JP2002067693A - Safety member for automobile and section design method - Google Patents
Safety member for automobile and section design methodInfo
- Publication number
- JP2002067693A JP2002067693A JP2000266118A JP2000266118A JP2002067693A JP 2002067693 A JP2002067693 A JP 2002067693A JP 2000266118 A JP2000266118 A JP 2000266118A JP 2000266118 A JP2000266118 A JP 2000266118A JP 2002067693 A JP2002067693 A JP 2002067693A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- safety member
- vehicle
- cross
- extruded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013461 design Methods 0.000 title claims abstract description 8
- 238000000034 method Methods 0.000 title claims description 8
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 35
- 239000000956 alloy Substances 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims description 33
- 229910045601 alloy Inorganic materials 0.000 claims description 7
- 230000006835 compression Effects 0.000 claims description 6
- 238000007906 compression Methods 0.000 claims description 6
- 229910018464 Al—Mg—Si Inorganic materials 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 229910018571 Al—Zn—Mg Inorganic materials 0.000 claims description 3
- 230000035882 stress Effects 0.000 description 10
- 239000012535 impurity Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- -1 Si: 0.2 to 1.5% Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000012669 compression test Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Body Structure For Vehicles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、自動車の乗員室の
側面又はドア内に位置し、特にトラックや乗用車等の正
面からの衝突に対する強度確保を目的とする安全部材に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a safety member located on the side of a passenger compartment of a motor vehicle or in a door, and particularly for securing strength against a collision from the front of a truck or a car.
【0002】[0002]
【従来の技術】自動車のドア内には、側面衝突に対して
乗員を保護したり、ドアの強度を確保するためのドアビ
ーム、サイドインパクトビーム等と呼ばれる安全部材が
装着され、これらは大部分は鉄が使用されており、一部
アルミニウム合金押出材が使用されている。ドアビーム
は側面衝突を想定し、その評価も両端を支持された梁
(ビーム)の曲げ試験にて、最大荷重やエネルギー吸収
量を規定している(特開平5−246242号公報、特
開平5−247575号公報等参照)。2. Description of the Related Art A safety member called a door beam, a side impact beam, or the like for protecting an occupant from a side collision or ensuring the strength of a door is mounted in a door of an automobile. Iron is used, and some aluminum alloy extruded materials are used. The door beam is assumed to have a side collision, and the evaluation also specifies the maximum load and the amount of energy absorption by a bending test of a beam supported at both ends (JP-A-5-246242, JP-A-5-246242). 247575, etc.).
【0003】また、正面衝突に対する部材で、軸方向に
つぶれてエネルギーを吸収するサイドメンバー等の部材
(いわゆるクラッシャブル材)のアルミニウム化なども
いろいろと検討されている。これらの部材は、軸方向の
衝突荷重に対し長手方向の規則的座屈により衝突時の衝
撃を吸収するもので、長柱座屈を抑えて蛇腹状の収縮変
形を誘発し安定したエネルギー吸収を得るというもので
ある(特開平8−310440号公報、特開平6−24
7338号公報、特開平11−29064号公報等参
照)。[0003] In addition, various studies have been conducted on the use of aluminum (a crushable material) such as a side member that absorbs energy by being crushed in the axial direction as a member against a frontal collision. These members absorb the impact at the time of collision by the regular buckling in the longitudinal direction against the collision load in the axial direction, suppress the long column buckling, induce bellows-like contraction deformation, and achieve stable energy absorption. (JP-A-8-310440, JP-A-6-24)
7338, JP-A-11-29064, etc.).
【0004】さらに、特開平10−138756号公報
や特開平10−138757号公報には、側面衝突に対
しては前記ドアビームと同様に機能し、正面衝突に際し
てはその衝突荷重を受け止めて乗員生存空間を確保する
インパクトビームが記載されている。このインパクトビ
ームは正面衝突に際し、当該インパクトビームにかかる
軸圧縮荷重がその座屈荷重未満の場合は変形せず(座屈
荷重以上であれば長柱座屈を起こす)に乗員生存空間を
確保するもので、蛇腹状に収縮変形して衝突エネルギー
を吸収する前記クラッシャブル材とは性格が異なる。な
お、正面衝突とは、前後方向からの全面衝突及びオフセ
ット衝突を含む。Further, Japanese Patent Application Laid-Open No. 10-138756 and Japanese Patent Application Laid-Open No. 10-138575 disclose the same function as the door beam in the case of a side collision, and receive the collision load in the case of a head-on collision, and The impact beam which secures is described. In the event of a head-on collision, the impact beam does not deform if the axial compression load applied to the impact beam is less than the buckling load (if the buckling load is greater than the buckling load, the occupant survives space). It has a different characteristic from the crushable material that absorbs collision energy by contracting and deforming in a bellows shape. The head-on collision includes a full-face collision and an offset collision from the front-back direction.
【0005】[0005]
【発明が解決しようとする課題】これらの安全部材は車
重を増加させることになるので、極力軽量化することが
望まれ、先に述べたドアビーム材及びクラッシャブル材
については、アルミニウム合金押出材に関し必要な性能
を満足しつつ軽量化するために種々の断面形状のものが
提案されている。しかし、車の正面方向からの衝突に際
してその衝突荷重を軸方向に受け止め乗員生存空間を確
保する安全部材に関しては、前記特開平10−1387
56号公報や特開平10−138757号公報に、鋼板
をプレス加工して円筒形状とした突合せパイプが開示さ
れているに過ぎない。Since these safety members increase the vehicle weight, it is desired to reduce the weight as much as possible. For the door beam material and the crushable material described above, an aluminum alloy extruded material is used. In order to satisfy the required performance and reduce the weight, various cross-sectional shapes have been proposed. However, regarding a safety member that receives a collision load in the axial direction in the event of a collision from the front of the vehicle and secures an occupant survival space, Japanese Patent Laid-Open No. 10-1387 discloses the above-mentioned safety member.
No. 56 or JP-A-10-138575 merely discloses a butt pipe formed by pressing a steel plate into a cylindrical shape.
【0006】そこで、本発明は、車の正面方向からの衝
突に際してその衝突荷重を軸方向に受け止め乗員生存空
間を確保する安全部材に関し、これを種々の断面形状が
容易に得られるアルミニウム合金押出材で構成する場合
において、必要な性能を満足しつつ軽量化できる断面形
状又は断面形状の設計手法を提供することを目的とす
る。SUMMARY OF THE INVENTION Accordingly, the present invention relates to a safety member which receives a collision load in an axial direction when a collision occurs from the front of a vehicle and secures an occupant survival space. It is an object of the present invention to provide a cross-sectional shape or a design method of the cross-sectional shape that can reduce the weight while satisfying the required performance when configured with.
【0007】[0007]
【課題を解決するための手段】本発明は、自動車の乗員
室の側面又はドア内に自動車の前後方向とほぼ平行に配
置され、その部材軸方向の軸圧縮に対して所定の最大荷
重Pcrを得た後、軸外方向へ長柱座屈する自動車用安
全部材であり、下記式(1)で定義されるkが下記式
(2)、(3)を満たすアルミニウム合金押出材からな
ることを特徴とする。SUMMARY OF THE INVENTION The present invention is arranged substantially parallel to the front-rear direction of a vehicle on the side or inside a door of a passenger compartment of the vehicle, and has a predetermined maximum load P cr with respect to axial compression in the member axial direction. After that, it is an automotive safety member that buckles in a long column in the off-axis direction, and that k defined by the following formula (1) is made of an extruded aluminum alloy material that satisfies the following formulas (2) and (3). Features.
【数3】 なお、上記断面2次半径rは周知のごとく次式で計算さ
れ、(Equation 3) The secondary radius r of the cross section is calculated by the following equation as is well known.
【数4】 この式において断面2次モーメントIは長柱座屈する方
向に垂直でかつ図心を通る軸回りの断面2次モーメント
が用いられる。(Equation 4) In this equation, the second moment of area I is perpendicular to the long column buckling direction and is the second moment of area around an axis passing through the centroid.
【0008】また、本発明は、前記自動車用安全部材に
用いるアルミニウム合金押出材の断面設計方法に関し、
所定の耐力σ0.2及びヤング率Eを有するアルミニウ
ム合金押出材について、その長さをL、軸方向の圧縮に
対して軸外方向に長柱座屈する際の最大荷重の要求値を
Pcrとしたとき、前記式(1)で定義されるkが前記
式(2)、(3)を満たすように、前記押出材の断面の
幾何的形状を設計することを特徴とする。The present invention also relates to a method for designing a cross section of an extruded aluminum alloy used for the safety member for an automobile,
For an aluminum alloy extruded material having a predetermined proof stress σ 0.2 and a Young's modulus E, the length is L, and the required value of the maximum load when buckling a long column in the off-axis direction with respect to the axial compression is P cr Then, the geometrical shape of the cross section of the extruded material is designed so that k defined by the expression (1) satisfies the expressions (2) and (3).
【0009】[0009]
【発明の実施の形態】自動車に前面(又は後面)から衝
撃が加わった場合、通常の自動車ではサイドフレーム等
を通じて衝撃が乗員の存在する空間(乗員室)に伝達さ
れる。その際、その衝撃エネルギーを塑性変形で吸収さ
せる目的をもったものが、先に述べたクラッシャブル材
である。クラッシャブル材は図2に示すクラッシャブル
ゾーンA、Cに配置され、軸方向の衝撃荷重に対し規則
正しい蛇腹状に収縮変形してエネルギーを吸収する。一
方、本発明に係る安全部材1は、図2に示すセーフティ
ゾーンB、すなわち乗員室の側面又はドア内に配置され
(図3参照)、加わる衝撃に対して塑性変形を極力せず
に、その乗員の生存空間を確保することを目的とする。
従って、前記クラッシャブル材とは、その力学的挙動や
役割を異にする。DESCRIPTION OF THE PREFERRED EMBODIMENTS When an impact is applied to a vehicle from the front (or rear), the impact is transmitted to the space (occupant room) where the occupant is present through a side frame or the like in a normal vehicle. At this time, the above-mentioned crushable material has a purpose of absorbing the impact energy by plastic deformation. The crushable material is arranged in the crushable zones A and C shown in FIG. 2, and contracts and deforms into a regular bellows shape in response to an impact load in the axial direction to absorb energy. On the other hand, the safety member 1 according to the present invention is disposed in the safety zone B shown in FIG. 2, that is, in the side of the occupant compartment or in the door (see FIG. 3). The purpose is to secure the crew's living space.
Therefore, the mechanical behavior and role are different from those of the crushable material.
【0010】このような安全部材に主に必要な特性は、
軸方向からの衝撃に対してどれだけ耐えられるかを示す
最大抵抗荷重である。本発明者らは、種々の断面形状、
合金種及び調質のアルミニウム合金押出材について多く
の実験を重ねるなかで、その最大抵抗荷重を予測するに
は、長柱の弾性座屈だけではなく、同時に塑性座屈をも
考慮する必要があり、さらに、細長比と最大抵抗荷重の
あいだにある種の実験的な関係が存在することを見いだ
し、その部材の最大抵抗荷重を予測し得る設計式(前記
(1)〜(3)式)を構築した。The main characteristics required for such a safety member are:
It is the maximum resistance load that indicates how much it can withstand an impact from the axial direction. We have various cross-sectional shapes,
In many experiments on alloy types and tempered aluminum alloy extruded materials, it is necessary to consider not only elastic buckling of long columns but also plastic buckling in order to predict the maximum resistance load. Further, it has been found that there is a certain experimental relationship between the slenderness ratio and the maximum resistance load, and a design equation (Equations (1) to (3)) for predicting the maximum resistance load of the member is obtained. It was constructed.
【0011】この設計式は、以下の実験の結果から導き
出されたものである。表1に示す6000系及び700
0系のアルミニウム合金を種々の断面形状(中空)に押
出成形した後、各押出材に所定の機械的性質(耐力)を
出すような時効処理を行い、約800mmの長さに切断
して供試材とした。各供試材の長さ(スパン)、断面の
幾何的データ及び耐力を表1に示す。なお、耐力は時効
処理後の押出材からJIS5号引張試験片を切り出し、
引張試験を行って求めた。This design equation is derived from the results of the following experiment. 6000 series and 700 shown in Table 1
After extruding a zero-series aluminum alloy into various cross-sectional shapes (hollow), each extruded material is subjected to an aging treatment so as to give predetermined mechanical properties (proof stress), and cut into a length of about 800 mm. Samples were used. Table 1 shows the length (span), geometric data of cross section, and proof stress of each test material. In addition, proof strength was cut out from JIS No. 5 tensile test piece from extruded material after aging treatment,
It was determined by conducting a tensile test.
【0012】[0012]
【表1】 [Table 1]
【0013】図4に示すように、各供試材2について、
固定治具3、3にピン4、4止めされた可動治具5、5
に上下方向を固定し、軸方向に静的な圧縮荷重(P)を
加え、その際、30mmまでの変位−荷重カーブを測定
し、得られた最大抵抗荷重P crと部材の幾何的形状の
関係をプロットした。なお、最大抵抗荷重Pcr以上の
荷重が加わると、供試材はピン4に垂直な面内で大きく
長柱座屈する。このとき、縦軸は最大荷重Pcrを耐力
σ0.2×Aで除したk値(前記式(1)参照)を用
い、横軸は有効細長比λを基準細長比λ0で除して無次
元化したものを用いた。細長比は、柱の幾何寸法を表す
基本パラメーターで、有効細長比λは、部材長Lに材端
の支持条件によって異なる係数を考慮した座屈長さlを
断面2次半径rで除したもの(λ=l/r)である。こ
の場合、両端の支持条件はピン支持(移動は拘束、回転
は自由)とみなしてl=Lとすると、λ=L/rとな
る。断面2次半径rは前記(4)式により計算され、断
面2次モーメントIとしてピン4の軸方向と平行でかつ
図心を通る軸回りの断面2次モーメントを用いた。ま
た、基準細長比λ0としてはオイラーの座屈応力式、As shown in FIG. 4, for each specimen 2,
Movable jigs 5 and 5 fixed to pins 4 and 4 on fixed jigs 3 and 3
The vertical compression is fixed to the axis, and the static compressive load (P) is applied in the axial direction.
In addition, measure the displacement-load curve up to 30mm
And the obtained maximum resistance load P crAnd the geometric shape of the member
The relationship was plotted. Note that the maximum resistance load PcrMore than
When a load is applied, the test material becomes large in the plane perpendicular to the pin 4.
Long column buckling. At this time, the vertical axis represents the maximum load PcrThe proof stress
σ0.2Use the k value divided by × A (see the above formula (1))
The horizontal axis is the effective slenderness ratio λ and the reference slenderness ratio λ0Divided by
The original one was used. Slenderness ratio represents the geometric dimensions of the column
The basic parameter, the effective slenderness ratio λ is
The buckling length l taking into account different coefficients depending on the support conditions of
The value is divided by the secondary radius r of the cross section (λ = 1 / r). This
In the case of, the support condition at both ends is pin support (movement is restricted, rotation
Is free), and l = L, λ = L / r.
You. The secondary radius r of the cross section is calculated by the above equation (4), and
The surface second moment I is parallel to the axial direction of the pin 4 and
The second moment of area around the axis passing through the centroid was used. Ma
The reference slenderness ratio λ0As Euler's buckling stress formula,
【数5】 に対して、(Equation 5) Against
【数6】 となるλをλ0とした。すなわち、(Equation 6) Is set to λ 0 . That is,
【数7】 とした。なお、ヤング率は前記引張試験で求めた。(Equation 7) And The Young's modulus was determined by the tensile test.
【0014】各供試材にて得られたk値と(λ/λ0)
の関係をプロットしたものを図1に示す。プロットを囲
むラインについて、多項式近似を行って前記式(2)、
(3)を決定した。なお、λ/λ0が大きいほどk値が
低下するので、実用的範囲としてλ/λ0≦2.5とし
た。この安全部材について、要求される最大抵抗荷重を
所定の機械的性質(耐力σ 0.2、ヤング率E)を有す
るアルミニウム合金押出材にて実現する場合、この式か
ら押出材断面の幾何的形状が決まる。逆に押出材断面の
幾何的形状が決まれば、その押出材が要求される最大抵
抗荷重を満足するかどうか判定できる。そして、この安
全部材は例えば狭いドア内に前後方向に設置されるな
ど、他の部材との干渉を避けて挟隘なスペースに配置さ
れるため、その断面形状に大きい制約があるが、この式
を利用することで、要求される最大抵抗荷重を満足しつ
つ軽量化するための断面設計が容易となる。The k value obtained from each test material and (λ / λ0)
1 is shown in FIG. Surround plot
, A polynomial approximation is performed to obtain the equation (2),
(3) was determined. Note that λ / λ0The larger the
Λ / λ as a practical range0≤2.5
Was. For this safety member, the required maximum resistance load
Given mechanical properties (proof strength σ 0.2, Young's modulus E)
When using an extruded aluminum alloy,
The geometry of the cross section of the extruded material is determined from this. Conversely, the cross section of the extruded material
Once the geometry is determined, the maximum resistance required for the extruded material
It can be determined whether the load resistance is satisfied. And this cheap
Do not install all components in a narrow door, for example
To avoid interference with other members.
Therefore, there is a large restriction on the cross-sectional shape.
Satisfies the required maximum resistance load
This facilitates the cross-sectional design to reduce the weight.
【0015】用いられるアルミニウム合金押出の断面形
状としては、軽量化のためには一般に中空断面が望まし
く、例えば丸形断面、多角形断面、複数のフランジとウ
エブからなる対称又は非対称の断面等、種々のものが考
えられる。しかし、必ずしも中空断面に限定されない。
なお、実験では押出材に静的圧縮を加え、一定の変位を
与えた後ストップしているが、実際の衝突時には衝突速
度や形態、車重に応じて荷重の大きさは異なってくる。
前記安全部材に加わる衝突荷重が最大抵抗荷重以下であ
れば、その衝突荷重を受け止めて乗員生存空間が確保さ
れる。最大荷重を超える衝突荷重が加わると安全部材は
長柱座屈を起こすが、その場合でも曲げの方向が乗員室
側に向かないようにするのが望ましい。さらに、曲げに
より破断しない材質が望ましい。As the cross-sectional shape of the aluminum alloy extruded, a hollow cross-section is generally desirable for weight reduction. For example, various cross-sections such as a round cross-section, a polygonal cross-section, and a symmetric or asymmetric cross-section including a plurality of flanges and webs are preferable. Things are conceivable. However, it is not necessarily limited to a hollow section.
In the experiment, the extruded material was stopped after applying a constant displacement to give a certain displacement, but at the time of an actual collision, the magnitude of the load differs depending on the collision speed, form, and vehicle weight.
If the collision load applied to the safety member is equal to or less than the maximum resistance load, the collision load is received and the occupant survival space is secured. When a collision load exceeding the maximum load is applied, the safety member buckles the long column. Even in such a case, it is desirable that the bending direction is not directed toward the passenger compartment. Further, a material that does not break due to bending is desirable.
【0016】上記安全部材として、種々の組成のアルミ
ニウム合金押出材が利用できるが、特に、熱処理により
高い強度を得ることができる6000系(Al−Mg−
Si系)又は7000系(Al−Zn−Mg系)アルミ
ニウム合金が好適である。Al−Mg−Si系アルミニ
ウム合金であれば、Si;0.2〜1.5%、Mg;
0.4〜1.3%を含有するものが望ましく、Al−Z
n−Mg系アルミニウム合金であれば、Mg;0.5〜
2%、Zn;4〜9%を含有するものが望ましい。その
ほか、両系とも、Cu;0.05〜0.6%、M
n;0.05〜0.6%、Cr;0.05〜0.2%、
Zr;0.05〜0.2%のいずれか1種又は2種以
上、Ti;0.005〜0.2%、以上〜のいず
れか1種又は2種以上を含むことができる。残部はAl
及び不可避不純物である。As the safety member, aluminum alloy extruded materials of various compositions can be used. In particular, 6000 series (Al-Mg-
A Si-based or 7000-based (Al-Zn-Mg-based) aluminum alloy is preferable. If it is an Al-Mg-Si based aluminum alloy, Si: 0.2 to 1.5%, Mg;
The one containing 0.4 to 1.3% is desirable, and Al-Z
If it is an n-Mg based aluminum alloy, Mg;
It is desirable to contain 2%, Zn; 4 to 9%. In addition, in both systems, Cu: 0.05 to 0.6%, M
n: 0.05 to 0.6%, Cr: 0.05 to 0.2%,
Any one or more of Zr: 0.05 to 0.2%, and any one or two or more of Ti: 0.005 to 0.2%, or more can be contained. The balance is Al
And unavoidable impurities.
【0017】以下、アルミニウム合金の組成について説
明する。 (Al−Mg−Si系) Si、Mg Si、Mgはアルミニウム合金の強度(耐力)を維持す
るために必要な元素である。Siが0.2%未満、Mg
が0.4%未満では所望の強度が得られない。一方、S
iが1.5%、Mgが1.3%を超えるとアルミニウム
合金の押出性が低下するとともに伸びも低下する。従っ
て、Si:0.2〜1.5%、Mg:0.4〜1.3%
とする。Hereinafter, the composition of the aluminum alloy will be described. (Al-Mg-Si) Si, Mg Si, Mg are elements necessary for maintaining the strength (proof stress) of the aluminum alloy. Si is less than 0.2%, Mg
Is less than 0.4%, the desired strength cannot be obtained. On the other hand, S
If i exceeds 1.5% and Mg exceeds 1.3%, the extrudability of the aluminum alloy decreases and elongation also decreases. Therefore, Si: 0.2 to 1.5%, Mg: 0.4 to 1.3%
And
【0018】Cu Cuはアルミニウム合金の強度(耐力)を高める。ま
た、Cuはアルミニウム合金の耐応力腐食割れ性を改善
する作用がある。好適な範囲はCu:0.05〜0.6
%であり、下限未満では上記の作用が不十分であり、ま
た、上限を超えると押出性が悪くなり、一般耐食性も低
下する。 Mn、Cr、Zr これらの元素はアルミニウム合金の強度(耐力)を高め
る作用があり、これらの中から1種又は2種以上が適宜
添加される。好適な範囲は、Mn:0.05〜0.6
%、Cr:0.05〜0.2%、Zr:0.05〜0.
2%である。それぞれ下限未満では上記の作用が不十分
であり、また、上限を超えると、押出性が悪くなり、焼
入れ感受性が鋭くなり焼きが入りにくくなる。Cu Cu enhances the strength (proof stress) of the aluminum alloy. Further, Cu has an effect of improving the stress corrosion cracking resistance of the aluminum alloy. The preferred range is Cu: 0.05 to 0.6.
%, The effect is insufficient when the amount is less than the lower limit, and when the amount exceeds the upper limit, extrudability deteriorates and general corrosion resistance also decreases. Mn, Cr, Zr These elements have the effect of increasing the strength (proof stress) of the aluminum alloy, and one or more of these elements are added as appropriate. A preferable range is Mn: 0.05 to 0.6.
%, Cr: 0.05-0.2%, Zr: 0.05-0.
2%. If the respective amounts are less than the lower limits, the above-mentioned effects are insufficient. If the amounts are more than the upper limits, extrudability deteriorates, quenching sensitivity becomes sharp, and quenching becomes difficult.
【0019】Ti Tiは、鋳塊組織を微細化する作用がある。しかし、
0.005%より少ないと微細化の効果が十分でなく、
0.2%より多いと飽和して巨大化合物が発生してしま
う。従って、Tiの含有量は0.005〜0.2%とす
る。 不可避不純物 不可避不純物のうちFeはアルミニウム地金に最も多く
含まれる不純物であり、0.35%を超えて合金中に存
在すると鋳造時に粗大な金属間化合物を晶出し、合金の
機械的性質を損なう。従って、Feの含有量は0.35
%以下に規制する。また、アルミニウム合金を鋳造する
際には地金、添加元素の中間合金等様々な経路より不純
物が混入する。混入する元素は様々であるが、Fe以外
の不純物は単体で0.05%以下、総量で0.15%以
下であれば合金の特性にほとんど影響を及ぼさない。従
って、これらの不純物は単体で0.05%以下、総量で
0.15%以下とする。なお、不純物のうちBについて
はTiの添加に伴い合金中にTi含有量の1/5程度の
量で混入するが、より望ましい範囲は0.02%以下、
さらに0.01%以下が望ましい。Ti Ti has the effect of refining the ingot structure. But,
If less than 0.005%, the effect of miniaturization is not sufficient,
If it is more than 0.2%, it is saturated and a huge compound is generated. Therefore, the content of Ti is set to 0.005 to 0.2%. Inevitable impurities Fe is the most inevitable impurity contained in aluminum ingots. If it exceeds 0.35% in the alloy, coarse intermetallic compounds are crystallized during casting and the mechanical properties of the alloy are impaired. . Therefore, the content of Fe is 0.35
% Or less. Further, when casting an aluminum alloy, impurities are mixed from various routes such as a base metal and an intermediate alloy of an additive element. There are various elements to be mixed, but impurities other than Fe alone have 0.05% or less, and if the total amount is 0.15% or less, it hardly affects the properties of the alloy. Therefore, these impurities are set to 0.05% or less in a simple substance, and 0.15% or less in total. In addition, B among impurities is mixed into the alloy in an amount of about 1/5 of the Ti content with the addition of Ti, but a more preferable range is 0.02% or less.
Further, it is desirably 0.01% or less.
【0020】(Al−Zn−Mg系) Zn、Mg Zn、Mgはアルミニウム合金の強度を維持するために
必要な元素である。Znが4重量%未満、Mgが0.5
%未満では所望の強度が得られない。また、Znが9
%、Mgが2%を超えるとアルミニウム合金の押出性が
低下するとともに伸びも低下する。従って、Zn:4〜
9%、Mg:0.5〜2%とする。 Cu、Mn、Cr、Zr、Ti これらの元素については、Al−Mg−Si系と同じ理
由で必要に応じて前記の範囲内で添加される。 不可避不純物 不可避不純物については、Al−Mg−Si系と同様の
理由で前記の範囲内に限定される。(Al-Zn-Mg) Zn, Mg Zn and Mg are elements necessary for maintaining the strength of the aluminum alloy. Zn is less than 4% by weight, Mg is 0.5
%, The desired strength cannot be obtained. Further, when Zn is 9
%, Mg exceeds 2%, the extrudability of the aluminum alloy decreases and elongation also decreases. Therefore, Zn: 4 ~
9%, Mg: 0.5 to 2%. Cu, Mn, Cr, Zr, Ti These elements are added within the above range as needed for the same reason as the Al-Mg-Si system. Inevitable impurities Inevitable impurities are limited to the above range for the same reason as in the Al-Mg-Si system.
【0021】[0021]
【発明の効果】本発明は、安全部材に要求される最大抵
抗荷重を、押出材の耐力σ0.2、ヤング率E及び押出
材の幾何的形状を取り込んだ関係式で定めている。この
関係式は各種アルミニウム合金押出材の実測値に基づい
て導かれたものであり、この関係式に基づいて、要求さ
れる最大抵抗荷重を満足する安全部材を構成するアルミ
ニウム合金押出材の断面設計が容易に行えるようにな
る。そして、要求される最大抵抗荷重を満足する幾何的
形状のうち、挟隘なスペースに配置するための断面形状
の制約を満たし、かつ軽量化が可能なものを容易に得る
ことができる。According to the present invention, the maximum resistance load required for the safety member is determined by a relational expression incorporating the proof stress σ 0.2 of the extruded material, the Young's modulus E, and the geometrical shape of the extruded material. This relational expression was derived based on the actually measured values of various aluminum alloy extruded materials, and based on this relational expression, the cross-sectional design of the aluminum alloy extruded material constituting the safety member that satisfies the required maximum resistance load Can be easily performed. And among the geometric shapes satisfying the required maximum resistance load, it is possible to easily obtain a geometrical shape that satisfies the restrictions on the cross-sectional shape for arranging in a narrow space and that can be reduced in weight.
【図1】 圧縮試験で得られたk値と(λ/λ0)の関
係を示す図である。FIG. 1 is a diagram showing a relationship between a k value obtained in a compression test and (λ / λ 0 ).
【図2】 本発明に係る安全部材の配置位置を説明する
図である。FIG. 2 is a diagram illustrating an arrangement position of a safety member according to the present invention.
【図3】 本発明に係る安全部材の配置位置を説明する
図である。FIG. 3 is a diagram illustrating an arrangement position of a safety member according to the present invention.
【図4】 本発明の圧縮試験方法を説明するもので、長
柱座屈を起こす前の図(a)及び長柱座屈を起こしたと
きの図(b)である。FIG. 4 is a view for explaining a compression test method of the present invention, and is a diagram (a) before a long column buckling occurs and a diagram (b) when a long column buckling occurs.
1 安全部材 2 供試材 3 固定治具 4 ピン 5 可動治具 A、C クラッシャブルゾーン B セーフティーゾーン DESCRIPTION OF SYMBOLS 1 Safety member 2 Test material 3 Fixing jig 4 Pin 5 Movable jig A, C Crushable zone B Safety zone
───────────────────────────────────────────────────── フロントページの続き (72)発明者 平野 正和 山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内 (72)発明者 橋村 徹 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masakazu Hirano 14-1, Chofu Minatomachi, Shimonoseki City, Yamaguchi Prefecture Inside the Kofu Steel Works Chofu Works (72) Inventor Toru Hashimura 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture No. 5 Kobe Steel, Ltd. Kobe Research Institute
Claims (5)
車の前後方向とほぼ平行に配置され、その部材軸方向の
軸圧縮に対して所定の最大荷重を得た後、軸外方向へ長
柱座屈する自動車用安全部材であり、下記式(1)で定
義されるkが下記式(2)、(3)を満たすアルミニウ
ム合金押出材からなることを特徴とする自動車用安全部
材。 【数1】 1. A vehicle which is disposed substantially parallel to the front-rear direction of a vehicle on a side surface or a door of a passenger compartment of the vehicle. A safety member for a vehicle that buckles a column, wherein k defined by the following formula (1) is made of an extruded aluminum alloy satisfying the following formulas (2) and (3). (Equation 1)
2〜1.5%(質量%、以下同じ)、Mg;0.4〜
1.3%を含有するAl−Mg−Siアルミニウム合金
からなることを特徴とする請求項1に記載された自動車
用安全部材。2. The extruded aluminum alloy is composed of Si;
2 to 1.5% (mass%, the same applies hereinafter), Mg;
The automobile safety member according to claim 1, comprising an Al-Mg-Si aluminum alloy containing 1.3%.
5〜2%、Zn;4〜9%を含有するAl−Zn−Mg
系アルミニウム合金からなることを特徴とする請求項1
に記載された自動車用安全部材。3. The extruded aluminum alloy material is Mg;
Al-Zn-Mg containing 5 to 2%, Zn; 4 to 9%
2. The method according to claim 1, wherein the alloy is made of an aluminum alloy.
An automotive safety member according to claim 1.
するアルミニウム合金押出材について、その長さをL、
軸方向の圧縮に対して軸外方向に長柱座屈する際の最大
荷重の要求値をPcrとしたとき、下記式(1)で定義
されるkが下記式(2)、(3)を満たすように、前記
押出材の断面の幾何的形状を設計することを特徴とする
アルミニウム合金押出材の断面設計方法。 【数2】 4. An aluminum alloy extruded material having a predetermined proof stress σ 0.2 and a Young's modulus E has a length L,
Assuming that the required value of the maximum load when buckling the long column in the off-axis direction with respect to the compression in the axial direction is P cr , k defined by the following equation (1) is expressed by the following equations (2) and (3). A cross-sectional design method of an aluminum alloy extruded material, wherein a cross-sectional geometrical shape of the extruded material is designed so as to satisfy. (Equation 2)
の乗員室の側面又はドア内に自動車の前後方向とほぼ平
行に配置され、その部材軸方向の軸圧縮に対して所定の
最大荷重を得た後、軸外方向へ長柱座屈する自動車用安
全部材として用いられることを特徴とする請求項4に記
載されたアルミニウム合金押出材の断面設計方法。5. The aluminum alloy extruded material is disposed substantially parallel to the front-rear direction of the vehicle on the side surface or in the door of a passenger compartment of the vehicle, and has obtained a predetermined maximum load with respect to axial compression in the member axial direction. The method for designing a cross section of an aluminum alloy extruded material according to claim 4, wherein the method is used as a safety member for an automobile that subsequently buckles in a long column in an off-axis direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000266118A JP2002067693A (en) | 2000-09-01 | 2000-09-01 | Safety member for automobile and section design method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000266118A JP2002067693A (en) | 2000-09-01 | 2000-09-01 | Safety member for automobile and section design method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002067693A true JP2002067693A (en) | 2002-03-08 |
Family
ID=18753265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000266118A Pending JP2002067693A (en) | 2000-09-01 | 2000-09-01 | Safety member for automobile and section design method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002067693A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011144396A (en) * | 2010-01-12 | 2011-07-28 | Kobe Steel Ltd | High strength aluminum alloy extruded material having excellent stress corrosion cracking resistance |
JP2012214212A (en) * | 2011-03-31 | 2012-11-08 | Nippon Steel Corp | Structural member design method |
JP2013100604A (en) * | 2012-12-27 | 2013-05-23 | Kobe Steel Ltd | High strength aluminum alloy extruded material for bumper reinforcement having excellent stress corrosion cracking resistance |
US10697047B2 (en) | 2011-12-12 | 2020-06-30 | Kobe Steel, Ltd. | High strength aluminum alloy extruded material excellent in stress corrosion cracking resistance |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05247575A (en) * | 1992-03-04 | 1993-09-24 | Kobe Steel Ltd | Automobile shock absorbing member made of aluminum alloy |
-
2000
- 2000-09-01 JP JP2000266118A patent/JP2002067693A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05247575A (en) * | 1992-03-04 | 1993-09-24 | Kobe Steel Ltd | Automobile shock absorbing member made of aluminum alloy |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011144396A (en) * | 2010-01-12 | 2011-07-28 | Kobe Steel Ltd | High strength aluminum alloy extruded material having excellent stress corrosion cracking resistance |
JP2012214212A (en) * | 2011-03-31 | 2012-11-08 | Nippon Steel Corp | Structural member design method |
US10697047B2 (en) | 2011-12-12 | 2020-06-30 | Kobe Steel, Ltd. | High strength aluminum alloy extruded material excellent in stress corrosion cracking resistance |
JP2013100604A (en) * | 2012-12-27 | 2013-05-23 | Kobe Steel Ltd | High strength aluminum alloy extruded material for bumper reinforcement having excellent stress corrosion cracking resistance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lee et al. | Effect of triggering on the energy absorption capacity of axially compressed aluminum tubes | |
JP5366748B2 (en) | Aluminum alloy extruded material with excellent bending crushability and corrosion resistance | |
EP3529393B1 (en) | Thermomechanical ageing for 6xxx extrusions | |
JP5344855B2 (en) | Aluminum alloy extruded material with excellent crushing properties | |
KR101621592B1 (en) | Aluminum alloy plate for hood inner panel of automobile | |
EP0950553B1 (en) | Door beam of aluminium alloy | |
KR102613197B1 (en) | Automotive door beam made of aluminum alloy extrusion material | |
Abdulqadir | Design a new energy absorber longitudinal member and compare with S-shaped design to enhance the energy absorption capability | |
JP2002067693A (en) | Safety member for automobile and section design method | |
JP2908929B2 (en) | Aluminum alloy automobile shock absorber | |
US20020014287A1 (en) | A1-mg-si based aluminum alloy extrusion | |
JP2001140029A (en) | Energy absorbing member | |
JP5317861B2 (en) | Hood panel and vehicle front structure with excellent pedestrian protection | |
JP5288671B2 (en) | Al-Mg-Si-based aluminum alloy extruded material with excellent press workability | |
JP3029514B2 (en) | Aluminum alloy car door reinforcement | |
JP4183396B2 (en) | Aluminum alloy extruded material with excellent crushing properties | |
US20010037844A1 (en) | Alminum alloy energy-absorbing member | |
JP2001003128A (en) | Impact absorbing member excellent in crushing crack resistance | |
JP4334113B2 (en) | Method for selecting austenitic stainless steel to be used as a collision absorbing member | |
JP3068395B2 (en) | Aluminum alloy door impact beam material | |
JP4086404B2 (en) | Aluminum alloy door beam | |
JPH05311309A (en) | Impact beam made of aluminum alloy for automobile side door | |
JP3077976B1 (en) | Extruded Al-Mg-Si based aluminum alloy material with excellent impact energy absorption characteristics in the extrusion axis direction | |
JP3498948B2 (en) | Al-Mg-Si aluminum alloy extruded material with excellent pressure cracking resistance | |
JP2939243B2 (en) | Aluminum door beam material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070829 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100311 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100831 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101124 |