JP2002049922A - Method for recognizing image - Google Patents
Method for recognizing imageInfo
- Publication number
- JP2002049922A JP2002049922A JP2000233816A JP2000233816A JP2002049922A JP 2002049922 A JP2002049922 A JP 2002049922A JP 2000233816 A JP2000233816 A JP 2000233816A JP 2000233816 A JP2000233816 A JP 2000233816A JP 2002049922 A JP2002049922 A JP 2002049922A
- Authority
- JP
- Japan
- Prior art keywords
- image
- closed curve
- recognition target
- recognition
- energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Image Analysis (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、画像認識方法に関
するものであり、特に、動的輪郭抽出方法におけるエネ
ルギー制御方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image recognition method, and more particularly to an energy control method in a dynamic contour extraction method.
【0002】[0002]
【従来の技術】画像に含まれる特定の認識対象物の輪郭
を抽出する方法として、動的輪郭抽出方法(Snakes:
“active contour model” ,International Journal of
Computer Vision ,Vol.1, No.4, pp.321-331, 1988)
が知られている。2. Description of the Related Art As a method for extracting a contour of a specific recognition target included in an image, a dynamic contour extraction method (Snakes:
“Active contour model”, International Journal of
Computer Vision, Vol.1, No.4, pp.321-331, 1988)
It has been known.
【0003】この方法は、画像に含まれる特定の認識対
象物に対して変形可能な閉曲線を設定し、その閉曲線の
エネルギーを定義することにより、その閉曲線の状態を
定量的に評価するものである。閉曲線のエネルギーは閉
曲線が認識対象物の輪郭に一致した場合に最も小さくな
るように定義されるものであり、このことから閉曲線を
そのエネルギーが最小となるように変形させることで認
識対象物の輪郭を抽出することができる。なお、閉曲線
はその閉曲線を形成する離散的に配置された制御点を連
結したものである。従って、上述の閉曲線を変形させる
処理とは、閉曲線のエネルギーが最小となるように閉曲
線上の各制御点を移動させることを意味する。具体的に
は、閉曲線の状態に対応して定義される、内部エネルギ
ー(内部スプラインエネルギー)、画像エネルギー、お
よび外部エネルギー、の3つのエネルギーの和が最小に
なるように閉曲線上の制御点v(s)を移動させることによ
り、認識対象物の輪郭を抽出する。この時の閉曲線のエ
ネルギーは[数1]に示すような式で表せられる。In this method, a deformable closed curve is set for a specific recognition target included in an image, and the energy of the closed curve is defined to quantitatively evaluate the state of the closed curve. . The energy of the closed curve is defined so as to be minimized when the closed curve matches the contour of the object to be recognized. From this, the contour of the object to be recognized is deformed by deforming the closed curve so that the energy becomes minimum. Can be extracted. The closed curve is obtained by connecting discretely arranged control points forming the closed curve. Therefore, the above-described process of deforming the closed curve means moving each control point on the closed curve so that the energy of the closed curve is minimized. Specifically, the control point v (on the closed curve is defined so that the sum of the three energies of the internal energy (internal spline energy), the image energy, and the external energy, which are defined corresponding to the state of the closed curve, is minimized. By moving s), the contour of the recognition target is extracted. The energy of the closed curve at this time is expressed by an equation as shown in [Equation 1].
【数1】 (Equation 1)
【0004】なお、内部スプラインエネルギーは、制御
点の1次微分および2次微分からなり、閉曲線を収縮さ
せ、さらに滑らかにする力を作用させるエネルギーで、
[数2]に示す式で表せられる。[0004] The internal spline energy is composed of a first derivative and a second derivative of a control point, and is an energy for applying a force for contracting and smoothing a closed curve.
It can be represented by the equation shown in [Equation 2].
【数2】 (Equation 2)
【0005】また、画像エネルギーは、制御点座標にお
ける画像の微分により与えられ、閉曲線を画像のエッジ
に張り付かせる力を作用させるエネルギーで、[数3]
に示すような式で表せられる。[0005] The image energy is given by the differentiation of the image at the control point coordinates, and is the energy that exerts a force to stick the closed curve to the edge of the image.
It can be represented by the following equation.
【数3】 (Equation 3)
【0006】また、外部エネルギーは、外部から閉曲線
に対しエネルギーを与え、閉曲線を収縮あるいは膨張さ
せる力を作用させるエネルギーで、[数4]に示す式で
表せられる。[0006] The external energy is energy that gives energy to a closed curve from the outside and exerts a force to contract or expand the closed curve, and is expressed by the following equation (4).
【数4】 (Equation 4)
【0007】[0007]
【発明が解決しようとする課題】従来の動的輪郭抽出方
法において、閉曲線は、縮小方向への変形か、あるいは
膨張方向への変形のどちらか一方向の変形しか行うこと
ができない。よって、画像認識処理を開始する際、閉曲
線を縮小方向へ変形する制御を行う場合は、認識対象物
を囲むように閉曲線を配置する必要がある。また、閉曲
線を膨張方向へ変形する制御を行う場合は、認識対象物
の中に全ての線分が含まれるように閉曲線を初期設定す
る必要がある。仮に閉曲線の初期設定を認識対象領域と
交差するように設定してしまうと、閉曲線は認識対象物
の全周におけるエッジに貼りつかず認識に失敗する。す
なわち、図3に示すように、制御点330〜343を連
結して形成した初期閉曲線320を認識対象物310と
交差するように設定した場合、縮小制御を行うと初期閉
曲線320は閉曲線330へと変形することから、閉曲
線330は認識対象物310の全周におけるエッジに貼
りつかず、認識対象物310を正確に認識することがで
きない。つまり、従来の動的輪郭抽出方法において画像
中の認識対象物を認識する精度は、閉曲線の初期座標に
大きく依存した結果となり、閉曲線の初期設定の状態に
よっては認識対象物の認識を行うことができない可能性
が生じる。In the conventional active contour extraction method, the closed curve can be deformed in only one direction, that is, in the direction of reduction or in the direction of expansion. Therefore, when performing control to deform the closed curve in the reduction direction when starting the image recognition process, it is necessary to arrange the closed curve so as to surround the recognition target. Further, when performing control to deform the closed curve in the expansion direction, it is necessary to initialize the closed curve so that all line segments are included in the recognition target. If the initial setting of the closed curve is set so as to intersect with the recognition target area, the closed curve will not stick to the edges of the entire circumference of the recognition target and recognition will fail. That is, as shown in FIG. 3, when the initial closed curve 320 formed by connecting the control points 330 to 343 is set to intersect with the recognition target 310, the initial closed curve 320 is changed to the closed curve 330 by performing the reduction control. Because of the deformation, the closed curve 330 does not stick to the edges of the entire circumference of the recognition target 310, and the recognition target 310 cannot be accurately recognized. That is, the accuracy of recognizing the recognition target in the image in the conventional active contour extraction method largely depends on the initial coordinates of the closed curve, and the recognition target may be recognized depending on the state of the initial setting of the closed curve. There is a possibility that it cannot be done.
【0008】また、従来の動的輪郭抽出方法を適用した
コンピュータシステムによる画像認識処理において、そ
の処理速度を高速化する場合に生じる問題点について以
下に述べる。図4に、一般的なコンピュータシステムに
より画像処理を行う場合のデータフロ−を示す。コンピ
ュータシステム400において各種画像処理を行う場
合、画像処理に必要なデータは、ハードディスク440
やCCDカメラ等のセンサから、メインメモリ430に読
み込まれ、そのデータはCPU420に転送され、その後
キャッシュメモリ410に格納される。キャッシュメモ
リ410に既に必要なデータが転送されている場合は、
CPU420がキャッシュメモリ410からそのデータの
読み込みを行う。この時、一般にキャッシュメモリ41
0へのアクセス速度は高速であり、これに対しメインメ
モリ430へのアクセス速度は低速である。しかしキャ
ッシュメモリ410は高価であるためコンピュータシス
テムにおいては少量サイズしか搭載しておらず、これに
対し安価なメインメモリ430は大容量搭載されている
のが一般的である。[0008] In the image recognition processing by a computer system to which the conventional active contour extraction method is applied, a problem that occurs when the processing speed is increased will be described below. FIG. 4 shows a data flow when image processing is performed by a general computer system. When performing various types of image processing in the computer system 400, data necessary for the image processing is stored on the hard disk 440.
The data is read from a sensor such as a CCD camera or the like into the main memory 430, the data is transferred to the CPU 420, and then stored in the cache memory 410. If necessary data has already been transferred to the cache memory 410,
The CPU 420 reads the data from the cache memory 410. At this time, generally, the cache memory 41
The access speed to 0 is high, whereas the access speed to the main memory 430 is low. However, since the cache memory 410 is expensive, only a small size is mounted in a computer system, whereas the inexpensive main memory 430 is generally mounted in a large capacity.
【0009】上記コンピュータ構造から、画像処理の処
理速度を高速化させるためには、高速なデータアクセス
が可能なキャッシュメモリ410を有効活用することが
重要となる。CPU420の必要なデータがキャッシュメ
モリ410に存在することを現す比率をヒット率と総称
するが、このヒット率を向上させることが高速化に直結
する。動的輪郭抽出方法を適用したコンピュータシステ
ムにおいてヒット率を向上させる方法としては、画像デ
ータを小領域に分割して閉曲線を決定し、その領域毎に
対象を認識することにより、処理対象データの容量を少
量に抑える方法が考えられる。しかし上述のように、従
来の動的輪郭抽出方法においては、閉曲線を配置する際
に、その閉曲線を認識対象領域と交差しないように初期
設定する必要がある。しかしながら、図5のように画像
500上に認識対象物520が配置されていると、画像
500を分割する分割線510は複雑な配置となり、閉
曲線を容易に決定することができないという問題が生じ
る。また分割線510により画像を分割し、閉曲線を決
定できた場合においても、この分割線の配置問題を解決
するための処理時間がオーバーヘッドとなる。Due to the above computer structure, in order to increase the processing speed of image processing, it is important to effectively use the cache memory 410 which can access data at high speed. The ratio indicating that the data required by the CPU 420 exists in the cache memory 410 is collectively referred to as a hit ratio. Improving the hit ratio is directly linked to an increase in speed. As a method of improving the hit ratio in a computer system to which the active contour extraction method is applied, the image data is divided into small regions, a closed curve is determined, and a target is recognized for each of the regions. Can be reduced to a small amount. However, as described above, in the conventional active contour extraction method, when arranging a closed curve, it is necessary to initialize the closed curve so as not to intersect with the recognition target area. However, when the recognition target 520 is arranged on the image 500 as shown in FIG. 5, the dividing line 510 for dividing the image 500 has a complicated arrangement, and a problem arises that the closed curve cannot be easily determined. Further, even when the image is divided by the dividing line 510 and a closed curve can be determined, the processing time for solving the dividing line arrangement problem becomes an overhead.
【0010】よって、本発明では、画像に含まれる特定
の認識対象物の輪郭を抽出する動的輪郭抽出方法におい
て、認識対象物に対して配置する閉曲線の初期設定条件
を求めることなく、認識対象物を正確に認識することの
できる画像認識方法を提供することを目的とする。Therefore, according to the present invention, in a dynamic contour extraction method for extracting a contour of a specific recognition target included in an image, the recognition target is determined without obtaining an initial setting condition of a closed curve arranged with respect to the recognition target. An object is to provide an image recognition method capable of accurately recognizing an object.
【0011】[0011]
【課題を解決するための手段】請求項1に記載の画像認
識方法は、画像上に閉曲線を配置し、曲線の滑らかさを
示す内部エネルギーと、前記画像の濃度勾配を示す画像
エネルギーと、外部からの外部エネルギーとを用いて、
前記閉曲線の縮小処理あるいは膨張処理を行い、前記画
像に含まれる認識対象物の輪郭を抽出する動的輪郭抽出
方法において、前記外部エネルギーを前記画像の濃度値
に応じて動的に変化させることを特徴とする。According to a first aspect of the present invention, there is provided an image recognition method comprising: arranging a closed curve on an image; an internal energy indicating a smoothness of the curve; an image energy indicating a density gradient of the image; Using external energy from
In the dynamic contour extraction method of performing a reduction process or an expansion process of the closed curve and extracting a contour of a recognition target included in the image, dynamically changing the external energy according to a density value of the image. Features.
【0012】請求項2に記載の画像認識方法は、請求項
1に記載の画像認識方法において、前記画像は認識対象
物と背景部とを含む2値画像であり、前記認識対象物に
おける前記外部エネルギーを前記閉曲線が膨張する方向
へ、前記背景部における前記外部エネルギーを前記閉曲
線が縮小する方向へ、変化させることを特徴とする。According to a second aspect of the present invention, in the image recognition method according to the first aspect, the image is a binary image including a recognition target and a background portion, and the external image in the recognition target is used. The energy is changed in a direction in which the closed curve expands, and the external energy in the background portion is changed in a direction in which the closed curve contracts.
【0013】また、請求項3に記載の画像認識方法は、
請求項1の画像認識方法において、前記閉曲線を、複数
のタイル状に配置することを特徴とする。The image recognition method according to claim 3 is
2. The image recognition method according to claim 1, wherein the closed curves are arranged in a plurality of tiles.
【0014】[0014]
【発明の実施の形態】(実施の形態1)以下、実施の形
態1に係る画像認識方法について図1を用いて説明す
る。図1において、2値画像100は認識処理対象とな
る認識対象物110と認識対象物の外部(背景部)16
0からなり、認識対象物110の濃度値(画素値)を1
の値に、また背景部160の画素値を0の値に設定した
ものである。(Embodiment 1) Hereinafter, an image recognition method according to Embodiment 1 will be described with reference to FIG. In FIG. 1, a binary image 100 includes a recognition target 110 to be recognized and an exterior (background portion) 16 of the recognition target.
0, and the density value (pixel value) of the recognition target object 110 is 1
, And the pixel value of the background portion 160 is set to 0.
【0015】以下、図1に示す2値画像100中の認識
対象物110を閉曲線120により認識する方法につい
て説明する。まず、図1に示すように、初期閉曲線12
0を認識対象物110と交差するように設定する。ここ
で閉曲線とは、その閉曲線上に離散的に配置した制御点
(130〜137,140,141)を連結したものの
ことを指す。この各制御点を連結する処理においては、
方向性を有するものとし、半時計周りを正とする。閉曲
線120の基本制御は、[数1]に示す閉曲線のエネル
ギーESNAKE(v)が最小となるように各制御点を移動制御
することによって行う。Hereinafter, a method for recognizing the recognition target 110 in the binary image 100 shown in FIG. First, as shown in FIG.
0 is set to intersect with the recognition target 110. Here, the closed curve indicates a connection of control points (130 to 137, 140, 141) discretely arranged on the closed curve. In the process of connecting these control points,
It is assumed to have directionality, and the counterclockwise direction is defined as positive. The basic control of the closed curve 120 is performed by moving and controlling each control point such that the energy E SNAKE (v) of the closed curve shown in [Equation 1] is minimized.
【0016】次に、閉曲線120上の各制御点が、認識
対象物110の内側に位置するか、または外側に位置す
るかの判定を行う。この判定は各制御点座標における2
値画像100の画素値により行い、制御点座標における
画素値が1の場合には認識対象物110の内側に位置す
ると判定し、一方、制御点座標における画素値が0の場
合には認識対象物110の外側、すなわち背景部160
に位置すると判定する。なお、図1においては、認識対
象物110の外側にある制御点を黒丸(130〜13
7)で示し、内側にある制御点を白丸(140,14
1)で示している。Next, it is determined whether each control point on the closed curve 120 is located inside or outside the recognition target 110. This determination is made at 2 in each control point coordinate.
This is performed based on the pixel values of the value image 100. When the pixel value at the control point coordinates is 1, it is determined that the pixel is located inside the recognition target 110. On the other hand, when the pixel value at the control point coordinates is 0, the recognition target is determined. 110, that is, the background portion 160
It is determined to be located at. In FIG. 1, control points outside the recognition target object 110 are indicated by black circles (130 to 13).
7), and the inside control points are indicated by white circles (140, 14).
1).
【0017】次に、外部エネルギーを動的に変化させ、
閉曲線120上の各制御点の移動方向を決定する。認識
対象物110の外側にある制御点に対しては、対象とす
る制御点の前後の制御点を結ぶことで得られるベクトル
を90度回転させたベクトルを外部エネルギーとして作
用させる。また、認識対象物110の内側にある制御点
に対しては、対象とする制御点の前後の制御点を結ぶこ
とで得られるベクトルをマイナス90度回転させたベク
トルを外部エネルギーとして作用させる。なお、ベクト
ルの絶対値は正規化した値を用いてもよい。Next, the external energy is dynamically changed,
The moving direction of each control point on the closed curve 120 is determined. For a control point outside the recognition target 110, a vector obtained by connecting control points before and after the target control point and rotated by 90 degrees is used as external energy. For the control points inside the recognition target 110, a vector obtained by connecting the control points before and after the target control point and rotated by minus 90 degrees is used as external energy. Note that a normalized value may be used as the absolute value of the vector.
【0018】具体的には、例えば、移動制御対象の制御
点を図1に示す制御点131とした場合、制御点131
は認識対象物110の外側に存在するため、制御点13
1の前後に位置する制御点130と制御点132とを結
ぶことで得られるベクトル145を90度回転させ、外
部エネルギー146を生成する。この生成した外部エネ
ルギー146は制御点131に対して認識対象物110
の外側から内側へ作用する。そして、制御点131は、
外部エネルギー146に従って認識対象物110の外側
から内側、すなわち閉曲線120が縮小する方向へ移動
する。以上のようにして、認識対象物110の外側に位
置する制御点(130〜137)に対しては認識対象物
110の外側から内側に外部エネルギーを作用させ、こ
れにより制御点(130〜137)を閉曲線120が縮
小する方向に移動させるようにする。また、認識対象物
110の内側に位置する制御点(140,141)に対
しては、認識対象物110の内側から外側に外部エネル
ギーを作用させ、これにより制御点(140,141)
を閉曲線120が膨張する方向へ移動させるようにす
る。その結果、初期閉曲線120は、閉曲線150へと
変形して認識対象物310の全周におけるエッジに貼り
つき、認識対象物110の輪郭が認識される。Specifically, for example, when the control point to be controlled is the control point 131 shown in FIG.
Exists outside the recognition target 110, so that the control point 13
The vector 145 obtained by connecting the control points 130 and 132 located before and after 1 is rotated by 90 degrees to generate the external energy 146. The generated external energy 146 is transmitted to the control
Acts from outside to inside. And the control point 131 is
According to the external energy 146, the recognition target object 110 moves from outside to inside, that is, in a direction in which the closed curve 120 is reduced. As described above, external energy is applied to the control points (130 to 137) located outside the recognition target object 110 from the outside to the inside of the recognition target object 110, thereby controlling points (130 to 137). Is moved in a direction in which the closed curve 120 is reduced. In addition, external energy is applied to the control points (140, 141) located inside the recognition target object 110 from the inside to the outside of the recognition target object 110, thereby controlling points (140, 141).
In the direction in which the closed curve 120 expands. As a result, the initial closed curve 120 is transformed into a closed curve 150 and attached to the edges of the entire circumference of the recognition object 310, and the outline of the recognition object 110 is recognized.
【0019】以上のように、実施の形態1の画像認識方
法によれば、2値画像100に含まれる認識対象物11
0の輪郭を認識する際に、2値画像100の画像値に応
じて外部エネルギーを動的に変化させ、閉曲線120上
の各制御点を、この外部エネルギーに従って閉曲線12
0が縮小・膨張する方向に移動させるようにしたことか
ら、閉曲線120を認識対象物110と交差するように
初期設定した場合においても認識対象物110の輪郭を
正確に認識することができる。As described above, according to the image recognition method of the first embodiment, the recognition target 11 included in the binary image 100
When recognizing the contour of 0, the external energy is dynamically changed according to the image value of the binary image 100, and each control point on the closed curve 120 is changed to the closed curve 12 according to the external energy.
Since 0 is moved in the direction of contraction / expansion, the contour of the recognition target 110 can be accurately recognized even when the closed curve 120 is initially set to intersect with the recognition target 110.
【0020】(実施の形態2)以下、実施の形態2に係
る画像認識方法について図2を用いて説明する。本実施
の形態2に係る画像認識方法は、画像に含まれる特定の
認識対象物を認識する際に、その処理速度を高速化する
ために、画像を小領域に分割し、領域分割毎に認識対象
物を認識することを特徴とする。(Embodiment 2) An image recognition method according to Embodiment 2 will be described below with reference to FIG. The image recognition method according to the second embodiment divides an image into small regions in order to increase the processing speed when recognizing a specific recognition target included in the image, and recognizes each region. It is characterized by recognizing an object.
【0021】具体的には、まず、画像200を分割線2
10により小領域に分割し、閉曲線(231〜238)
を決定する。このような処理を行うことにより、図2に
示すように、画像200に対して複数の閉曲線がタイル
状に配置された状態になる。Specifically, first, the image 200 is divided
10 is divided into small areas, and closed curves (231 to 238)
To determine. By performing such processing, as shown in FIG. 2, a state is obtained in which a plurality of closed curves are arranged in a tile shape with respect to the image 200.
【0022】次に、各分割領域毎に実施の形態1の画像
認識方法を用いて認識対象物220の認識を行う。な
お、本実施の形態2では、各分割領域毎に実施の形態1
の画像認識方法を用いて認識対象物220の認識を行う
ことから、画像200に対して複数の閉曲線をタイル状
に配置する際に、認識対象物220が閉曲線(231〜
238)と交差しないように初期設定する必要がない。Next, the recognition target 220 is recognized for each divided area using the image recognition method of the first embodiment. In the second embodiment, the first embodiment is used for each divided area.
Since the recognition target 220 is recognized using the image recognition method described above, when arranging a plurality of closed curves in the image 200 in a tile shape, the recognition target 220 may be closed curves (231 to 231).
238) does not need to be initialized.
【0023】以上のように本実施の形態2の画像認識方
法によれば、画像200に複数の閉曲線(231〜23
8)をタイル状に配置し、その領域毎に認識対象物22
0を実施の形態1の画像認識方法を用いて認識している
ことから、認識対象物220に対する閉曲線の初期設定
条件を求めることなく、画像200を単純にタイル状に
分割して、その領域毎に認識対象物220を認識するこ
とができ、認識対象物220の認識処理速度を向上させ
ることが可能となる。As described above, according to the image recognition method of the second embodiment, a plurality of closed curves (231 to 23)
8) are arranged in a tile shape, and the recognition target 22
Since the image 200 is recognized using the image recognition method of the first embodiment, the image 200 is simply divided into tiles without obtaining the initial setting condition of the closed curve for the recognition target 220, and each area is divided into tiles. The recognition target 220 can be recognized quickly, and the recognition processing speed of the recognition target 220 can be improved.
【0024】[0024]
【発明の効果】以上のように請求項1に記載の画像認識
方法によれば、画像上に閉曲線を配置し、曲線の滑らか
さを示す内部エネルギーと、前記画像の濃度勾配を示す
画像エネルギーと、外部からの外部エネルギーとを用い
て、前記閉曲線の縮小処理あるいは膨張処理を行い、前
記画像に含まれる認識対象物の輪郭を抽出する動的輪郭
抽出方法において、前記外部エネルギーを前記画像の濃
度値に応じて動的に変化させるようにしたことから、前
記閉曲線の縮小及び膨張制御を前記画像の画素値に応じ
て行うことができ、認識対象物に対して配置する閉曲線
の初期設定条件を求めることなく、正確に画像中に含ま
れる認識対象物の輪郭を認識することが可能となる。As described above, according to the image recognition method of the first aspect, a closed curve is arranged on an image, and the internal energy indicating the smoothness of the curve and the image energy indicating the density gradient of the image. Using an external energy from the outside, performing a reduction process or an expansion process of the closed curve, and extracting a contour of a recognition target included in the image, a dynamic contour extraction method, wherein the external energy is a density of the image. Since it is dynamically changed according to the value, the reduction and expansion control of the closed curve can be performed according to the pixel value of the image, and the initial setting condition of the closed curve to be arranged with respect to the recognition target is It is possible to accurately recognize the outline of the recognition target included in the image without obtaining the outline.
【0025】また、請求項2に記載の画像認識方法によ
れば、請求項1に記載の画像認識方法において、前記画
像は認識対象物と背景部とを含む2値画像であり、前記
認識対象物における前記外部エネルギーを前記閉曲線が
膨張する方向へ、前記背景部における前記外部エネルギ
ーを前記閉曲線が縮小する方向へ、変化させるようにし
たことから、前記閉曲線の縮小及び膨張制御を前記画像
の画素値に応じて行うことができ、認識対象物に対して
配置する閉曲線の初期設定条件を求めることなく、正確
に2値画像に含まれる認識対象物の輪郭を認識すること
が可能となる。According to the image recognition method of the second aspect, in the image recognition method of the first aspect, the image is a binary image including a recognition target and a background portion. Since the external energy in the object is changed in the direction in which the closed curve expands, and the external energy in the background portion is changed in the direction in which the closed curve contracts, the control of the reduction and expansion of the closed curve is performed on the pixels of the image. This can be performed according to the value, and the contour of the recognition target included in the binary image can be accurately recognized without obtaining the initial setting condition of the closed curve to be placed on the recognition target.
【0026】また、請求項3に記載の画像認識方法によ
れば、請求項1の画像認識方法において、前記閉曲線
を、複数のタイル状に配置するにようにしたことから、
認識対象物に対して配置する閉曲線の初期設定条件を求
めることなく、画像を単純に分割線で小領域に分割し、
その領域毎に認識対象物を正確に認識することができ、
画像に含まれる認識対象物の認識処理速度を向上させる
ことが可能となる。According to the image recognition method of the third aspect, in the image recognition method of the first aspect, the closed curves are arranged in a plurality of tiles.
The image is simply divided into small areas by dividing lines without finding the initial setting conditions of the closed curve to be placed on the recognition object,
The recognition target can be accurately recognized for each area,
It is possible to improve the recognition processing speed of a recognition target included in an image.
【図1】本実施の形態1に係る画像認識方法の動作概要
を説明するための図であるFIG. 1 is a diagram for describing an operation outline of an image recognition method according to a first embodiment;
【図2】本実施の形態2に係る画像認識方法の動作概要
を説明するための図で ある。FIG. 2 is a diagram for explaining an operation outline of an image recognition method according to a second embodiment.
【図3】従来の動的輪郭抽出方法の動作制御を説明する
ための図である。FIG. 3 is a diagram for explaining operation control of a conventional active contour extraction method.
【図4】一般的なコンピュータにより画像処理を行う場
合のデータフローを示す図である。FIG. 4 is a diagram showing a data flow when image processing is performed by a general computer.
【図5】従来の動的輪郭抽出方法において、画像認識処
理の処理速度を高速化する際の問題点を説明するための
図である。FIG. 5 is a diagram for explaining a problem in increasing the processing speed of image recognition processing in the conventional active contour extraction method.
100 2値画像 110,220,310 認識対象物 120,150,320,330 閉曲線 130,131,132,133,134,135,1
36,137,140,141,330,331,33
2,333,334,335,336,337,33
8,339,340,341,342,343 制御点 145 ベクトル 146 外部エネルギー 160 背景部 200,500 画像 210,510 分割線 400 コンピュータシステム 410 キャッシュメモリ 420 CPU 430 メインメモリ 440 ハードディスク100 Binary image 110, 220, 310 Recognition target 120, 150, 320, 330 Closed curve 130, 131, 132, 133, 134, 135, 1
36,137,140,141,330,331,33
2,333,334,335,336,337,33
8,339,340,341,342,343 Control point 145 Vector 146 External energy 160 Background part 200,500 Image 210,510 Dividing line 400 Computer system 410 Cache memory 420 CPU 430 Main memory 440 Hard disk
Claims (3)
さを示す内部エネルギーと、前記画像の濃度勾配を示す
画像エネルギーと、外部からの外部エネルギーとを用い
て、前記閉曲線の縮小処理あるいは膨張処理を行い、前
記画像に含まれる認識対象物の輪郭を抽出する動的輪郭
抽出方法において、 前記外部エネルギーを前記画像の濃度値に応じて動的に
変化させることを特徴とする画像認識方法。1. A closed curve is arranged on an image, and the closed curve is reduced by using internal energy indicating the smoothness of the curve, image energy indicating a density gradient of the image, and external energy from outside. A dynamic contour extraction method for performing an expansion process and extracting a contour of a recognition target included in the image, wherein the external energy is dynamically changed according to a density value of the image. .
て、 前記画像は認識対象物と背景部とを含む2値画像であ
り、 前記認識対象物における前記外部エネルギーを前記閉曲
線が膨張する方向へ、 前記背景部における前記外部エネルギーを前記閉曲線が
縮小する方向へ、変化させることを特徴とする画像認識
方法。2. The image recognition method according to claim 1, wherein the image is a binary image including a recognition target and a background portion, and the external energy in the recognition target is applied in a direction in which the closed curve expands. An image recognition method, wherein the external energy in the background portion is changed in a direction in which the closed curve is reduced.
する画像認識方法。3. The image recognition method according to claim 1, wherein the closed curve is arranged in a plurality of tiles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000233816A JP4578638B2 (en) | 2000-08-02 | 2000-08-02 | Image recognition method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000233816A JP4578638B2 (en) | 2000-08-02 | 2000-08-02 | Image recognition method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002049922A true JP2002049922A (en) | 2002-02-15 |
JP4578638B2 JP4578638B2 (en) | 2010-11-10 |
Family
ID=18726284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000233816A Expired - Fee Related JP4578638B2 (en) | 2000-08-02 | 2000-08-02 | Image recognition method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4578638B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100461820C (en) * | 2005-03-14 | 2009-02-11 | 株式会社其恩斯 | Image processing device and registration data generation method in image processing |
US7542589B2 (en) | 2003-08-04 | 2009-06-02 | Denso Corporation | Road position detection |
US10282837B2 (en) | 2015-08-31 | 2019-05-07 | Mitutoyo Corporation | Image measuring apparatus and non-temporary recording medium on which control program of same apparatus is recorded |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10143634A (en) * | 1996-11-12 | 1998-05-29 | Fuji Photo Film Co Ltd | Method and device for recognizing circular exposure field |
JP2000048212A (en) * | 1998-07-31 | 2000-02-18 | Canon Inc | Image processing method and apparatus, recording medium |
-
2000
- 2000-08-02 JP JP2000233816A patent/JP4578638B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10143634A (en) * | 1996-11-12 | 1998-05-29 | Fuji Photo Film Co Ltd | Method and device for recognizing circular exposure field |
JP2000048212A (en) * | 1998-07-31 | 2000-02-18 | Canon Inc | Image processing method and apparatus, recording medium |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7542589B2 (en) | 2003-08-04 | 2009-06-02 | Denso Corporation | Road position detection |
CN100461820C (en) * | 2005-03-14 | 2009-02-11 | 株式会社其恩斯 | Image processing device and registration data generation method in image processing |
US10282837B2 (en) | 2015-08-31 | 2019-05-07 | Mitutoyo Corporation | Image measuring apparatus and non-temporary recording medium on which control program of same apparatus is recorded |
Also Published As
Publication number | Publication date |
---|---|
JP4578638B2 (en) | 2010-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8693785B2 (en) | Image matching devices and image matching methods thereof | |
US10127679B2 (en) | Image alignment method and apparatus | |
CN103026385B (en) | Template is used to switch and feature adaptation provides the method for Object tracking, device and computer program | |
US20070013791A1 (en) | Tracking apparatus | |
US20050265453A1 (en) | Image processing apparatus and method, recording medium, and program | |
JP2019536187A (en) | Hybrid tracker system and method for match moves | |
CN106570886B (en) | A kind of method for tracking target based on super-resolution rebuilding | |
WO2020107326A1 (en) | Lane line detection method, device and computer readale storage medium | |
US6920248B2 (en) | Contour detecting apparatus and method, and storage medium storing contour detecting program | |
JP7064257B2 (en) | Image depth determination method and creature recognition method, circuit, device, storage medium | |
CN102063727B (en) | Covariance matching-based active contour tracking method | |
WO2022143284A1 (en) | Method and apparatus for determining movement direction, and sweeping robot and storage medium | |
CN103236059A (en) | Diffeomorphism demons image registration method and system based on mode transformation | |
CN112633294A (en) | Significance region detection method and device based on perceptual hash and storage device | |
JP3054682B2 (en) | Image processing method | |
JP4578638B2 (en) | Image recognition method | |
CN110288517A (en) | Skeleton Line Extraction Method Based on Projection Matching Group | |
CN111768427B (en) | Multi-moving-object tracking method, device and storage medium | |
JP2000339453A (en) | Picture area dividing device, its method and recording medium recording processing program | |
CN114998561B (en) | Category-level pose optimization method and device | |
JP3524826B2 (en) | Three-dimensional image processing method and apparatus, and recording medium storing three-dimensional image processing program | |
JP4133246B2 (en) | Image deformation information generation apparatus, image deformation information generation method, and image deformation information generation program | |
JP4387889B2 (en) | Template collation apparatus and method | |
JP5778983B2 (en) | Data processing apparatus, data processing apparatus control method, and program | |
JP7276968B2 (en) | 3D DATA UPDATE DEVICE, FACE POSITION ESTIMATION DEVICE, 3D DATA UPDATE METHOD AND PROGRAM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100416 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100511 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100709 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100727 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100825 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130903 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |