和剤が良好である。また、空気連行性能を有する
高性能AE減水剤やAE剤も使用することができる。こ
れら高性能減水剤の添加量は使用する材料および所要の
減水効果などを勘案して調整されるが、一般には、セメ
ント100重量部に対して0.05〜10wt%が適当で
ある。0.1wt%未満では減水効果が実質上無く、また
10wt%を超えて添加しても減水性、流動性の改善効果
が頭打ちとなる。A high-performance water reducing agent can be used in the concrete composition of the present invention. As a high performance water reducing agent,
Any of conventionally used alkylallyl-based, naphthalene-based, melamine-based, and polycarboxylate-based admixtures can be used. Preferably, a polycarboxylate-based admixture is good. In addition, a high-performance AE water reducing agent or AE agent having air entrainment performance can also be used. The amount of these high-performance water reducing agents is adjusted in consideration of the materials to be used and the required water reducing effect. Generally, 0.05 to 10% by weight is appropriate for 100 parts by weight of cement. If it is less than 0.1% by weight, the water reducing effect is practically negligible, and if it exceeds 10% by weight, the effect of improving water reducing and fluidity levels off.
【0020】なお、本発明のコンクリート組成物には、
以上のほかに、コンクリートにおいて通常用いられる急
硬剤ないし急結剤、高強度混和剤、水和促進剤、凝結調
整剤等の各種のコンクリート混和材料、あるいは補強材
としての各種繊維や鋼等も使用することができる。ま
た、本発明のコンクリート組成物において、各成分の混
合および混練方法は制限されず、均一に混練できればよ
く、配合成分の添加順序も制限されない。The concrete composition of the present invention includes:
In addition to the above, various concrete admixture materials such as quick-hardening agents or quick-setting agents, high-strength admixtures, hydration accelerators, setting modifiers, etc. which are usually used in concrete, or various fibers or steels as reinforcing materials are also included Can be used. In addition, in the concrete composition of the present invention, the method of mixing and kneading the components is not limited, as long as they can be uniformly kneaded, and the order of adding the components is not limited.
【0021】[0021]
【実施例】以下、実施例によって本発明を具体的に示
す。なお、これらは例示であり本発明を限定するもので
はない。EXAMPLES The present invention will be specifically described below with reference to examples. In addition, these are illustrations and do not limit this invention.
【0022】〔エコセメントの製造〕以下のようにして
製造した塩化物イオン量の少ない水硬性組成物a(普通
形エコセメント)と塩化物イオン量が多い水硬性組成物
b(速硬形エコセメント)を用いた。水硬性組成物(a)の製造: 乾燥した都市ゴミ焼却灰
(a)35.8wt%、石灰石粉57.1wt%、粘土0.2wt
%、鉄原料3.5wt%を原料とし、これをロータリーキ
ルンで1300〜1450℃に焼成してクリンカーを得
た。このクリンカーを竪型ミルでブレーン比表面積40
00cm2/gに粉砕した。この焼成物100重量部に対し
て二水石膏8.4重量部、半水石膏3.6重量部を添加し
てブレーン比表面積4700cm2/gの普通形エコセメン
トを製造した。水硬性組成物(b)の製造 : 乾燥した都市ゴミ焼却灰
(b)51.9wt%、石灰石粉47.2wt%、アルミ灰0.
6wt%、塩化カルシウム0.3wt%を原料とし、これを
ロータリーキルンで1300〜1450℃に焼成してク
リンカーを得た。このクリンカーを竪型ミルでブレーン
比表面積4000cm2/gに粉砕した。この焼成物100
重量部に対して無水石膏を12重量部添加してブレーン
比表面積4700cm2/gの速硬形エコセメントを製造し
た。原料として用いた焼却灰a、b、石灰石粉、粘土、
アルミ灰、蛍石の成分を表1に示した。また、水硬性焼
成物a、bの鉱物組成および化学組成を表2および表3
に示した。[Production of eco-cement] A hydraulic composition a (normal type eco-cement) having a small amount of chloride ions and a hydraulic composition b (a quick-setting type eco-cement) having a large amount of chloride ions produced as follows. Cement). Production of hydraulic composition (a): Dry municipal waste incineration ash
(a) 35.8 wt%, limestone powder 57.1 wt%, clay 0.2 wt
%, And 3.5 wt% of an iron raw material, which was calcined at 1300-1450 ° C. in a rotary kiln to obtain clinker. This clinker is crushed by a vertical mill to have a Blaine specific surface area of 40.
Crushed to 00 cm 2 / g. 8.4 parts by weight of gypsum dihydrate and 3.6 parts by weight of gypsum hemihydrate were added to 100 parts by weight of this calcined product to produce a normal type ecocement having a specific surface area of Blaine of 4700 cm 2 / g. Production of hydraulic composition (b) : Dry municipal waste incineration ash
(b) 51.9 wt%, limestone powder 47.2 wt%, aluminum ash 0.
6 wt% and 0.3 wt% of calcium chloride were used as raw materials, which were fired at 1300 to 1450 ° C. in a rotary kiln to obtain clinker. This clinker was ground with a vertical mill to a Blaine specific surface area of 4000 cm 2 / g. This fired product 100
12 parts by weight of anhydrous gypsum was added to the parts by weight to produce a quick-setting ecocement having a specific surface area of the brane of 4700 cm 2 / g. Incineration ash a, b, limestone powder, clay,
The components of aluminum ash and fluorite are shown in Table 1. Tables 2 and 3 show the mineral and chemical compositions of the hydraulically baked products a and b.
It was shown to.
【0023】[0023]
【表1】 [Table 1]
【0024】[0024]
【表2】 [Table 2]
【0025】[0025]
【表3】 [Table 3]
【0026】〔コンクリート組成物の製造〕表3に示す
エコセメント(水硬性組成物)a,b、および表4に示す
石炭灰(CA1〜CA5)を用い、表5の配合比に従ってコンク
リート組成物を製造した。このコンクリート組成物につ
いてフレッシュ性状試験を行い、この結果を表6に示し
た。また促進中性化試験を高耐久性鉄筋コンクリート造
設計施工指針(案)および同解説「コンクリートの中性化
試験方法(案)」に従って行い。圧縮強度試験を規格(JIS
A 1108)に従って行った。圧縮強度試験の結果を表6に
示し、中性化試験の結果を表7に示した。[Production of concrete composition] Concrete compositions were prepared according to the mixing ratios shown in Table 5 using eco-cements (hydraulic compositions) a and b shown in Table 3 and coal ash (CA1 to CA5) shown in Table 4. Was manufactured. A fresh property test was performed on this concrete composition, and the results are shown in Table 6. In addition, accelerated neutralization tests were conducted in accordance with the guidelines for design and construction of highly durable reinforced concrete structures (draft) and the explanation “Concrete neutralization test method (draft)”. Standardized compression strength test (JIS
A 1108). The results of the compression strength test are shown in Table 6, and the results of the neutralization test are shown in Table 7.
【0027】[0027]
【表4】 [Table 4]
【0028】[0028]
【表5】 [Table 5]
【0029】〔フレッシュ性状試験〕コンクリート組成
物のフレッシュ性状は練り混ぜを行ったときの流動性と
空気量の入りやすさを4段階(◎:特に良い、○:良い、
△:普通、×:悪い)で評価した。流動性が良いとはスラ
ンプ試験や施工性が良いことを示し、空気量が入りやす
いとは目標の空気量を得るのに必要なAE剤使用量が少
量で良いことを示している。表6に示すように、石炭灰
を混入した場合のコンクリートの流動性は無混入の場合
(No.12〜14)と比較して改善されるが、粒度の粗い石炭
灰の場合(No.18,19)にはその効果が小さい。また、流動
性は細骨材と石炭灰の合計使用量に対して20%〜45
vol%のもの(No.5〜No.10)が最も大きい。石炭灰を混入
した場合のコンクリートの空気量は石炭灰が少量の場合
(No.3,4)は若干良好であるが、他の場合(No.1,2,5〜14)
と大差ない。石炭灰混入量が増した場合(No.15)は空気
量を得るのに必要なAE助剤量が著しく増加し実用的で
なくなる。また、石炭灰中の強熱減量が大きい場合(No.
17)も同様である。[Fresh property test] The fresh property of the concrete composition was evaluated in four steps (流動: especially good, ○: good,
Δ: normal, ×: bad). A good fluidity indicates good slump test and workability, and a good air content indicates that a small amount of AE agent used to obtain a target air amount is sufficient. As shown in Table 6, the fluidity of concrete when coal ash is mixed is the case without mixing
(Nos. 12 to 14), but the effect is small in the case of coarse ash (Nos. 18 and 19). The fluidity is 20% to 45% of the total amount of fine aggregate and coal ash used.
Vol% (No.5 to No.10) is the largest. The amount of air in concrete when coal ash is mixed is when the amount of coal ash is small
(No.3,4) is slightly better, but in other cases (No.1,2,5-14)
Not much different. When the amount of coal ash is increased (No. 15), the amount of the AE auxiliary agent required for obtaining the air amount is significantly increased, which is not practical. When the ignition loss in coal ash is large (No.
17) is the same.
【0030】〔圧縮強度試験〕表6に示すように、同一
水セメント比で圧縮強度を比較した場合、石炭灰をコン
クリート中に混入したものは、無混入の場合のものと比
較し(No.1〜2はNo.12に対して、No.3〜7はNo.13に対し
て、No.9〜11はNo.14に対して)初期材齢から強度の改
善が認められ、長期においてその傾向は顕著となった。
また石炭灰の混合率が増加するほど強度の向上は大きく
なるが、混合率が45vol%より多くなると(No.11)強度
増進は小さくなり、60vol%を超える(No.15)と長期材
齢での強度は若干改善されるが初期材齢での強度発現性
は無混入の場合(No.13)とほぼ同等となる。塩素イオン
含有量が多い速硬性形エコセメント(組成物b)を使用し
たもの(No.6)は石炭灰の混入により圧縮強度は向上する
が、塩化物イオン含有量が少ない普通形エコセメント
(組成物a)を用いたもの(No.5)に比較してその効果は小
さい。[Compressive strength test] As shown in Table 6, when the compressive strength was compared at the same water cement ratio, the one in which coal ash was mixed in concrete was compared with the one in which no coal ash was mixed (No. No. 12 for No. 12, No. 3 to 7 for No. 13, No. 9 to 11 for No. 14) Improvement in strength from early age is observed, The tendency became remarkable.
Also, as the mixing ratio of coal ash increases, the improvement in strength increases, but when the mixing ratio exceeds 45 vol% (No. 11), the strength increase decreases, and when the mixing ratio exceeds 60 vol% (No. 15), , The strength development at the initial age is almost the same as in the case of no mixing (No. 13). The one using a fast-setting eco-cement with a high chloride ion content (composition b) (No. 6) improves the compressive strength due to the incorporation of coal ash, but has a low chloride ion content.
Its effect is smaller than that of the composition (a) (No. 5).
【0031】〔中性化試験〕表7に示すように(No.1〜
2はNo.12に対して、No.3〜7はNo.13に対して、No.9〜11
はNo.14に対して)、石炭灰を混入したものは無混入の
ものよりも中性化が抑制されている。また、その効果は
石炭灰の混入量が45vol%までの範囲では混入量が増
すほど大きくなるが、混入量が60vol%を上回ると(N
o.15)、細骨材粒度の不均一化により若材齢時より中性
化が進行し、無混入の場合(No.13)とほぼ同等になる。
また、塩素イオン含有量が多い速硬形エコセメント(組
成物b)を使用したもの(No.6)は初期材齢では塩化物イ
オン含有量が少ない普通形エコセメント(組成物a)を用
いたもの(No.5)よりも中性化の深さは小さいが、材齢が
進行するにつれて徐々にその差は小さくなり、促進材齢
8週以降ではセメントaの方が中性化深さは小さく石炭
灰の混入が効果的であった。[Neutralization test] As shown in Table 7, (No.
2 is No.12, No.3-7 is No.13, No.9-11
(Compared to No. 14) Carbonized ash is more neutralized than non-contaminated ones. The effect increases as the amount of coal ash increases up to 45 vol%, but the effect increases when the amount of coal ash exceeds 60 vol% (N
o.15), due to the non-uniformity of fine aggregate particle size, neutralization progresses from the young age, and it is almost the same as in the case of no contamination (No. 13).
In addition, the one using a fast-setting eco-cement (composition b) with a high chloride ion content (No. 6) uses a normal-type eco-cement (composition a) with a low chloride ion content at the initial age. Although the depth of the neutralization was smaller than that of No.5 (No.5), the difference gradually became smaller as the material age progressed. Was small and the incorporation of coal ash was effective.
【0032】[0032]
【表6】 [Table 6]
【0033】[0033]
【表7】 [Table 7]
【0034】[0034]
【発明の効果】本発明のコンクリート組成物は、骨材の
一部に石炭灰を使用することにより、フレッシュコンク
リートの流動性が向上する。さらに、圧縮強度が初期材
齢から増進し、ポゾラン反応の効果によって長期強度も
大きく増進する。また、組織を緻密化することが可能と
なるため中性化も抑制される。さらに、都市ゴミ焼却灰
や下水汚泥焼却灰を主原料として製造したエコセメント
を用い、火力発電所の微粉炭燃焼ボイラから副産物とし
て大量に産出される石炭灰を併用することにより建設副
産物、一般廃棄物、産業廃棄物などの廃棄物の再利用を
促進することができる。なお、通常のコンクリート用骨
材として適さない粒度分布のものでも石炭灰を併用する
ことによって使用できるので、次第に入手が困難な状況
にある良質な骨材資源の確保に役立つ。また、高炉スラ
グやフェロニッケルスラグ等の産業副産物を原料として
製造された人工細骨材を用い、石炭灰と併用すれば産業
副産物の有効利用をさらに促進することができる。The concrete composition of the present invention improves the fluidity of fresh concrete by using coal ash as a part of the aggregate. Furthermore, the compressive strength increases from the initial age, and the long-term strength greatly increases due to the effect of the pozzolanic reaction. Further, since the structure can be densified, neutralization is also suppressed. Furthermore, construction by-products and general waste are produced by using eco-cement produced from municipal waste incineration ash and sewage sludge incineration ash as a main raw material, and using a large amount of coal ash produced as a by-product from pulverized coal combustion boilers at thermal power plants. It is possible to promote the reuse of waste such as goods and industrial waste. It should be noted that even those having a particle size distribution that is not suitable as ordinary aggregate for concrete can be used in combination with coal ash, which helps to secure high-quality aggregate resources that are gradually becoming difficult to obtain. Further, if artificial fine aggregate produced using industrial by-products such as blast furnace slag and ferronickel slag as a raw material is used in combination with coal ash, the effective use of industrial by-products can be further promoted.
Claims (5)
クリート組成物であって、都市ゴミ焼却灰および下水汚
泥焼却灰の一種以上を原料とし、カルシウムクロロアル
ミネート、カルシウムフルオロアルミネート、カルシウ
ムアルミネートの一種以上を10〜40wt%およびカル
シウムシリケートを含む焼成物と石膏を主成分とする水
硬性組成物をセメントとして用い、骨材の一部に石炭灰
を用いたことを特徴とするコンクリート組成物。1. A concrete composition comprising water mixed with cement and aggregate, wherein at least one of municipal waste incineration ash and sewage sludge incineration ash is used as a raw material, and calcium chloroaluminate, calcium fluoroaluminate, calcium Concrete characterized by using a calcined material containing 10 to 40% by weight of at least one aluminate and calcium silicate and a hydraulic composition mainly composed of gypsum as cement, and using coal ash as a part of aggregate. Composition.
計量に対して5〜60vol%である請求項1のコンクリ
ート組成物。2. The concrete composition according to claim 1, wherein the mixing ratio of coal ash is 5 to 60 vol% based on the total amount of fine aggregate and coal ash.
以上、かつ45μm篩残分が85wt%以下である請求項
1または2のコンクリート組成物。3. The coal ash has a specific particle size of 1000 cm 2 / g.
The concrete composition according to claim 1 or 2, wherein the 45 µm sieve residue is 85 wt% or less.
上、強熱減量が9.0%以下である請求項1、2または3
のコンクリート組成物。4. The coal ash according to claim 1, wherein the SiO 2 content is at least 35 wt% and the ignition loss is at most 9.0%.
Concrete composition.
ものである請求項1〜4の何れかのコンクリート組成
物。5. The concrete composition according to claim 1, wherein the coal ash is discharged from a coal-fired power plant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000250919A JP2002068804A (en) | 2000-08-22 | 2000-08-22 | Concrete composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000250919A JP2002068804A (en) | 2000-08-22 | 2000-08-22 | Concrete composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002068804A true JP2002068804A (en) | 2002-03-08 |
Family
ID=18740412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000250919A Pending JP2002068804A (en) | 2000-08-22 | 2000-08-22 | Concrete composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002068804A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002338322A (en) * | 2001-03-08 | 2002-11-27 | Japan Science & Technology Corp | Coal ash concrete and its preparation method |
JP2004292201A (en) * | 2003-03-26 | 2004-10-21 | Denki Kagaku Kogyo Kk | Concrete admixture and concrete composition |
JP2007210850A (en) * | 2006-02-10 | 2007-08-23 | Jfe Steel Kk | Hydrated cured body |
JP2007269573A (en) * | 2006-03-31 | 2007-10-18 | Jfe Steel Kk | Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance |
JP2007269572A (en) * | 2006-03-31 | 2007-10-18 | Jfe Steel Kk | Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance |
JP2007269569A (en) * | 2006-03-31 | 2007-10-18 | Jfe Steel Kk | Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance |
JP2007269570A (en) * | 2006-03-31 | 2007-10-18 | Jfe Steel Kk | Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance |
JP2007269571A (en) * | 2006-03-31 | 2007-10-18 | Jfe Steel Kk | Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance |
JP2007269574A (en) * | 2006-03-31 | 2007-10-18 | Jfe Steel Kk | Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance |
-
2000
- 2000-08-22 JP JP2000250919A patent/JP2002068804A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002338322A (en) * | 2001-03-08 | 2002-11-27 | Japan Science & Technology Corp | Coal ash concrete and its preparation method |
JP2004292201A (en) * | 2003-03-26 | 2004-10-21 | Denki Kagaku Kogyo Kk | Concrete admixture and concrete composition |
JP2007210850A (en) * | 2006-02-10 | 2007-08-23 | Jfe Steel Kk | Hydrated cured body |
JP2007269573A (en) * | 2006-03-31 | 2007-10-18 | Jfe Steel Kk | Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance |
JP2007269572A (en) * | 2006-03-31 | 2007-10-18 | Jfe Steel Kk | Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance |
JP2007269569A (en) * | 2006-03-31 | 2007-10-18 | Jfe Steel Kk | Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance |
JP2007269570A (en) * | 2006-03-31 | 2007-10-18 | Jfe Steel Kk | Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance |
JP2007269571A (en) * | 2006-03-31 | 2007-10-18 | Jfe Steel Kk | Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance |
JP2007269574A (en) * | 2006-03-31 | 2007-10-18 | Jfe Steel Kk | Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3559274B2 (en) | Cement admixture | |
JP5818579B2 (en) | Neutralization suppression type early strong cement composition | |
KR101482530B1 (en) | Cement clinker and cement | |
WO2009136518A1 (en) | Hydraulic composition and concrete using the hydraulic composition | |
JP7218083B2 (en) | Method for producing cement composition | |
JP6030438B2 (en) | Spraying material and spraying method using the same | |
JP4462466B2 (en) | Non-shrink mortar composition and fast-curing non-shrink mortar composition | |
JP2011219341A (en) | Hydraulic composition | |
JP5441768B2 (en) | Hydraulic composition | |
JP2002068804A (en) | Concrete composition | |
JP2014051433A (en) | Hydraulic composition | |
JP4908072B2 (en) | Cement additive and cement composition | |
KR100842685B1 (en) | Cement admixture | |
JP6985547B1 (en) | Grout material, grout mortar composition and cured product | |
JP4616112B2 (en) | Cement quick setting material and cement composition | |
JPH11302047A (en) | Expansive material composition and expansive cement composition | |
US20050051058A1 (en) | Chemical admixture for cementitious compositions | |
JP2010195601A (en) | Cement composition | |
JP7604285B2 (en) | Blended cement composition | |
KR102589585B1 (en) | Concrete composition with excellent workability and resistance to material separation | |
JPH11130499A (en) | Cement composition for spraying material and spraying method | |
JP2004338983A (en) | Portland cement clinker and cement composition using the same | |
JP4190387B2 (en) | Cement admixture and cement composition | |
JP2023182440A (en) | Carbon dioxide emission reduction cement, cement composition, and hardened cementitious material | |
JP2024078531A (en) | Hydraulic composition, and method of producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070816 |