JP2002066935A - Electroforming sharp-edged grinding wheel and method of manufacturing the same - Google Patents
Electroforming sharp-edged grinding wheel and method of manufacturing the sameInfo
- Publication number
- JP2002066935A JP2002066935A JP2000264447A JP2000264447A JP2002066935A JP 2002066935 A JP2002066935 A JP 2002066935A JP 2000264447 A JP2000264447 A JP 2000264447A JP 2000264447 A JP2000264447 A JP 2000264447A JP 2002066935 A JP2002066935 A JP 2002066935A
- Authority
- JP
- Japan
- Prior art keywords
- electroformed thin
- thin blade
- cutting edge
- phase
- edge portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000227 grinding Methods 0.000 title claims abstract description 43
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000005323 electroforming Methods 0.000 title abstract 2
- 238000007747 plating Methods 0.000 claims abstract description 86
- 239000002184 metal Substances 0.000 claims abstract description 69
- 229910052751 metal Inorganic materials 0.000 claims abstract description 69
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 17
- 239000000956 alloy Substances 0.000 claims abstract description 17
- 239000006061 abrasive grain Substances 0.000 claims abstract description 7
- 238000005520 cutting process Methods 0.000 claims description 101
- 239000011230 binding agent Substances 0.000 claims description 9
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- 239000004575 stone Substances 0.000 claims 1
- 230000000452 restraining effect Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 23
- 238000010438 heat treatment Methods 0.000 description 12
- 229910000765 intermetallic Inorganic materials 0.000 description 11
- 230000002093 peripheral effect Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 239000000758 substrate Substances 0.000 description 7
- 230000002269 spontaneous effect Effects 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 229910020938 Sn-Ni Inorganic materials 0.000 description 4
- 229910008937 Sn—Ni Inorganic materials 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 4
- 230000002195 synergetic effect Effects 0.000 description 4
- 229910017709 Ni Co Inorganic materials 0.000 description 3
- 229910003267 Ni-Co Inorganic materials 0.000 description 3
- 229910003262 Ni‐Co Inorganic materials 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 230000000873 masking effect Effects 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 101100454433 Biomphalaria glabrata BG01 gene Proteins 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 102100027340 Slit homolog 2 protein Human genes 0.000 description 1
- 101710133576 Slit homolog 2 protein Proteins 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Polishing Bodies And Polishing Tools (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はシリコンやフェライ
ト等の被削材を切断加工したり溝入れ加工するため等に
用いられる電鋳薄刃砥石とその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroformed thin blade wheel used for cutting or grooving a work material such as silicon or ferrite, and a method of manufacturing the same.
【0002】[0002]
【従来の技術】シリコンやGaAs、フェライト等の被
削材を高精度に切断加工したり溝入れ加工するのに用い
られる薄刃ブレード等の工具として電鋳薄刃砥石があ
る。このような電鋳薄刃砥石の一例として図7に示すも
のがあり、この電鋳薄刃砥石1は、NiやCo、或いは
これらの合金等からなる金属めっき相中にダイヤモンド
やcBN等の超砥粒が分散配置されてなるリング形状と
されている。この電鋳薄刃砥石1は厚さ数十μm〜数百
μmの板状をなしている。そしてこの電鋳薄刃砥石1は
軸線回りに回転する砥石軸2の小径軸部3に嵌挿された
一対の取り付け用フランジ4,4間に挟まれた状態で、
ナット5によって砥石軸2に締め込まれて固定されてい
る。この砥石軸2を軸線まわりに回転することにより電
鋳薄刃砥石1の外周縁1aでシリコン等の被削材を研削
切断加工することになる。2. Description of the Related Art As a tool such as a thin blade used for cutting or grooving a work material such as silicon, GaAs or ferrite with high precision, there is an electroformed thin blade grindstone. FIG. 7 shows an example of such an electroformed thin blade grindstone. This electroformed thin blade grindstone 1 has superabrasive grains such as diamond and cBN in a metal plating phase made of Ni, Co, or an alloy thereof. Are arranged in a ring shape. The electroformed thin blade 1 has a plate shape with a thickness of several tens μm to several hundred μm. The electroformed thin blade whetstone 1 is sandwiched between a pair of mounting flanges 4 and 4 fitted into a small diameter shaft portion 3 of a whetstone shaft 2 rotating around an axis.
The nut 5 is fastened and fixed to the grinding wheel shaft 2. By rotating the grindstone shaft 2 around the axis, a work material such as silicon is ground and cut on the outer peripheral edge 1a of the electroformed thin blade grindstone 1.
【0003】ところでこのような電鋳薄刃砥石1は、N
iめっき等に微少量含まれるイオウの影響によってNi
やNi合金等による金属めっき相の硬度がHv=500
〜750にまで増加するためにその機械的強度と剛性が
高く、薄肉であっても切断加工等に用いることができ
た。しかしながら、このような電鋳薄刃砥石1にあって
は金属めっき相の硬度が高いために、切断加工時に超砥
粒の摩耗が進んでも金属めっき相の摩耗速度が遅く金属
めっき相から超砥粒が容易に脱落しないために自生発刃
作用を十分に発揮できず、切れ味が低下し切断加工精度
が低下するという欠点があった。そこで特公平6−92
073号公報等に開示されているように、電鋳薄刃砥石
1の刃先の外周面を放電加工等によって200℃以上の
温度で熱処理することでNiめっき等でなる金属めっき
相の切削に関与する刃先部の組織を再結晶化して金属め
っき相を軟質化するとともに脆化させる技術が提案され
ている。これによって被削材の切断加工時に金属めっき
相の摩耗除去が促進されて超砥粒の摩耗に応じてこれが
金属めっき相と共に脱落して新たな超砥粒が露出するこ
とで切れ味を高く維持できるとしている。[0003] By the way, such an electroformed thin blade 1 is made of N
Due to the effect of sulfur contained in a very small amount in i-plating etc., Ni
Hardness of metal plating phase of Hv = 500
Since the mechanical strength and rigidity were high because of the increase to 7750, it could be used for cutting or the like even if it was thin. However, in such an electroformed thin blade wheel 1, since the hardness of the metal plating phase is high, the wear rate of the metal plating phase is low even if the wear of the superabrasive grains progresses during the cutting process. However, since it does not fall off easily, the spontaneous cutting action cannot be sufficiently exhibited, and there is a disadvantage that the sharpness is reduced and the cutting accuracy is reduced. So, Tokuhei 6-92
As disclosed in Japanese Patent No. 073, etc., the outer peripheral surface of the cutting edge of the electroformed thin blade grindstone 1 is heat-treated at a temperature of 200 ° C. or more by electric discharge machining or the like to participate in cutting of a metal plating phase such as Ni plating. There has been proposed a technique for recrystallizing the structure of the cutting edge to soften and embrittle the metal plating phase. This promotes abrasion removal of the metal plating phase during cutting of the work material, and according to the wear of the superabrasive grains, falls off together with the metal plating phase to expose new superabrasive grains, thereby maintaining a high sharpness. And
【0004】[0004]
【発明が解決しようとする課題】しかしながら、刃先部
の金属めっき相を放電加工等で熱処理する際に加熱した
部分が熱歪みで変形し易く、円形の刃先部が全周に亘っ
て歪むことになって千鳥刃状になり、切断加工時の被削
材の切断代が大きくなる上に高精度な切断加工等ができ
なくなってしまうという問題がある。また研削切断加工
時に金属めっき相のNiやCoが摩擦熱により被削材と
凝着することがあり、NiやNi合金などは変形抵抗が
大きく凝着部をせん断する際に大きなせん断力が要求さ
れ、そのために研削抵抗が大きくなって砥石ダメージの
蓄積により砥石剛性の低下を来たし砥石寿命が短いとい
う問題もある。However, when the metal plating phase of the cutting edge is heat-treated by electric discharge machining or the like, the heated portion is easily deformed due to thermal distortion, and the circular cutting edge is distorted over the entire circumference. As a result, there is a problem that the cutting margin of the work material at the time of the cutting process becomes large, and that a high-precision cutting process or the like cannot be performed. Also, Ni and Co of the metal plating phase may adhere to the work material due to frictional heat during grinding and cutting, and Ni and Ni alloys have large deformation resistance and require a large shear force when shearing the adhered part. Therefore, there is a problem that the grinding resistance is increased, the grinding wheel rigidity is reduced due to accumulation of grinding wheel damage, and the grinding wheel life is short.
【0005】本発明は、このような課題に鑑みて、研削
加工時に被削材との凝着が生じても小さい研削抵抗で加
工を行えるようにした電鋳薄刃砥石を提供することを目
的とする。また本発明の他の目的は、刃先部の自生発刃
を促進して切れ味を向上できるようにした電鋳薄刃砥石
及びその製造方法を提供することにある。また本発明の
他の目的は刃先部の熱処理の際に熱変形を抑制できるよ
うにした電鋳薄刃砥石及びその製造方法を提供すること
にある。SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide an electroformed thin blade grinding wheel capable of performing processing with a small grinding resistance even when adhesion to a work material occurs during grinding. I do. It is another object of the present invention to provide an electroformed thin blade grindstone capable of enhancing the sharpness by promoting the self-propelled cutting of the cutting edge, and a method of manufacturing the same. Another object of the present invention is to provide an electroformed thin blade grindstone capable of suppressing thermal deformation at the time of heat treatment of a blade edge portion, and a method of manufacturing the same.
【0006】[0006]
【課題を解決するための手段】本発明に係る電鋳薄刃砥
石は、Ni,Coまたはこれらの合金からなる金属結合
相中に超砥粒を分散配置してなる電鋳薄刃砥石におい
て、金属結合相からの超砥粒の突き出し量を超えない厚
みのSnめっき層を刃先部の金属結合相表面に形成した
ことを特徴とする。電鋳薄刃砥石の刃先部で金属を含む
被削材を研削すると、研削時の摩擦熱により刃先部表面
が被削材と凝着を起こすが、金属結合相表面に形成した
Snめっき層は摺動性が良く潤滑性がよいために変形抵
抗が小さく機械的強度も小さいので、被削材と凝着した
Snめっき層表面で凝着部が容易にせん断されて凝着を
断ち切り易く金属結合相の摩耗を抑えて研削抵抗を低下
できる。しかも表面に軟質のSnめっき層を被覆するこ
とで摺動性の向上と相手攻撃性の低減による効果と超砥
粒の突出量を抑制する効果との相乗効果で被削材のチッ
ピングを抑えることができる。尚、刃先部は電鋳薄刃砥
石の研削に関与する領域を含み、例えば外周縁から径方
向内側の所定幅の領域をさす。According to the present invention, there is provided an electroformed thin blade grinding wheel in which superabrasive grains are dispersed and arranged in a metal binding phase made of Ni, Co or an alloy thereof. An Sn plating layer having a thickness not exceeding the amount of protruding superabrasive grains from the phase is formed on the surface of the metal bonding phase at the cutting edge. When a work material containing metal is ground at the cutting edge of an electroformed thin blade, the surface of the cutting edge adheres to the work material due to frictional heat generated during the grinding, but the Sn plating layer formed on the surface of the metal bonding phase is slid. Due to good mobility and good lubricity, it has low deformation resistance and low mechanical strength, so the adhered part is easily sheared on the surface of the Sn plating layer adhered to the work material, and the adhesion is easily cut off. Grinding resistance can be reduced by suppressing wear of the steel. Moreover, by coating the surface with a soft Sn plating layer, the chipping of the work material is suppressed by the synergistic effect of the effect of improving the slidability, reducing the aggressiveness of the opponent, and the effect of suppressing the projection amount of the superabrasive grains. Can be. The cutting edge portion includes a region involved in the grinding of the electroformed thin blade, for example, a region having a predetermined width radially inward from the outer peripheral edge.
【0007】また、刃先部を熱処理してSnめっき層を
溶融させて金属結合相と合金化させてもよい。合金化さ
せることによりSnとNi等との金属間化合物が再結晶
組織として製作され、刃先部が元の金属結合相より脆く
なるために超砥粒の自生発刃を促進でき被削材との凝着
を断ち切りやすい。またSn−Ni金属間化合物を形成
して化学的に安定化するため凝着自体を起こしにくくな
る。また刃先部を熱処理することによって得られる再結
晶組織の幅が2mm以下であってもよい。レーザ光等を
用いて熱処理することで刃先部の少なくとも研削に関与
する領域を再結晶組織とすることができ、その他の領域
では剛性を高く維持できる。尚、レーザ光を用いれば熱
処理範囲を精密に設定でき、電鋳薄刃砥石の全周に亘っ
て研削に関与する領域のみを高精度に再結晶化できる。[0007] Further, the edge portion may be heat-treated to melt the Sn plating layer and alloy with the metal bonding phase. By alloying, an intermetallic compound such as Sn and Ni is produced as a recrystallized structure, and since the cutting edge becomes brittler than the original metal bonding phase, spontaneous cutting of superabrasive grains can be promoted and the cutting edge can be reduced. Easy to break adhesions. In addition, since the Sn—Ni intermetallic compound is formed and chemically stabilized, adhesion itself does not easily occur. The width of the recrystallized structure obtained by heat-treating the cutting edge may be 2 mm or less. By performing heat treatment using laser light or the like, at least a region of the cutting edge portion involved in grinding can have a recrystallized structure, and rigidity can be maintained high in other regions. When a laser beam is used, the heat treatment range can be set precisely, and only the region involved in grinding can be recrystallized with high precision over the entire circumference of the electroformed thin blade grindstone.
【0008】本発明による電鋳薄刃砥石は、Ni,Co
またはこれらの合金からなる金属結合相中に超砥粒を分
散配置してなる電鋳薄刃砥石において、金属結合相から
の超砥粒の突き出し量を超えない厚みのSnめっき層を
刃先部の金属結合相表面に形成すると共に刃先部の延在
方向に沿って所定間隔でスリットを形成した後、刃先部
を熱処理して、Snめっき層を溶融させて金属結合相と
合金化させたことを特徴とする。刃先部がスリットで分
断されているために熱処理時における刃先部の熱変形が
小さく刃先部全体に行き渡らずスリットで分断された領
域でのみ熱歪みが生じるので、刃先部の精度が高くなっ
て切れ味のよい研削が行える。The electroformed thin blade grinder according to the present invention is made of Ni, Co
Alternatively, in an electroformed thin blade grindstone in which superabrasive grains are dispersed and arranged in a metal binder phase made of these alloys, a Sn plating layer having a thickness not exceeding the amount of protrusion of the superabrasive grains from the metal binder phase is formed on the metal at the cutting edge. After forming slits at predetermined intervals along the extending direction of the cutting edge portion on the binding phase surface, the cutting edge portion is heat-treated to melt the Sn plating layer and alloy it with the metal binding phase. And Since the cutting edge is divided by slits, thermal deformation of the cutting edge during heat treatment is small and thermal distortion occurs only in the area divided by the slit without reaching the entire cutting edge, so the accuracy of the cutting edge is improved and sharpness Good grinding can be performed.
【0009】本発明による電鋳薄刃砥石の製造方法は、
Ni,Coまたはこれらの合金からなる金属結合相中に
超砥粒を分散配置すると共に金属結合相の表面にSnめ
っき層を形成してなる電鋳薄刃砥石を、所定速度で回転
させつつ刃先部にレーザ光を照射して所定幅に亘って再
結晶化させてなることを特徴とする。刃先部にレーザ光
を照射させつつ電鋳薄刃砥石を回転させることで、レー
ザ光照射部が順次相対移動して短時間の加熱後に順次冷
却され、刃先部の熱歪みを抑えてSnめっき層を溶融さ
せて金属結合相を合金化即ち再結晶化させ、しかも電鋳
薄刃砥石の回転速度によってレーザ光による入熱量を制
御できる。またレーザ光の照射に先だって刃先部には所
定間隔でスリットを形成してもよい。電鋳薄刃砥石を回
転させながらレーザー照射を行うので、加熱時に刃先部
の熱がスリットによって効率良く放熱され、しかも熱歪
みが生じてもスリットで仕切られた刃先片単位で歪みが
生じるために外周方向に連続する大きな歪みは発生せ
ず、刃先部のスリットで仕切られた領域の熱変形を抑え
て精度の良い合金化ができる。The method for producing an electroformed thin blade according to the present invention comprises:
The super-abrasive grains are dispersed and arranged in a metal bonding phase made of Ni, Co or an alloy thereof, and an electroformed thin blade having an Sn plating layer formed on the surface of the metal bonding phase is rotated at a predetermined speed while the cutting edge portion is rotated. Is irradiated with a laser beam and recrystallized over a predetermined width. By rotating the electroformed thin blade whetstone while irradiating the cutting edge with the laser beam, the laser beam irradiating portion is sequentially moved relative to each other, and is cooled sequentially after heating for a short time, thereby suppressing the thermal distortion of the cutting edge portion and forming the Sn plating layer. The metal bonding phase is alloyed, that is, recrystallized by melting, and the amount of heat input by the laser beam can be controlled by the rotation speed of the electroformed thin blade. Prior to laser beam irradiation, slits may be formed at predetermined intervals in the blade edge. Since the laser irradiation is performed while rotating the electroformed thin blade, the heat of the cutting edge is efficiently radiated by the slit during heating, and even if thermal distortion occurs, the distortion occurs in the blade piece unit divided by the slit, so the outer periphery A large distortion that continues in the direction does not occur, and thermal deformation in a region partitioned by the slit at the cutting edge portion is suppressed, and alloying with high accuracy can be performed.
【0010】[0010]
【発明の実施の形態】以下、本発明による電鋳薄刃砥石
の実施形態について添付図面を参照しながら説明する。
図1は第一の実施の形態による電鋳薄刃砥石の刃先部の
拡大断面図、図2は電鋳薄刃砥石の平面図、図3はSn
めっき層を形成する前の電鋳薄刃砥石の刃先部の拡大断
面図である。第一の実施の形態による電鋳薄刃砥石10
は図1及び図2に示すように略リング型薄板状を呈して
おり、その厚みは例えば数十μm〜数百μmの範囲とさ
れている。この電鋳薄刃砥石10はダイヤモンドやcB
N等の超砥粒11が金属めっき相(金属結合相)12中
に分散配置されて構成され、金属めっき相12は例えば
Ni−Co合金等、Ni、Coまたはこれらの合金等か
らなっていて、しかもNi基合金中にイオウが超砥粒を
含む全重量に対して0.01〜0.3重量%含まれてい
る。そして図1及び図2に示す電鋳薄刃砥石10の外周
側に位置するリング状の刃先部16において、金属めっ
き相12の表面12aの一部は例えば厚さt=10〜1
5μm程度のSnめっき層14で被覆されている。この
Snめっき層14は例えば刃先部16にのみ形成されて
いる。尚、Snめっき層14は少なくとも刃先部16を
被覆していればよいが、刃先部16だけでなく電鋳薄刃
砥石10の金属めっき相全体をSnめっき層14でめっ
き形成してもよい。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an electroformed thin blade grindstone according to the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is an enlarged cross-sectional view of the cutting edge of an electroformed thin blade grindstone according to the first embodiment, FIG. 2 is a plan view of the electroformed thin blade grindstone, and FIG.
FIG. 3 is an enlarged cross-sectional view of a cutting edge portion of an electroformed thin blade whetstone before a plating layer is formed. Electroformed thin blade whetstone 10 according to first embodiment
Has a substantially ring-shaped thin plate shape as shown in FIGS. 1 and 2, and has a thickness in the range of, for example, several tens μm to several hundreds μm. This electroformed thin blade grindstone 10 is made of diamond or cB.
The superabrasive grains 11 such as N are dispersed and arranged in a metal plating phase (metal bonding phase) 12, and the metal plating phase 12 is made of, for example, a Ni—Co alloy, Ni, Co, or an alloy thereof. Moreover, sulfur is contained in the Ni-based alloy in an amount of 0.01 to 0.3% by weight based on the total weight including the superabrasive grains. In the ring-shaped cutting edge portion 16 located on the outer peripheral side of the electroformed thin blade grindstone 10 shown in FIGS. 1 and 2, a part of the surface 12 a of the metal plating phase 12 has a thickness t = 10 to 1 for example.
It is covered with a Sn plating layer 14 of about 5 μm. The Sn plating layer 14 is formed, for example, only on the cutting edge 16. Note that the Sn plating layer 14 only needs to cover at least the cutting edge 16, but the entire metal plating phase of the electroformed thin blade grindstone 10 as well as the cutting edge 16 may be formed by plating with the Sn plating layer 14.
【0011】本実施の形態による電鋳薄刃砥石10は上
述の構成を有しており、次に電鋳薄刃砥石10の製造方
法について説明する。先ずめっきされる金属に対して剥
離性の処理がなされたステンレス製の基板に砥石の原型
形状をなす部分を残してマスキングを施し、脱脂等の清
浄化処理を施す。次にこの基板をめっき浴槽内のめっき
液中に浸漬する。めっき液はダイヤモンド等の超砥粒を
分散させたNi基若しくはCo基とイオウを含む有機光
沢剤を含有する電解めっき液とし、このめっき液中に基
板に対向して陽極板を配設し、基板を陰極に接続する。
この状態で陰極と陽極に通電すると、基板上にNi合
金、Co合金或いはNi−Co合金めっき相が析出し、
このめっき相中に超砥粒が均一に分散された砥粒層が形
成される。砥粒層の厚みが数十μm〜数百μmとなった
状態でめっきを終了する。次いで、この砥粒層を形成し
た基板をめっき液から取り出してブラッシング等を含む
水洗処理を施した後、基板から砥粒層を剥離する。そし
て得られた砥粒層をパンチング加工等により円形の砥石
形状に成型して更に真円に加工して電鋳薄刃砥石10′
を得る。The electroformed thin blade grindstone 10 according to the present embodiment has the above-described configuration. Next, a method of manufacturing the electroformed thin blade grindstone 10 will be described. First, masking is performed on a stainless steel substrate on which the metal to be plated has been subjected to a releasability process, leaving a portion of the original shape of the grindstone, and a cleaning process such as degreasing is performed. Next, the substrate is immersed in a plating solution in a plating bath. The plating solution is an electrolytic plating solution containing an organic brightener containing sulfur and Ni-base or Co-base in which superabrasive grains such as diamond are dispersed, and an anode plate is disposed in the plating bath so as to face the substrate. Connect the substrate to the cathode.
When electricity is supplied to the cathode and anode in this state, a Ni alloy, Co alloy or Ni-Co alloy plating phase is deposited on the substrate,
An abrasive layer in which superabrasives are uniformly dispersed is formed in the plating phase. The plating is completed when the thickness of the abrasive layer is several tens μm to several hundred μm. Next, the substrate on which the abrasive layer has been formed is taken out of the plating solution and subjected to a washing process including brushing and the like, and then the abrasive layer is peeled from the substrate. Then, the obtained abrasive layer is formed into a circular whetstone shape by punching or the like, further processed into a perfect circle, and electroformed thin blade whetstone 10 ′
Get.
【0012】そして電鋳薄刃砥石10′の刃先部16を
残してマスキングを施して、必要に応じて金属めっき相
12の表面をエッチング等により除去し、図3に示すよ
うに超砥粒11を相対的に突出させ超砥粒11の突き出
し量Tを設定する。次にマスキングを施した状態で電鋳
薄刃砥石10をめっき浴槽内のSnイオンを含むめっき
液に浸漬して、上述の場合と同様に陰極に通電して電気
めっきを行い、Snを金属めっき相12上に析出させて
刃先部16全体にSnめっき層14を形成する。この場
合、Snめっきは超砥粒11には析出せず、金属めっき
相表面12aにのみ析出することになる。このようにし
て図1に示す電鋳薄刃砥石10が得られる。Then, masking is performed while leaving the cutting edge portion 16 of the electroformed thin blade grindstone 10 ', and if necessary, the surface of the metal plating phase 12 is removed by etching or the like, and as shown in FIG. The protruding amount T of the superabrasive grains 11 is set to be relatively protruded. Next, with the masking applied, the electroformed thin blade whetstone 10 is immersed in a plating solution containing Sn ions in a plating bath, and the cathode is energized in the same manner as described above to perform electroplating. The Sn plating layer 14 is formed on the entire cutting edge portion 16 by depositing on the edge 12. In this case, the Sn plating does not precipitate on the superabrasive grains 11, but only on the metal plating phase surface 12a. Thus, the electroformed thin blade grindstone 10 shown in FIG. 1 is obtained.
【0013】本実施の形態による電鋳薄刃砥石10を用
いてシリコン等の被削材の研削切断を行う場合、電鋳薄
刃砥石10を砥石軸2に装着して回転させつつ刃先部1
6で被削材を研削する。すると研削時の摩擦熱により刃
先部16の表面が被削材と凝着を起こす。ここで刃先部
16の金属めっき相12の表面12aにはSnめっき層
14が被覆されており、このSnめっき層14は摺動性
が良く潤滑性がよいために変形抵抗が小さく、また機械
的強度も小さいので、被削材と凝着したSnめっき層1
4表面で凝着部が容易にせん断されて凝着を断ち切りや
すい。そのため、Snめっき層14の表面で凝着が容易
にせん断されるためにせん断力を小さく抑えて切断抵抗
や研削抵抗を低下でき、電鋳薄刃砥石の切れ味を向上で
きる。また研削抵抗の低減が可能となるため、砥石の負
荷が小さくなり砥石ダメージの蓄積を抑制できるので砥
石の寿命向上が図れる。しかも表面に軟質のSnめっき
層14を被覆することで摺動性の向上と相手攻撃性の低
減による効果と超砥粒11の突出量を抑制する効果との
相乗効果で被削材のチッピングを抑えることができる。When performing grinding and cutting of a workpiece such as silicon using the electroformed thin blade grindstone 10 according to the present embodiment, the electroformed thin blade grindstone 10 is mounted on a grindstone shaft 2 and rotated while the cutting edge 1 is rotated.
In step 6, the work material is ground. Then, the surface of the cutting edge 16 adheres to the work material due to frictional heat during grinding. Here, the Sn plating layer 14 is coated on the surface 12a of the metal plating phase 12 of the cutting edge portion 16, and since the Sn plating layer 14 has good slidability and good lubricity, the deformation resistance is small, and the mechanical resistance is high. Since the strength is small, the Sn plating layer 1 adhered to the work material
(4) The adhered portion is easily sheared on the surface to easily break the adhered portion. Therefore, since the adhesion is easily sheared on the surface of the Sn plating layer 14, the cutting force and the grinding resistance can be reduced by reducing the shearing force, and the sharpness of the electroformed thin blade grindstone can be improved. Further, since the grinding resistance can be reduced, the load on the grindstone can be reduced, and the accumulation of grindstone damage can be suppressed, so that the life of the grindstone can be improved. Moreover, by coating the soft Sn plating layer 14 on the surface, chipping of the work material is achieved by a synergistic effect of the effect of improving the slidability and reducing the aggressiveness of the opponent and the effect of suppressing the protrusion amount of the superabrasive grains 11. Can be suppressed.
【0014】上述のように本実施の形態によれば、研削
切断時の被削材と電鋳薄刃砥石10との凝着時のせん断
力が小さく研削切断抵抗を低減でき切れ味を向上でき
る。また研削抵抗の低減によって砥石の負荷が小さくな
り砥石ダメージの蓄積を抑制できるので砥石の寿命向上
が図れる。しかも軟質のSnめっき層14を被覆するこ
とで摺動性の向上と相手攻撃性の低減による効果と超砥
粒11の突出量を抑制する効果との相乗効果で被削材の
チッピングを抑えることができる。As described above, according to the present embodiment, the shearing force at the time of adhesion between the workpiece and the electroformed thin blade whetstone 10 at the time of grinding and cutting is small, so that the cutting resistance can be reduced and the sharpness can be improved. In addition, the reduction in grinding resistance reduces the load on the grindstone and suppresses the accumulation of grindstone damage, so that the life of the grindstone can be improved. In addition, by covering the soft Sn plating layer 14, the chipping of the work material is suppressed by the synergistic effect of the effect of improving the slidability, reducing the aggressiveness of the opponent, and the effect of suppressing the protrusion amount of the superabrasive grains 11. Can be.
【0015】次に本発明の第二の実施の形態について図
4から図6により説明するが、上述の実施の形態と同一
または同様な部分、部品には同一の符号を用いて説明す
る。第二の実施の形態による電鋳薄刃砥石20は、図4
及び図5に示すように第一の実施の形態による電鋳薄刃
砥石10と同様の構成を有しており、リング型薄板状で
超砥粒11がNi−Co合金等の金属めっき相12中に
分散配置され、刃先部16では金属めっき相12の表面
12aにSnめっき層14が被覆形成された構成を有し
ている。しかも電鋳薄刃砥石20の刃先部16をレーザ
光で200℃〜500℃の範囲、例えば250℃で熱処
理することで、Snめっき層14が溶融して金属めっき
相12のNiと合金化して再結晶化され、金属めっき相
12がSnめっき層14と共にSn−Ni金属間化合物
からなる再結晶組織22を構成する。Next, a second embodiment of the present invention will be described with reference to FIGS. 4 to 6, and the same or similar parts and components as those in the above-described embodiment will be described using the same reference numerals. The electroformed thin blade grindstone 20 according to the second embodiment is similar to that shown in FIG.
As shown in FIG. 5 and having the same configuration as the electroformed thin blade grindstone 10 according to the first embodiment, the superabrasive grains 11 are ring-shaped thin plates and the superabrasive grains 11 are in a metal plating phase 12 such as a Ni—Co alloy. The blade edge portion 16 has a configuration in which the Sn plating layer 14 is formed on the surface 12 a of the metal plating phase 12. In addition, when the cutting edge 16 of the electroformed thin blade grindstone 20 is heat-treated at a temperature of 200 ° C. to 500 ° C., for example, 250 ° C., the Sn plating layer 14 is melted, alloyed with Ni of the metal plating phase 12, and The crystallized phase 12 together with the Sn plating layer 14 constitutes a recrystallized structure 22 made of a Sn-Ni intermetallic compound.
【0016】その上、図4に示すように刃先部16に外
周縁16aから径方向内側に向けて所定間隔で複数のス
リット24…が形成されている。スリット24の本数は
電鋳薄刃砥石20の外径によるが、電鋳薄刃砥石20の
外径を例えば93.2mmとした場合、スリット24は
例えば8条以上、好ましくは16条以上、周方向に等間
隔に形成されている。スリット24の数が増大すれば熱
処理時の熱変形は抑制できるが刃先部16の剛性が低下
する欠点があり、逆にスリット24の数が少ないと刃先
部16の熱変形が長く大きくなって精度低下を来すこと
になる。刃先部16は外周縁16aから径方向内側に例
えば2mm以内の範囲に亘って熱処理して金属間化合物
の再結晶組織22が形成され、この領域が研削切断に関
与する研削領域を構成する。刃先部16は周方向に隣り
合うスリット24、24で仕切られた各領域が刃先片2
6を構成する尚、スリット24の長さは再結晶組織22
の幅以上であることが好ましいが、再結晶組織22以下
であってもよい。この場合でもスリット24の内側縁部
が再結晶組織22の基端側縁部近くであれば熱処理によ
る熱歪みの悪影響は少ない。In addition, as shown in FIG. 4, a plurality of slits 24 are formed in the cutting edge portion 16 at predetermined intervals from the outer peripheral edge 16a toward the inside in the radial direction. The number of slits 24 depends on the outer diameter of the electroformed thin blade grindstone 20, but when the outer diameter of the electroformed thin blade grindstone 20 is, for example, 93.2 mm, the number of slits 24 is, for example, 8 or more, preferably 16 or more, in the circumferential direction. They are formed at equal intervals. If the number of slits 24 is increased, thermal deformation during heat treatment can be suppressed, but there is a disadvantage that the rigidity of the cutting edge 16 is reduced. Conversely, if the number of slits 24 is small, the thermal deformation of the cutting edge 16 becomes longer and larger, resulting in higher accuracy. Will result in a decline. The cutting edge 16 is heat-treated radially inward from the outer peripheral edge 16a, for example, within a range of 2 mm or less to form a recrystallized structure 22 of an intermetallic compound, and this region constitutes a grinding region involved in grinding and cutting. The cutting edge portion 16 is formed by dividing each area partitioned by circumferentially adjacent slits 24, 24 into cutting edge pieces 2.
The length of the slit 24 is the same as that of the recrystallized structure 22.
Is preferred, but may be less than or equal to the recrystallized structure 22. Even in this case, if the inner edge of the slit 24 is near the base edge of the recrystallized structure 22, the adverse effect of thermal distortion due to the heat treatment is small.
【0017】次に第二の実施の形態による電鋳薄刃砥石
20の製造方法について説明する。超砥粒11を金属め
っき相12中に分散配置させ、少なくとも刃先部16の
金属めっき相12の表面12aにSnめっき層14を形
成するまでは第一の実施の形態による電鋳薄刃砥石10
と同様である。そして得られた電鋳薄刃砥石20につい
て、切断用レーザ装置等を用いて刃先部16の外周縁1
6aから径方向内側に所定間隔でスリット24…を形成
する。次に、電鋳薄刃砥石20を図6に示すようにモー
タに連結された回転台27に設けた一対の例えば円形カ
ップ型をなすフランジ28,28で挟持して、刃先部1
6を含む外周側だけを全周にリング状に突出させる。そ
の際に電鋳薄刃砥石20はフランジ28、28と同心円
をなすように固定する。この状態で電鋳薄刃砥石20の
刃先部16の外周縁16a近傍にレーザ光を照射できる
ようにレーザ装置30を配設しておく。レーザ装置30
は例えばろう付け用、はんだ付け用等の低温加熱のもの
を用いるが他の適宜種類のレーザ装置を採用できる。こ
の状態で、回転台27の中心軸回りに電鋳薄刃砥石20
を回転させながらレーザ装置30からレーザ光を照射し
て、回転する刃先部16の外周縁16aから径方向内側
に2mm以下の範囲を順次加熱する。レーザ照射による
加熱温度は200℃以上500℃までの範囲、例えば2
50℃程度とする。Next, a method of manufacturing the electroformed thin blade grindstone 20 according to the second embodiment will be described. The super-abrasive grains 11 are dispersed and arranged in the metal plating phase 12, and at least until the Sn plating layer 14 is formed on the surface 12 a of the metal plating phase 12 of the cutting edge 16, the electroformed thin blade 10 according to the first embodiment.
Is the same as Then, with respect to the obtained electroformed thin blade grindstone 20, the outer peripheral edge 1 of the blade edge portion 16 is cut using a laser device for cutting or the like.
The slits 24 are formed at predetermined intervals radially inward from 6a. Next, as shown in FIG. 6, the electroformed thin blade grindstone 20 is sandwiched between a pair of flanges 28, 28 having a circular cup shape, for example, provided on a rotary table 27 connected to a motor.
Only the outer peripheral side including 6 is made to protrude in a ring shape all around. At that time, the electroformed thin blade grindstone 20 is fixed so as to form a concentric circle with the flanges 28, 28. In this state, the laser device 30 is provided so that the vicinity of the outer peripheral edge 16a of the cutting edge 16 of the electroformed thin blade grindstone 20 can be irradiated with laser light. Laser device 30
For example, a low-temperature heating device for brazing, soldering, or the like is used, but another appropriate type of laser device can be used. In this state, the electroformed thin blade grindstone 20 is rotated around the center axis of the turntable 27.
The laser beam is irradiated from the laser device 30 while rotating the cutting edge portion 16 to sequentially heat a range of 2 mm or less radially inward from the outer peripheral edge 16a of the rotating blade edge portion 16. The heating temperature by laser irradiation is in a range from 200 ° C. to 500 ° C., for example,
It is about 50 ° C.
【0018】これにより刃先部16をスポット的に熱処
理できるから、その加熱領域でSnめっき層14が溶融
して内側の金属めっき相12と合金化して金属間化合物
となり再結晶組織22となる。しかも回転する電鋳薄刃
砥石20をスポット的に連続して加熱するから短時間加
熱された刃先部16はレーザ光照射ポイントを直ぐに外
れて冷却されるために温度の低下が早く周辺領域まで再
結晶化されることを防止できる。同時に刃先部16には
所定間隔でスリット24…が形成されているから、レー
ザ照射時に各刃先片26の回転方向前後のスリット2
4、24でも放熱される。これらの要因により刃先部1
6は加熱後に効果的に冷却されることになり、刃先部1
6に熱変形が生じるのを抑制できる。しかもスリット2
4のために周方向に大きな熱歪みが生じることはなく、
刃先片26単位で小さな熱歪みが生じ得るにすぎない。
従って刃先部16を例えば幅2mm以内の所定範囲に亘
って全周に高精度に熱処理して金属間化合物の再結晶組
織22を製作でき、熱歪みで波打ったり千鳥状になるの
を確実に防止できる。As a result, the edge portion 16 can be heat-treated in a spot manner, so that the Sn plating layer 14 is melted in the heated region and alloyed with the inner metal plating phase 12 to form an intermetallic compound to form a recrystallized structure 22. Moreover, since the rotating electroformed thin blade grindstone 20 is continuously heated in a spot-like manner, the blade portion 16 heated for a short time is quickly deviated from the laser beam irradiation point and is cooled. Can be prevented. At the same time, the slits 24 are formed at predetermined intervals in the blade edge portion 16.
Heat is also dissipated in 4, 24. Due to these factors, the cutting edge 1
6 is effectively cooled after heating, and the cutting edge 1
6 can be prevented from being thermally deformed. And slit 2
4 does not cause a large thermal distortion in the circumferential direction,
Only small thermal distortions can occur at each cutting edge 26.
Therefore, the reed structure 22 of the intermetallic compound can be manufactured by heat-treating the cutting edge portion 16 with high precision over a predetermined range of, for example, a width of 2 mm or less, and it is ensured that the recrystallization structure 22 becomes wavy or staggered due to thermal strain. Can be prevented.
【0019】このようにして得られた電鋳薄刃砥石20
を用いてシリコン等の被削材を切断加工する場合、電鋳
薄刃砥石20を砥石軸2に装着した状態で所定回転速度
で回転させつつ被削材に切り込み刃先部16で切断加工
する。この時、刃先部16の研削領域はSn−Niの金
属間化合物からなる再結晶組織22になっているから元
の金属めっき相12の組織より軟質化して脆化されてお
り、超砥粒11が研削で摩耗するより早く再結晶組織2
2が摩耗して除去され、新たな超砥粒11が露出するた
めに良好な切れ味を継続的に確保できる。そのため研削
領域について自生発刃作用を促進できて良好な切れ味を
維持できて優れた研削性能を発揮できる。しかも被削材
との凝着を断ち切り易く、研削に関与しない領域では金
属めっき相12が高い剛性を維持するので電鋳薄刃砥石
20の保持強度が高い。The thus obtained electroformed thin blade whetstone 20
When cutting a work material such as silicon by using a cutting tool, the electroformed thin blade grindstone 20 is mounted on the grindstone shaft 2 while being rotated at a predetermined rotation speed, and the cut material is cut by the cutting edge portion 16. At this time, since the grinding region of the cutting edge portion 16 has a recrystallized structure 22 made of an Sn-Ni intermetallic compound, the structure of the original metal plating phase 12 is softened and embrittled. Recrystallized structure 2 faster than wear by grinding
2 is abraded and removed, and new superabrasive grains 11 are exposed, so that good sharpness can be continuously maintained. Therefore, the spontaneous cutting action can be promoted in the grinding area, and good sharpness can be maintained, so that excellent grinding performance can be exhibited. Moreover, adhesion to the work material is easily cut off, and the metal plating phase 12 maintains a high rigidity in a region not involved in grinding, so that the holding strength of the electroformed thin blade grindstone 20 is high.
【0020】上述のように本実施の形態によれば、刃先
部16の自生発刃作用を促進して良好な切れ味を維持で
き優れた研削性能を発揮できる。また電鋳薄刃砥石20
の製作に際して、金属間化合物からなる再結晶組織22
を形成するための刃先部16の加熱時にスリット24…
を設け且つ電鋳薄刃砥石20を回転させたから、刃先部
16の熱歪みを刃先片26単位で小さく抑えて歪みの少
ない高精度な再結晶組織22を製作でき、周辺領域の強
度低下をもたらすおそれがない。As described above, according to the present embodiment, the spontaneous cutting action of the cutting edge portion 16 is promoted to maintain good sharpness, and excellent grinding performance can be exhibited. Electroformed thin blade whetstone 20
At the time of manufacturing, a recrystallized structure 22 made of an intermetallic compound
When the cutting edge 16 is heated to form
Is provided and the electroformed thin blade grindstone 20 is rotated, so that the thermal distortion of the blade edge portion 16 can be suppressed to a small level for each blade edge piece 26 to produce a highly accurate recrystallized structure 22 with little distortion, which may cause a decrease in the strength of the peripheral region. There is no.
【0021】[0021]
【発明の効果】以上説明したように、本発明に係る電鋳
薄刃砥石は、金属結合相からの超砥粒の突き出し量を超
えない厚みのSnめっき層を刃先部の金属結合相表面に
形成したから、研削時に刃先部表面が被削材と凝着を起
こしても、金属結合相表面に形成したSnめっき層は摺
動性が良く潤滑性がよいために変形抵抗が小さく機械的
強度も小さいので、凝着したSnめっき層表面で凝着部
が容易にせん断されて金属結合相の摩耗を抑えて研削抵
抗を低下でき切れ味を向上できる。しかも表面に軟質の
Snめっき層を被覆することで摺動性の向上と相手攻撃
性の低減による効果と超砥粒の突出量を抑制する効果と
の相乗効果で被削材のチッピングを抑えることができ
る。また研削抵抗の低減によって砥石の負荷が小さくな
り砥石ダメージの蓄積を抑制できるので砥石の寿命向上
が図れる。As described above, in the electroformed thin blade grinding wheel according to the present invention, an Sn plating layer having a thickness not exceeding the amount of protrusion of superabrasive grains from the metal bonding phase is formed on the surface of the metal bonding phase at the cutting edge. Therefore, even if the surface of the cutting edge adheres to the work material during grinding, the Sn plating layer formed on the surface of the metal bonding phase has good sliding properties and good lubricity, so it has low deformation resistance and low mechanical strength. Since it is small, the adhered portion is easily sheared on the surface of the adhered Sn plating layer, the abrasion of the metal binding phase is suppressed, the grinding resistance can be reduced, and the sharpness can be improved. Moreover, by coating the surface with a soft Sn plating layer, the chipping of the work material is suppressed by the synergistic effect of the effect of improving the slidability, reducing the aggressiveness of the opponent, and the effect of suppressing the projection amount of the superabrasive grains. Can be. In addition, the reduction in grinding resistance reduces the load on the grindstone and suppresses the accumulation of grindstone damage, so that the life of the grindstone can be improved.
【0022】また、刃先部を熱処理してSnめっき層を
溶融させて金属結合相と合金化させたから、SnとNi
等の金属結合相を構成する金属とで金属間化合物が形成
され、刃先部が元の金属より脆くなるために超砥粒の自
生発刃を促進できると共に被削材との凝着を断ち切りや
すい。またSn−Ni金属間化合物等を形成して化学的
に安定化するため凝着自体を起こしにくくなる。また刃
先部を熱処理することによって得られる再結晶組織の幅
が2mm以下であるから、切断などの研削に関与する領
域のみを再結晶組織とすることができて切れ味を向上で
きる上にその他の領域は合成を高く維持できる。Also, since the edge portion is heat-treated to melt the Sn plating layer and alloy with the metal bonding phase, Sn and Ni
Intermetallic compound is formed with the metal constituting the metal binding phase, etc., and the cutting edge is more brittle than the original metal, which can promote the spontaneous cutting of superabrasive grains and easily cut off adhesion with the work material . In addition, since Sn-Ni intermetallic compound is formed and chemically stabilized, adhesion itself is less likely to occur. In addition, since the width of the recrystallized structure obtained by heat-treating the cutting edge is 2 mm or less, only the region involved in grinding such as cutting can be made the recrystallized structure, so that the sharpness can be improved and other regions can be improved. Can keep the synthesis high.
【0023】本発明による電鋳薄刃砥石は、金属結合相
からの超砥粒の突き出し量を超えない厚みのSnめっき
層を刃先部の金属めっき相表面に形成すると共に刃先部
の延在方向に沿って所定間隔でスリットを形成した後、
刃先部を熱処理して、Snめっき層を溶融させて金属結
合相と合金化させたから、熱処理時における刃先部の熱
変形が小さく、刃先部の精度が高くなって切れ味のよい
研削が行える。In the electroformed thin blade grinding wheel according to the present invention, an Sn plating layer having a thickness not exceeding the amount of the superabrasive grains protruding from the metal bonding phase is formed on the surface of the metal plating phase at the edge of the blade and in the direction in which the edge extends. After forming slits at predetermined intervals along,
Since the cutting edge is heat-treated and the Sn plating layer is melted and alloyed with the metal bonding phase, the thermal deformation of the cutting edge during the heat treatment is small, the accuracy of the cutting edge is increased, and sharp cutting can be performed.
【0024】本発明による電鋳薄刃砥石の製造方法は、
金属結合相中に超砥粒を分散配置し、金属結合相の表面
にSnめっき層を形成してなる電鋳薄刃砥石を、所定速
度で回転させつつ刃先部にレーザ光を照射して所定幅に
亘って再結晶化させたから、刃先部にレーザ光を照射さ
せつつ電鋳薄刃砥石を回転させることで、刃先部の熱歪
みを抑えて再結晶化でき、電鋳薄刃砥石の回転速度によ
ってレーザ光による入熱量を制御できる。しかもSnめ
っき層が溶融して金属結合相を構成する金属と金属間化
合物を形成して再結晶化できるから研削時の自生発刃を
促進できる。またレーザ光の照射に先だって刃先部には
所定間隔でスリットを形成したから、レーザ光照射時の
放熱がスリットで一層進み、刃先部の熱歪みを一層抑制
できる。The method for producing an electroformed thin blade according to the present invention comprises:
The super-abrasive grains are dispersed and arranged in the metal bonding phase, and the blade is irradiated with laser light at a predetermined width while rotating the electroformed thin blade grinding wheel having an Sn plating layer formed on the surface of the metal bonding phase at a predetermined speed. By rotating the electroformed thin blade whetstone while irradiating the cutting edge with laser light, recrystallization can be performed while suppressing the thermal distortion of the cutting edge, and the laser is rotated by the rotation speed of the electroformed thin blade whetstone. The amount of heat input by light can be controlled. Moreover, since the Sn plating layer can be melted to form an intermetallic compound with the metal constituting the metal bonding phase and recrystallized, spontaneous cutting during grinding can be promoted. In addition, since slits are formed at predetermined intervals in the blade edge portion prior to laser beam irradiation, heat radiation during laser beam irradiation proceeds further by the slit, and thermal distortion of the blade edge portion can be further suppressed.
【図1】 本発明の第一の実施の形態による電鋳薄刃砥
石の刃先部の拡大断面図である。FIG. 1 is an enlarged sectional view of a cutting edge portion of an electroformed thin blade grindstone according to a first embodiment of the present invention.
【図2】 実施の形態による電鋳薄刃砥石の平面図であ
る。FIG. 2 is a plan view of an electroformed thin blade grindstone according to the embodiment.
【図3】 Snめっき層を形成するまえの電鋳薄刃砥石
を示す刃先部の拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a cutting edge portion showing an electroformed thin blade grindstone before forming an Sn plating layer.
【図4】 第二の実施の形態による電鋳薄刃砥石の刃先
部の拡大断面図である。FIG. 4 is an enlarged sectional view of a cutting edge portion of an electroformed thin blade grindstone according to a second embodiment.
【図5】 実施の形態による電鋳薄刃砥石の平面図であ
る。FIG. 5 is a plan view of the electroformed thin blade grindstone according to the embodiment.
【図6】 電鋳薄刃砥石の刃先部にレーザ光を照射する
工程を示す説明図である。FIG. 6 is an explanatory view showing a step of irradiating a laser beam to a cutting edge of an electroformed thin blade grindstone.
【図7】 従来の電鋳薄刃砥石を砥石軸に装着した状態
を示す縦断面図である。FIG. 7 is a longitudinal sectional view showing a state in which a conventional electroformed thin blade grindstone is mounted on a grindstone shaft.
【符号の説明】 10,20 電鋳薄刃砥石 11 超砥粒 12 金属めっき相 12a 表面 16 刃先部 22 再結晶組織 24 スリット[Description of Signs] 10, 20 Electroformed thin blade whetstone 11 Super abrasive grain 12 Metal plating phase 12a Surface 16 Cutting edge 22 Recrystallized structure 24 Slit
───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 直人 福島県いわき市泉町黒須野字江越246−1 三菱マテリアル株式会社いわき製作所内 Fターム(参考) 3C063 AA02 AB03 BA23 BB02 BC02 BC08 BG01 BG07 CC12 EE31 FF30 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Naoto Suzuki 246-1 Egoshi, Kurosuno, Izumi-cho, Iwaki-shi, Fukushima F-term in Mitsubishi Materials Corporation Iwaki Works (reference) 3C063 AA02 AB03 BA23 BB02 BC02 BC08 BG01 BG07 CC12 EE31 FF30
Claims (6)
金属結合相中に超砥粒を分散配置してなる電鋳薄刃砥石
において、前記金属結合相からの超砥粒の突き出し量を
超えない厚みのSnめっき層を刃先部の金属結合相表面
に形成したことを特徴とする電鋳薄刃砥石。1. An electroformed thin blade grindstone in which superabrasive grains are dispersed and arranged in a metal binder phase made of Ni, Co or an alloy thereof, the thickness not exceeding the amount of protrusion of the superabrasive grains from the metal binder phase. An electroformed thin blade grinding wheel characterized in that the Sn plating layer of (1) is formed on the surface of the metal binding phase at the cutting edge.
溶融させて前記金属結合相と合金化させたことを特徴と
する請求項1に記載の電鋳薄刃砥石。2. The electroformed thin blade wheel according to claim 1, wherein the blade edge portion is heat-treated to melt the Sn plating layer and alloy with the metal bonding phase.
られる合金化された再結晶組織の幅が2mm以下である
ことを特徴とする請求項1または2に記載の電鋳薄刃砥
石。3. The electroformed thin blade wheel according to claim 1, wherein a width of an alloyed recrystallized structure obtained by heat-treating the blade edge portion is 2 mm or less.
金属結合相中に超砥粒を分散配置してなる電鋳薄刃砥石
において、前記金属結合相からの超砥粒の突き出し量を
超えない厚みのSnめっき層を刃先部の金属結合相表面
に形成すると共に前記刃先部の延在方向に沿って所定間
隔でスリットを形成した後、前記刃先部を熱処理して、
前記Snめっき層を溶融させて金属結合相と合金化させ
たことを特徴とする電鋳薄刃砥石。4. An electroformed thin-blade stone in which superabrasive grains are dispersed and arranged in a metal binder phase made of Ni, Co or an alloy thereof, the thickness not exceeding the amount of protrusion of the superabrasive grains from the metal binder phase. After forming a Sn plating layer on the surface of the metal binding phase of the cutting edge portion and forming slits at predetermined intervals along the extending direction of the cutting edge portion, heat-treating the cutting edge portion,
An electroformed thin blade grindstone wherein the Sn plating layer is melted and alloyed with a metal binder phase.
金属結合相中に超砥粒を分散配置すると共に前記金属結
合相の表面にSnめっき層を形成してなる電鋳薄刃砥石
を、所定速度で回転させつつ刃先部にレーザ光を照射し
て所定幅に亘って再結晶化させてなる電鋳薄刃砥石の製
造方法。5. An electroformed thin blade grindstone having super-abrasive grains dispersed in a metal binder phase composed of Ni, Co or an alloy thereof and having an Sn plating layer formed on the surface of the metal binder phase, is provided at a predetermined speed. A method for manufacturing an electroformed thin blade grindstone, which comprises irradiating a laser beam onto a blade edge while rotating the blade to recrystallize over a predetermined width.
定間隔でスリットを形成したことを特徴とする請求項5
記載の電鋳薄刃砥石の製造方法。6. A slit is formed at a predetermined interval in a cutting edge portion prior to irradiation with a laser beam.
A method for producing the electroformed thin blade grinding wheel according to the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000264447A JP4337250B2 (en) | 2000-08-31 | 2000-08-31 | Electroformed thin blade whetstone and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000264447A JP4337250B2 (en) | 2000-08-31 | 2000-08-31 | Electroformed thin blade whetstone and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002066935A true JP2002066935A (en) | 2002-03-05 |
JP4337250B2 JP4337250B2 (en) | 2009-09-30 |
Family
ID=18751863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000264447A Expired - Fee Related JP4337250B2 (en) | 2000-08-31 | 2000-08-31 | Electroformed thin blade whetstone and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4337250B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004136431A (en) * | 2002-08-21 | 2004-05-13 | Mitsubishi Materials Corp | Electroforming thin edge whetstone and its manufacturing method |
WO2009107274A1 (en) * | 2008-02-25 | 2009-09-03 | 株式会社村田製作所 | Sharp-edge grinding wheel and process for producing the sharp-edge grinding wheel |
WO2009107272A1 (en) * | 2008-02-25 | 2009-09-03 | 株式会社村田製作所 | Sharp-edge grinding wheel |
JP2021192947A (en) * | 2017-04-27 | 2021-12-23 | 株式会社東京精密 | Cutting blade |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103357964B (en) * | 2013-07-31 | 2015-12-02 | 宁波工程学院 | A kind of particulate knife |
-
2000
- 2000-08-31 JP JP2000264447A patent/JP4337250B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004136431A (en) * | 2002-08-21 | 2004-05-13 | Mitsubishi Materials Corp | Electroforming thin edge whetstone and its manufacturing method |
WO2009107274A1 (en) * | 2008-02-25 | 2009-09-03 | 株式会社村田製作所 | Sharp-edge grinding wheel and process for producing the sharp-edge grinding wheel |
WO2009107272A1 (en) * | 2008-02-25 | 2009-09-03 | 株式会社村田製作所 | Sharp-edge grinding wheel |
JP4711025B2 (en) * | 2008-02-25 | 2011-06-29 | 株式会社村田製作所 | Thin blade whetstone and manufacturing method thereof |
KR101151051B1 (en) * | 2008-02-25 | 2012-06-01 | 가부시키가이샤 무라타 세이사쿠쇼 | Sharp-edge grinding wheel |
KR101155235B1 (en) * | 2008-02-25 | 2012-06-13 | 가부시키가이샤 무라타 세이사쿠쇼 | Sharp-edge grinding wheel and process for producing the sharp-edge grinding wheel |
JP2021192947A (en) * | 2017-04-27 | 2021-12-23 | 株式会社東京精密 | Cutting blade |
JP7168742B2 (en) | 2017-04-27 | 2022-11-09 | 株式会社東京精密 | cutting blade |
Also Published As
Publication number | Publication date |
---|---|
JP4337250B2 (en) | 2009-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5018276A (en) | Tooth structure of rotary saw blade and method of forming the same | |
JP4337250B2 (en) | Electroformed thin blade whetstone and manufacturing method thereof | |
JP2002066934A (en) | Electroforming sharp-edged grinding wheel and method of manufacturing the same | |
JP4236859B2 (en) | Cutting wheel and manufacturing method thereof | |
JPS59124574A (en) | Preparation of cutting edge | |
JPH0688214B2 (en) | Electroformed thin blade grindstone and manufacturing method thereof | |
JP5470713B2 (en) | Electroformed thin blade whetstone and manufacturing method thereof | |
JP2004136431A (en) | Electroforming thin edge whetstone and its manufacturing method | |
JPH0692073B2 (en) | Electroformed thin blade grindstone and manufacturing method thereof | |
US20020160699A1 (en) | Electro-deposited thin-blade grindstone | |
JP2013244546A (en) | Cutting blade and method of manufacturing the same | |
JP4661025B2 (en) | Metal bond grindstone and manufacturing method thereof | |
JPS62213965A (en) | Electroformed thin blade grindstone and its manufacturing method | |
JP4470559B2 (en) | Ultra-thin blade and manufacturing method thereof | |
JP2009006407A (en) | Thin edge grinding wheel | |
JP2893828B2 (en) | Thin blade whetstone with hub and method of manufacturing the same | |
JP2000205312A (en) | Brake disc and manufacture there of | |
JP2972629B2 (en) | Inner peripheral blade | |
JP2008238304A (en) | Cutting electrodeposition blade | |
JP2003311628A (en) | Thin-edged blade and its manufacturing method | |
JP2000210872A (en) | Electrodeposited thin blade grinding wheel | |
JPH0771790B2 (en) | Method of manufacturing electroformed thin blade grindstone | |
JP2003225867A (en) | Thin blade grinding wheel | |
JP2554425Y2 (en) | Inner circumference grinding wheel | |
JPH04146081A (en) | Electrodeposited grinding wheel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060331 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081211 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081216 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090609 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090622 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120710 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120710 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120710 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120710 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130710 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130710 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |