[go: up one dir, main page]

JP2002050606A - Substrate rinse liquid and substrate treatment method - Google Patents

Substrate rinse liquid and substrate treatment method

Info

Publication number
JP2002050606A
JP2002050606A JP2000233252A JP2000233252A JP2002050606A JP 2002050606 A JP2002050606 A JP 2002050606A JP 2000233252 A JP2000233252 A JP 2000233252A JP 2000233252 A JP2000233252 A JP 2000233252A JP 2002050606 A JP2002050606 A JP 2002050606A
Authority
JP
Japan
Prior art keywords
substrate
ultrapure water
polishing
chelating agent
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000233252A
Other languages
Japanese (ja)
Other versions
JP2002050606A5 (en
Inventor
Haruko Ono
晴子 大野
Akira Fukunaga
明 福永
Ichiro Katakabe
一郎 片伯部
Sachiko Kihara
幸子 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2000233252A priority Critical patent/JP2002050606A/en
Publication of JP2002050606A publication Critical patent/JP2002050606A/en
Publication of JP2002050606A5 publication Critical patent/JP2002050606A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Detergent Compositions (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide substrate rinse liquid which restrains attaching of metals during ultra-pure water rinse of a substrate, where a metallic wiring is formed, and to provide a substrate washing treatment method for restraining attaching of the metals. SOLUTION: The substrate rinse liquid consists of ultra-pure water, comprising chelating agent of free acid or ammonium salt at 100 mg/L or less. After a treatment including a process for making chemical or abrasive liquid function is performed for the surface of a substrate, the substrate is rotated and rinse treatment for removing chemical or contaminant from the surface is applied by means of substrate rinse liquid consisting of ultra-pure water comprising chelating agent of free acid or ammonium salt.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体基板等の基板
の洗浄化のため使用する基板用リンス及び基板処理方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate rinsing and a substrate processing method used for cleaning a substrate such as a semiconductor substrate.

【0002】[0002]

【従来の技術】金属不純物による汚染は、半導体デバイ
スの電気的特性を致命的に劣化させる。そのため、半導
体基板に付着した汚染物の除去のため、各種の洗浄が行
われている。洗浄はRCA洗浄に代表されるように酸・
アルカリ系の薬品及び酸化剤を用いるもので、必ず薬品
処理の工程に引き続き、その薬品を洗い落とすために超
純水ですすぐリンス工程が行なわれる。そしてリンス用
超純水中に汚染物があるとこれが半導体基板表面に付着
するため、超純水の純度要求はより高いものになってい
る。
2. Description of the Related Art Contamination by metal impurities seriously degrades electrical characteristics of a semiconductor device. Therefore, various types of cleaning are performed to remove contaminants attached to the semiconductor substrate. Cleaning is performed with acid and acid as represented by RCA cleaning.
It uses an alkaline chemical and an oxidizing agent, and is always followed by a chemical treatment step, followed by a rinse step with ultrapure water to wash off the chemical. If there is a contaminant in the ultrapure water for rinsing, the contaminant adheres to the surface of the semiconductor substrate, so that the purity requirement of the ultrapure water is higher.

【0003】しかし、超純水は含まれる不純物が少ない
ため、該超純水が接した材料を溶かし込む力が強く、シ
リコンウエハにおいて、洗浄及びリンス後の乾燥中にウ
ォータ―マークと呼ばれるSiの溶解物の乾燥残渣が生
じるのも、超純水がシリコンウエハ表面を溶解するから
である。
[0003] However, since ultrapure water contains few impurities, it has a strong power to dissolve the material that is in contact with the ultrapure water, so that the silicon wafer has a Si mark called a water mark during drying after cleaning and rinsing. The dry residue of the melt is also generated because the ultrapure water dissolves the silicon wafer surface.

【0004】酸化膜や窒化膜など非常に溶解しにくいも
のもあるが、基板上に金属の配線材料が形成・加工処理
されている場合には、その工程直後の洗浄や、次の工程
の前洗浄における薬品処理に引き続くリンス中に、金属
の溶解が生じている。そのため、リンス水を大量に使
い、大希釈して基板への付着確率を下げている。また、
配線にはアルミニウム(Al)、タングステン(W)と
いった金属がよく用いられているが、現在のデバイスレ
ベル(集積レベル)では、多少付着していても問題とさ
れていない。
Some oxide films and nitride films are very difficult to dissolve. However, if a metal wiring material is formed and processed on a substrate, it may be washed immediately after that step or before the next step. During rinsing following chemical treatment in the cleaning, metal dissolution has occurred. Therefore, a large amount of rinsing water is used, and the rinsing water is largely diluted to reduce the probability of adhesion to the substrate. Also,
Metals such as aluminum (Al) and tungsten (W) are often used for wiring, but at the current device level (integration level), there is no problem even if they are slightly attached.

【0005】ところが近年、デバイスをさらに高い性能
(高集積化)にするために、電気抵抗の低い材料である
銅(Cu)が用い始められている。銅はデバイスを形成
する材料の多くに混入するため、材料中に銅が拡散しな
いように注意を払わなければならない。銅が基板の端縁
や、裏面に付着するのに対して厳しいのも、隣接する活
性領域へ移動して歩留まりを低下させたり、基板の搬送
システムを汚染することが懸念されているからである。
よって銅関連の工程、例えば、パターニングされたトレ
ンチを銅めっきで充填する工程や、トレンチ部以外に残
っている余分な銅を化学的機械研磨(CMP)で除去す
る工程の後には、基板表面のみならず、基板の端縁や、
裏面の洗浄も実施されることになる。
In recent years, however, copper (Cu), which is a material having low electric resistance, has begun to be used in order to achieve higher performance (higher integration) of devices. Because copper mixes with many of the materials that make up the device, care must be taken to prevent copper from diffusing into the material. The reason why copper adheres to the edge and the back surface of the substrate is severe because it is feared that the copper may move to the adjacent active region and reduce the yield or contaminate the substrate transfer system. .
Therefore, after a copper-related step, for example, a step of filling a patterned trench with copper plating or a step of removing excess copper remaining in portions other than the trench portion by chemical mechanical polishing (CMP), only the substrate surface is removed. Not the edge of the board,
Cleaning of the back surface will also be performed.

【0006】基板の表面には銅が露出している部分があ
るため、洗浄薬品でせっかく洗浄されても、超純水リン
ス時に銅部分から銅が溶出し、銅以外の部分、端縁(バ
リア膜、基板シリコン等)や、裏面(酸化膜、窒化膜、
基板シリコン等)CMP後では端縁・裏面に加えて表面
に混在する材料(酸化膜(将来的にはlow−k膜)、
バリア膜等)に、銅が付着することを本発明者らは確認
した。そして、特に酸化膜よりもTa、TaNやTi、
TiNからなるバリア膜やシリコンに付着しやすいこと
が判明した。
[0006] Since copper is exposed on the surface of the substrate, even if the substrate is thoroughly washed with a cleaning chemical, copper is eluted from the copper portion when rinsing with ultrapure water, and other portions and edges (barriers) are removed. Film, substrate silicon, etc.) and back surface (oxide film, nitride film,
Substrate silicon etc.) After CMP, materials (oxide film (low-k film in future),
The present inventors have confirmed that copper adheres to the barrier film and the like. In particular, Ta, TaN, Ti,
It has been found that it easily adheres to a barrier film made of TiN and silicon.

【0007】[0007]

【発明が解決しようとする課題】本発明は上述の点に鑑
みてなされたもので、金属配線を形成した基板の超純水
リンス時における金属付着を抑制する基板用リンス液及
び金属付着を抑制する基板洗浄処理方法を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has been made in view of the above. A substrate rinsing liquid and a metal rinsing liquid for suppressing metal adhesion during ultrapure water rinsing of a substrate on which metal wiring is formed are described. It is an object of the present invention to provide a method of cleaning a substrate.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
請求項1に記載の発明は、100mg/L以下の遊離酸
又はアンモニウム塩のキレート剤を含む超純水からなる
ことを特徴とする基板用リンス液にある。
According to a first aspect of the present invention, there is provided a substrate comprising ultrapure water containing a free acid or ammonium salt chelating agent of 100 mg / L or less. In the rinsing solution.

【0009】請求項2に記載の発明は、基板の表面に薬
液乃至砥液を作用させる工程を含む処理を行なった後、
該基板を回転させ、その表面から薬液及び汚染を除去す
るリンス処理を遊離酸又はアンモニウム塩のキレート剤
を含む超純水からなる基板用リンス液によって行なうこ
とを特徴とする基板処理方法にある。
According to a second aspect of the present invention, after performing a process including a step of applying a chemical solution or an abrasive solution to the surface of the substrate,
The substrate processing method is characterized in that the substrate is rotated and a rinsing process for removing a chemical solution and contamination from the surface thereof is performed using a substrate rinsing solution composed of ultrapure water containing a chelating agent of a free acid or an ammonium salt.

【0010】請求項3に記載の発明は、請求項2に記載
の基板処理方法において、薬液が酸と酸化剤の少なくと
もいずれか一方を含んだものであることを特徴とする。
According to a third aspect of the present invention, in the substrate processing method according to the second aspect, the chemical solution contains at least one of an acid and an oxidizing agent.

【0011】請求項4に記載の発明は、基板の表面に砥
液を供給して研磨した後、超純水を供給して研磨する工
程において、超純水に遊離酸又はアンモニア塩のキレー
ト剤を存在させて基板を研磨することを特徴とする。
According to a fourth aspect of the present invention, in the step of polishing by supplying an abrasive liquid to the surface of the substrate and then supplying and polishing ultrapure water, the chelating agent of free acid or ammonium salt is added to the ultrapure water. And polishing the substrate in the presence of.

【0012】請求項5に記載の発明は、基板の表面に砥
液を供給して研磨する工程と、研磨後基板に超純水を供
給して洗浄する工程の少なくとも1つを含み、且つ搬送
中に基板が乾燥しないように超純水で基板表面を濡らす
基板表面処理方法において、洗浄用超純水と乾燥防止用
超純水の少なくとも1つに遊離酸又はアンモニア塩のキ
レート剤を含むことを特徴とする。
According to a fifth aspect of the present invention, there is provided at least one of a step of supplying an abrasive liquid to the surface of the substrate for polishing, and a step of supplying ultrapure water to the substrate after polishing for cleaning. In a substrate surface treatment method in which a substrate surface is wetted with ultrapure water so that the substrate is not dried, at least one of ultrapure water for cleaning and ultrapure water for drying prevention contains a chelating agent of a free acid or an ammonium salt. It is characterized by.

【0013】基板が接している液中に金属不純物が含ま
れていると、基板に付着する。洗浄薬品は酸系の場合は
pHや酸化還元電位をコントロールするなどして、除去
した金属汚染を基板に再付着させにくくしている。しか
し、引き続く超純水リンスにおいて、表面に金属材料が
露出する場合には、該金属材料からリンス水に金属が溶
出し、基板に金属汚染が生じてしまうことがわかった。
また、CMP工程でも砥液は化学的性質をコントロール
して、金属汚染を基板に再付着させにくくしている。
[0013] If metal impurities are contained in the liquid in contact with the substrate, they adhere to the substrate. In the case of an acid-based cleaning chemical, the pH and oxidation-reduction potential are controlled to make it difficult for the removed metal contamination to adhere to the substrate. However, it has been found that when the metal material is exposed on the surface in the subsequent ultrapure water rinsing, the metal is eluted from the metal material into the rinsing water, thereby causing metal contamination on the substrate.
Also in the CMP process, the polishing liquid controls the chemical properties to make it difficult for metal contamination to re-adhere to the substrate.

【0014】しかしながら、砥液で研磨した後、該砥液
をおおまかに除去するために超純水を使って研磨する場
合があり、その時に、洗浄工程と同様に金属材料から水
に金属が溶出し、基板に金属汚染を生じてしまうおそれ
がある。超純水を使っての研磨が省略される場合も、砥
粒を除くために超純水を用いた洗浄或いは超純水で濡ら
したままの状態での搬送が行われるため、その間に金属
が溶出している水に基板が接触し続け、基板に金属が付
着する。
However, after polishing with a polishing liquid, polishing may be performed using ultrapure water in order to roughly remove the polishing liquid. At that time, the metal is eluted from the metal material into water in the same manner as in the cleaning step. However, there is a possibility that metal contamination may occur on the substrate. Even when the polishing using ultrapure water is omitted, cleaning using ultrapure water or transportation in a state of being wet with ultrapure water is performed to remove abrasive grains, during which metal is removed. The substrate keeps in contact with the eluted water, and the metal adheres to the substrate.

【0015】しかしながら、本特許出願の発明者らは、
超純水に金属が溶出しても、100mg/L以下のキレ
ート剤を添加することによって、基板への金属汚染を抑
制することを見出した。請求項1の発明はこのように超
純水に金属が溶出しても基板への金属汚染を抑制できる
基板用リンス液を提供するものである。
[0015] However, the inventors of the present patent application have:
It has been found that even when a metal is eluted in ultrapure water, metal contamination to the substrate is suppressed by adding a chelating agent of 100 mg / L or less. The invention of claim 1 provides a substrate rinsing liquid that can suppress metal contamination on the substrate even when the metal is eluted in ultrapure water.

【0016】また、請求項2及び3に記載の発明によれ
ば、基板の表面に薬液乃至砥液を作用させる工程を含む
処理を行なった後、該基板を回転させその表面から薬液
及び汚染を除去するリンス処理を遊離酸又はアンモニウ
ム塩のキレート剤を含む超純水からなる基板用リンス液
によって行なうので、基板の金属汚染を抑制できる。
According to the second and third aspects of the present invention, after performing a process including a step of applying a chemical solution or an abrasive solution to the surface of the substrate, the substrate is rotated to remove the chemical solution and contamination from the surface. Since the rinsing treatment for removal is performed with a substrate rinsing liquid composed of ultrapure water containing a chelating agent of a free acid or an ammonium salt, metal contamination of the substrate can be suppressed.

【0017】また、請求項4に記載の発明によれば、基
板の表面に砥液を供給して研磨した後、超純水を供給し
て研磨する工程において、超純水に遊離酸又はアンモニ
ア塩のキレート剤を存在させて基板を研磨するので、上
記と同様、基板の金属汚染を抑制できる。
According to the fourth aspect of the invention, in the step of supplying the polishing liquid to the surface of the substrate and polishing the substrate, and then supplying and polishing the ultrapure water, the free acid or ammonia is added to the ultrapure water. Since the substrate is polished in the presence of a salt chelating agent, metal contamination of the substrate can be suppressed as described above.

【0018】また、請求項5に記載の発明によれば、洗
浄用超純水と乾燥防止用超純水に遊離酸又はアンモニア
塩のキレート剤を含む基板用リンス液を用いるので、上
記と同様、基板の金属汚染を抑制できる。
According to the fifth aspect of the present invention, since the substrate rinsing liquid containing a chelating agent of a free acid or an ammonium salt is used in the ultrapure water for cleaning and the ultrapure water for drying prevention, the same as above. In addition, metal contamination of the substrate can be suppressed.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態例を説
明する。基板の金属汚染については、電気的特性上10
11原子/cm2未満にする必要がある。しかし、例えば
銅(Cu)が露出した基板の洗浄で、超純水によるリン
ス時に銅の溶出が生じ、表面に接したリンス水中の銅濃
度は数〜数百μg/Lレベルになっている。後述の比較
例2でわかるように、この水が基板のシリコンに接する
と、表面Cu濃度が1011〜1013原子/cm2の汚染
を引き起こす。本発明はリンス水に溶け込んだ金属イオ
ンを基板表面に付着するよりも優先的にキレート剤と反
応させ、基板への付着を抑制する基板用リンス液であ
る。
Embodiments of the present invention will be described below. Regarding metal contamination of the substrate, 10
It must be less than 11 atoms / cm 2 . However, for example, when the substrate on which copper (Cu) is exposed is washed, copper is eluted during rinsing with ultrapure water, and the concentration of copper in the rinsing water in contact with the surface is on the order of several to several hundred μg / L. As can be seen from Comparative Example 2 described below, when this water comes into contact with the silicon of the substrate, the surface Cu concentration causes contamination of 10 11 to 10 13 atoms / cm 2 . The present invention is a substrate rinsing liquid that causes metal ions dissolved in rinsing water to react with a chelating agent preferentially rather than adhering to the substrate surface, thereby suppressing adhesion to the substrate.

【0020】本発明に係る基板用リンス液に用いるキレ
ート剤は、アミノカルボン酸型キレート剤とオキシカル
ボン酸型キレート剤が好ましく、リン汚染となるホスホ
ン酸型キレート剤は好ましくない。アミノカルボン酸型
キレート剤としては、エチレンジアミン四酢酸(EDT
A)、ニトリロ三酢酸(NTA)、ジエチレントリアミ
ン五酢酸(DTPA)、トリエチレンテトラミン六酢酸
(TTHA)などの化合物が挙げられる。但し、これら
のナトリウム(Na)等のアルカリ金属塩はアルカリ金
属の汚染原因となるので、遊離酸又はアンモニウム塩を
使用するのが好ましい。
As the chelating agent used in the substrate rinsing liquid according to the present invention, an aminocarboxylic acid type chelating agent and an oxycarboxylic acid type chelating agent are preferable, and a phosphonic acid type chelating agent which causes phosphorus contamination is not preferable. Aminocarboxylic acid type chelating agents include ethylenediaminetetraacetic acid (EDT).
A), compounds such as nitrilotriacetic acid (NTA), diethylenetriaminepentaacetic acid (DTPA), and triethylenetetraminehexaacetic acid (TTHA). However, since these alkali metal salts such as sodium (Na) cause contamination of the alkali metal, it is preferable to use a free acid or an ammonium salt.

【0021】オキシカルボン酸型キレート剤としては、
クエン酸、酒石酸、グルコン酸、ヒドロキシ酢酸、シュ
ウ酸等が挙げられる。これらについても、遊離酸又はア
ンモニウム塩を使用することが好ましい。これら本発明
におけるキレート剤は、単独で使用してもまた2種類以
上を混合して使用してもよい。
As the oxycarboxylic acid type chelating agent,
Examples thereof include citric acid, tartaric acid, gluconic acid, hydroxyacetic acid, and oxalic acid. Also in these, it is preferable to use a free acid or an ammonium salt. These chelating agents in the present invention may be used alone or as a mixture of two or more.

【0022】キレート剤をリンス用超純水に添加する場
合、リンス水へ溶出した金属イオンとキレート剤がキレ
ート化合物を生成して金属イオンを消費するので、反応
は金属溶解の方向へ進む。そのためキレート剤が多すぎ
ると、金属材料からの金属溶出する絶対量がかえって増
大し、汚染量を増やしてしまう。そのため、キレート剤
の含有量はリンス水中で好ましくは0.001〜100
mg/Lの範囲であり、更に好ましくは0.01〜10
mg/Lの範囲である。この範囲より少ない場合はキレ
ート剤としての効果があまり期待できないので好ましく
ない。
When the chelating agent is added to the ultrapure water for rinsing, the metal ions eluted into the rinsing water and the chelating agent generate a chelating compound and consume the metal ions, so that the reaction proceeds in the direction of metal dissolution. Therefore, when the amount of the chelating agent is too large, the absolute amount of the metal eluted from the metal material is rather increased and the amount of contamination is increased. Therefore, the content of the chelating agent is preferably 0.001 to 100 in rinse water.
mg / L, more preferably 0.01 to 10 mg / L.
mg / L. If the amount is less than this range, the effect as a chelating agent cannot be expected so much, which is not preferable.

【0023】また、リンス液に浸漬するディップ処理に
おいても効果はあるが、シャワー状に降り注ぐ方法にお
いても同様の効果が得られる。更に、回転式枚葉洗浄の
方法が新鮮なリンス液を供給でき、浸漬法よりも短いリ
ンス時間で洗い流せるため、より低い汚染レベルにする
ことができる。また、引き続き基板を高速回転させスピ
ン乾燥すればキレート剤ごと遠心力で吹き飛ばせるの
で、キレート剤の残留量もわずかとなり、有機汚染も低
い汚染レベルにすることができる。
Although the dipping process of dipping in a rinsing liquid has an effect, the same effect can be obtained by a method of showering. In addition, the rotary single wafer cleaning method can provide a fresh rinse solution and can be rinsed with a shorter rinse time than the dipping method, resulting in lower contamination levels. Further, if the substrate is continuously rotated at a high speed and spin-dried, the chelating agent can be blown off with the centrifugal force, so that the residual amount of the chelating agent becomes small and the organic contamination can be reduced to a low contamination level.

【0024】基板のCMP後の局面においても、アルミ
ニウム(Al)や銅(Cu)が露出している場合には水
研磨、洗浄、乾燥防止の超純水にキレート剤を存在させ
ることにより、金属汚染を抑制することができる。
In the post-CMP phase of the substrate, when aluminum (Al) or copper (Cu) is exposed, the presence of a chelating agent in ultra-pure water for water polishing, washing, and drying prevents metal Pollution can be suppressed.

【0025】本発明において、キレート剤を超純水に存
在させる方法については特に限定されない。予め超純水
に溶解しておいてもよいし、供給される寸前に高濃度の
キレート水溶液と超純水を混合して所定の濃度にしても
よい。
In the present invention, the method for causing the chelating agent to be present in ultrapure water is not particularly limited. It may be dissolved in ultrapure water in advance, or a high concentration chelate aqueous solution and ultrapure water may be mixed to a predetermined concentration just before being supplied.

【0026】以下、本発明に係る基板処理方法の実施例
と比較例を説明する。なお、本発明の基板処理方法は、
これらの実施例に何ら限定されるものではない。
Hereinafter, examples of the substrate processing method according to the present invention and comparative examples will be described. Incidentally, the substrate processing method of the present invention,
The present invention is not limited to these embodiments.

【0027】実施例1 表面に第1層としてシリコン酸化膜層、第2層としてバ
リア層(TaN膜)、第3層としてシード層(Cu膜)
を成膜した8インチのシリコン基板を用意し、該シリコ
ン基板上に端縁2mmより中央側一面に銅(Cu)めっ
き膜を形成した。端縁に残るシード層及び銅めっき膜層
は隣接する活性領域へ移動して歩留まりを低下させた
り、基板の搬送機構を汚染することが懸念されるため、
図3に示す回転式基板処理装置にて、基板Wfの端縁1
0mmの範囲Bを酸及び過酸化水素水を薬液供給ノズル
5から供給し、図4に示すように、銅めっき膜層6及び
第3層のシード層をエッチング除去した。
Example 1 A silicon oxide film layer as a first layer, a barrier layer (TaN film) as a second layer, and a seed layer (Cu film) as a third layer on the surface.
Was prepared, and a copper (Cu) plating film was formed on the entire surface of the silicon substrate from the edge 2 mm at the center side. Since the seed layer and the copper plating film layer remaining at the edge move to the adjacent active region to lower the yield or contaminate the substrate transfer mechanism, there is a concern.
In the rotary substrate processing apparatus shown in FIG.
In a range B of 0 mm, an acid and a hydrogen peroxide solution were supplied from the chemical supply nozzle 5, and as shown in FIG. 4, the copper plating film layer 6 and the third seed layer were removed by etching.

【0028】なお、図3において、1は基板Wfを保持
して回転される基板保持回転機構であり、基板Wfは複
数本の保持部材2で保持され矢印Aに示す方向に回転す
る。また、3はリンス液供給ノズル、4は薬液供給ノズ
ル、5は薬液供給ノズルである。上記のように、薬液供
給ノズル5から酸及び過酸化水素水を供給し基板Wfの
端縁10mmの銅めっき膜層6及び第3層のシード層を
エッチング除去した後、引き続き酸及び過酸化水素水を
洗い流すため、EDTAアンモニウム塩を1mg/L含
む超純水をリンス液供給ノズル3から供給してリンス
し、スピン乾燥した。上記端縁エッチング除去後に露出
した第2層のバリア層であるTaN膜上に吸着した銅濃
度を定量分析した結果を図1の実施例1に示す。図示す
るように銅(Cu)付着量は2×1010原子/cm2
あった。
In FIG. 3, reference numeral 1 denotes a substrate holding and rotating mechanism which rotates while holding the substrate Wf. The substrate Wf is held by a plurality of holding members 2 and rotates in the direction shown by arrow A. Reference numeral 3 denotes a rinsing liquid supply nozzle, 4 denotes a chemical liquid supply nozzle, and 5 denotes a chemical liquid supply nozzle. As described above, an acid and hydrogen peroxide solution are supplied from the chemical solution supply nozzle 5 to etch away the copper plating film layer 6 having a 10 mm edge of the substrate Wf and the third seed layer. Ultrapure water containing 1 mg / L of EDTA ammonium salt was supplied from the rinsing liquid supply nozzle 3 to rinse off water, rinsed, and spin-dried. The result of quantitative analysis of the concentration of copper adsorbed on the TaN film which is the second barrier layer exposed after the edge etching removal is shown in Example 1 of FIG. As shown, the amount of copper (Cu) deposited was 2 × 10 10 atoms / cm 2 .

【0029】比較例1 実施例1と同様、表面に第1層、第2層、第3層を順次
成膜した8インチのシリコン基板上に端縁2mmより中
央側一面に銅めっき膜を形成した基板Wfを用意し、図
3の回転基板処理装置にて、薬液供給ノズル5から酸及
び過酸化水素水を供給し、図4に示すように基板Wfの
端縁10mmの銅めっき膜層6及び第3層のシード層を
エッチング除去した。その後引き続きEDTAアンモニ
ウム塩100、101、102、103、104mg/Lを
含む超純水をリンス液供給ノズル4から供給してリンス
し、スピン乾燥した。端縁エッチング除去後に露出した
バリア層であるTaN膜上に付着した銅濃度を定量分析
した結果を図2に示す。
COMPARATIVE EXAMPLE 1 As in Example 1, a copper plating film was formed on the entire surface on the center side from an edge of 2 mm on an 8-inch silicon substrate on which a first layer, a second layer, and a third layer were sequentially formed on the surface. The substrate Wf thus prepared is prepared, and an acid and hydrogen peroxide solution are supplied from the chemical supply nozzle 5 by the rotary substrate processing apparatus shown in FIG. 3, and as shown in FIG. And the third seed layer was removed by etching. Then subsequently rinsed by supplying ultrapure water containing EDTA ammonium salt 10 0, 10 1, 10 2 , 10 3, 10 4 mg / L from the rinsing liquid supply nozzle 4, and spin-dried. FIG. 2 shows the results of quantitative analysis of the concentration of copper attached on the TaN film, which is a barrier layer exposed after the edge etching removal.

【0030】比較例2 実施例1と同様、表面に第1層、第2層、第3層を順次
成膜した8インチのシリコン基板上に端縁2mmより中
央側一面に銅めっき膜を形成した基板Wfを用意し、図
3の回転基板処理装置にて、薬液供給ノズル5から酸及
び過酸化水素水を供給し、図4に示すように基板Wfの
端縁10mm範囲Bの銅めっき膜層6及び第3層のシー
ド層をエッチング除去した。その後、引き続きキレート
剤を含まない超純水をリンス液供給ノズル3から供給し
てリンスし、スピン乾燥した。端縁エッチング除去後に
露出したバリア層であるTaN膜上に吸着した銅濃度を
定量分析した結果を図1の比較例2に示す。図示するよ
うに、銅(Cu)付着量は3×1014原子/cm2であ
った。
Comparative Example 2 In the same manner as in Example 1, a copper plating film was formed on one surface of the central side from an edge of 2 mm on an 8-inch silicon substrate on which a first layer, a second layer, and a third layer were sequentially formed on the surface. The prepared substrate Wf is prepared, and an acid and hydrogen peroxide solution are supplied from the chemical solution supply nozzle 5 by the rotary substrate processing apparatus of FIG. 3, and as shown in FIG. Layer 6 and the third seed layer were etched away. Thereafter, ultrapure water containing no chelating agent was subsequently supplied from the rinsing liquid supply nozzle 3 for rinsing and spin drying. The result of quantitative analysis of the concentration of copper adsorbed on the TaN film as the barrier layer exposed after the edge etching removal is shown in Comparative Example 2 in FIG. As shown, the amount of copper (Cu) deposited was 3 × 10 14 atoms / cm 2 .

【0031】図1に示すように、実施例1で添加したキ
レート剤は比較例2と比べて顕著な銅の付着防止効果を
示し、基板Wfの端縁部の銅汚染量を1011原子/cm
2未満に抑制することができる。また、図2に示す比較
例1の銅濃度定量分析結果からキレート剤の適量は10
0mg/L以下であることがわかる。
As shown in FIG. 1, the chelating agent added in Example 1 exhibited a remarkable effect of preventing copper adhesion as compared with Comparative Example 2, and the copper contamination amount at the edge of the substrate Wf was 10 11 atoms / cm 2. cm
It can be suppressed to less than 2 . In addition, from the results of the quantitative analysis of copper concentration in Comparative Example 1 shown in FIG.
It turns out that it is 0 mg / L or less.

【0032】実施例2 実施例1と同様、表面に第1層、第2層、第3層を成膜
した8インチのシリコン基板上に端縁2mmより中央側
一面に銅めっき膜を形成し、端縁10mmの範囲Bを酸
及び過酸化水素水を用いて銅めっき膜層及びシード層を
エッチング除去した。裏面はシリコンの基板を用いた。
該基板を図5に示す構成の研磨室11のCMP装置15
で研磨した後、洗浄槽12で洗浄し、洗浄槽14に搬送
中に搬送室13でクエン酸を0.1mg/L含む超純水
でリンスした。さらに洗浄槽14で洗浄し、洗浄後スピ
ン乾燥し、裏面に吸着した銅濃度を定量分析したとこ
ろ、汚染量は1011原子/cm2未満であった。
Example 2 In the same manner as in Example 1, a copper plating film was formed on an 8-inch silicon substrate having a first layer, a second layer, and a third layer formed on the surface, on the entire central side from an edge of 2 mm. The copper plating film layer and the seed layer were removed by etching using an acid and hydrogen peroxide solution in a range B having an edge of 10 mm. A silicon substrate was used for the back surface.
The substrate is placed in a CMP apparatus 15 in a polishing chamber 11 having a configuration shown in FIG.
Then, the substrate was washed in the washing tank 12 and rinsed with ultrapure water containing 0.1 mg / L of citric acid in the transfer chamber 13 during the transfer to the washing tank 14. Further, the substrate was washed in the washing tank 14, washed and spin-dried, and the concentration of copper adsorbed on the back surface was quantitatively analyzed. As a result, the contamination amount was less than 10 11 atoms / cm 2 .

【0033】なお、研磨室11のCMP装置15は研磨
テーブル16及びトップリング17を具備し、回転する
トップリング17で保持する基板Wfを回転する研磨テ
ーブル16の研磨面に押圧すると共に、砥液ノズル18
から砥液を供給し、研磨する構成のものである。
The CMP apparatus 15 in the polishing chamber 11 includes a polishing table 16 and a top ring 17. The substrate Wf held by the rotating top ring 17 is pressed against the polishing surface of the rotating polishing table 16, and the polishing liquid is Nozzle 18
The polishing liquid is supplied from the substrate and polished.

【0034】また、洗浄槽12の洗浄機構は図6に示す
ように一対のロールスポンジ21、22を具備するロー
ルスポンジ型洗浄機構であり、複数本の回転するスピン
ドル23で挟持され回転する基板Wfの上下面に、回転
駆動機構24、25で回転するロールスポンジ21、2
2を当接し、クエン酸を0.1mg/Lを含む超純水を
洗浄液ノズル26から基板の上下面に供給して洗浄し
た。なお、図示は省略するが、洗浄液ノズル26は基板
Wfの下面にも洗浄水を供給できるように下方にも配置
されている。
As shown in FIG. 6, the cleaning mechanism of the cleaning tank 12 is a roll sponge type cleaning mechanism having a pair of roll sponges 21 and 22, and a rotating substrate Wf sandwiched between a plurality of rotating spindles 23. Roll sponges 21, 2 rotated by rotation drive mechanisms 24, 25
Then, ultrapure water containing 0.1 mg / L of citric acid was supplied from the cleaning liquid nozzle 26 to the upper and lower surfaces of the substrate for cleaning. Although not shown, the cleaning liquid nozzle 26 is also disposed below so as to supply cleaning water to the lower surface of the substrate Wf.

【0035】また、洗浄槽14の洗浄機構は、図7に示
すように揺動アーム27の先端直下に取り付けられ回転
する回転軸28の下端に洗浄部材29を有するペンシル
型洗浄機構であり、基板保持回転機構1で保持され回転
する基板Wfの上面に洗浄部材29を押し当て、基板W
fの上面に洗浄液ノズル31からクエン酸を0.1mg
/Lを含む超純水を供給して洗浄した。
The cleaning mechanism for the cleaning tank 14 is a pencil type cleaning mechanism having a cleaning member 29 at the lower end of a rotating shaft 28 which is attached immediately below the tip of a swing arm 27 and rotates as shown in FIG. The cleaning member 29 is pressed against the upper surface of the rotating substrate Wf held and rotated by the holding / rotating mechanism 1, and the substrate Wf is rotated.
0.1 mg of citric acid from the cleaning liquid nozzle 31 on the upper surface of f
/ L to supply ultrapure water for cleaning.

【0036】実施例3 図8に示すように、8インチの基板Wfの面内に20m
m角の銅ダマシンパターン30を5箇所に間隔20mm
以上離して形成したシリコン基板を用いる。この基板W
fを図5に示す構成のCMP装置15で砥液ノズル18
から砥液(スラリー)を供給しながら研磨した後、超純
水供給ノズル19からクエン酸1mg/Lを含む超純水
を供給して水研磨した。続いて図6に示すロールスポン
ジ型洗浄機構で基板Wfの両面に洗浄液ノズル26から
クエン酸を含む超純水を供給しながら洗浄し、スピン乾
燥した(図3に示すような基板保持回転機構1に基板W
fを装着し、高速回転して乾燥)。ダマシンパターン3
0の間隔に露出したシリコン表面に吸着した銅濃度を定
量分析したところ、汚染量は1011原子/cm2未満で
あった。
Embodiment 3 As shown in FIG. 8, 20-m
20 square mm copper damascene pattern 30 with m square
A silicon substrate formed apart from the above is used. This substrate W
f by the CMP apparatus 15 having the configuration shown in FIG.
After polishing while supplying an abrasive liquid (slurry) from, ultrapure water containing 1 mg / L of citric acid was supplied from an ultrapure water supply nozzle 19 to perform water polishing. Subsequently, the substrate Wf is cleaned while supplying ultrapure water containing citric acid from the cleaning liquid nozzle 26 to both surfaces thereof by a roll sponge type cleaning mechanism shown in FIG. 6, and spin-dried (the substrate holding and rotating mechanism 1 as shown in FIG. 3). Substrate W
f, spin at high speed and dry). Damascene pattern 3
Quantitative analysis of the concentration of copper adsorbed on the silicon surface exposed at intervals of 0 revealed that the amount of contamination was less than 10 11 atoms / cm 2 .

【0037】比較例3 図8に示すように、8インチのシリコン基板Wfの面内
に20mm角の銅ダマシンパターン30を5箇所に間隔
20mm以上離して形成したシリコン基板を用いてい
る。このシリコン基板を図5に示す構成のCMP装置1
5で砥液ノズル18から砥液(スラリー)を供給しなが
ら研磨した後、超純水供給ノズル19からキレート剤を
含まない超純水を供給して水研磨した。続いて図6に示
すロールスポンジ型洗浄機構で基板Wfの両面に洗浄液
ノズル26からクエン酸を含む超純水を供給しながら洗
浄し、スピン乾燥した。ダマシンパターン30の間隔に
露出したシリコン表面に吸着した銅濃度を定量分析した
ところ、汚染量は1011〜1013原子/cm2未満であ
った。
COMPARATIVE EXAMPLE 3 As shown in FIG. 8, a silicon substrate in which a copper damascene pattern 30 of 20 mm square is formed at five locations in a plane of an 8-inch silicon substrate Wf with a spacing of 20 mm or more is used. A CMP apparatus 1 having the configuration shown in FIG.
In 5, polishing was performed while supplying a polishing liquid (slurry) from the polishing liquid nozzle 18, and then ultrapure water containing no chelating agent was supplied from the ultrapure water supply nozzle 19 to perform water polishing. Subsequently, the substrate Wf was cleaned while supplying ultrapure water containing citric acid from the cleaning liquid nozzle 26 to both surfaces thereof by a roll sponge type cleaning mechanism shown in FIG. 6, and spin-dried. When the concentration of copper adsorbed on the silicon surface exposed at the intervals of the damascene pattern 30 was quantitatively analyzed, the amount of contamination was 10 11 to 10 13 atoms / cm 2 or less.

【0038】[0038]

【発明の効果】以上、説明したように各請求項に記載の
発明によれば、下記のように優れた効果が得られる。
As described above, according to the invention described in each claim, the following excellent effects can be obtained.

【0039】請求項1の発明によれば、超純水中に10
0mg/L以下の遊離酸又はアンモニウム塩のキレート
剤を含むから、超純水に金属が溶出しても該溶出した金
属イオンは優先してキレート剤と反応しキレート剤の化
合物を生成するから、基板への金属汚染を抑制できる基
板用リンス液となる。
According to the first aspect of the present invention, 10
Since a chelating agent of free acid or ammonium salt of 0 mg / L or less is contained, even if a metal is eluted in ultrapure water, the eluted metal ion preferentially reacts with the chelating agent to produce a chelating agent compound. A substrate rinsing liquid that can suppress metal contamination on the substrate.

【0040】また、請求項2及び3に記載の発明によれ
ば、基板の表面に薬液乃至砥液を作用させる工程を含む
処理を行なった後、該基板を回転させその表面から薬液
及び汚染を除去するリンス処理を遊離酸又はアンモニウ
ム塩のキレート剤を含む超純水からなる基板用リンス液
によって行なうので、上記と同じ理由により基板の金属
汚染を抑制できる。
According to the second and third aspects of the present invention, after performing a process including a step of applying a chemical solution or an abrasive solution to the surface of the substrate, the substrate is rotated to remove the chemical solution and contamination from the surface. Since the rinsing treatment for removal is performed using a substrate rinsing liquid composed of ultrapure water containing a chelating agent of a free acid or ammonium salt, metal contamination of the substrate can be suppressed for the same reason as described above.

【0041】また、請求項4に記載の発明によれば、基
板の表面に砥液を供給して研磨した後、超純水を供給し
て研磨する工程において、超純水に遊離酸又はアンモニ
ア塩のキレート剤を存在させて基板を研磨するので、上
記と同様、基板の金属汚染を抑制できる。
According to the fourth aspect of the present invention, after the polishing is performed by supplying the abrasive liquid to the surface of the substrate and then polishing by supplying the ultrapure water, the free acid or ammonia is added to the ultrapure water. Since the substrate is polished in the presence of a salt chelating agent, metal contamination of the substrate can be suppressed as described above.

【0042】また、請求項5に記載の発明によれば、洗
浄用超純水と乾燥防止用超純水に遊離酸又はアンモニア
塩のキレート剤を含む基板用リンス液を用いるので、上
記と同様、基板の金属汚染を抑制できる。
According to the fifth aspect of the present invention, a substrate rinsing liquid containing a chelating agent of a free acid or an ammonium salt is used in ultrapure water for cleaning and ultrapure water for drying prevention. In addition, metal contamination of the substrate can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る基板処理方法による実施例1と比
較例2の銅(Cu)付着量を示す図である。
FIG. 1 is a diagram showing the amounts of copper (Cu) deposited in Example 1 and Comparative Example 2 by a substrate processing method according to the present invention.

【図2】超純水中のキレート濃度と銅(Cu)付着量を
示す図である。
FIG. 2 is a diagram showing the chelate concentration in ultrapure water and the amount of copper (Cu) attached.

【図3】回転基板処理装置の構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of a rotating substrate processing apparatus.

【図4】本発明に係る基板処理方法に用いるシリコン基
板例を示す図である。
FIG. 4 is a view showing an example of a silicon substrate used in the substrate processing method according to the present invention.

【図5】本発明に係る基板処理方法に用いる基板処理装
置の構成例を示す図である。
FIG. 5 is a diagram showing a configuration example of a substrate processing apparatus used in the substrate processing method according to the present invention.

【図6】ロールスポンジ型洗浄機構の構成例を示す図で
ある。
FIG. 6 is a diagram illustrating a configuration example of a roll sponge-type cleaning mechanism.

【図7】ペンシル型洗浄機構の構成例を示す図である。FIG. 7 is a diagram illustrating a configuration example of a pencil-type cleaning mechanism.

【図8】本発明に係る基板処理方法に用いる基板処理装
置の構成例を示す図である。
FIG. 8 is a diagram showing a configuration example of a substrate processing apparatus used in the substrate processing method according to the present invention.

【符号の説明】[Explanation of symbols]

1 基板保持回転機構 2 保持部材 3 リンス液供給ノズル 4 薬液供給ノズル 5 薬液供給ノズル 6 銅(Cu)めっき膜層 11 研磨室 12 洗浄槽 13 搬送室 14 洗浄槽 15 CMP装置 16 研磨テーブル 17 トップリング 18 砥液ノズル 19 超純水供給ノズル 21 ロールスポンジ 22 ロールスポンジ 23 スピンドル 24 回転駆動機構 25 回転駆動機構 26 洗浄液ノズル 27 揺動アーム 28 回転軸 29 洗浄部材 30 ダマシンパターン 31 洗浄液ノズル Reference Signs List 1 substrate holding and rotating mechanism 2 holding member 3 rinse liquid supply nozzle 4 chemical liquid supply nozzle 5 chemical liquid supply nozzle 6 copper (Cu) plating film layer 11 polishing chamber 12 cleaning tank 13 transfer chamber 14 cleaning tank 15 CMP device 16 polishing table 17 top ring Reference Signs List 18 polishing liquid nozzle 19 ultrapure water supply nozzle 21 roll sponge 22 roll sponge 23 spindle 24 rotation drive mechanism 25 rotation drive mechanism 26 cleaning liquid nozzle 27 swing arm 28 rotation axis 29 cleaning member 30 damascene pattern 31 cleaning liquid nozzle

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B24B 57/02 B24B 57/02 C11D 7/26 C11D 7/26 7/32 7/32 7/60 7/60 (72)発明者 片伯部 一郎 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 木原 幸子 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 3C047 FF08 GG15 3C058 AA07 CA01 CB01 DA12 4H003 DA15 EB08 EB13 EB16 ED02 FA07 FA21 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) B24B 57/02 B24B 57/02 C11D 7/26 C11D 7/26 7/32 7/32 7/60 7 / 60 (72) Inventor Ichiro Katabebe 11-1 Haneda Asahimachi, Ota-ku, Tokyo Inside Ebara Corporation (72) Inventor Sachiko Kihara 11-1 Asahi-cho Haneda, Ota-ku, Tokyo Inside Ebara Corporation F Terms (reference) 3C047 FF08 GG15 3C058 AA07 CA01 CB01 DA12 4H003 DA15 EB08 EB13 EB16 ED02 FA07 FA21

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 100mg/L以下の遊離酸又はアンモ
ニウム塩のキレート剤を含む超純水からなることを特徴
とする基板用リンス液。
1. A substrate rinsing liquid comprising ultrapure water containing a free acid or ammonium salt chelating agent of 100 mg / L or less.
【請求項2】 基板の表面に薬液乃至砥液を作用させる
工程を含む処理を行なった後、該基板を回転させその表
面から薬液及び汚染を除去するリンス処理を遊離酸又は
アンモニウム塩のキレート剤を含む超純水からなる基板
用リンス液によって行なうことを特徴とする基板処理方
法。
2. A free acid or ammonium salt chelating agent which is subjected to a treatment including a step of applying a chemical solution or an abrasive solution to the surface of a substrate and then rinsing the substrate to remove the chemical solution and contamination from the surface. A substrate rinsing liquid made of ultrapure water containing:
【請求項3】 請求項2に記載の基板処理方法におい
て、 前記薬液が酸と酸化剤の少なくともいずれか一方を含ん
だものであることを特徴とする基板処理方法。
3. The substrate processing method according to claim 2, wherein the chemical solution contains at least one of an acid and an oxidizing agent.
【請求項4】 基板の表面に砥液を供給して研磨した
後、超純水を供給して研磨する工程において、超純水に
遊離酸又はアンモニア塩のキレート剤を存在させて基板
を研磨することを特徴とする基板処理方法。
4. A step of supplying a polishing liquid to the surface of the substrate and polishing the substrate, and then polishing the substrate by supplying a chelating agent of a free acid or an ammonium salt to the ultrapure water in the step of supplying and polishing ultrapure water. A substrate processing method.
【請求項5】 基板の表面に砥液を供給して研磨する工
程と、研磨後基板に超純水を供給して洗浄する工程の少
なくとも1つを含み、且つ搬送中に基板が乾燥しないよ
うに超純水で基板表面を濡らす基板表面処理方法におい
て、洗浄用超純水と乾燥防止用超純水の少なくとも1つ
に遊離酸又はアンモニア塩のキレート剤を含むことを特
徴とする基板処理方法。
5. The method includes at least one of a step of supplying a polishing liquid to a surface of a substrate to polish the substrate and a step of supplying ultrapure water to the substrate after polishing to clean the substrate. A substrate surface treatment method in which a substrate surface is wetted with ultrapure water, wherein at least one of ultrapure water for cleaning and ultrapure water for drying prevention contains a chelating agent of a free acid or an ammonium salt. .
JP2000233252A 2000-08-01 2000-08-01 Substrate rinse liquid and substrate treatment method Pending JP2002050606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000233252A JP2002050606A (en) 2000-08-01 2000-08-01 Substrate rinse liquid and substrate treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000233252A JP2002050606A (en) 2000-08-01 2000-08-01 Substrate rinse liquid and substrate treatment method

Publications (2)

Publication Number Publication Date
JP2002050606A true JP2002050606A (en) 2002-02-15
JP2002050606A5 JP2002050606A5 (en) 2005-08-11

Family

ID=18725797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000233252A Pending JP2002050606A (en) 2000-08-01 2000-08-01 Substrate rinse liquid and substrate treatment method

Country Status (1)

Country Link
JP (1) JP2002050606A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005051101A (en) * 2003-07-30 2005-02-24 Ses Co Ltd Method of cleaning substrate
WO2006106677A1 (en) 2005-03-30 2006-10-12 National Printing Bureau, Incorporated Administrative Agency Printed matter, method and device for detecting such printed matter, and authentication method and device
US9136104B2 (en) 2010-11-15 2015-09-15 Kurita Water Industries Ltd. Method for cleaning silicon wafer and apparatus for cleaning silicon wafer
JP2015213196A (en) * 2012-10-19 2015-11-26 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Chemical mechanical polishing (cmp) composition for shallow trench isolation (sti) and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005051101A (en) * 2003-07-30 2005-02-24 Ses Co Ltd Method of cleaning substrate
WO2006106677A1 (en) 2005-03-30 2006-10-12 National Printing Bureau, Incorporated Administrative Agency Printed matter, method and device for detecting such printed matter, and authentication method and device
US9136104B2 (en) 2010-11-15 2015-09-15 Kurita Water Industries Ltd. Method for cleaning silicon wafer and apparatus for cleaning silicon wafer
JP2015213196A (en) * 2012-10-19 2015-11-26 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Chemical mechanical polishing (cmp) composition for shallow trench isolation (sti) and manufacturing method thereof

Similar Documents

Publication Publication Date Title
TW414965B (en) Methods and apparatus for cleaning semiconductor substrates after polishing of copper film
US6099662A (en) Process for cleaning a semiconductor substrate after chemical-mechanical polishing
JP3003684B1 (en) Substrate cleaning method and substrate cleaning liquid
KR100305093B1 (en) Method for cleaning semiconductor wafer after chemical mechanical polishing on copper wiring
TWI409862B (en) Cleaning method and solution for cleaning a wafer in a single wafer process
TWI297730B (en) Alkaline post-chemical mechanical planarization cleaning compositions
KR100576630B1 (en) Process for manufacturing semiconductor integrated circuit device
CN100429299C (en) Cleaning liquid composition after chemical and mechanical grinding
US6265781B1 (en) Methods and solutions for cleaning polished aluminum-containing layers, methods for making metallization structures, and the structures resulting from these methods
EP0897975B1 (en) Cleaning solution
JP3333684B2 (en) Polishing treatment method
JP3219020B2 (en) Cleaning agent
US20050266689A1 (en) Chemical mechanical polishing composition and process
US20020119245A1 (en) Method for etching electronic components containing tantalum
JP4484339B2 (en) Backside etching in scrubbers
KR20020029795A (en) A method for cleaning and treating a semiconductor wafer after chemical mechanical polishing
US20070240734A1 (en) Method of cleaning post-cmp wafer
WO2000044034A1 (en) Methods and cleaning solutions for post-chemical mechanical polishing
JP2002050606A (en) Substrate rinse liquid and substrate treatment method
JP2000188292A (en) Semiconductor device and its manufacture
JP3998426B2 (en) Substrate processing method
KR100661240B1 (en) Cleaning method after chemical mechanical polishing of copper
KR20060076835A (en) Cleaning solution for organic matter removal in chemical mechanical polishing process and cleaning method using the same
JP2002313768A (en) Cleaning method for semiconductor device
JP2002231664A (en) Chemical mechanical polishing method and cleaning method for conductor on substrate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050118

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070807